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Motivated by the apparent need for extending the minimal supersymmetric standard model (MSSM)
and perhaps mitigating naturalness problems associated with the u parameter and fine-tuning of the soft
masses, we augment the MSSM spectrum by a SM gauge singlet chiral superfield, and enlarge the gauge
structure by an additional U(1)" invariance, so that the gauge and Higgs sectors are relatively secluded.
One crucial aspect of U(1)’ models is the existence of anomalies, the cancellation of which may require
the inclusion of exotic matter which in turn disrupts the unification of the gauge couplings. In this work we
pursue the question of canceling the anomalies with a minimal matter spectrum and no exotics. This can
indeed be realized provided that U(1)’ charges are family dependent and the soft-breaking sector includes
nonholomorphic operators for generating the fermion masses. We provide the most general solutions for
U(1) charges by taking into account all constraints from gauge invariance and anomaly cancellation. We
analyze various laboratory and astrophysical bounds ranging from fermion masses to relic density, for an
illustrative set of parameters. The U(1)’ charges admit patterns of values for which family nonuniversality
resides solely in the lepton sector, though this does not generate leptonic flavor-changing neutral currents

due to the U(1)' gauge invariance.

DOI: 10.1103/PhysRevD.72.015012

L. INTRODUCTION

Supersymmetric models extending the minimal super-
symmetric standard model (MSSM) are generally moti-
vated for stabilizing the wu parameter at the electroweak
scale, and for incorporating right-handed neutrinos into the
spectrum. The extension of the MSSM may or may not
involve additional gauge groups. Concerning the former,
the most conservative approach is to extend the gauge
structure of the MSSM by an extra Abelian group factor
U(1)’ along with an additional chiral superfield § whose
scalar component generates an effective u parameter upon
spontaneous U(1)" breakdown. The U(1)’ symmetry in
question is essentially the gauging of the global Peccei-
Quinn invariance of the MSSM. What it actually does is to
forbid a bare u parameter thereby providing a dynamical
solution to the u problem [1]. Extra U(1) symmetries arise
as low-energy manifestations of grand unified [2], of string
[3], and of dynamical electroweak breaking [4] theories.

An important property of U(1)’ models is that the light-
est Higgs boson weighs significantly more than M, even at
tree level with small tan8. Hence the existing CERN LEP
bounds are satisfied with almost no need for large radiative
corrections [5—7]. Besides, they offer a rather wide param-
eter space for facilitating the electroweak baryogenesis [8].

An important issue about extra U(1)’ models concerns
the cancellation of anomalies. Indeed, for making the
theory anomaly free the usual approach to U(1)’ models
is to add several exotics to the spectrum [9]. This not only
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causes a significant departure from the minimal structure
but also disrupts the gauge coupling unification—one of
the fundamental predictions of the MSSM with weak scale
soft masses.

The prime goal of the present work is to construct an
anomaly-free U(1)’ model without exotics. We accomplish
this by allowing family-nonuniversal U(1)’ invariance. It is
known that when different fermion families posses differ-
ent U(1)' charges generally large Z’-mediated flavor-
changing neutral currents (FCNC) arise [10]. However,
there are exceptions to this, especially when Z' FCNC
effects reside in the lepton sector. For example, if the
U(1)’ charges forbid the off-diagonal terms in the fermion
mass matrix (in the family space), the mass eigenstates will
coincide with the gauge eigenstates. Therefore, there will
be no FCNC induced by the Z' gauge boson. The family
dependence of the U(1)" invariance necessarily forbids
certain Yukawa couplings in the superpotential, leading
to massless fermions. The requisite fermion masses, how-
ever, can be induced at the loop level via nonholomorphic
operators in the soft sector [11,12]. In addition to being
allowed, these nonholomorphic terms can appear in inter-
secting brane models with certain types of fluxes turned on
[13]. Therefore, as we will describe in the text, a minimal
U(1)) model can be realized with family-dependent
charges and nonholomorphic terms.

The paper is organized as follows. In Sec. II below we
introduce nonholomorphic terms and discuss how the fer-
mion masses as well as other chirality-changing operators
such as the magnetic moments are induced. In Sec. III we
discuss in detail the construction of an anomaly-free U(1)’
model with minimal matter content. We also determine the
flavor structures of the Yukawa matrices and of the non-
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holomorphic terms therein. In Sec. IV we survey phenome-
nological tests of the U(1) models by briefly discussing
fine-tuning, the Higgs sector, Z' couplings, collider signa-
tures, neutrino masses, muon g — 2, and the relic density of
the universe. In Sec. V we conclude the work.

II. U(1)) MODELS WITH NONHOLOMORPHIC
SUSY BREAKING

In U(1)" models the MSSM gauge group is extended to
include an extra Abelian group factor: SU(3),. X SU(2), X
U(1)y X U(1)" with respective gauge couplings g3, g2, &y
and g/. This gauge structure survives all the energy scales
from Mgyr = 2 X 10' GeV down to a TeV. The particle
spectrum of the model is that of the MSSM plus a MSSM
gauge singlet S charged under only the U(1)" invariance.
Clearly, the family universality of the MSSM gauge
charges is not necessarily respected by the U(1)" group.
Hence we employ a general family-dependent charge as-
signment as tabulated in Table I.

The superpotential takes the form:

W =nSH.A, + hijUSO:H, + D0,
+h{ESLiH,. (1)

The first term of the superpotential induces an effective u
parameter h,(S) below the scale of U(1) breaking. This
provides a dynamical solution to the w problem when
(§) ~ O (TeV). The rest of the operators in (1) describes
the Yukawa interactions of leptons and quarks.

The most general holomorphic structures which break
supersymmetry (SUSY) softly are

= Lo = (M, = Ach,SHoH, = AIR[USO.H,
i

— AJhIDSQH, — Adhd ESLH, + H.c.)

+ myy |H,> + my |Hyl* + mg|S|> + m2QUQ,Q~j

+ 3y, OO+ m3y, DED§ + m3 Lol

+mp E{ES" + Hec. )
TABLE I. The gauge quantum numbers of chiral fields in the

U(1)" model. The index i runs over three families of matter. Each
family can acquire a different charge under the U(1)’ group.

SU(3). Su2), U(l)y u(n)y
0; 3 2 1/6 0y,
Uic 3 1 _2/3 Oye
Dy 3 1 1/3 O
L 1 2 —-1/2 0,
E¢ 1 1 1 Ope
H, 1 2 1/2 On,
H, 1 2 -1/2 Ou,
S 1 1 0 O
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where the sfermion mass-squared mé g and the trilinear
couplings A, . are 3 X 3 matrices in flavor space. All
these soft masses will be taken here to be diagonal.
Moreover, all gaugino masses M; and trilinear couplings
Ayg .. will be taken real since the (important and interest-
ing) question of CP violation is beyond the scope of the
present work (interested readers can refer to [6]).

Clearly, the U(1)’ charge assignments of chiral super-
fields put stringent constraints on the Yukawa textures [14].
For instance, if the U(1)’ charges satisfy

Qp, + Qu, + Qn, #0 fori=1,23 3)

then the up quark can acquire a mass neither at tree level
nor at any loop level with holomorphic soft terms.
Therefore, for avoiding massless fermions it is necessary
to introduce nonholomorphic SUSY-breaking operators,
the nonholomorphic terms [11-13,15,16]. Historically,
the nonholomorphic terms have not been classified as
“soft”” since they might give rise to quadratic divergences
[17]. However, such operators are perfectly soft when no
gauge singlets are contained in the theory. Indeed, non-
holomorphic terms are soft in the MSSM and its U(1)’
extensions. Concerning the origin of the nonholomorphic
terms, one notes that they are generated by spontaneous
SUSY breaking within gravity mediation [18]. In addition
to this, they arise naturally in strongly coupled SUSY
gauge theories [19]. Moreover, the effective potentials of
N = 2 and N = 4 SUSY gauge theories are endowed with
radiatively generated nonholomorphic soft terms [20].
For the U(1)’ model under concern the nonholomorphic
SUSY-breaking Lagrangian takes the form

—L.=CIH.L'EY + CyH0'UY + CHH:Q'DY + c.c.
4)

and needs to be added to the holomorphic ones in (2).
Clearly, a down-type quark, for instance, develops a finite
mass via triangular diagrams proceeding with D, D and a
neutral gaugino A, and the result is necessarily proportional
to Cp. This radiative induction of the fermion masses is
rather generic. Notice that coupling to the “wrong” Higgs
doublet in (4) is essential for giving mass to fermions.
Indeed, a fermion f obtains the mass [12,21]

- s 2 .2 2
my = (Cfva)[ﬁ ffmglm(mfl, ms, mz)

6
Y6
+Yz@mwwﬂqwﬂ )

where v, = (H,)((H,)) for down-type (up-type) fermions.
Here the first term refers to SUSY-QCD contribution (£ =
4/3, 0 for quarks and leptons, respectively), and the second
term summarizes the contributions of all neutral Higgsinos
and gauginos. Cy is the corresponding nonholomorphic
terms in (4), and ay = g%/(4). The triangular loop func-
tion /,, is defined by
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1 IngB, InB,
— 6
(m —1 B- 1) ©

where B; = m3/m? with i=1,2. This function ap-
proaches 1/2m? when m; ~ m, ~ m, = m. The coupling
of the jth neutralino to mass-eigenstate sfermions (f; with
masses my,) is given by

I (m? m? m?) =
m( 1 2 ,\) m% _ m%

/

j 81
K =|:Y N; +<—
f fr*VJB gy

)QfRNjB'}
&
X |:YfLN]B + (g)QfLNJB/ + COtGWNij3fL:| (7)

where Q; is the U(1)’" charge of the fermion f, Y, =

Qln — T, and g/ and gy stand for the U(1)" and hyper-
charge gauge couplings, respectively. Here Nz, Nz and
Ny are the Z', b-ino and W-ino components of the jth

J
neutralino. Note that the fermion masses in (5) are of the
form m, = «(H,) where the dimensionless coupling in
front involves gauge couplings and sparticle mixing angles
as well as the ratios of the trilinear couplings to sparticle
masses. Hence, various soft-breaking parameters must
conspire to generate fermion masses in agreement with
experiment. It might be useful to dwell on this point briefly.
For reproducing the correct hierarchy of the light fermion
masses (i.e. m, < my, m; <m,, m, <m,) one can tune
the sfermion masses, the nonholomorphic trilinear cou-
plings C; or the U(1)’ charges. As a simple case study let
us examine the u-d mass hierarchy in the limit of degen-

erate i and d squarks. One finds

Bay <6 j

ﬂ _ C%]l 1 +E Zj=1 KuRj
11 3 j

mg  Cp 1+ o >0 1 K)R;

®)

2 2 2 2 0y

7y M gl 3, )

mgy /my is identical for up and down squarks. In case Cil =
J

Cl' the u-d hierarchy can be saturated if > ;(0.5K% —
K{,)RJ» ~ 10 which is too large to be satisfied unless the
gluino is exceedingly light, m; ~ 1 GeV. Other fermion
masses can be analyzed in a similar way. Therefore, the
hierarchy among the fermion masses rests largely on the
hierarchy of the nonholomorphic trilinears. On the other
hand, the generation of the correct values of the individual
fermion masses requires a judicious choice of the soft
masses and U(1)' couplings.

As was shown in [12], it is difficult to generate masses
for the top quark and tau lepton if the nonholomorphic
terms are not much larger than the other soft masses.
Therefore, the U(1)' charge assignments must be such
that these fermions can obtain masses already at tree level.
However, the rest of the fermions can acquire masses
through (5) with no obvious contradiction with
experiments.

= 2
where R; = mi?lm(mfl, m
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The sparticle virtual effects which give rise to nonvan-
ishing fermion masses (5) induce also chirality-violating
operators pertaining to radiative transitions of the fermi-
ons. Among these are the electric and magnetic dipole
moments. In fact, for a fermion with radiatively induced
mass the magnetic dipole moment takes the form [12]

J 2 2 2
2 Kymply—o (5, m3. m3)

aSUSY = o2 L 9
¥ f %Kﬁm’& Ly(m? , m? mf??)
where
1 1
Ig—Z(m%: m%, m%‘) = mii W
v {,31(,3% —1—2pB,logB))
2(B; — 1)
— (- 2)} (10)

with the same parametrization used for 7,,. If m =
max(m;l, mg, mj) then

j 2 2 0
2ZKfm)”(?Ig—2(mj1’mf2’m~ ) mjzc

0
SUSY — Xj
a = 2m% . ~—= (11)
! ! o 2 2 2 372
> Kme?Im(mfl’ ms, mX?)

so that the larger the heaviest sparticle mass, the smaller
the magnetic moment. One notes that the expression of the
magnetic moment (9) contains no loop suppression factor
1/(47)% due to the fact that the fermion mass itself is
generated radiatively. Hence, when the fermion mass is
generated solely by nonholomorphic soft terms the mag-
netic moment, in particular, the muon magnetic moment
a,, tends to be large. The most stringent bound is from the
measured a,. Indeed, if the muon mass follows from
nonholomorphic terms (as will be the case in our model
mentioned below) then for saturating the existing experi-
mental bounds on g,, — 2 the scalar muon & must weigh O
(TeV).

III. AN ANOMALY-FREE MINIMAL U(1)) MODEL

One of the most important issues in U(1)’ models is the
cancellation of gauge and gravitational anomalies. Indeed,
for making the theory anomaly free one has been forced to
augment the minimal spectrum by a number of exotics [9].
These additional fields usually disrupt the unification of the
gauge couplings. In this section we will discuss the crucial
role played by family-dependent U(1)’ charges in cancel-
ing the anomalies and hence in preserving the unification
of gauge forces.

For the theory to be anomaly free the U(1)’' charges of
chiral fields must satisfy

0=>2Qg, + Qu: + Qp), (12)

i
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0= Z(3QQ,- +0.)+ Ou, + QOun, (13)

1

1 1 4 1
0= Z(g Qo + gQD;:‘ + EQU;' + EQL[ + QE;‘)
1
+ E(QHd + 0n,), (14)

0= Z(6QQi +3Qye +30pc +20;, + Qp)
+20u, 204, + O, 15)

0="(0} + 0} —20% — 0} + 0%) — 0%, + O},
(16)

0=">(60p, +30) +30% +20; + 0f) + 203,

+203 + 03 (17)

which correspond to vanishing of U(1)-SU(3)-SU(3),
U(1)-SU(2)-SU(2), U(1)-U(1)y-U(1)y, U(1)'-graviton-
graviton, U(1)’-U(1)’-U(1)y and U(1)’-U(1)’-U(1)’ anoma-
lies, respectively.

As mentioned before, the top quark and tau lepton
masses must be generated already at tree level.
Moreover, U(1)" invariance must allow for SH;H, cou-
pling for solving the u problem. These conditions lead to

Qp, + Qu: + Qu, =0, (18)
Or, t Op +0n, =0, (19)
Oun, +Qu, +0s=0 (20)

which should be added to Egs. (12)—(17). The family-
nonuniversal U(1)’ charges could lead to large Z' -medi-
ated FCNCs [10]. One first observes that the very presence
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix im-
plies that the physical quark states are achieved after a
unitary rotation of the gauge-basis quarks. Therefore, for
guaranteeing the suppression of FCNCs in the hadron
sector it is good to keep quark U(1)’ charges family uni-
versal:

QQ1 = QQ2 = QQ3’ QU;‘ = QU; = QUg,
QD; = QD; = QD;‘

so that, depending on the charge assignments of the Higgs
doublets, either the down or the up quark sector possesses
tree-level Yukawa interactions. For the lepton sector one
can relax the condition of family universality since it will
lead to FCNCs only if mass- and gauge-eigenstate leptons
are not identical. As will be seen below, U(1)’ charges can
be assigned in such a way that the mass matrix of leptons is

21
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automatically flavor diagonal and hence leptonic FCNCs
are absent.

We now want to illustrate the assignment of U(1)
charges. There are 18 unknowns and 15 constraints (12)—
(21) out of which (16) and (17) are nonlinear in charges.
Using the linear constraints we first express 13 charges in
terms of 5 charges which we choose to be

Or,, O, QEg, Qp, and Q. (22)

2

The explicit expressions for charges read as

1

QQ] = QQz = QQ3 = §(_3QHd - 2QS): (23)
1

Op: = Op; = Qp; = 6(_6QHJ —705), (24)

Qu: = Qus = Qu; = é(lzgﬂd +11Q5), (25
01, = Qg — Q1 + 40y, + 30, (26)

01, = — Qs — Q. 27)

QO = — Qs — O — 6Qy, — 505, (28)

Opn, = —Qu, — Qs (29)

from which it follows that, for all , j, Qp, + QD? + Op, =
—1 and Qp + QOpc — Qy, = 0. Hence, all of the down

quarks get their masses from nonholomorphic terms via
(5); they are not allowed to possess Yukawa structures /.
in the superpotential. On the other hand, the up quarks
obtain their masses from superpotential couplings only.
Consider now the muon mass term. There are two alter-
natives':

either QL2 + QE{Z + QHd = O
or Qp, +Qp — Qn, =0.

The first option implies that the muon mass follows en-
tirely from the Yukawa couplings. On the other hand, the
second option restricts the muon mass to follow from
nonholomorphic terms only. From (23)—(29), one can
check that the first option leads to Q; + Qpe + Qn, =

—2Qsand O, + O — Qn, =
ing the u problem Qg must be nonzero, and this implies

(30)

—Qg. However, for solv-

'"When the determinant of a matrix is nonzero it cannot have a
row or column with all zeroes. In fact, one can employ a rotation
in the space of families to make all diagonal entries of the matrix
nonzero. Hence, in the following we will assume that such a
rotation has already been done such that whenever the determi-
nant of a matrix is nonzero then no diagonal entry can vanish. In
particular, one can employ a family redefinition to make (2,2)
element of %; nonzero.
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that the electron is forbidden to acquire its mass from both
the Yukawa couplings and the nonholomorphic terms.
Hence, this option must be discarded; the muon cannot
develop a mass from Yukawa couplings. The remaining
alternative implies that Q; + Q B~ Qp, = 0so that both

muon and electron receive their masses from nonholomor-
phic terms via (5). Using (29) and the second option in (30)
it is easy to solve for Qy :

QH,, = -0~ QE; - QLQ’ (31)
so that 14 out of 18 charges get expressed in terms of
Oy, Qp, Qp and Qs (32)

With the solutions obtained so far, the two nonlinear
anomaly cancellation conditions, (16) and (17), reduce to

0= —20Q20g — QO +20;, + 0s5)0s, (33)

0= —3020g — Qp; +20;, + Q5)(30% — Qr; Qs
+ 100501, — 20 0;, + 807, + 30k 05

+ Qp: 05 + 40, 05) (34)
which are simultaneously satisfied when
20p; — Op; +20,, + 05 =0 (35

holds. One can eliminate Q ES from this relation. Then 15
: |

0 0O

0 0O
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out of 18 charges get expressed in terms of the three
independent ones,

Qr,, Qp and Qs (36)
via the relations
Qp, = Qp, = Qp, = $(3QE§ + 30, + Qy),
Op; = Qp; = Qp; = %(6QE§ +60., — Qs),
Ou; = Qus = Qus = 5 (~120 ~ 120, ~ 09)

O, = —20g — 30y, Or, = —0p — 0OL,
Qp; =30 +40,,, Qp; =20Qp +20;, + Qs
On, = =0 — 01, — Qs Ou, = Qr + 01,

with which the theory becomes completely anomaly free.
One can analyze all physical quantities of interest in terms
of three free charges Q;,, O and Qs without disrupting
the unification of gauge couplings.

The U(1)’ charges entirely determine the Yukawa tex-
tures: they decide which flavors receive their masses at tree
level and which ones at the loop level. In fact, the flavor
structures of the Yukawa matrices can be determined via
the charge matrices of the associated operators:

1 1 1

1 1 1
(QQ,-+QUJ”,+QHL,)= (0 0 0) , (QQi+QD_§+QHd)=_QS<1 1 1) ,
ij ij

— Qs

(O, + QE;: + Oy,) =201, T401, — Qs
Qp; +20;, — Qs

(38)

_ZQE; - 4QL2 - QS _QE; - 2QL2
—0s Op: +20q,
_QEg - 2QL2 — Qs 0 ij

It is clear that all of the up quarks get their masses from tree-level Yukawa interactions. On the other hand, none of the
down-type quarks are allowed to have tree-level Yukawas, and only the tau lepton is permitted to have a direct tree-level
mass. The massless fermions are to obtain their masses from nonholomorphic terms via (5). To see if this really happens it

is necessary to examine the charge matrices determining the flavor structures of the nonholomorphic couplings:

1 1 1 0 0 0
(QQ,_’_QU;:_QHL,):QS(l 1 1) , (QQ,+QD;’_QHM): <0 0 0) ,
111/, 00 0/,
0 20, ~40,, —Qp —20,, + 05 &)
(Qr, + Qp = On,) = | 20k + 404, 0 Qp; + 20, + Qs
' Op; +20;, —0Op — 20y, Qs i

Obviously, the up-type squarks are unable to develop any
nonholomorphic couplings: Cf; =0 for all i, j =1,2,3.
The situation for down-type squarks is the opposite; they
are allowed to develop generic nonholomorphic trilinears
with no texture zeroes: Cj, # 0 for all i, j. The couplings of
sleptons are interesting; when QES +2Q;, #0 and

\

—Op; — 20, + Q5 # 0 they do not possess any flavor-
changing nonholomorphic coupling: C// = 0 for all i, j.
However, the selectron and smuon still have nonholomor-
phic term couplings. Consequently, the tau lepton acquires
its mass at tree level yet the electron and muon obtain their

masses via (5) with no leptonic FCNCs. We summarize the
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TABLE II. The mechanisms for fermion mass generation: Y
means that mass is generated by tree-level Yukawa interactions,
and R means that the mass is generated radiatively via (5).

Ist family 2nd family 3rd family
Up-type quarks Y, H, Y, H, Y, H,
Down-type quarks R, H, R, H, R, H,
Leptons R, H, R, H, Y,H,

mechanisms of mass generation for each fermion genera-
tion in Table II.

Given the allowed textures of Yukawa and nonholomor-
phic term matrices in (38) and (39), the effective Yukawa
interactions below the soft-breaking scale take the form

—Legy = hif (u,)sq;H, + R(d)sqHS + holer) L HS
+ 1 (up)LyHS + ho(17)°LyHy (40)

where the superscript ¢ stands for charge conjugation. The
tilded Yukawa couplings are generated by nonholomorphic
terms as in (5): A « C}, h, « C}}, h,, o CZ. One notes
that the tau lepton is the only fermion which couples to H,
in particular, it is very interesting that the entire quark
sector behaves as in the SM (where H,, serves as the SM
Higgs doublet Hgy;) in contrast to its two-doublet origin
encoded in the superpotential (1). It is clear from (40) that
the entire hadronic FCNC is ruled by the CKM matrix as in
the SM, and no leptonic FCNC exists. In this sense the
family-nonuniversal U(1)’ model under consideration is
highly conservative not only because of the minimality
of the spectrum but also because of the SM-like couplings
of all fermions but the tau lepton.

Since the model is already anomaly free with minimal
matter content, SU(3).., SU(2); and U(1)y gauge couplings
all unify into a common value g, =1/ \/i at a scale
Mgyr = 2 X 10'® GeV as in the MSSM. The U(1)’ gauge
coupling reads at the weak scale as

g5
- 2g5t, Ti[0%]
where 1, = (4) 21log(M,/Mgur), and clearly, g}(My)
depends on what values are assigned to the independent
charges Q; , QEE and Qg.
In the next section we will discuss some phenomeno-

logical implications of the minimal U(1)’ model under
consideration.

g (My) = ; (41)

IV. PHENOMENOLOGICAL TESTS

In general, one can analyze the phenomenological im-
plications of our U(1)" model as a function of the admis-
sible values (e.g. Qg # 0) of the charges Q;,, QEg, Os.
However, for simplicity we prefer to work with a repre-
sentative point in the space of U(1)’ charges and all other

PHYSICAL REVIEW D 72, 015012 (2005)

TABLE III. The U(1)’ charges of chiral fields corresponding to
the charge assignment in (42).
st family 2nd family 3rd family

Qo, 0 0 0
0 I I I
O -1 -1 -1
0 0 2 1
O -1 —3 1

On, On, Qs

-1 -2 3

model parameters. Therefore, we assign the following
numerical values to the free charges:

01, =2 QE; = -3 Qs =3 (42)
for which g} (M) = 0.196 to be compared with gy (M) =
0.358. With (42) the U(1)’ charges of chiral fields get fixed
to values depicted in Table III. Note that the left-handed
quarks are all singlets under U(1) and right-handed up and
down quarks are charged oppositely under U(1)'.
Furthermore, the left-handed electron does not couple to
Z'.

Of course, there is no known fundamental reason for the
particular charge assignment in (42); one can adopt some
other numerical representation as well. Hence, as a distinct
case study consider another set of charges shown in
Table IV. They satisfy all of the master relations in (38).
In fact, Table IV has interesting properties in that the Z’
boson couples to no lepton but the right-handed tau lepton
and H, is neutral under U(1)'. However, achieving such an
extremely leptophobic Z’ boson has a price: the leptonic
Yukawa matrix and associated nonholomorphic terms are
now allowed to have nonvanishing off-diagonal entries,
and thus the Z’ boson necessarily develops flavor-changing
couplings to leptons which in turn facilitate the leptonic
FCNC decays u — ey or 7 — (u, e)y. However the rates
of these processes depend on the rotation matrix which
diagonalize the effective lepton Yukawa matrix. In the text
we will not pursue this option any further except to com-
ment on it occasionally. We will focus on the charge

TABLE IV. An alternative charge assignment leading to an
extremely leptophobic Z'.

1st family 2nd family 3rd family
0o, 1/3 1/3 1/3
Que -1/3 —-1/3 —-1/3
Op: ~1/3 ~1/3 ~1/3
0., 0 0 0
OF: 0 0 3
On, Op, Os
0 -3 3

015012-6



MINIMAL U(1)" EXTENSION OF THE MINIMAL ...

assignments in Table III in discussing phenomenological
implications of the Z’ boson.

In assigning numerical values to the rigid and soft
parameters of the theory we prefer to work at the weak
scale. In fact, the renormalization group flow is not needed
at all as one can always generate a given low-energy
pattern from grand unified theory (GUT) scale parameters
in the absence of constraints like universality of the scalar
soft masses. Hence, we first fix the dominant Yukawa
elements in the superpotential to

hy, = 0.6, h, =11 43)
for which their renormalization group equations develop
no Landau pole up to Mgyr. Concerning the soft-breaking
sector, we choose gaugino masses and trilinear couplings
as in Table V, and scalar soft mass squares as in Table VI.

Notice that the negative m% triggers the U(1)’ symmetry
breaking. It is reasonable to expect that by adjusting other
soft SUSY-breaking parameters one can get a positive m3
at the unification scale so that the U(1)’ symmetry is
radiatively broken, just like the radiative electroweak sym-
metry breaking in the MSSM. Investigating this possibility
in detail is left for future work. Also notice that in Table V,
only the largest two nonholomorphic terms, i.e. C;, and C,,
are shown. As we already pointed out, due to the fact that
C; o« my for the fermions whose masses are due to the
nonholomorphic terms, there is a hierarchy among the
nonvanishing nonholomorphic terms, i.e. my:mzmy =
Cy:Cy:Cy and m,:m, =~ C,:C,. Since C, > C,, the
left-right mixing in the smuon sector is much large than
the selectron sector, which tends to make fi; lighter than
é,. This may have interesting consequences for collider
signatures. For example, the chargino would more likely
decay to ,LLI/#N1 than to ev,N,.

For the parameter values tabulated in Tables V and VI,
the Higgs, Z, Z'" and some of the fermion masses turn out to
be as in Table VII for tan3 = 2. Notice that the Higgs mass
agrees with the LEP bounds already at tree level.
Moreover, the Z' boson weighs nearly a TeV and its mixing
with the Z boson, a7, remains well inside the present
experimental bounds. Furthermore, both b quark and muon

TABLE V. The gaugino masses and trilinear couplings at the
weak scale (in GeV).

M, M, My, M, As A, A, C, C
200 800 300 500 850 250 250

“
2000 1800

TABLE VI. The soft mass-squared parameters (in GeV?) at the
weak scale.

3y n, 2 e
—(175)? (823)? —(565)* (1000)? (1400)?
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TABLE VII. Some particle masses (in GeV) at the weak scale
and Z-Z' mixing angle for tan8 = 2.

my my m, m, my, ayy myee

912 800 175 29 0101 —2.76 X 1073 114.7

TABLE VIII. The masses of light neutralinos and sfermions
(in GeV).
m;((: mio m)~(0 mg, mg, m,;l mb~2 mg, mg,

281 577 588 999 1051 783 1177 1318 1725

masses agree with experiments though they originate from
nonholomorphic terms rather than their Yukawa interac-
tions with H,.

Finally, for future use we also estimate the masses of the
three light neutralinos together with those of the stops,
sbottoms and smuons. The contributions from the
D terms associated with the U(1)’ are taken into account
in our calculation. The masses are shown in Table VIII. It is
clear that the lightest supersymmetric partner (LSP)
weighs 281 GeV and the light sbottom is the lightest
sfermion in the spectrum. Below the scale of U(1)’ break-
down the model at hand resembles the MSSM in that there
is an effective u parameter induced: u®™ = h(S) =
577 GeV which lies right at the weak scale.

The numerical predictions above show that the U(1)’
model under consideration does not have any obvious
contradiction with the existing phenomenological bounds.
As part of the ““new physics search” program in laboratory
and astrophysical environments, establishing or excluding
the class of models we are developing will require analysis
of various observables ranging from Higgs boson signa-
tures to dark matter in the universe. In the following we
will briefly discuss these observables, referring to the
numerical predictions above where needed.

A. The Higgs sector

In the course of electroweak breaking Z and Z' bosons
acquire their masses by eating, respectively,
Im[—sinBH) + cosBHY]  and  Im[cosa cosBH +
cosa sinBHY — sinaS] where cota = (v//2)
sinf cos B/(S) with v?/2 = (H))* + (HY9)*. The remaining
neutral degrees of freedom B = {Re[H)]— (H?),
Re[HY] — (HY), Re[S] — (S), Im[sina cosBHY +
sina sinBHY + cosaST} span the space of massive scalars.
The physical Higgs bosons are given by H; = R;;B;
where the mixing matrix R necessarily satisfies RRT =
1, and it has already been computed up to one-loop order in
[5-7,22]. In the CP-conserving limit the theory contains
three CP-even, one CP-odd, and a charged Higgs boson.
The CP-odd scalar is typically heavy as its mass squared
goes like Ag(S). It differs from the MSSM spectrum by one
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extra CP-even scalar. At tree level, the lightest Higgs mass
is bounded as

1
miy, = M} cos2B + S v sin®2B + g7(Qp, cosB
+ QH,, sin2,8)2v2 (44)

where the first term on the right-hand side is the MSSM
bound where the lightest Higgs is lighter than the Z boson
at tree level. The second term is an F-term contribution that
also exists in the NMSSM [23]. The last term, the U(1)
D-term contribution, enhances the upper bound in propor-
tion to g/2. Hence, rather generically the U(1)’ models have
a sufficiently large my, to higher values making it likely
that the lightest Higgs lies beyond the LEP II kinematic
reach.

Interestingly, the model favors specific values for tan3
when my approaches my. Indeed, for such a light Z’ boson
the Z — Z' mixing is suppressed by the mixing mass-

squared term M2_, = (1/2)g},/g3 + g3v*(Qu, cos’ B —
Qp, sin*B). This then requires tanB ~ ,/Qy /Oy, sO

tanB is completely determined by the charge assignment.
On the other hand, when Z' is sufficiently heavy, this
constraint on tan is absent.

For the U(1)’ model example we analyze, the charge
assignments in Table III ensure that the U(1)) D-term
contribution to the upper bound of the Higgs mass receives
equal contributions from H, and H,;. Moreover, for tan3 =
V2, Z — Z' mixing would have been absent irrespective of
the scale of the Z’ mass. Notably, if one switches to charge
assignments in Table IV then the U(1)’ D-term contribution
to (44) gets significantly reduced at large values of tanf3.

B. The status of the fine-tuning problem

One crucial message conveyed by the relative heaviness
of the lightest Higgs boson in U(1)’ models is that there is
no need for large radiative corrections in order to agree
with the LEP II lower bound. Indeed, when one-loop
radiative corrections are included the Higgs mass obeys
the upper bound

3m? m?

my =my + Tz’vz logm—iz (45)
where m%,l is the right-hand side of Eq. (44). The one-loop
piece is an approximate result (note it does not depend on
hy) that holds when (i) the loop contributions are renor-
malized at Q ~ m;, (ii) all terms involving the gauge
couplings are neglected, and (iii) stop left-right mixing is
much smaller than the diagonal terms such that the two
physical stops are nearly degenerate with mass m; (see
[6,22] for exact results). The radiatively corrected upper
bound (45) can be used to place a lower bound on the stop
mass

m; = mte(ﬁfil *mf{l)(wzvz/Sm‘,‘) (46)
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where v = 246 GeV is the electroweak breaking scale.
Consequently, when my, = 114 GeV the SUSY-breaking
scale has the lower bounds m? = 3M% and m? = 4M? for
parameter values in Tables III and IV, respectively. A
comparison of these results with the MSSM expectation,
m? = 50M% [24], demonstrates that in U(1)’ models the
SUSY-breaking scale is well close to the top mass. This
result, which demonstrates the absence of the little hier-
archy problem in this class of models, stems from the fact
that the tree-level upper bound (44) is already large enough
to drag the Higgs mass near the LEP lower bound.

The results above, however, should be taken with care.
The main reason is that the Z’' boson should be heavy
enough to satisfy the bounds from precision data. In par-
ticular, the Z-Z' mixing angle should be a few X 1073, as
mentioned and computed before. This may occur because
of a somewhat heavy Z', or because there exists a selection
rule that enforces approximately the interesting relation
Q,v: — Q,v3 =0 (as in the “large trilinear vacuum” of
[5,25]).

We also want to mention that the recent analysis of the
NMSSM [26] finds that fine-tuning [27] can be signifi-
cantly reduced especially in parameter regions with a light
pseudoscalar boson. The reason is that the invisible decay
rate of the Higgs boson gets enhanced (and thus it escapes
detection at LEP) via its decays into pairs of pseudoscalars.

C. The Z' couplings

The Z' boson mixes with Z, = cosfy W, — sinfyB,,
after the electroweak breaking since Higgs fields are
charged under both U(1)y and U(1)". On top of this B,
and Z' can exhibit kinetic mixing [28]. In the presence of
these mixings the mass-eigenstate gauge bosons assume
varying electroweak and U(1)’ components and these re-
flect themselves in their interactions with matter species.
For instance, the neutral vector boson observed in LEP
experiments corresponds to

qu}) = COSCYZZ/ZM + SinaZZ/Z;L (47)

in the absence of kinetic mixing. The couplings of Zﬂ) to
fermions deviate from their MSSM configuration in pro-
portion to azz and as a function of Mz /M z,- All such
U(1) impurities can be conveniently represented by S, T
and U parameters in a way useful for Z' searches in
electroweak precision data [29].

In the following we will discuss the couplings of the Z'’

boson rather than those of ZEP or the heavy one ng) as this
is the crucial part of the information needed for U(1)’
phenomenology. Depending on the mixing scheme, kinetic
or otherwise, one can always go to the physical basis for
gauge bosons by appropriate rotations. The U(1)’ charges
of the chiral fields shown in Table I are sufficient for
specifying their interactions with the Z’ boson. The physi-
cal bases for fermions are achieved by diagonalizing their
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Yukawa matrices via the unitary transformations h5* = Vén,Vit, n$® = vip, vit and h® = Vgh, VT, Then the

physical fermions couple to Z' as g}/, Z'* + H.c. where

) 0y 0 0 . Op 0 0
Juo=1dy Vil 0 Qo 0 |Vita, —dgy, Vil O QOp; 0 |vitdg
0 0 Qo 0 0 Op
i QQ] 0 0 QUT 0 0
+ ﬁL’Y,u,VLu 0 QQ2 0 VLMTML - ﬁR'}/MV£ O QU‘2 0 VI’;TMR
L 0 0 QQ3 0 0 QU§
[ O, 0 0 O, 0 0
+ ey Vil 00 0, 0 |Vite, —ery, V| O Qw0 |Vileq (48)
i 0 0 Oy, 0 0 O

so that generically the Z’ boson develops flavor-changing
couplings if there are intergenerational mixings in the
Yukawa matrices and/or if the U(1)" charges are family
dependent. A short glance at the effective Yukawa inter-
actions in (40) reveals that the charged leptons are already
in their physical bases whereas the quarks exhibit non-
trivial mixing diagonalizations of which induce flavor
violation in charged-current vertices via Vegy = V7 fo.
However, there are no flavor-changing Z' couplings to
quarks at all. The reason is that U(1)" charges of quarks
are all family universal according to the anomaly-free
solutions in (38). In conclusion, the Z’ boson couples to
fermions rather generically via

Tu= Ez.l//iy/‘[(Qfeft B Qéight) ~(Qren + Qﬁight)Ys]lﬂi

(49)

with no potential for tree-level flavor violation.

It is useful to discuss (49) in light of the charge assign-
ments in Table III. First of all, one automatically concludes
that J,, is a V + A current for quarks, that is, each quark
couples to Z), via ggy*qg current only. In particular, there
is no involvement of the left-handed quark fields. On the
other hand, leptons possess varying vector and axial cou-
plings due to their family-nonuniversal U(1)" charges. In
fact, Z), couples to the leptonic currents (1/2)ey, (1 +
ysle, (1/2)@y, (5 + ys)u and —(1/2)7y,ys7. There-
fore, the electronic current is purely right handed as for
quarks, the muonic current possesses a sizeable vector part,
and the tauonic current is purely an axial-vector type.
Moreover, the Z' boson does not couple to electron neu-
trinos at all, and its coupling to the muon neutrino current
is twice larger than that to the tau neutrino current. These
chirality and flavor sensitivities of the U(1)" currents can
have important implications for Z’ searches at colliders. If
one switches to charge assignments in Table IV the had-
ronic currents maintain their structure except for a resizing
by 1/3, and the only surviving leptonic current turns out to
be that of the right-handed tau lepton. Consequently, this

\
particular charge assignment gives rise to an almost com-

pletely leptophobic Z'.

The kinetic terms of the Higgs fields completely deter-
mine the couplings of Z’ to Higgs bosons. In close simi-
larity to Z boson couplings one can have vertices involving
two Z' and two Higgs bosons, or two Z' with a single
CP-even Higgs boson, or a single Z' accompanied by
one CP-even and one CP-odd Higgs boson. A single Z',,
for instance, couples to H; and H; via (py, — pH]_)“ times

2¢1(R)ulQp, cosBsina(R);; + Qp, cosBsina(R)
+ QS COSCY(R)j3] (50)

which vanishes unless H; and H; possess opposite CP
compositions. Unlike this, however, the coupling of H; to
Z),Z'* involves only its CP-even component:

282[03, (HO(R);y + 03, (HY(R)y + QHSHR)5)

(51)
Finally, H; and H; couple to Z|, Z'* via
gPLOHA(R)1(R);; + cos®Bsin*a(R)4(R) 4}
+ 05 A(R)n(R)j + sin®Bsin*a(R) 4 (R) 4}
+ OH(R)3(R)j3 + cos?a(R)u(R) 4} (52)

The couplings of the Higgs bosons to distinct vector bo-
sons, i.e. to Z,, 7, are obtained by picking up both U(1)y
and U(1)’ contributions to Higgs kinetic terms. Clearly,
once Z and Z’ are rotated to their physical bases both Z, Z,,
and Z,Z,, type structures will induce Higgs couplings to

dissimilar vector bosons via operators of the form Z(J)Zg,z).

The expressions for couplings presented above are gen-
eral enough to cover supersymmetric CP violation effects.
In the CP-conserving theory, as was assumed in construct-
ing the soft-breaking sector in Sec. II, the Higgs bosons
possess definite CP quantum numbers, in particular,
Ry = 0forall i # 4 [6].
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D. Z' searches at hadron colliders

From a phenomenological point of view, the U(1)’
model under concern differs from the MSSM by having
one extra CP-even Higgs boson, one extra neutral gauge
boson, and two extra neutral fermions. The ultimate con-
firmation of the model thus requires a complete construc-
tion of all these states in laboratory or astrophysical/
cosmological environments. Here in this subsection we
will provide a rather brief description of Z’ signatures in
accelerator experiments (see [30] for a review), in particu-
lar, in hadron colliders e.g. the Tevatron and upcoming
CERN LHC. Needless to say, Z' signals at linear colliders
are much cleaner than at hadron machines but presently the
International Linear Collider is only being planned (pre-
sumably as a post-LHC precision measurement
environment).

The LHC (Tevatron) is expected to probe Z' bosons as
heavy as 4 TeV (0.8 TeV) depending on the model parame-
ters, on the luminosity reach of the collider, and on the size
of uncertainties coming from detector acceptances and
systematic errors [30,31]. Z’ production proceeds via vari-
ous channels. It can be produced directly via quark-
antiquark fusion giving rise to pp/pp — Z'X or indirectly
via Higgs or Z boson decays such as H; — Z'Z', H, —
Z'H, and Z — Z'H,. Each of these and similar contribu-
tions to Z' production can be analyzed by using the ex-
pressions for the couplings given in (49)—(52) in Sec. IVB
above. Among all these production channels the dominant
one is the quark-antiquark annihilation (at next-to-leading
order in QCD gluon-quark scattering into Z' is also im-
portant), and it facilitates direct pp or pp fusion into Z'.
The produced Z’ boson will subsequently decay into lep-
tons or jets. The latter are seldom useful for a Z’ search due
to large QCD background. The leptonic signals, however,
are particularly promising due to their good momentum
resolution and one’s ability to suppress the MSSM back-
ground at high dilepton invariant masses [31]. When the
subprocess center of mass energy =~ M, the Z' propagator
resonates to give

o(pp — Z’\NFX) =o(pp — Z'X)BR(Z' — €*¢7)
(33)

with a similar expression for pp collisions. Here the Z’
production rate is given by

3

<[l Sl Mz’)ff;(M%/ My)

2 /s X xS

oop— 7% = T 2T 1z — qp)
7 SMZ/

XS

M2,
+ fg(x, MZ’)fg( Z y MZ/>:| (54)

where f3(a, b) stands for the probability of finding parton x
in hadron y with a momentum fraction a at the relevant
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energy scale b of the scattering process. The partial fermi-
onic width of the Z’

2N,
3

as follows from (49), collects all model parameters pertain-
ing to the massless fermion sector. Presently, the CDF and
DO experiments continue to explore Z' signatures by pro-
jecting the measurement of (53) into possible values of
@} Qi2, BR(Z' — €*€~) in the plane of up and down quark
couplings [32].

For the minimal U(1)’ model under consideration, the
following properties could be important for collider
searches for the Z’ boson:

(i) Ate™e™ (or future w™ u ™) colliders running above
the Z pole the Z' effects can be parametrized in
terms of semielectronic four-fermion operators.
The scales of such operators are O (10 TeV) at
LEP II. The combined results of all four LEP col-
laborations [33] show that when Z’ couples to elec-
trons of one chirality only (either to left or right, not
both) then bounds on M, are rather weak. This is
indeed the case in our minimal U(1)’ model in
which Z' couples to the right-handed electron cur-
rent only. Consequently, it suffices to have M, =
0.7 TeV for LEP II bounds to be respected. Clearly,
if one switches to the charge assignments in
Table 1V, there is no LEP (or future muon collider)
bound to speak of (except for the precision mea-
surements at the Z or Z' poles).

(ii) In the framework of the U(1)’ models under consid-
eration, at hadron colliders the Z’ boson is produced
by the fusion of right-handed quarks. The decays of
the produced Z' into leptons offer a rather clean
signal for experimental purposes [30,31]. As sug-
gested by (55) the larger the sum Q% + Q& the
larger the number of dilepton events. Therefore, the
number of u*u~ events must be 13 times larger
than e"e™ events and 26 times larger than 77~
events. This rather strong preference for muon pro-
duction gives a clear signature of the model under
concern. Of course, if one switches to U(1) charges
in Table IV then Z’ effects show up only in the 7 7~
production.

At hadron colliders, one of the most important observables
is the forward-backward asymmetry [30,31]. It is a mea-
sure of the angular distribution of the signal, and is pro-
portional to the vector and axial couplings of both the
initial and final state fermions in the process. For the
U(1)! charges in Table III it vanishes for 7" 7~ production,
and is 5 times larger for u* u~ production than for the
e*e” signal. For the alternative charge assignments in
Table IV there is no asymmetry at all; the signal is distrib-
uted equally in forward and backward hemispheres.

In experiments with polarized proton beams one can
define spin-dependent asymmetries which probe chiral

D(Z' — gih;) =

a/l Mz (Q{ezft + iizght)’ (55)
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couplings of the initial and final state fermions separately
[34]. The left-right asymmetry, defined with respect to the
parent proton helicity, is proportional to the multiplication
of the vector and axial couplings of the quarks, and it is
universal for all quarks in either of the charge assignments
Tables III and IV. On the other hand, forward-backward
asymmetry for polarized protons measures the chiral cou-
plings of the leptons in isolation in a way similar to the
forward-backward asymmetry of unpolarized beams.

In this subsection we have discussed very briefly the
prospects for Z' searches at colliders within our minimal
U(1)" extension of the MSSM. Clearly, for a complete
determination of the Z' signatures it is necessary to per-
form a detailed study of all relevant processes. Notice that
the particular model we showed at the beginning of this
section has a Z’ at 800 GeV. One can certainly lower the Z'
mass to increase the chance of detectability at the Tevatron.
Smaller Z' mass will typically increase the Z-Z' mixing
angle. But as shown in Sec. IVA, special values of tan8
can be chosen to reduce the mixing. We have found that it
is possible to make Z’ as light as around 500 GeV and the
mixing angle close to the border line of the experimental
bound.

E. The neutrino masses

By construction, the model analyzed in this work does
not contain any fields necessary for inducing the neutrino
masses and mixings. These can be generated via various
mechanisms [16,35—37]. For a consistent analysis of the
neutrino sector one has to import appropriate fields into the
spectrum and analyze their consequences, especially for
anomaly cancellation. Here, we simply take the seesaw
contribution

l
AW, = Y L'H,L'H, (56)
M
to the superpotential as a basis for our brief discussion.
Here Y;/ are some O(1) couplings, and M represents the
Majorana mass scale. In models with additional U(1)’
symmetry, some of the entries of Y;; could be forbidden
by the U(1)’ symmetry. Indeed, a short glance at the charge
assignments in Table III reveals that Y. 7 should take the

following form:
- 0 a O
Yy = ( a 0 0 ) 57

0 0 b

where a and b are some coefficients. Clearly, this texture
does not account for the observed oscillation data, and one
has to invent some other way of inducing a viable Y,,.

On the other hand, for the U(1)’ charge assignments in
Table IV the seesaw mechanism alone suffices to induce all
neutrino masses and mixings in full generality (at the
expense of opening up the lepton flavor violation effects).
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Analyzing these patterns and constraints is left for further
work.

F. The Muon g — 2

We have already provided general expressions for g,, —
2 in Sec. II. Thanks to the nonholomorphic operator
CPH;L*E one can induce both muon mass and g, — 2
via a one-loop neutralino-smuon diagram. On the other
hand, there is no similar chirality-flip operator on the 7,
line so that the chargino contribution is a two-loop effect
and is thus negligible. Inducing the muon mass without
violating g, — 2 bounds is an important constraint [12],
and for the parameter values listed before we find

a3 oSy =22 x 10710 (58)

by using (9). This result is well inside the allowed room for
a new physics contribution to the muon anomalous mag-
netic moment [38].

G. The cold dark matter

The mapping of the cosmic microwave background
anisotropy provides precise information about the densities
of matter and dark energy in the universe. It is now known
with good precision that the matter distribution is domi-
nated by a nonbaryonic nonrelativistic component whose
candidate particle should be massive, stable, neutral and
weakly interacting. Supersymmetric models with con-
served R parity provide a natural candidate for cold dark
matter (CDM) in the lightest superpartner i.e. the lightest
neutralino }!. For the parameter values listed in Table V
the LSP turns out to be W-ino dominated

x9 = —0.015Z' — 0.0198 + 0.967W — 0.197H,
+ 0.158H, — 0.004S (59)

with a rather small singlino component. For W-ino LSPs,
coannihilation during the freeze-out is highly efficient. In
fact, the neutralino relic density turns out to be () Xhz =
0.5 X 1072 which is smaller than the observed CDM den-
sity by an order of magnitude. Hence, as pointed out before
[39], the W-ino LSP is far from being a viable CDM
candidate. However, nonthermal production can provide
the actual relic density, e.g., for the W-ino LSP, and decays
of the moduli fields into gauginos can help in enhancing
(), for saturating the correct value of Qcpy [40]. Clearly,
if the LSP is dominated by other components i.e. singlino,
b-ino or Z-ino then one can saturate the observed value of
Qcpm since their annihilation rates are relatively smaller
than those of the W-inos [41].

V. CONCLUSION

We have discussed ways of constructing an anomaly-
free U(1)’ model (as needed for solving the w problem and
moderating the fine-tuning problem) with minimal matter
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content in order to maintain the unification of gauge cou-
plings. We have found and illustrated with some numerical
examples that it is possible to achieve the cancellation of
anomalies with no exotic matter by invoking (i) family-
nonuniversal U(1)’ charge assignments and (ii) nonholo-
morphic soft-breaking operators.

The model discussed in this work is an anomaly-free
version of the generic U(1)" model analyzed in [5]. Indeed,
the two models have identical matter spectrum. However,
achieving anomaly freedom without exotic states requires
the introduction of family-dependent U(1)’ charge assign-
ments plus nonholomorphic soft-breaking terms. Of
course, U(1)" models that follow from Eg breaking are
anomaly free thanks to the exotic states present in the light
spectrum [42]. In this sense, the model discussed here
constitutes an anomaly-free minimal U(1)" model.

From the experimental point of view, distinguishing the
minimal U(1)’ model here from other U(1)’ models or from
the MSSM requires measurement of a number of observ-
ables. In general, establishing the existence of a
U(1)-extended MSSM structure necessitates experimental
evidence for the Z' boson, extra Higgs bosons and extra
neutralino states. On the other hand, one might interpret
certain phenomenological results as being evidences for an
extended gauge sector. For instance, the electric dipole
moments constraints generically require the phase of the
p parameter (in the MSSM) to be rather small, and this
result can be naturally tied to the radiative nature of the w
parameter in U(1)’ models [6].

Distinguishing the minimal U(1)’ model here from other
U(1)" models in the literature requires certain signatures
which could come from nonholomorphicity and a family-
dependent nature of the Z' couplings. Concerning the
latter, one recalls from Sec. IVD that Z' decays into a
specific difermion state, e.g. w™ u~, can be significantly
enhanced compared to others due to the family dependence
of the U(1)’ couplings displayed in Table III. In fact, the
quarks which participate in production and hadronic de-
cays of the Z' boson are right handed more often than is
typical. These are signals that cannot be found in other
U(1)" models. The family nonuniversality implies several
collider events that enable one to distinguish the minimal
U(1)’ here from other models.

Being another important effect of family nonuniversal-
ity, one notes from Table I that Z’ does not couple to left-
handed squarks and left-handed selectrons, at all. In fact,
its strongest coupling is to smouns, in particular, to the
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right-handed smuon. The dominance of the right-handed
currents (except the stau states) is interesting since right-
handed sfermions (of the first two generations, especially)
decay preferably into b-ino and right-handed fermions. In
particular, multilepton plus jet plus missing energy signals
coming from left-handed squarks are now reduced. Besides
these, dominance of the muon signal compared to others is
a signal of the violation of lepton universality, and the Z’
boson of Table III could be a viable source of this.

The nonholomorphicity of the soft-breaking terms af-
fects certain observables in a distinct way. For instance,
due to their radiative origin the Higgs-fermion couplings
depend on the momentum transfer in a given scattering
process, and thus, nonholomorphic structures may be
tested by measuring various Higgs branching fractions
into fermions [12]. Furthermore, the electric dipole mo-
ments (though not analyzed here) are naturally suppressed
since dipole moments are aligned towards the fermion
masses [12]. Finally, the heavier the fermion the larger
the nonholomorphic trilinear, and hence, the sfermion left-
right mixings are enhanced for relatively heavy fermions
whose masses are due to the nonholomorphic terms.

In conclusion, we have analyzed the conditions for and
phenomenological consequences of canceling the anoma-
lies in U(1)’ models with minimal matter content. We have
briefly discussed a number of observables ranging from
fermion masses to dark matter in the universe. The model
explored here is minimal in that it is a direct U(1)’ gauging
of the MSSM plus a gauge singlet, and it needs to be
extended to include right-handed neutrinos to induce neu-
trino masses and mixings. Moreover, the numerical ex-
amples provided here can be extended to a sufficiently
dense sampling of the parameter space for determining
the laboratory and astrophysical implications of the model.
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