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The theory of supersymmetric quantum electrodynamics is extended by interactions with external
vector and tensor backgrounds, that are assumed to be generated by some Lorentz-violating (LV)
dynamics at an ultraviolet scale perhaps related to the Planck scale. Exact supersymmetry requires that
such interactions correspond to LV operators of dimension five or higher, providing a solution to the
naturalness problem in the LV sector. We classify all dimension five and six LV operators, analyze their
properties at the quantum level and describe observational consequences of LV in this theory. We show
that LV operators do not induce destabilizing D-terms, gauge anomaly, and the Chern-Simons term for
photons. We calculate the renormalization group evolution of dimension five LV operators and their
mixing with dimension three LVoperators, controlled by the scale of the soft-breaking masses. Dimension
five LV operators are constrained by low-energy precision measurements at 10�10–10�5 level in units of
the inverse Planck scale, while the Planck-scale suppressed dimension six LV operators are allowed by
observational data.
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I. INTRODUCTION

There are many known examples in the history of phys-
ics when a symmetry of nature, which was assumed to be
exact, has fallen under experimental scrutiny. The study of
the consequences of such breaking has often provided
important insights into the dynamics at high-energy scales.
This was exemplified by the weak-scale dynamics of the
standard model (SM) through the search and discovery of P
and CP violations. Lorentz symmetry is used as a crucial
ingredient in the construction of fundamental theories of
nature. Even though no breakdown of this symmetry has
been observed to date, there has been a growing interest in
Lorentz violation (LV) because the precision tests of
Lorentz symmetry can provide an important window into
the physics far beyond the electroweak scale [1–6].

The recently intensified interest in LV theories is stimu-
lated by several seemingly unrelated motives. First, a
combination of different sets of cosmological data indi-
cates that the dominant component of the energy density of
the Universe is dark energy. It can either be ascribed to a
cosmological constant or to an energy density associated
with a new infrared degree of freedom, such as e.g. an
ultralight scalar field (quintessence). The time evolution of
quintessence creates a preferred frame, which could in
principle be detected as a LV background, provided that
it couples to the SM. Second, low-energy limits of string
theory contain a number of (nearly) massless fields, some
of which carry open Lorentz indices. The well-studied
example of an antisymmetric field background B�� on a
brane (for a review see [7]) leads to an effective violation of
Lorentz invariance. Third, there have been a number of
conjectures that a theory of quantum gravity could mani-
05=72(1)=015013(17)$23.00 015013
fest itself at lower energies through LV modifications of
particle dispersion relations (see, e.g. [8,9] and references
therein). Although such conjectures are undoubtedly
speculative, if true, they would provide a powerful tool to
probe ultrashort distances via LV physics. Direct experi-
mental constraints on modifications of dispersion relations
come from astrophysical processes [10–17] and terrestrial
clock comparison experiments [18–21]. In both cases the
typical sensitivity to these operators is at the 10�5=MPl

level. This creates a definite problem for those theories that
predict Planck mass suppressed �1=MPl effects.

In an effective field theory framework, the breakdown of
Lorentz symmetry can be described by the presence of
external tensors, which are generated by some unspecified
dynamics, coupled to SM operators. It is useful to charac-
terize such operators by powers of increasing dimension, as
it gives an indication to the possible scaling of LV effects
with the ultraviolet (UV) scale M, which might be related
to MPl. In quantum electrodynamics (QED), the generic
expansion in terms of the gauge-invariant operators starts
at dimension three (see e.g. [1]):

L�3�
QED � �a� 
����� b� 
����5��

1

2
H��


�����

� k�����A�@�A�: (1)

Here  is a Dirac spinor describing the electron and A� is
the electromagnetic vector-potential. The external vector
and antisymmetric tensor backgrounds, a�, b�, k� and
H�� define a preferred frame, and therefore break
Lorentz invariance. The coupling to the vector current,
a� 
����, can be removed by introducing a space-time
dependent phase for the electron. The last term in the
-1  2005 The American Physical Society
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Lagrangian (1), the Chern-Simons (CS) term, is gauge
invariant up to a total derivative, which can be neglected.

At this dimension three level there is a problem in
ascribing LV to UV dynamics. From simple dimensional
counting one would expect the external vectors and ten-
sors, a�; b�; . . . to be on the order of the UV scale M, and
therefore LV would be very large, which is clearly inad-
missible. For example, a Higgs mechanism resulting in a
condensation of a vector field V� �Mn� (where n� is a
‘‘unit’’ vector [22]) creates disastrous consequences when
coupled to a nonconserved current, i.e. the axial current

����5�. One may hope that operators of dimension three

and four are forbidden by some symmetry arguments or
tuned to be small, so that LV effects first appear at dimen-
sion five (or higher) level [21]. However, such hopes are
typically shattered by quantum corrections, which lead to
dimensional transmutation of a higher dimensional opera-
tor into a lower dimensional one with a quadratically
divergent coefficient:

�LV�dim 3 � �loop factor��2
UV � �LV�dim 5: (2)

Here �LV�dim 3�5� represent generic LV operators of dimen-
sion three and five, respectively. If the UV cutoff scale �UV

is of the order of M, huge dimension three operators are
generated. In that case all higher dimensional operators
would have to be tuned, leaving no room for LV interac-
tions. This naturalness problem of LV physics can be
avoided if these quadratic divergences are suppressed by
certain symmetry arguments. In Ref. [21] it was shown that
dimension five LV operators coupled to fully symmetric
three-index traceless tensors are protected against devel-
oping quadratic loop divergences. But this solves the nat-
uralness problem only partially, as this does not provide an
argument as to why dimension three and four operators
cannot be induced at tree level, and why they have to be
tuned by hand to experimentally acceptable values.

A recent paper [23] proposed that supersymmetry
(SUSY) could provide a powerful selection rule on admis-
sible forms of LV interactions. In particular, it has been
shown that in the minimal supersymmetric standard model
(MSSM) the requirements of SUSY and gauge invariance
restrict LV operators to be of dimension five or higher.
Therefore SUSY solves the naturalness problem of LV
physics. Once SUSY is softly broken, the quadratic UV
divergences are effectively stabilized at the supersymmet-
ric threshold. Hence this might lead to a solution of the
question of why the lower dimensional LVoperators are so
much suppressed as compared to their natural scale.

An explicit example of how SUSY restricts possible LV
interactions and leads to dramatic numerical changes in the
predicted observables is provided by noncommutative field
theories. The noncommutative background tensor ���,
entering the Moyal product, has the canonical dimension
�2, and therefore the scale of noncommutativity, �NC �

����1=2, gives a natural UV scale. As a result, linearizing
015013
the action in � is justified, as long as the characteristic
momenta are much smaller than �NC. This expansion leads
to a set of dimension six operators, which at the tree level
induce interactions between particle spins and the ���
background [24] with effective H�� in (1) given by H�� �

�3
IR���. Here �IR is the relevant infrared scale, such as

�QCD in the case of hadrons. However, it has been shown
that loop effects in noncommutative field theories lead to
quadratically divergent integrals [25]:H�� ��IR�

2
UV���.

This essentially invalidates the expansion in terms of ���.
If the cutoff scale is very high, e.g. comparable to �NC, the
resulting spin anisotropy is large and certainly excluded by
experiment. However, this conclusion is premature as one
can argue that the operator 
q���q is incompatible with
SUSY [26] and thus should not be induced in the domain of
the loop momenta higher than the SUSY breaking. This
means that the cutoff essentially coincides with the energy
splitting between fermions and bosons, i.e. �UV �msoft.
This has been confirmed by an explicit two-loop calcula-
tion in the framework of noncommutative supersymmetric
QED [27]. With the quadratic divergences stabilized at
msoft � 1 TeV, the Planck-scale noncommutativity is
safely within the experimental bounds. This example illus-
trates that the existence of SUSY can be important for
understanding the actual size of the expected LV effects.
Another example as to how SUSY can protect against
quadratic divergences in a LV theory has been given re-
cently in [28].

The purpose of this work is to analyze in detail LV
operators in supersymmetric quantum electrodynamics
(SQED), to prove the absence of the naturalness problem
in the LV sector, and to derive phenomenological con-
straints on the LV parameters in SQED. We see this as a
first step towards the phenomenological analysis of the full
LV MSSM. Following Ref. [23], we parametrize all di-
mension five operators of LV SQED by three vector N�,
N�

	 and N�
� and one irreducible rank-three tensor T���

backgrounds. These vector and tensor backgrounds enter in
the LVoperators composed of a vector superfield (contain-
ing photons and photinos) and chiral superfields [corre-
sponding to left- and right-handed (s)electrons],
respectively. We introduce these CPT-violating operators
in the superfield formalism, and then derive their compo-
nent form. We also classify dimension six CPT-conserving
LV operators in superspace notations. We observe that by
using the equations of motion (EOM’s) some parts of
dimension five operators can be reduced to dimension three
LV operators. The relation between them �LV�dim 3 �
m2
e�LV�dim 5 is controlled by the electron mass me.
The main emphasis of our study is on the quantum

effects. We show that even in the presence of SUSY LV
operators no destabilizing quadratically divergent D-terms
ever arise. We prove that gauge anomalies are not affected
by the presence of these LVoperators. This analysis essen-
tially implies that the CS term cannot arise from quantum
-2
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corrections. We derive the renormalization group (RG)
evolution for the LV operators, showing explicitly that
only the logarithmic divergences arise in the limit of exact
SUSY. We solve the one-loop renormalization group equa-
tions (RGE’s) to obtain the low-energy values of LV pa-
rameters in terms of their values at the UV scale M. Then
we investigate the consequences of SUSY breaking for LV
operators by introducing the soft-breaking masses for
superpartners of electrons. Dimension three LV operators
can now be induced by dimensional transmutation:
�LV�dim 3 �m2

soft�LV�dim 5. Although a loop effect, this
constitutes a dramatic enhancement compared to the case
with unbroken SUSY, as m2

soft=m
2
e > 1010. One might ex-

pect that similar quantum corrections could induce a CS
term [the last operator in (1)] once SUSY is broken.
However, our analysis rules out this possibility.

We investigate phenomenological consequences of LV
in the framework of softly broken SQED. The strongest
constraints on the LV parameters are due to the (non)-
observation of anomalous spin precession around direc-
tions defined by the LV background vectors N�, N�

	 and
N�

�. Another constraint comes from the comparison of the
anomalous magnetic moments of electrons and positrons.
It is important to note that all constraints obtained in this
work are laboratory constraints, as astrophysical and cos-
mological searches of LV are not sensitive to LV effects in
SQED.

We present our results in the following order. Section II
introduces the LVoperators and backgrounds at dimension
five and six levels. Section III investigates various quantum
corrections to LV operators under the assumption of exact
SUSY. Section III A shows that no dangerous quadratically
divergent D-terms arise. Section III B explains that no
novel gauge anomalies can ever appear due to LV opera-
tors, and consequently that a SUSY CS term is ruled out.
Finally, Sec. III C addresses the running of LVoperators of
dimension five. Section IV studies the consequences of soft
SUSY breakdown for the LV sector, and derives RGE’s for
the induced dimension three LVoperators. In Sec. IV B we
argue that even when SUSY is broken no CS term is
generated. In Sec. V we study the phenomenology of the
model, and obtain various predictions for relevant LV
observables. We reach our conclusions in Sec. VI.

II. LV OPERATORS IN SQED

SQED is described by two chiral superfields �	 and
��, that are oppositely charged under a U(1) gauge super-
field V:

L SQED �
Z
d4���	e

2eV�	 	��e
�2eV���

	
Z
d2�

�
1

4
WW 	me���	

�

	
Z
d2�

�
1

4
WW	me�	��

�
: (3)
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Here W! � � 1
4D

2D!V is the supergauge invariant ex-
pression for the field strength. Throughout this paper, we
use predominantly Wess and Bagger notations [29]. The
fermionic components of superfields �	 and �� corre-
spond to the left-handed electron and right-handed charge-
conjugated electron fields. With a slight abuse of the
language, we call them the electron and positron super-
fields, or just the electron and the positron for brevity. We
define the charge of electron as e � �jej. Finally, me
denotes the (complex) electron mass.

LV extensions of SQED can be constructed as a set of
effective operators containing the superfields ��, �	,
gauge covariant derivatives r!, r _! and arbitrary constant
tensor coefficients with Lorentz indices that specify the
breakdown of Lorentz invariance [23]. The general rules
according to which LVoperators should be constructed are
listed in Ref. [21]. Within the context of SQED, however,
we impose additional requirements related to supersym-
metry. In this work we require that all LV operators
(i) b
-3
e supersymmetric,

(ii) b
e local supergauge invariant with chiral gauge

parameters,

(iii) h
ave local component expressions.
Let us explain these conditions in more detail.
First of all, by having supersymmetry we mean that the

subalgebra
fQ!;Q _!g � 2��! _!P� (4)
of the N � 1 super-Poincaré algebra remains unbroken.
(LV theories with higher amounts of SUSY coming from
extra dimensions have also been investigated [30–32]). If
we assume that the breaking of the Lorentz symmetry is
spontaneous, we are guaranteed that ��! _! represent the
standard Pauli matrices. However, if the breaking of
Lorentz symmetry is explicit from the outset of the theory,
these objects are simply structure coefficients parametriz-
ing this supersymmetry algebra. (In this work we do not
pursue this possibility further. Possible modifications of
superalgebra by LV parameters has been discussed in
Refs. [33,34].) This assumption allows us to perform our
analysis using conventional superspace.

The requirement of having a local component expres-
sion allows for a conventional effective field theory inter-
pretation of the Lagrangians that we obtain. However,
the locality of the component Lagrangian does not neces-
sarily imply that the superspace expression of a given
Lagrangian appears local.1 For example, the electron
mass term can be written in a seemingly nonlocal way:R
d4�me��D

2=��4���		h:c: Finally, we require that
LV operators preserve the standard local supergauge trans-
formations
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�� ! e�2e���; �� ! e�2e���;

V ! �	�;
(5)

with a chiral parameter �. In particular, we do not allow for
nonlocal or nonchiral extensions of the gauge transforma-
tions that seem to be required by noncommutative SUSY
[35,36].

As was shown in [23], these conditions combined im-
pose strong restrictions on the number of LV terms of a
specific mass dimension one can construct: no dimension
three or four LV operators can be written down within the
context of the MSSM. Here we do not repeat all the argu-
ments leading to this general claim, but simply illustrate
the underlying philosophy by showing that the CS term
[the last interaction in (1)] does not have a SUSYextension
satisfying all three conditions stated above.

The CS term is a dimension three operator that is bi-
linear in the gauge field and proportional to an external
vector. Therefore the local superspace extension of it can
be represented as

L local
SCS �

1

2
k�

Z
d4�� _!!

� V�D!;D _!�V

� k������$A�@�A$ 	 2A�D	 2�����: (6)

This is the only possible structure, as the insertion of an
anticommutator fD!;D _!g immediately gives rise to a total
space-time derivative. The component expression shows
that this operator indeed contains the CS term, which is
gauge invariant up to a total derivative. However, the
SUSY extension as a whole is not supergauge invariant:

%Llocal
SCS � 2ik�

Z
d4�V@������: (7)

Notice that this statement is independent of the Wess-
Zumino gauge, and that even under the restriction of gauge
invariance under ordinary U(1) transformations (� � i!)
the supersymmetric extension of the CS term (and the A�D
term, in particular) fails to be gauge invariant.

These arguments do not show that it is impossible to
construct a supergauge invariant extension of the CS term.
Indeed, by inserting the transversal projector PV �
D!D2D!=��8�� we obtain a manifestly supergauge in-
variant expression

L nonlocal
SCS �

1

2
k�

Z
d4�� _!!

� VPV�D!;D _!�V

� k�
Z
d4�W��

1

�
W: (8)

This expression clearly appears to be nonlocal in super-
space, but the CS term itself is still local. In fact, because
the true CS term in (6) already was gauge invariant, the
insertion of PV did not affect it at all. However, other terms
in the component expression of (8) are nonlocal because
they contain 1=� explicitly. Hence, as asserted, the CS
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term does not allow for a SUSY extension that is super-
gauge invariant and that has a local component expression.
Additional discussion of LV due to a CS term in super-
symmetric theories can be found in Refs. [37,38].

A. CPT-violating dimension five LV operators

There are only three different types of LV operators
satisfying the above requirements in SQED at the dimen-
sion five level. In this subsection we give their superfield
expressions, while their component forms can be found in
Sec. V. The first type is the electron and positron superfield
operators

L matter
LV �

1

M

Z
d4�fN�

	�	e
2eVir��	

	 N�
���e

�2eVir���g; (9)

which are parametrized by two external real vectors N�
�.

The supergauge covariant space-time derivative r� �

� i
4 
� _!!

� fr!;r _!g is defined in terms of the supergauge
covariant derivatives r! and r _!. Their precise form de-
pends on the supergauge transformation properties of the
object that they act on. For example, we define

r!�� � e�2eVD!�e�2eV���; r _!�� � D _!��;

(10)

for generic superfields ��, that have the same gauge
transformations as the (chiral) superfields ��, see (5).

For the photon supermultiplet we can construct two
independent operators. The first operator is parametrized
by a real vector N�. We can give a Kähler-like representa-
tion of this vector operator as

L gauge�V�
LV dim 5 �

1

M

Z
d4�N�W 
��W: (11)

Using a superspace identity, this operator can also be
written as a superpotential-like term

L gauge�V�
LV dim 5 � �

N�
2M

����
�Z

d2�W���@�W

	
Z
d2 
�W 
���@�W

�
: (12)

The most general LV superpotential-like term takes the
form

Lgauge�T�
LV dim 5 �

1

4M

Z
d2�T���W���@�W

	
1

4M

Z
d2�T���W 
���@�W: (13)

In principle this operator is parametrized by a complex
rank-three tensor T���, antisymmetric in the last two in-
dices ��; �� due to its contraction with ���. Notice that
��� acts as a projector on the imaginary self-dual part of
the tensor since 1

2 i��
$��$� � ���. This implies that we
-4
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may take T��� real. We can constrain it further by requir-
ing that

T��$ � 0; ��$�T�$� � 0: (14)

The first condition arises because any trace part of T��� of
the operator (13) vanishes, as

R
d2�W���@�W 	R

d2�W 
���@�W � 0. The second condition ensures that
the LV due to a vector background is entirely accounted for
by (12).

In a non-Abelian theory, operator (13) cannot exist
because the W!’s are not gauge invariant but only gauge
covariant. Thus, to maintain gauge invariance, any deriva-
tive acting on W! has to be replaced by a corresponding
supergauge derivative. In particular, a non-Abelian gener-
alization of (13) would have to contain the covariant
derivative r�. But then the integrand would not be chiral,
as

D _�r�W! � �ie� 
���
'
_� �W!W' 	W'W!� � 0: (15)

Therefore, in the non-Abelian case one cannot write down
superpotential-like LV terms for gauge multiplets, and only
the Kähler-like terms (11) are allowed.

We have listed all possible dimension five operators in
SQED framework. These results have been reported before
in the MSSM setting [23]. All operators of dimension 5,
listed in this section, break CPT invariance. The CPT-
conserving LV operators start at dimension 6 level. For
the matter of completeness, we now classify all dimension
six LV operators compatible with SQED. However, our
main analysis of quantum loop effects and observational
implications of LV will be concentrated on the dimension
five operators (9), (11), and (13).

B. CPT-conserving dimension six LV operators

Let us start by considering possible superpotential-like
terms. To obtain dimension six operators in the Lagrangian
density, one has to consider the superpotential at dimension
five level, i.e. two dimensions higher than the standard
mass term me���	. Because of the chirality condition
of the superpotential, gauge invariance and the absence of
fermionic LV backgrounds, all possible terms have to be
built out of the (dimension two) operator �	�� and the
(dimension three) operatorW!W', with possible derivative
insertions in the latter. Omitting all Lorentz-preserving
terms in the superpotential, we arrive at the following LV
operator at dimension six level,

L super
LV dim 6 �

1

M2

Z
d2� S��W@�@�W 	 h:c: : (16)

The dimensionless matrix S is symmetric: S�� � S��. All
other possible operators would involve W���W which
vanishes for a single U(1). As mentioned before, the super-
potential term (16) can be represented as an integral over
the full superspace by factoring out � 1

4D
2. This can be
015013
done in various ways leading to seemingly different ex-
pressions for these operators. Since the superpotential ex-
pression above defines these operators uniquely, there is no
need to give full superspace representations of these op-
erators here.

Aside from the operator (16), we can construct gauge-
invariant LV operators from the (dimension two) building
blocks ��e�2eV��, ���	, ���	, D!W' and D _!W _'

with possible gauge covariant derivatives inserted. From
the identity �r�;r���� � �e�T��!'r!�W'��� and
the antichirality of ��, we infer that
Z
d4���e�2eV�r�;r�����

Z
d4����r�;r���	�0:

(17)

Moreover, full superspace integrals of ���	D!W',
���	D _!W _' and their conjugates vanish as well.
Therefore, the most general (genuine Kähler and nonredu-
cible to superpotential) dimension six LV matter
Lagrangian is given by

Lmatter
LV dim 6 �

1

M2

Z
d4����e�2eV���A

��
� D���W

	 A��� D���W� 	 S��� ��e
�2eVfr�;r�g��

	 Z����fr�;r�g�	

	 Z����fr�;r�g�	�; (18)

where S��� are real symmetric traceless matrices, Z�� is a
complex symmetric traceless matrix and Z�� is its com-
plex conjugate.

In this section, we do not give the explicit component
expressions of these supersymmetric operators, but it is not
hard to see that operators such as F�$F��F$� or
F$�F

$�F��, do not arise. This might seem surprising,
since such terms do appear in investigations of noncom-
mutative SUSY models, and SQED in particular [35,36].
However, there is no inconsistency: as pointed out in [36]
the Seiberg-Witten map for noncommutative supersym-
metric gauge theories cannot simultaneously have local
and chiral gauge transformations and be invariant under
conventional supersymmetry. In our construction we have
insisted on these three principles. Thus our framework is
more restrictive and does not allow for the operators cubic
in the electromagnetic field strength.
III. QUANTUM CORRECTIONS IN THE
PRESENCE OF LV

A. Absence of a LV induced D-term

In this subsection we want to show that the dimension
five LV operators discussed in Sec. II A do not lead to
dangerous power law divergences in SQED. Before we
enter this analysis, we would like to emphasize why this
is an important issue.
-5
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One of the main reasons supersymmetry is convention-
ally introduced is that supersymmetric theories are free of
destabilizing quadratic divergences. There is of course one
well-know exception to this assertion, theD-term of a U(1)
vector multiplet, which is in principle quadratically diver-
gent at one loop. However, in any supersymmetric theory
that is free of anomalies the coefficient in front of the
D-term vanishes identically. The introduction of higher
dimensional LV operators could upset the fine balance of
the cancellation of the D-term, reintroducing a quadratic
015013
divergence. We will now show that such destabilizing
effects do not arise.

To begin this investigation, we specify the relevant
Feynman rules. The matter LVoperators (9) can be decom-
posed into a modification of the kinetic term of the chiral
multiplets

Z
d4���

�
1	

N�
�

M
i@�

�
��; (19)

and their gauge interactions:
and
For most phenomenological applications it is sufficient to
include only the first order terms in expansion in LV
parameters. For the study of the D-term, however, higher
order terms in LV have to be taken into account as well. It
proves useful to combine quadratic terms (19) into re-
summed propagators

These propagators are better behaved in the UV, because of
the additional derivative in the denominator. Since the
momentum scale involved in the D-term calculation is
far above the soft-breaking scale, we ignore soft scalar
masses and the electron mass. The LV parts of the re-
summed propagators are canceled exactly by the corre-
sponding parts of the interactions (20), when these
propagators are attached to their ��-legs.
Diagrammatically this may be represented as

This shows that for a single insertion of the interactions
(20) and (21) only the latter survives, leading to logarith-
mic renormalization of the dimension five LV operators,
which will be studied in the next subsection. Another
immediate consequence of (23) is that LV does not modify
the cancellation of the Fayet-Iliopoulos (FI) D-term at one
loop. Indeed, the D _!D!V-proportional interaction gives a
total derivative in the superspace when �� fields are
integrated out, and thus vanishes. The part of interaction
(20) linear in V could induce the D-term via the tadpole
diagrams obtained by closing the chiral loop in the dia-
grams above. However, cancellation property (23) reduces
the tadpole with LV to a standard tadpole diagram of the
Lorentz-preserving case,
where the last diagram gives a vanishingD-term when both
�	 and �� loops are taken into account. More generically,
the D-term will vanish for any chiral field content, pro-
vided that the sum of all charges of chiral fields is zero.
Hence, to first order in the LV parameters, no extra qua-
dratic divergences are introduced into SQED by LV
interactions.

The situation becomes more complicated if we go to
higher orders in the LV parameters and to higher loop
orders: the arguments presented above are sufficient to
prove that to all orders no quadratic divergences arise, as
long as we ignore the second interaction structure (21). At
two-loop level vertex (21) introduces additional factors of
D _!D! into diagrams, and thereby raises the degree of
divergence of a diagram by one, as fD _!;D!g �

�2i��! _!@�. Unlike in the one-loop calculation of the FI
tadpole, the D _!D! derivatives may now act inside the
diagrams, and hence still can lead to a potential powerlike
divergence. In addition, each of the internal propagator
lines may be dressed with multiple LV insertions.

Even though the cancellation property we relied upon at
one loop, Eq. (23), does not apply here, luckily, one can
show that at two (and higher) loops the effects of all such
possible insertions still cancel. The proof of this statement
is similar to the proof in a standard Lorentz-preserving
U(1) theory [39]. At two loops, there are two types of
diagrams,
-6
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where the vertices with boxes denote either regular gauge
interactions or the ones given in (21) with the derivatives
D _!D! acting on the internal gauge lines. Using the dia-
grammatic result (23), the vertex of the first diagram with
the external V line and one adjacent chiral line can be
turned into an ordinary Lorentz-preserving combination.
By partial integration on the internal gauge line all (LV)
operators can be moved away as far as possible from the
vertex with the external gauge multiplet. After these ma-
nipulations the diagrams can be represented pictorially as

After some straightforward algebra involving D2 and D2

along the chiral field propagators, one can show that the
ordinary chiral line in the first diagram of (26) can be
reduced to a delta function in the superspace. This makes
both diagrams in (26) identical in structure, but with op-
posite signs. Thus, we observe that these diagrams indeed
cancel, and no FI D-term arises even at two (or higher)
loop level.

B. Absence of LV induced gauge anomalies and of the
Chern-Simons term

It is well known that anomalies put severe restrictions on
the matter spectrum of particle physics models. One may
wonder whether LV might lead to new anomalies. Should
this happen, either the LV vectors must be restricted by
stringent conditions that ensure the anomaly cancellation,
or gauge noninvariant terms would have to be included in
the classical action in order to cancel the gauge variation of
the effective action obtained by integrating out the fermi-
ons. In the SUSY LV context the supersymmetric exten-
sion of the CS term would be a possible term that could
cancel new anomalies. We will show now that LV terms at
dimension five do not modify the chiral anomaly. As a
consequence, there are no further restrictions on the LV
vectors and the local gauge noninvariant SUSY CS term
(6) is not admissible. In addition to this indirect anomaly
argument against the CS term, we show that it is not
generated by explicitly computing relevant diagrams.

To prove the claim that there are no new gauge anoma-
lies, we closely follow the computation of the covariant
anomaly presented in Refs. [40,41] using the techniques
developed by Fujikawa and Konishi [42,43]. We consider
the classical LV chiral multiplet action

S �
Z
d8z�	e2eV�1	 iN�

	r���	: (27)

The variation of the effective action, obtained by integrat-
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ing out the chiral multiplet �	, under a chiral gauge
transformation (%� � 0; %� � 0), is given by

%�-�V� � h%�Si

� 2e
�Z

d8z�	e2eV�1	 iN�
	r���%��	�

�
:

(28)

This expression is regularized by inserting the operator
exp��	=M2�, where �	 is the covariant d’Alembertian
that preserves chirality, and M is a regulator mass which
will be taken M ! 1 at the end of the computation. To
evaluate the regularized amplitude we determine the propa-
gator in the background field V:

h�	2�	1e
2eV
1 i � i

�
1	 iN�

	

1

16�	

r2r2r�

�
�1

2

�

�
1

16�	

r2r2

�
2
%821: (29)

Here the subscripts 1 and 2 indicate that the corresponding
expression is a function (or derivative) of the superspace
coordinates z1 and z2. By inserting this propagator in the
variation of the effective action (28), one can show that the
LV factors exactly cancel out, and the anomaly reduces to
the standard one without any LV. Notice that in this deri-
vation we have not used any properties of the operator
iN�

	r� except that it is gauge covariant. Therefore, this
argument shows that no kinetic modification ever leads to
new anomaly constraints.

Because the gauge anomaly is the same as in the
Lorentz-preserving theory (and therefore absent in LV
SQED), we conclude that no CS term can be generated
by quantum effects. The reason is that the local version of
the SUSY CS (6) is not gauge invariant, see (7). The gauge-
invariant version of the SUSY CS (8) is, in its turn, non-
local. Since only local and gauge-invariant counterterms
can arise in a nonanomalous quantum field theory, neither
version of SUSY CS can get induced. This result can be
confirmed by a direct loop computation: the diagrams of
Fig. 1 can potentially generate the SUSY CS term (6), but
an explicit calculation reveals that all these contributions
cancel for both N�

	 and N�
� backgrounds, even when the

electron mass me is retained. The absence of CS term
induced by quantum effects (6) can be understood as a
SUSY version of the no-go theorem of Coleman and
Glashow [2]. In Sec. IV B we show that the CS term is
also not induced by the soft supersymmetry breaking.

C. RGE evolution of dimension five LV operators
in SQED

As mentioned in Sec. I, within an effective field theory
approach, we are allowed to assume that operators (9),
(11), and (13) are generated at the UV scale M by some
unspecified LV dynamics. All experimental limits are ob-
tained at much lower energy scales. Therefore, in order to
-7



FIG. 1. LV diagrams in massive SQED. Solid lines denote chiral field propagators, wiggled line represent external gauge superfield
legs. Crossed circles indicate insertions of the LV operator (9). Double lines represent chirality-flipping propagators h��i and h��i.
Bars denote the � ends of the propagators. Only the N�

	 operator is included in this figure; the N�
� operator generates the same set of

diagrams.
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derive meaningful experimental constraints on parameters
of LV SQED, we have to evolve the LV operators down to
the low-energy scale. Furthermore, we know that SUSY is
broken, and the operators of dimension five will source
dimension three LV operators via SUSY breaking, leading
to tight bounds on LV parameters of the model. In this
section, we derive and solve the renormalization group
equations (RGE’s) for dimension five LVoperators assum-
ing unbroken SUSY. In the next section we include the
effects of soft breaking and calculate resulting dimension
three operators.

We work in the linear approximation in LV parameters,
and neglect all terms that involve higher powers of 1=M.
The running of the LV operators (9), (11), and (13) is, in
part, a consequence of the wave function renormalization
of various superfields induced by standard SQED one-loop
diagrams. We do not give them explicitly here, but we take
their effects into account in the resulting RGE’s. For the
logarithmic running of the LV parameters above the super-
symmetric threshold, we can ignore soft-breaking masses
and electron mass inside loops. At one loop, this means
that loop diagrams with internal lines of �	 and �� can be
calculated independently.

The renormalization of the electron/positron LV opera-
tors (9) is induced by the diagrams shown in Fig. 2. The
first two diagrams involve the interactions (21). Notice that
the seagull diagram vanishes because the photon superfield
loop contains only two supercovariant derivatives. The last
diagram is induced by the operator (11). Loops with a
single insertion of tensor interaction (13) vanish identi-
cally, as there are no operators in the chiral sector that can
couple to T���.

In the gauge sector we find that the renormalization of
the tensor LV gauge operator (13) is absent. Indeed, since
we work in the first order in LV, this operator cannot
FIG. 2. One-loop corrections to the matter multiplet operators
(9). The notations are the same as in Fig. 1. Wiggled lines
represent the gauge superfield propagators, and the crossed
circles are insertions of the LV operators (9) and (11).
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receive any corrections from operators that depend on
vector backgrounds. The renormalization of LV gauge
operator, with N� (11), is given by the diagrams shown
in Fig. 3. Again, one can use the cancellation property (23)
to observe that the vertex in the second diagram of Fig. 3 is
given by (21) only. The combination of these gauge self-
energy diagrams is only logarithmically divergent, which
gives another reason why the dimension three LV CS term
is not generated by loop effects in this approximation.

After a straightforward calculation of logarithmically
divergent parts of the diagrams in Figs. 2 and 3, and
inclusion of wave function renormalization effects, we
arrive at the renormalization group equation (RGE) for
the LV parameters:

�
@
@�

N�

N�
	

N�
�

T��$

0
BBB@

1
CCCA �

!
2,

2 �1 �1 0
�6 3 0 0
�6 0 3 0
0 0 0 2

0
BBB@

1
CCCA

N�

N�
	

N�
�

T��$

0
BBB@

1
CCCA:

(30)

As usual, ! � e2=�4,� denotes the fine structure constant.
The (1,1) and (4,4) elements of the matrix in (30) are equal
and result only from the renormalization of wave func-
tions. The electron and positron LV parameters N�

� both
give and receive equal contributions to and from the vector
LV parameter N�. This explains why the pairs of matrix
elements (1,2) and (1,3), (2,2) and (3,3), and (2,1) and (3,1)
are equal.

It will prove useful to introduce the following combina-
tions of LV parameters that couple to operators of definite
parity:

N�
V �

N�
	 � N�

�

2
; N�

A �
N�

	 	 N�
�

2
: (31)

N�
V and N�

A are the charge conjugation odd and even
combinations, respectively. In general, vector backgrounds
FIG. 3. One-loop corrections to the gauge LV operator (11)
using the same pictorial notation as in Fig. 2.
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do not need to have the same orientation in Minkowski
space, and the off-diagonal elements of the renormaliza-
tion group coefficients in (30) mix them, resulting in
changes of their directions. By diagonalizing (30) we
identify a set of eigenvectors

N�
1 � N�

V ; N�
2 � 3N� � 2N�

A ;

N�
3 � 2N� 	 N�

A ;
(32)

that evolve under the RGE independently; each of them
may change its size but not its direction. N�

V renormalizes
independently because it is the only combination that is
odd under the charge conjugation. In this basis, the RGE’s
and their solutions are given by

�
@
@�

N�
i � �i

!
2,

N�
i ) N�

i ��� �
�
!���
!�M�

�
�i=2

N�
i �M�;

(33)

where the eigenvalues read �i � ��1; �2; �3� � �3; 6;�1�.
To obtain these solutions we have used the standard SQED
beta function ��@=@��! � 1

,!
2.

Within the SQED framework, the renormalization ef-
fects of these LV parameters are small: even if we take
� � ms � 1 TeV and M � MPl � 1019 GeV, the running
affects the LV parameters by only about 10%. In other
words, the linearized version of (33)

N�
i �ms� ’

�
1�

�i!
2,

log�M=ms�

�
N�
i �M� (34)

gives a good approximation of the exact answer. The same
conclusion holds for the running of the irreducible tensor
T���. Although it may look as though a 10% level change
in N�

i is insignificant, one should keep in mind, that in a
more realistic framework of MSSM the number of charged
degrees of freedom running inside the loops is significantly
larger than in SQED, which would lead to appreciable
changes in LV parameters between the Planck and the
weak scales. Nevertheless, the main numerical change in
the actual size of observable LVeffects will result from soft
SUSY breaking, as will be discussed in the next section.
IV. INDUCED DIMENSION THREE OPERATORS
BY SOFT SUSY BREAKING

Once SUSY is broken, dimension three LVoperators can
be induced with coefficients controlled by the soft-
breaking mass scale. Following the usual approach (see
e.g. Ref. [29]), we introduce spurion superfields (�2, �2) in
superspace expressions. We consider only soft SUSY
breaking in the matter sector. We ignore other soft-
breaking terms, including a gaugino mass, which can be
motivated by the most common MSSM scenarios.
Generically, we can assume that parity is broken, so that
the scalar partners of left- and right-handed electrons have
different masses.
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The possible soft SUSY breaking masses of the electron
and positron can be written as

L SB � �
Z
d2��2�m0

s�
2�	�� 	 h:c:

�
Z
d4� �2 �2��m	

s �
2�	�	 	 �m�

s �
2�����;

(35)

where m�
s , m0

s are real and complex masses, respectively.
To make parity violation manifest in the SUSY breaking
(35) we introduce

1m2 � �m	
s �

2 � �m�
s �

2; �m�
s �

2 � m2
s �

1m2

2
: (36)

The parity conserving scenario is obtained in the limit
1m2 ! 0. Throughout the paper we assume that 1m2 is
somewhat smaller but not necessarily much smaller than
m2
s , and that the values of the soft-breaking parameters are

such that scalar electrons do not develop vacuum expecta-
tion values. Viewing SQED as a subset of MSSM, we can
also neglect �m0

s�
2, �m0

s�
2 �O�msme� � m2

s .
Once SUSY is broken via (35) in the Lorentz-conserving

sector, it will be communicated to the LV sector via loop
corrections or on the equations of motion (EOM’s), result-
ing in LV operators of dimension three.

We start by listing all such operators in components,
essentially extending the existing QED parametrization [1]
to the SQED field content. In the matter sector these
operators are

L matter SB
LV dim 3 � 2i ~A�	z	D�z	 	 2i ~A��z�D�z�

	 i ~C�z�D�z	 	 ~B�	 	�� 	

	 ~B�� ��� � 	 ~D�� ���� 	: (37)

In superfield notation they can be expressed as

Lmatter SB
LV dim 3 �

Z
d4� �2�2


2i ~A�	�	r��	

� 2i ~A����r��� 	
1

2
� ~C���r��	 	 h:c:�

	
1

2
~B�	r�	��r�	 	

1

2
~B�	r����r��

	
1

2
� ~D��r�����r�	 	 h:c:�

�
: (38)

The superfield expressions (38) for the operators (37) are
not unique. One can use alternative spurion insertions in-
side gauge-invariant supersymmetric LV operators [23].
However, at the component level these expressions will
reduce to linear combinations of the operators given in
(38).

In the gauge sector there are only two LV operators of
dimension three:

L gauge SB
LV dim 3 �

~E�
��$�A�@$A� 	 ~F���

��; (39)
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FIG. 4. Diagrams generating dimension three LV operators for
electrons and positrons due to soft supersymmetry breaking and
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which can be rewritten in a superfield form using the CS
superfield [44]:

L gauge SB
LV dim 3 �

Z
d4��� ~F� � ~E���

4W��W

	 ~E���� 
�fD!�VW!� 	D _!VW
_!g�: (40)
dimension five SUSY LV operators in gauge and matter sectors.
In Figs. 4(a) and 4(b) the inserted operators are (9) and (11),
respectively. Finally, the box with a cross denotes the insertion of
the SUSY breaking operator (35).
A. Operators in the matter sector

We now turn to the discussion of possible mechanisms
that transmute dimension five SUSY LV operators into
dimension three LV operators. There are two generic
ways this may occur, at tree level via reduction over the
EOM and via loop effects,

�LV�dim 5 ���!EOM�m2
s 	m2

e��LV�dim 3;

for selectrons;

�LV�dim 5 ���!1 loop
m2
s�LV�dim 3;

for fermions and vector bosons:

The tensor operator (13) does not mix with dimension three
operators in any order in SUSY breaking, because there is
simply no dimension three operator that can couple to
T���. Below we discuss in detail how dimension three
operators are generated by tree level and loop effects.

The soft supersymmetry breaking (35) affects LV inter-
actions for left- and right-handed selectrons already at tree
level. The masses of scalar particles are lifted with respect
to the masses of the electron and positron. This alters
sfermions’ equations of motion, leading to an enhancement
of certain dimension three operators. Ignoring 1m2 for a
moment, one can easily show that the combination of LV
operators (9) and SUSY breaking (35) leads to the follow-
ing dimension three LV operator

L EOM
sparticle�

N�
V

M
2i�m2

e	m
2
s�fz	D�z	�z�D�z�g; (41)

effectively generating the ~A�� terms (37),

~A�
� � �2

N�
V

M
�m2

e 	m2
s�: (42)

However, we will not be interested in these particular
operators due to the current impossibility to experimentally
study the superpartner sector. In the matter sector only
those operators involving electrons and positrons are im-
portant for phenomenology. For the same reason, we
ignore the possible appearance of the operators propor-
tional to ~C�, and in the gauge sector we will only be
interested in the CS term that might be induced for
photons.

At one-loop level, the transmission of SUSY breaking to
the LV sector of chiral fermions and gauge bosons may
indeed be possible. We start with one-loop effects in the
matter sector. It is sufficient for our purposes to consider
015013
the running of dimension three operators within the inter-
val of momenta ms � jploopj � M, and to retain only the
contributions enhanced by a large log�M=ms�, neglecting
possible threshold corrections. To this accuracy, the soft-
breaking parameters inside loops can be treated as pertur-
bations and inserted on internal lines of diagrams from
Fig. 2. In Figs. 4(a) and 4(b) we have inserted the dimen-
sion five SUSY LV operators (9) and (11), respectively.

Our one-loop RGE analysis concentrates on the induced
dimension three operators ~B�. Besides the contributions
from diagrams in Figs. 4(a) and 4(b), the complete set of
RGE includes one-loop running of the operator ~B� itself,
and its mixing with ~A�. The relevant set of RGE’s includes:

�
d ~A�	
d�

�
!
,
� ~A�	 � ~B�	�;

�
d ~B�	
d�

�
!
2,

�
~B�	 � ~A�	 	 3

�m	
s �

2

M
N� � 2

�m	
s �

2

M
N�

	

�
:

(43)

Here we quote only the results for �	 components; the
extension to �� follows upon some simple substitutions.
The requirement of exact SUSY at UV scale M translates
into the RGE boundary conditions: ~A�jM � ~B�jM � 0. In
addition, the full set of equations include the RGE’s for the
soft-breaking masses,

�
dm2

s

d�
�

!
4,

m2
s ; (44)

and RGE’s for the dimension five SUSY LVoperators (30).
Exact solutions of these RGE’s are not warranted for our

purposes. Instead, we use the same approximation as in
(34) together with !=, log�M=ms�< 1, to obtain the so-
lution

~B���ms� �
!
,

log�M=ms�
�m�

s �
2

M

�
3

2
N��M� � N�

��M�

�
;

(45)

for ~B�
� in the leading ! log approximation.

B. Operators in the gauge sector. Chern-Simons term.

The absence of optical activity effects caused by the CS
term has been checked over cosmological distances, pro-
viding a very sensitive probe of k� in (1) (see e.g. Ref. [10]
-10



FIG. 5. Dimension three one-loop contributions arising from the dimension five LV operators (9) and soft supersymmetry breaking.
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and references therein). The limit on k� is about the
present Hubble expansion rate, and is 10 orders of magni-
tude better than the level of sensitivity for the best terres-
trial experiments searching for LV parameters in (1). Not
surprisingly, the issue of CS term generated by radiative
corrections from other LV interactions has drawn a lot of
interest [2,45–48], exhibiting the whole range of answers
for k� (including zero) being induced by b�. A no-go
theorem by Coleman and Glashow [2] indicates the ab-
sence of the radiatively generated CS term. If suitably
rephrased, it states that the CS term cannot be induced to
first order by gauge-invariant LV interactions. In Sec. III B
we have extended this theorem to the exact SUSY LV
interactions.

We would like to argue that below the soft SUSY break-
ing scale the CS term also cannot be generated. Indeed, the
CS interaction can only be generated by a fermion running
in the loop, as a bosonic loop cannot produce ��$� enter-
ing the expression for the CS term. However, the SUSY
breaking terms (35) only provide masses for the bosonic
components of chiral superfields and thus only affect the
scalar parts of the diagrams, which are incapable of induc-
ing the CS interaction. (The possibility of a soft gaugino
mass is not relevant because diagrams that could induce the
CS term only include chiral matter fermions, not gaugi-
nos.) In particular, the no-go theorem by Coleman and
Glashow [2] for QED is reobtained by sending the soft
masses to infinity.
015013
We have confirmed this result by a direct calculation in
the presence of soft breaking. The relevant diagrams, given
in Fig. 5, are obtained by inserting the soft-breaking inter-
action (35) into the diagrams shown in Fig. 3. As for the
direct confirmation of the absence of the SUSY CS term in
Sec. III B, instead of calculating all possible terms, we have
only concentrated on those structures that can induce the
CS term. Here, again, the vertex cancellation property (23)
can be used quite effectively to mutually cancel contribu-
tions of particular diagrams. A straightforward calculation
shows that all terms proportional to the CS interaction
indeed cancel.

Note that this statement is only valid for the pure CS
term ��$�A�@$A�, while there is no evidence against
the other possible operator in the photon sector,
����. However, the presence/absence of the latter term
is obviously not very relevant for phenomenological
applications.
V. PHENOMENOLOGY OF LV SQED: LV
OBSERVABLES AND EXPERIMENTAL LIMITS

A. Component expressions for LV operators

In order to derive phenomenological consequences of
the LV operators, we need to obtain their component ex-
pressions. First we consider the matter operators (9). The
component form for the electron part is given by
Lmatter	
LV dim 5�

N�
	

M


i 
F	D�F		 ie
z	DD�z	� ieD��
z	�Dz		

1

2

 	D��D�� 
�� 		 ie

���
2

p

2
f 	 
���F	�F	� 
�� 	g

	e2 
z	f��� 
��� 
���gz		
1

2
e 	 
��D 	�

���
2

p
efD�� 	��z		 
z	�D� 	g

�

���
2

p

2
ef 	 
���� 
�D�z		D�� 
z	���� 
�� 	g�

1

4
e 
 	��$�F$� 
�� 		 i
z	D�D�D�z	

	
1

2
ieD��
z	��

�$�F$�z	

�
(46)
This component representation of dimension 5 LV opera-
tors allows for further reduction of several terms in (46) on
the equations of motion. The result for this tedious but
routine reduction is given in Appendix A. To facilitate
phenomenological applications, we convert all Weyl spin-
ors into Dirac/Majorana four component spinors:

� �
c 	

 �

� �
; and � �

c�
�

� �
: (47)

Using notations (31) and (36), we present the dimension
five LVoperators (9), containing electron and photon fields,
as

Lmatter
LV � �

N�
A

M
1

2
e�~F������

N�
V

M
1

2
e�~F�����5�

	
N�
V

M
m2
e����: (48)

Using the same notation, the dimension three operators
(45) can be rewritten as a vector and axial-vector operators:
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Lmatter
LVdim3

������
�
m2
sN

�
V 	

1m2

2
N�
A �

3

2

1m2

2
N�

�
! log�M=ms�

,M

�����5�
�
m2
sN

�
A 	

1m2

2
N�
V �

3

2
m2
sN

�
�
! log�M=ms�

,M
(49)

The next operator to consider in components is the photon
operator (11):

Lgauge�K�
LV dim 5 �

N�

M
�2�����	 2�@� 6@�� 2D@�F��

	 @�F
�� ~F���: (50)

These components are reducible on the equations of mo-
tion, and only the last term in (50) leads to a contribution in
the electron and photon sectors. By substituting @�F

��

with the electromagnetic current J�EM � �e����, we
get an interaction term

L EOM
gauge �K� � e�N��� ~F���; (51)

which has the same form as the second term in (48).
Notice, however, that this coincidence holds only within
QED, as in the full MSSM J�EM will also have other (i.e.
hadronic) contributions. Finally, the tensor operator (13)
has the following component expression:

L gauge �T�
LV dim 5 �

2T��$
M

�F��@�F$� �D@� ~F�$

� �@�@��5��5�$�: (52)

It can be reduced on the equations of motion by using
integration by part and Jacobi identities. Applying the
equations of motion to the pure electromagnetic field
strength term in (52), we obtain in the electron-photon
sector of QED

L EOM
gauge �T� � 2eT��$���F�$�: (53)

Confirming the general conclusion of [23], we observe that
none of the LV operators give corrections to the EOM that
grow at high energies.

Now we gather all operators of phenomenological inter-
est of dimensions five and three, (48), (49), (51), and (53)
in a single expression:

�Leff LV � ����a� 	 b��
5 	 ec� ~F�� 	 ed� ~F���5

	 ef�$�F
$���; (54)

where we use the notations of [49] for the coefficients of
dimension three operators. The Wilson coefficients in (54)
are expressed in terms of the original LV parameters,
electromagnetic coupling constant, and soft-breaking
masses:
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a� � �
1

M
m2
eN

�
V 	

! log�M=ms�

,M

�
m2
sN

�
V 	

1m2

2
N�
A

�
3

2

1m2

2
N�

�
;

b� �
! log�M=ms�

,M

�
m2
sN

�
A 	

1m2

2
N�
V �

3

2
m2
sN�

�
;

c� �
1

M

�
1

2
N�
A � N�

�
; d� �

1

M
N�
V

2
;

f��$ �
2

M
T��$: (55)

The result is given in the leading ! log approximation, and
with all LV parameters normalized at the SUSY threshold
ms. The operator proportional to a� does not lead to any
physical effects as it can be totally absorbed into the kinetic
term �i�6@� via a phase redefinition, ��x� ! eia

�x���x�.
The rest of the operators lead to observable LV signatures.

B. Constraints on LV parameters of SQED

Now, we are prepared to extract observational conse-
quences of LV SQED, and to impose constraints on the
coefficients of the effective low-energy Lagrangian (54).
To do that, we derive the nonrelativistic effective
Hamiltonian corresponding to (54) by splitting the external
backgrounds into spatial and timelike components:

H eff �
~p � ~a
m

	 ~b � ~�	

�
e ~p
m
; � ~c� ~E� � c0 ~B

�

� ed0� ~B � ~�� 	 e ~d � � ~E� ~��

	

�
epk

m
; 2fk0lEl 	 fklmlmnBn

�
: (56)

Here ~p � �i@ ~@ is the momentum operator and f:; :g de-
notes the anticommutator.

The tightest constraints come from the experiments
searching for abnormal spin precession around external
directions determined by the LV vectors (55). These ex-
periments limit LV parameters for electrons and nucleons.
The relevant parameter we should compare our estimates
with is the energy shift due to LV effects 1!LV . In LV
SQED, the effects are mediated by dimension five opera-
tors, and therefore the strength of the constraints on com-
binations of M and LV backgrounds depends very
sensitively on the energy scale � relating 1!LV and
M�1, 1!LV ��2M�1. Our analysis shows that several
possibilities for � are possible: the soft-breaking scale,
the hadronic scale (i.e. �QCD), electron mass, and finally,
the energy scale given by an external magnetic or electric
field.

1. LV electron spin precession

The soft-breaking scale enters in the LV parameter b�,
which is limited by torsion balance experiments searching
-12
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for LV in the electron sector [50]. The sensitivity to the
spatial part of the axial-vector coupling bi achieved in this
experiments is at the level better than jbij< 10�28 GeV.
This condition imposes a stringent constraint on the com-
bination of the soft-breaking masses, M, and LV parame-
ters:

m2
s

�100 GeV�2
1019 GeV

M

��������Ni
A �

3

2
Ni 	 %sN

i
V

��������<10�12;

(57)

where we normalize M to the Planck scale. We have
introduced a dimensionless quantity %s � 1m2=�2m2

s�
that parametrizes parity violation in the soft-breaking sec-
tor. The lightest values for ms not excluded by direct
collider searches are slightly above 100 GeV, and therefore
jNi

A �
3
2N

ij is limited to be less than 10�12.

2. LV nuclear spin precession

The next constraint uses the energy scale ���QCD

from hadron physics. In order to obtain it, we have to go
beyond pure QED and include hadronic components in
J�EM (51). Then, as discussed earlier in [23], the LV
SQED operator (11) gives rise to interaction of the spatial
components of N�, an electric field, and the spatial com-
ponent of the hadronic current, L � M�1ijkNiEjJkEM.
The average of such interaction inside the nucleus with
spin I leads to the effective Hamiltonian H eff � �~I � ~N.
The strength � of this interaction is given by a nuclear
matrix element, which can be estimated as the product of
the typical value of the electric field inside a heavy nucleus
times the characteristic nucleon momentum. Combined
with a 10�32 GeV level of sensitivity for 1!LV in the
most advanced experiments [18,19], this results in a strin-
gent bound on jNij:

��
eEpnucl

Mmp
�
Z1=3fm�3!
Mmp

)
1019 GeV

M
jNij< 10�9:

(58)

Here mp is the proton mass and pnucl � fm�1 is the typical
nucleon momentum. A more refined nuclear calculation
can be done for mercury and xenon nuclei used in [18,19] if
needed.

3. LV precession of the angular momentum of a
paramagnetic atom

If for some unexpected reasons the effective electron LV
coupling b� is close to zero, the interaction term propor-
tional to c� in (56) would still induce a coupling of the
electron angular momentum j inside a paramagnetic atom
to the spatial component of N�

A =2� N� with H eff �
�ji�N

i
A=2� Ni�. In this case, the characteristic scale con-

necting 1!LV with LV parameters is the typical momen-
tum of atomic electrons, �� patomic � !me. Apart from
an overall coefficient, the atomic matrix element respon-
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sible for this interaction has the same strength as the usual
spin-orbit interaction, resulting in the estimate of �

�� Z2!2 !
2m2

e

M
)

1019 GeV

M
jNi � Ni

A=2j< 10�2: (59)
4. CPT-odd anomalous magnetic moment of electrons
and positrons

The limits explored so far do not use the fact that LV
operators of dimension five break CPT, whereas the experi-
ments [18,19] are done with normal matter. Some other
experiments explicitly compare properties of electrons and
positrons, and can therefore be used to constrain LV CPT-
odd operators. For example, a d0-proportional term in (56)
induces an interaction between the electron spin with a
magnetic field, and thus contributes to the anomalous
magnetic moment of electrons and positrons. The different
g-factors for electrons and positrons are limited at 10�12

level: jge � g 
ej< 8� 10�12 [51].
The interaction Hamiltonian for electrons and positrons,

corrected by the CPT-odd d0-proportional interaction,
takes the form

H e
eff � �ed0

~B � ~S
S

� j�j
~B � ~S
S

;

H 
e
eff � �ed0

~B � ~S
S

	 j�j
~B � ~S
S

:

(60)

This gives a bound on the timelike component of N�
V :

me

M
jN0

V j< 2� 10�12 )
1019GeV

M
jN0

V j< 1010: (61)

Obviously, this limit is inferior to those derived from
searches of the breakdown of rotational invariance [18,19].

It is interesting to note that the CPT-violating correction
to the magnetic moments of electrons and positrons arises
in LV SQED even when SUSY is unbroken. At first sight
this seems to be at odds with the Ferrara-Remiddi theorem
which forbids emergence of the anomalous magnetic
moment of the electron in the exact SUSY limit [52]:
the anomalous magnetic moment of the electron,
e�4m��1�����F��, should appear as the highest compo-
nent of some superfield, but no such supermultiplet exists
[52]. However, one of the assumptions leading to this result
is Lorentz invariance, therefore when SQED is extended by
LV operators, the anomalous magnetic moment,
eM�1N�

��~F���
��5�, does arise as the highest compo-

nent of a superfield operator, namely (9).

5. Consequences for some dimension five operators
in LV SQED

The two most stringent limits, (57) and (58) are sensitive
to different linear combinations of Ni and Ni

A vectors, thus
imposing similar strength constraints on Ni and Ni

A sepa-
rately. In order to impose a constraint on Ni

V , one has to
-13
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make further assumptions about %s. In the full MSSM
scenario (as opposed to its SQED subset), parity is broken
above the weak scale. Hence, a %s at a percent level or
larger arises form radiative corrections even if the bound-
ary conditions at M are parity conserving, i.e. m	

s �M� �
m�
s �M�. This provides a sensitivity to Ni

V at the level of
10�10. The timelike components of vectors N�

� and N� are
also constrained: the motion of the earth and the solar
system introduces a dependence of the laboratory frame
on the velocity relative to the fixed vector backgrounds.
Therefore, a nonzero N0 would ‘‘mix’’ with Ni at
O�v=c� � 10�3 � 10�4 level. As a result, 10�6–10�8 level
constraints can be imposed on N0

V , N0
A and N0.

LV induced by T��$ (13) is also subject to experimental
constraints. For example, a three dimensional vector fk �
ijkTi0j, obtained from the tensor T��$, leads essentially to
the same effects as vector ck, and is therefore subject to
bounds analogous to (58) and (59). Other components of
T��$ can be limited using their contributions to fk caused
by earth motion effects.

6. Absence of Planck-scale bounds on dimension
six LV operators

Finally, we would like to assert that limits on dimension
six operators are not able to rule out LV modifications at
M�2

Pl level. Many of the operators listed in (16) and (18)
contain antisymmetric tensors. After the inclusion of
SUSY breaking, such terms can mix with the me


�����
operator, leading to LV spin precession of the electron.
Assuming that the sizes of the dimensionless tensors in
(16) and (18) are O�1�, one can estimate the sensitivity to
M via the dimension six LV operators: M2 �
mem

2
s=�10

�28 GeV�: This translates into a bound of M�
1014 GeV for ms � 100 GeV, which is lower than the
Planck scale. On the other hand, we notice that in the
framework of the LV MSSM the sensitivity to M via
dimension six LV operators will be higher, when observ-
ables in the quark sector are employed. Indeed, we expect
me to be replaced bymq, and 10�28 GeV by 10�32 GeV, as
experiments searching for anomalous spin precession of
nucleons are intrinsically more precise. In this case the
sensitivity to M would get close to the Planck scale, and
future increase of the experimental sensitivity may probe
this type of models. Although undoubtedly very interest-
ing, more detailed study of the observational consequences
of dimension six LVoperators goes beyond the scope of the
present paper.
VI. DISCUSSION AND CONCLUSIONS

We have constructed a dimension five LV extension of
SQED, as a subset of the full LV MSSM. The LV mod-
ifications are power suppressed by the UV scale M and
decouple in the limit ofM ! 1. In the leading order in the
inverse UV scale, O�M�1�, dimension five LV operators
015013
can be coupled to two types of LV backgrounds. There are
three background vectors N�, N�

	 and N�
�, as well as an

irreducible rank-three tensor T��� (antisymmetric in ��).
The corresponding LV operators are all CPT odd. At the
dimension six level LV operators are CPT even; their
classification has been given in this paper.

We have explored quantum effects in the presence of the
LV terms. We have shown that no D-term is induced and
the anomaly cancellation condition is not altered by the
presence of LV in the limit of exact SUSY. The RGE’s for
LVoperators of dimension five were derived in the limits of
exact and softly broken SUSY. Once SUSY is broken,
dimension three operators can be generated. The transmu-
tation of dimension five LV operators into dimension three
is controlled by the scale of soft SUSY breaking. This
alleviates the LV naturalness problem, because the poten-
tially problematic quadratic divergences are stabilized at
the SUSY breakdown scale. In order to obtain phenom-
enologically applicable formulas, we broke SUSY by in-
troducing scalar electron masses, and calculated the
resulting effective LV Lagrangian for electrons. A dimen-
sion three operator for photons, the CS term, is not gen-
erated at the loop level. It is remarkable that none of the LV
operators, considered in this paper, lead to high-energy
modifications of dispersion relations. Therefore, none of
the stringent astrophysics-derived limits on LV parameters
[12,13] apply to LV SQED.

We have obtained explicit component expressions for
LV interactions generated by vector and tensor back-
grounds, which allowed us to derive observational conse-
quences of LV in SQED. Using the results of high-
precision searches for LV spin interactions, we derived
stringent limits on some linear combinations of LV pa-
rameters. The most stringent results were obtained from a
one-loop induced coupling between the electron axial-
vector current and some combination of the background
vectors N�, N�

	, and N�
�. The strongest bound was ob-

tained from the absence of anomalous spin precession for
electrons, which is checked at a level better than
10�28 GeV by torsion balance experiments [50].
Assuming that the UV scale is of the same order of
magnitude as the Planck scale, we were able to constrain
one linear combination of Ni, Ni

	, and Ni
� at the level

better than O�10�12�. Conversely, if we insist that Ni �
O�1�, such experiments provide a sensitivity to the LV
ultraviolet scale which is more than 10 orders of magnitude
larger than the Planck scale. Other precision experiments
[18,19] provide stringent constraints on different linear
combinations of the LV vector and tensor backgrounds.

The existence of strong constraints on LV at dimension
five level (with or without SUSY), poses a serious chal-
lenge for theories that predict LVat 1=MPl level. Therefore,
either such theories are ruled out, or they require abandon-
ing an effective field theory description of LV. (The latter
does not seem a reasonable alternative to us.) However, it
-14
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might be that dimension five operators are forbidden by
some additional symmetry reasons, such as e.g. CPT. At
the next order, O�M�2�, Planck suppressed LV effects are
not excluded. (The best constraints may be better than the
Planck scale [53], but are applicable only to operators that
modify high-energy dispersion relations.) The classifica-
tion of dimension six LVoperators in SQED has shown that
they couple to symmetric or antisymmetric two-index
tensor backgrounds. None of these operators lead to mod-
ifications of the dispersion relations hence the bounds of
[53] do not apply. As we discussed at length for dimension
five LV operators, similarly, some of dimension six opera-
tors will transmute into dimension four operators due to
quantum effects in the presence of soft-breaking terms.
The scale of the transmutation is controlled by the SUSY
breakdown scale, which gives an estimate for the size of
LV backgrounds at dimension four as m2

s=M
2 � 10�32 for

ms � 1 TeV and M� 1019 GeV. This prediction comes
close to the experimental sensitivity to such operators,
and therefore deserves further study in the framework of
LV MSSM.
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APPENDIX A: REDUCTION OF CHIRAL LV
OPERATORS ON EQUATIONS OF MOTION

The component expressions for LV terms in the chiral
sector are given in (46). They can be transformed further by
eliminating the auxiliary fields and higher derivatives via
the equations of motion. Writing the result in terms of
Dirac four-spinors, we get the following rather lengthy
expression:
Lmatter
LV � �

N�
A

M
1

4
e���$�F$�����

N�
V

M
1

4
e���$�F$����5�	

N�
	

M


1

2
ieD�z	��$�F$�z	 	

1

2
e�z	F��D�z	

	D�z	F��z	� �
i
2
e2�D�z	z	 � z	D�z	�fz�z� � z	z	g

�
	
N�

�

M


�
1

2
iez���$�F

$�D�z�

�
1

2
e�z�F��D

�z� 	D�z�F��z�� �
i
2
e2�D�z�z� � z�D�z��fz�z� � z	z	g

�
�
N�

	

M
e2z	��

��5�z	

�
N�

�

M
e2z�����5�z� �

N	�

M

���
2

p

2
e������PR�D�z	 	D�z	�����PL�� 	

N��

M

���
2

p

2
e�D�z������PR�

	�����PL�D�z�� 	
N�

	

M

���
2

p

2
e��PRD��z	 	 z	D��PL�� �

N�
�

M

���
2

p

2
e�z�D��PR�	�PLD��z��

	
NA�
M

1

2
e2����fz�z� � z	z	g 	

NV�
M

1

2
e2����5�fz�z� � z	z	g �

NA�
M

���
2

p

2
ie�me���PL�z�

�mez����PL�� 	
NA�
M

���
2

p

2
ie�me���PR�z	 �mez	���PR�� 	

NV�
M

2imeme�z	D�z	 	 z�D�z��

	
NV�
M

meme����: (A1)
The first, second, and last terms in (A1) enter the reduced
Lagrangian (48) that involves only electrons, positrons and
photons. The rather lengthy form of (A1) and the large
number of diagrams that these interactions can create,
underline the superiority of the superfield method over
the component calculations for all processes with momenta
larger than ms.

APPENDIX B: CONVENTIONS AND NOTATIONS

Our notations for the superfield formalism are based on
Wess and Bagger [29]. Covariant derivatives and
Hermitian conjugation are taken from [54] with a proper
adaptation. We use the �� 			� metric signature. All
spinor algebra definitions can be found in [29], and we list
here only some minor conventional departures. Unlike in
[29], we denote the space-time Lorentz indices by letters
from the middle of the Greek alphabet: v�, ��, N$, etc., as
one is normally accustomed to in quantum field theory.
Spinor indices are taken, also as commonly accepted, from
the beginning of the Greek alphabet: �!, '�,  _%. Spinor
derivatives are designated as

@! �
@
@�!

; @! � !'@':
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We use a notation with a slash in the case where a
Lorentz vector is contracted with a �matrix, or a �matrix:

6v � v���; 6A � A���; 6n � n���:

For switching from Weyl to Dirac spinors we followed
the notations of [55]. Weyl representation for Dirac spinors
is the most appropriate in this case, where two Weyl
spinors combine into one Dirac spinor:

� �

�
@!
A _!

�
; � �

�
A!

@ _!

�
;

and the � matrices take the form

�� �

�
0 ��

�� 0

�
; �5 �

�
1 0
0 �1

�
:

For complex conjugation, we use the notion of
Hermitean conjugation defined in [54]. When translated
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into the Wess and Bagger notations, it implies

� !�y �  _!; � !�y �  _!; @y! � @ _!;

@y� � �@�; Dy
! � �D _!; �r!�

y � �r _!;

Wy
! � W _!:

Finally, the expansion of the chiral superfields of SQED
in components is defined as

�� � z� 	
���
2

p
� � 	 �2F�;

while the vector superfield in the Wess-Zumino gauge is
given by

V � �����A� 	 i�2���i�2��	
1
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