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We discuss the possibility of formation and subsequent detection of a supersymmetric bound state
composed of a slepton-antislepton pair at the next linear collider. The Green function method is used
within a nonrelativistic approximation to estimate the threshold production cross section of the 2P bound
state. The parameter space of gauge mediated symmetry breaking (GMSB) models allow a particular
scenario in which a charged slepton (eeR; e�R or e�1) is the next-to-lightest supersymmetric particle (NLSP).
Within this scenario the produced 2P bound-state decays, through a dipole transition, into the 1S ground-
state with branching ratio � 100% emitting a very soft ( � 1 MeV) photon which goes undetected. The
spectroscopy of the 1S-state shows that it decays into two photons with Br � 0:5 up to mNLSP � 1 TeV.
Thus NLSP sleptonium threshold production gives rise to the signal e�e� ! 2P! 1S� “soft 
” ! 


which when compared with the standard model two-photon process (e�e� ! 

 ) has a statistical
significance (SS � signal/noise) which, at an energy offset from threshold of E � 20 GeV, goes from
SS � 11 to SS � 2 when the mass of the NLSP ranges in the interval �100; 200� GeV.

DOI: 10.1103/PhysRevD.72.015005 PACS numbers: 12.60.Jv, 11.10.St, 14.80.Ly
I. INTRODUCTION

Despite the enormous success of the standard model
(SM) of particle interactions based on the gauge group
SU�3	C 
 SU�2	L 
U�1	Y a large portion of current re-
search efforts in the field of fundamental interactions is
devoted to the study of signatures of physics beyond the
SM. Between the possible alternatives to the standard
model its minimal supersymmetric extension (MSSM) is
one of the theories which has been extensively studied
from both the purely theoretical and phenomenological
aspects [1].

Supersymmetry is the symmetry which relates fermions
to bosons and, while appealing because of its potential of
solving the hierarchy problem of the standard model, must
of course be broken, and one of the major issues in super-
symmetric theories is the pattern of supersymmetry break-
ing. There exist various possibilities to break
supersymmetry. In mSUGRA models it is assumed that
supersymmetry is broken at the Planck scale MP and is
transmitted to the low-energy sector by gravitational inter-
actions only [2]. In gauge mediated symmetry breaking
(GMSB) models supersymmetry is broken at relatively
lower energy scales and is mediated by gauge interactions
[3]. Other possibilities consist of anomaly mediated sym-
metry breaking (AMSB). Here the SUSY-breaking occurs
also in a hidden sector but it is transmitted to the visible
sector via the super-Weyl anomaly [4].

Of course at this stage of experimental and theoretical
investigations it is important to study in detail the phe-
nomenological consequence of each scenario. Object of
this work is the GMSB scenario whose theoretical basis
and phenomenology has already been described in the
literature (see [3] and references therein). In particular
05=72(1)=015005(13)$23.00 015005
we recall that GMSB models are characterized by a rather
peculiar superparticle mass spectrum. Indeed in these mod-
els the almost massless Goldstino/gravitino, ~G, is the light-
est supersymmetric particle (LSP) and in addition to the
neutralino �0

1 next-to-lightest supersymmetric particle
(NLSP) case, large fractions of the parameter space offer
the possibility of having a charged NLSP which can be
either the ~�1 or ~‘R�‘ � e;�	.

In [5] the phenomenology of the production of a pair of
NLSP, within GMSB models, was discussed in the context
of the Cern LEP2 collider. In particular it was found that in
the stau NLSP or charged slepton NLSP cases typical
signatures of NLSP pair production are ����E6 , or
‘�‘�E6 where the missing energy, E6 , is due to the decay
of the NLSP to the almost massless gravitino, ~G, (LSP).

The object of this study is to propose a novel type of
signature for the GMSB slepton NLSP scenario, assuming
that the next LC will operate (at least initially) at energies
approximately in the neighborhood of the threshold of
NLSP pairs. In this case if ~‘R or ~�1 are the NLSP then
the threshold production of sleptonium, a bound state of a
slepton-antislepton pair, (smuonium or stauonium) in
e�e� collisions should be considered. It turns out that
such bound state can give rise to the interesting signature
of two photons and practically no missing energy. This
signature has not been considered previously. Indeed the
produced 2P state decays with branching ratio � 100% to
the 1S state and a photon whose energy is related to the
difference of the energy levels E2P � E1S � 1 MeV. In
turn the 1S state decays mainly to two photons:

e�e� ! 2P! 1S� soft 


!j 

: (1)
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The threshold production cross section of the 2P state in
e�e� collisions is computed using the Green function
method within a nonrelativistic approximation. The decay
widths of all open channels of the 2P and 1S states are also
provided. It is concluded that the two-photon signature,
when compared with the SM process e�e� ! 

, has a
statistical significance (SS � Signal=Noise) which ranges
in the interval from 11–3 when the mass of the slepton
(mNLSP) is between 100 and 300 GeV.

The plan of the paper is as follows: Sec. II provides a
review of the GMSB supersymmetric model; in Sec. III is
discussed the criterion for formation of the supersymmetric
bound state (sleptonium); Sec. IV presents details of the
decay channels of the 2P and 1S bound states; Sec. V
contains a description of the Green function method to
estimate the threshold cross section for the production of
the 2P bound state; Sec. VI presents a discussion of the
statistical significance of the two-photon signature; finally
Sec. VII presents the conclusions.
1NUY �1	 � �6=5	Y2, where Y � QEM � T3.
2CUY �1	 � �3=5	Y2
II. GMSB MODELS

GMSB models of symmetry breaking are perhaps the
most promising alternative to the SUGRA scheme where
SUSY-breaking takes place at the Planck mass and is then
communicated to the low-energy sector by gravitational
interactions. In GMSB models supersymmetry breaking
occurs at relatively lower energy scales and it is mediated
by gauge interactions [3,6]. One nice feature of these
models is the automatic suppression of the SUSY contri-
bution to flavor changing neutral current (FCNC) and
CP-violating processes.

In the simplest version such models are characterized by
the introduction of messenger chiral superfield which con-
tain quarks  q;  �q, leptons  ‘;  �‘, scalar quarks q; �q and
scalar leptons ‘; �‘ (messenger fields). All these particles
must acquire very large masses as they have not been
discovered. They do so by coupling to a gauge singlet
chiral supermultiplet X via the superpotential:

Wmess � �2X‘ �‘� �3Xq �q: (2)

Then one assumes that the scalar component of X and its
auxiliary F term acquire a vacuum expectation value
(VEV), respectively, denoted hSi and hFSi. Assuming for
simplicity degeneracy of the couplings (� � �2 � �3) and
absorbing the coupling � into hSi and

���������
hFSi

p
by defining

M � j�hSij and F � j�hFSij the amount of SUSY-
breaking in the messenger sector i.e. the mass splitting of
the scalar messenger states is found to be parametrized as:

m2
mess:fermions � M2 m2

mess:scalars � M2 � F

�m2
mess:scalars � 2F ! �mmess:scalars �

F
M

� �

�if F=M2 � 1	:

(3)
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SUSY-breaking is thus apparent in the messenger sector,
and is in turn communicated to the low-energy sector
(MSSM sparticles) through radiative quantum corrections.
Gauginos (and scalar partners) acquire their masses, at the
messenger scale M, through one-loop (and two-loop)
Feynman diagrams where virtual messenger particles are
exchanged [7–9]:

MG�M	 �
�G
4�

�g�x	
X
m

NG
R �m	

G � U�1	; SU�2	; SU�3	

(4)

~m 2
s�M	 � 2�2f�x	

X
G;m

�
�G
4�

�
2
CGR �s	N

G
R �m	: (5)

In Eqs. (4) and (5) x � F=M2,m labels the messengers and
s the MSSM scalar; the functions f�x	 and g�x	, which
reduce to � 1 when x! 0 are explicitly given in [5,8,9];
NG
R is the Dynkin index of the gauge representation under

which the messenger superfields transform, defined by
TrTaTb � �NG

R=2	�
ab the Ta being the generators of the

gauge group in the representation R1; CGR are the quadratic
Casimir invariant of the same gauge group representation
for the MSSM scalar field in question and, for the N

of SU�N	), is defined by:
P
aT

aTb � CSU�N	N I �
�N2 � 1	=2NI.2 NG

R and CGR turn out to be simple algebraic
functions of the gauge couplings and the number n~‘ and n~q
of messenger fields, see [5,9] for further details. From
Eqs. (4) and (5) one also deduces that the scale of SUSY-
breaking felt in the messenger sector � � F=M must be in
the range

10 TeV � � � 100 TeV

in order to have sparticle masses in the range of 100 GeV–
1 TeV.

A distinctive feature of GMSB models is the fact that the
gravitino ~G may be very light. Indeed meG is given by:

m ~G � m3=2 �
F0���
3

p
M0
P

�

� ������
F0

p

100 TeV

�
2
2:4 eV; (6)

where M0
P � �8�GN	

�1=2 � 2:4� 1018 GeV is the re-
duced Planck mass and

������
F0

p
is the fundamental scale of

supersymmetry breaking (SSB) which does not coincide
with F, the scale of SUSY-breaking felt by the messenger
sector. The ratio F=F0 depends on how SUSY-breaking is
communicated to the messenger sector. If the communica-
tion takes place via a direct interaction then F=F0 is given
by the corresponding coupling constant which by imposing
perturbativity arguments can be shown to be smaller than 1
[5], thus giving F0 >F. If the communication of SUSY-
breaking takes place radiatively then F=F0 is given by
-2
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FIG. 1 (color online). Sparticle spectrum in the slepton co-
NLSP scenario. Only the masses of the sparticles which are
relevant for our processes are shown as a function of the NLSP
mass mNLSP � m~�1 . What is shown here is a scan of the GMSB
parameter space done imposing the slepton co-NLSP scenario
condition given in Eq. (9).
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some loop factor and thus F=F0 � 1. It can easily be
shown [5,10] that F0 is only subject to a lower bound
which is ������

F0

p
� �; (7)

which is typically of the order of 10–100 TeV.
Therefore the gravitino ~G turns out to be the lightest

supersymmetric particle (LSP). In R conserving supersym-
metry all sparticles eventually decay to the gravitino and in
order to compute the decay widths one needs the interac-
tion Lagrangian in the gravitino field which can be com-
puted in the limit of global supersymmetry (if

������
F0

p
� MP)

as the dominant gravitino interactions come from its spin
1=2 component (the Goldstino). It is therefore a good
approximation to describe the gravitino LSP in terms of
its spin 1=2 Goldstino component. Goldstino interactions
contain derivative couplings suppressed by 1=F0:

Lint � �
1

F0

�
� L


�
)@)+�
i

4
���
2

p ��a
�-).Fa).

�
@� ~G

� h:c:: (8)

Sparticle phenomenology (production and decay) is
strongly affected by the type of the next-to-lightest super-
symmetric particle (NLSP). All sparticles will decay to a
cascade leading to the NLSP which will in turn only decay
to the gravitino ~G via 1=F0 interactions. Depending on the
values of the parameters, the NLSP can be either the
neutralino �0

1, the stau ~�1, or in restricted regions of the
parameter space the sneutrino (~)). Of particular interest in
this work is the case of a charged NLSP. In GMSB models
the ~�1 is always the NLSP but in some circumstances it
may happen that the mass of the ~‘R be closer to m~�1 than
the mass of the tau (m�). If this is the case the ~‘R �

�~eR; ~�R	 act effectively as a NLSP since the decays ~‘R !
‘~��1 �

� are kinematically forbidden. This situation is re-
ferred to as slepton co-NLSP scenario, and it is more
precisely defined by the condition:

m~‘R
<Min�m�0

1
; me�1 �m�� : (9)

Within this scenario the sleptonium bound state of a pair of
~�1 or ~‘R would be the lightest SUSY state to be produced in
a laboratory. It is therefore interesting to explore thor-
oughly all possibilities to detect such a bound state at the
next linear collider (NLC). In the following section we
describe the spectroscopy in detail. Within this scenario the
NLSP ~‘ � �~eR; ~�R; ~�1	 total width is easily determined
from Eq. (8):

#~‘ � #�~‘! ‘ ~G	 �
m5

~‘

16�F2
0

�

�
m~‘

100 GeV

�
5
�
100 TeV������

F0

p

�
4
2� 10�3 eV; (10)
015005
which will be used to establish a criterion for the formation
of the bound state.

It should be noted that Eqs. (4) and (5) are to be
considered as boundary conditions at the (high) messenger
mass scale M. Low-energy values of the parameters are to
be obtained by running renormalization group equations
(RGE) down to the electroweak scale. This process must of
course ensure proper breaking of the electroweak (EW)
symmetry. All this is achieved by the public domain code
SUSPECT [9], a software which allows for the possibility of
choosing between mSUGRA, GMSB and AMSB models
in addition to the general unconstrained MSSM. With
SUSPECT it is possible to perform a scan of the parameter
space in order to select the scenario that one is interested
in.

In its simplest version the GMSB model is characterized
by a relatively small number of parameters:

M; ��
F
M
; n~‘; n~q; tan�2	; sgn��	 (11)

In Fig. 1 we show the result of such a (numerical) study
of the parameter space having fixed tan2 � 4 and n~‘ �
-3
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n~q � 5. The scan has been performed on the planeM;�. In
the figure we show the masses of ~‘R�� mNLSP	 and the
Higgs mass states entering into the spectroscopy of the
bound-state decays to be discussed in Sec. IV. The mass of
the neutralino is shown for completeness to confirm that it
is heavier than m~‘R

.

III. FORMATION SCENARIO

In this section we will review the creation of the bound
state. For the SUSY case, our assumption will be that the
creation of the bound state does not differ from the stan-
dard model case, as the relevant interaction is again driven
by QED and is regulated by the mass of the constituent
superparticles. A criterion for the formation of bound states
we shall adopt is that [11,12] the formation can occur only
if the level splitting, which depends upon the strength of
the interaction among the (s)particles, is larger than the
natural width of the would-be bound state. It means that the
bound state is formed if the following condition is satisfied

%E2P�1S � ~#; (12)

where %E2P�1S � E2P � E1S, and ~# is the width of the
would-be sleptonium, which is twice the width of the
single slepton ~# � 2#~‘, as each slepton could decay in a
fashion independent from the other. ~# is not the total decay
width of the sleptonium bound state, as it includes only the
single smuon decay modes and not the annihilation modes.
It represents the minimal energy level spread necessary for
bound-state formation. If created, the bound state will in
turn also have its own annihilation decay modes (as dis-
cussed in Sec. IV). For the case of a scalar bound state
(sleptonium), we should consider the Coulombic two-body
interaction

V�r	 � �
�
r
; (13)

where the coupling � is the usual fine structure constant of
QED. With this position we are able to compute analyti-
cally the energy levels and the wave functions within a
nonrelativistic approach. From

En � �
m~‘

4

�2

n2
; (14)

one infers that

%E2P�1S �
3

16
�2m~‘ � 1 MeV

�
m~‘

100 GeV

	
: (15)

Contrary to the QCD interaction case [13] the running of
the coupling constant value is not very important, as the
relevant scale given by the Bohr radius, 2=�m~‘�	, is of
O�1	 GeV�1. The %E value is thus determined only by the
mass of the slepton. This has to be compared to the width
of the would-be sleptonium ~# � 2#~‘. Thus the require-
ment of formation, is obtained inserting Eq. (15) and (10)
015005
in Eq. (12):

Bound state formation ,
������
F0

p
� 8m~‘ (16)

We must emphasize that formation criterion adopted
here for the sleptonium bound state is slightly less stringent
than the one based on the revolution time, for which no
bound states exist, if the revolution time, tR � 2�r=v, is
larger than the lifetime of the rotating constituents, � �

1=~#, as shown in [12].
In order to estimate the revolution time, we use the

consequences of the virial theorem, which reads hTi �
�hVi=2 for the average of kinetic and potential energies,
respectively. From the expression for the energy levels
Eq. (14) we obtain the average speed of the constituent
slepton, hv2i � �2=�n2	, that is

hvi �
�
n
; (17)

while the average distance of the constituent is given by

hri � rBn2
�
1�

1

2

�
1�

l�l� 1	

n2

�	
(18)

for a Coulombic potential as in Eq. (13). Combining
Eqs. (17) and (18) we compute the revolution time for
the given state

tR �
4�

m~‘�
2 n

3

�
1�

1

2

�
1�

l�l� 1	

n2

�	
: (19)

Thus employing as a formation criterion that the bound
state constituents lifetime � � 1=~#~‘ be larger than the
revolution time leads us (see Eq. (10)) to the inequality:

�n;l	Bound state formation

,
16�F2

0

m5
~‘

�
4�

m~‘�
2n

3

�
1�

1

2

�
1�

l�l�1	

n2

�	
: (20)

We obtain two different conditions for the existence of the
1S and 2P bound states:

1S Bound state formation ,
������
F0

p
� 9:15m~‘; (21)

and

2P Bound state formation ,
������
F0

p
� 14:7m~‘: (22)

We thus realize that both formation criteria, Eq. (16) and
Eq. (21) and (22) give comparable restrictions on the value
of the fundamental scale of SUSY-breaking F0. In order to
make sure that the bound state can be produced adopting
both formation criteria the more conservative criterion of
the two (that of the revolution time) is chosen.

For a slepton mass of the order of 100–200 GeV the
formation of the bound state(s) is assured on account of
Eq. (7) (

������
F0

p
� �) and the fact that � � 10–100 TeV. We

stress that the slepton massm~‘ is independent of the energy
-4
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scale
������
F0

p
which determines only the strength of the grav-

itino interactions.
IV. DECAY WIDTH AND ANNIHILATION MODES

The scalar bound state formed by a pair of slepton NLSP
in an e�e� collision will be a 2P state with several decay
channels. It will decay into pair of standard model fermi-
ons. On the other end being formed by NLSP it will have
only one decay channel into supersymmetric particles: it
will decay (annihilate) into a pair of LSP, the almost
massless gravitino (Goldstino). Finally the 2P state will
decay via dipole interactions to a 1S state emitting a
photon. Before discussing these decay channels in detail
we make an important remark. Within the slepton co-
NLPS scenario the bound state can either be ~‘�R ~‘

�
R or

~��1 ~�
�
1 as ~‘R and ~�1 are nearly degenerate in mass. When

discussing the decay of the bound state however the case of
the ~�1 is somewhat complicated by the fact that left-right
mixing must be taken into account and diagrams, which are
absent in the ~‘R only case, have to be included. Therefore
as a first step we consider only a bound state of ~‘R �
~eR; ~�R. The case of the ~�1 shall be treated on a separate
work.

In addition while ~� and ~� cross sections are universal ~e
pair production suffers from destructive interference ef-
fects between s-channel and t-channel diagrams in the
parameter region relevant for GMSB models (moderate
values of tan2) [14]. For this reason in the following we
shall consider only the bound state of ~�R (smuonium).

The calculation of the partial widths of the decay of the
sleptonium bound state (~‘�R ~‘

�
R ), i.e. 2P! X or 1S! X, is

done by relating the amplitude M�B! X	 to that of the
process ~‘�R ~‘

�
R ! X via a nonrelativistic model of the

bound state [15]:

M�B! X	 �
����������
2MB

p Z d3k

�2�	3
~ ��k	

�
1

2m~‘R

�M�~‘�R ~‘
�
R ! X	�s!2m~‘R

(23)

~ �k	 being the Fourier transform of the hydrogenlike wave
function of the nonrelativistic bound state. The amplitude
M�~‘�R ~‘

�
R ! X	 will in general be described by one or

more tree-level Feynman diagrams an thus its threshold
behavior s! 2m~‘R

may be inferred. Thus for each decay
one writes down the amplitudes of the contributing
Feynman diagrams and then extracts the dependence of
the full amplitude on k, the momentum of the constituents
sleptons which is assumed to be smaller with respect to the
mass of the sleptons, jkj � m~‘R

, giving
���
s

p
�

2
�����������������������
m2

~‘R
� jkj2

q
� 2m~‘R

�1� jkj2=m2
~‘R
	.

In S-wave decays one obtains an amplitude whose first
term in the momentum expansion is a constant. Then the k
015005
integration in Eq. (23) gives the wave function evaluated at

the origin:
R
d3k=�2�	3 e �

�k	 �  ��0	. In P-wave decays
one obtains instead an amplitude whose first term in the k
momentum expansion is linear. Then the k integration in
Eq. (23) gives the gradient of wave function evaluated at

the origin:
R
d3k=�2�	3ki e �

�k	 � ri ��0	.
For further details see for example [16,17]. In passing

we note that in the process of comparing the amplitude of
the two-photon decay mode of the 1S state we find an extra
factor of 2 in Eqs. (A1) and (A2) of Ref. [17], relative to
stoponium decay into two photons and two gluons, a re-
mark that had already been made in Ref. [18].

A. Decay channels of the 2P state

1. Decay into gravitinos: 2P ! ~G ~G

The process is described by a t-channel exchange of a
lepton of the same flavor of the bound state. The decay
width is:

#�2P! ~G ~G	 �
1

32�2

jR0
2P�0	j

2

M4
B

�
MB������
F0

p

�
8
: (24)

2. Annihilation into neutrinos: 2P ! �‘ ��‘; �‘ � e;
; ��

This is the simplest decay annihilation channel which
takes place only through the Z-boson. In this case there are
no t-channel exchange graphs, even when the flavor of the
neutrinos is the same of the sleptonium bound state, since

only left sleptons (e‘L) do couple charginos and neutrinos.
The decay width is:

#�2P! )‘ �)‘	 � �2 jR
0
2P�0	j

2

M4
B

1

cos4:W
f�rZ; <Z	; (25)

where f�x; y	 � 1=��1� x2	2 � �xy	2� and rZ �
MZ=MB; <Z � #Z=MB.

3. Annihilation into charged standard model fermions
2P ! f �f

First we consider the case that f is either a quark or a
lepton (‘0 � ‘), ‘ being the flavor of the sleptonium bound
state. When this is the case the decay is through the
annihilation into 
 and Z-boson only: there are no t chan-
nel exchange diagrams. The decay width is then:

#�2P! f �f	 � 8CF�
2 jR

0
2P�0	j

2

M4
B

��������������������
1� 4

m2
f

M2
B

vuut �
1�

m2
f

M2
B

�
�

�
Q2
f �

c2V � c2A
4cos4:W

f�rZ; <Z	 �Qf
cV

cos2:W

� �1� r2Z	f�rZ; <Z	
	

(26)

where CF � 3 for quarks while CF � 1 for leptons; Qf is
the charge of the fermion in units of �e; cV and cA are,
-5
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respectively, the vector and axial coupling of the fermion to
the Z-boson: cfV � T3

f � 2Qfsin
2:W and cfA � T3

f; mf is
the mass of the fermion; the function f�x; y	 is the same
that appears in Eq. (25). One might notice that the above
formula reduces to the decay width into neutrinos by taking
the limit Qf � 0 and mf � 0. It also reduces to the for-
mula of Refs. [19,20]: R0

2P�0	 being the derivative of the
radial part of the wave function at the origin, and MB �
2m~‘ is the bound state mass. When the fermion f is the
lepton ‘ of the same flavor of the slepton ~‘R forming the
bound state Eq. (26) is to be replaced by the following (the
lepton ‘ is assumed massless):

#�2P! ‘�‘�	

� 8�2 jR
0
2P�0	j

2

M4
B

�
1�

1=2� 4sin4:W � 2sin2:W
4cos4:W

f�rZ; <Z	

�
1=2� 2sin2:W

cos2:W
�1� r2Z	f�rZ; <Z	 �

G2

2
�G

� sin2:WG
1� r2Z
cos2:W

f�rZ; <Z	
	
; (27)

where the form factor G describes the diagram of the
t-channel exchange of a virtual neutralino. Assuming that
the neutralino is mostly bino one has the simplified ex-
pression with:

G �
4M2

B

M2
B � 4m2

�0
4. Dipole decay into the ground state and a photon,
2P ! 1S� �

The decay to the ground state takes place through a
transition with emission of a photon. This transition can
be computed in the long wavelength approximation.
Indeed the photon momentum Q � %E2P�1S, see
Eq. (15), and the bound-state dimension (Bohr radius)
rB � 2=�m~‘�	 satisfy the relation

QrB �
6

16
� � 2� 10�3 <<1;

which is the condition that makes the dipole approximation
suitable. Then a standard quantum mechanics calculation
gives [21]:

#�2P! 1S� 
	 �
4

9
��%E2�1	

3�D2;1	
2 (28)

where %E2�1 is the energy of the emitted photon, and

D2;1 � h2Pjrj1Si �
Z 1

0
drr3R1S�r	R2P�r	 (29)

is the dipole moment (see [13] and references therein). The
wave functions to be used are the one of the Coulombic
model, given by
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R1S�r	 � 2
�
1

rB

�
3=2

exp
�
�
r
rB

�
(30)

R2P�r	 �
1���
3

p

�
1

2rB

�
3=2 r
rB

exp
�
�

r
2rB

�
; (31)

where rB is the Bohr radius defined as rB � 2=�m~‘�	 �
4=�MB�	. Using the above wave functions one obtains the
following expressions for the dipole decay mode:

#�2P! 1S� 
	 � �5MB
64

6561
� �5MB10

�2 (32)

Then we have to compute the total decay width to fermi-
ons:

#�2P! fermions	 �
X

f�q;‘;‘0
#�2P! f �f	 � #�2P! ~G ~G	

(33)

The derivative in the origin of the radial wave function of
the 2P state is easily computed and it follows that:
jR0

2P�0	j
2=M4

B � �5MB=24576. Inserting the results of
the Eqs. (24)–(27) into Eq. (33) one obtains:

#�2P! fermions	 � �5MBk10
�5 (34)

where k is a numerical constant of order unity with a mild
dependence on the mass of the bound state MB, the funda-
mental scale of SUSY-breaking

������
F0

p
and the mass of the

neutralino m�0 . It then follows that the branching ratio of
the dipole decay is Br�2P! 1S� 
	 � 100% to within
one part in 103. For all practical purposes the 2P state will
decay with probability 1 to the ground state 1S emitting
one photon with an energy of a few MeV.

B. Decay channels of the 1S ground state

1. Decay into two photons

In this case since the photon is described by transversely
polarized states, in the nonrelativistic limit the t- and u-
channel diagrams do not contribute, and only the seagull
diagram survives. The decay width is given by:

#�1S! 

	 � 2�2 jR1S�0	j
2

M2
B

: (35)

2. Decay into �Z

Again the fact that the photon does not have longitudinal
polarization states selects, in the nonrelativistic limit, only
the seagull diagram. The decay width is given by:

#�1S! 
Z	 � 4�2 sin
2:W

cos2:W

jR1S�0	j
2

M2
B

�
1�

M2
Z

M2
B

�
(36)

3. Decay into ZZ

Here there are four diagrams that give nonzero contri-
bution. The diagram with a ~‘R in the t channel and its
-6
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exchange contribute only for the longitudinal polarization
states of the Z gauge boson. The seagull term (~‘R~‘R � ZZ)
and the s-channel Higgs exchange give nonzero contribu-
tion for all type of the Z-boson polarization. The decay
width is found to be:

#�1S!ZZ	�
�2

2
tan4:W

jR1S�0	j
2

M2
B

2Z

�
jF�2j2

�
3�

M2
B

M2
Z

�
1

4

M4
B

M4
Z

�
�G2

�
1

4

M2
B

M2
Z

�1
�
2
�2G�<eF�2	

�

�
1�

3

4

M2
B

M2
Z

�
1

8

M4
B

M4
Z

	�
; (37)

where

2Z �

��������������������
1� 4

M2
Z

M2
B

s
F �

X
i�1;2

ci
M2
Z

M2
B �M2

Hi
� i#H0

i
MH0

i

G � 4M2
B=�M

2
B � 2M2

Z	

c1 � cos�2� �	 cos�2� �	=sin2:W

c2 � � sin�2� �	 sin�2� �	=sin2:W;

while F is a form factor arising from the diagrams with
s-channel Higgs exchange, G arises from the t-channel
~‘R-exchange diagrams.

4. Decay into W�W�

In this case the t-channel exchange of a sneutrino is
absent (no ~)R) as well as the sea-gull term (~‘R~‘R �WW),
and only the s-channel Higgs contribution is present. The
partial decay width is:

#�1S! W�W�	

�
�2

2

jR1S�0	j
2

M2
B

jF0j22W

�
3�

M2
B

M2
W

�
1

4

M4
B

M4
W

	
; (38)

where

2W �

���������������������
1� 4

M2
W

M2
B

s

F0 �
X
i�1;2

ci
M2
Z

M2
B �M2

H0
i
� i#H0

i
MH0

i

c1 � cos�2� �	 cos�2� �	

c2 � � sin�2� �	 sin�2� �	:
10
2

10
3

MB (GeV)

FIG. 2 (color online). Partial widths of the various decay
channels of the 1S state, as a function of the bound state mass
MB � 2mNLSP.
5. Decay into hh

Within the minimal supersymmetric version of the
Higgs sector there are five Higgs states: three neutrals,
(h;H; A) and two charged, (H�). Here we consider only
the decay of the 1S state into a pair of the lightest Higgs
states (h). The process receives contribution from three
015005
diagrams: a) t� channel ~‘R-exchange; b) s-channel Higgs
exchange �h;H	 [CP invariance forbids s-channel ex-
change of A]; c) sea-gull term ~‘R~‘R � hh. There are no
diagrams with s-channel exchange of Z since Bose sym-
metry forbids ZH0

i H
0
i couplings. The decay width is found

to be:

#�1S! hh	 �
�2

2 cos:4W

jR1S�0	j
2

M2
B

2hjYj2 (39)

2h�

������������������
1�4

M2
h

M2
B

s

Y�
X
i�1;2

ci
M2
Z

M2
B�M

2
H0
i
� i#H0

i
MH0

i

�
cos�2�	

2

�sin2:Wsin2���2	
4M2

Z

2M2
h�M

2
B

c2��3=2	sin2�2��	cos�2�	

c1�2sin�2�	sin���2	cos���2	

�cos�2�	cos2���2	:
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In Fig. 2 the partial widths of the various decay channels
of the 1S state are shown with respect to the bound-state
mass MB. We see that the two-photon channel always
dominates. The branching ratio Br�1S! 

	 is Br �
0:65 at m~‘R

� 100 GeV and Br � 0:52 up to m~‘R
�

1000 GeV, as shown in Fig. 3.
The detection of the P wave bound state is therefore

associated to the emission of a soft photon plus a subse-
quent emission of two hard photons given by the decay of
the scalar ground state.

V. CROSS SECTION

A. Slepton pair production cross section

We use the notation �~‘ � �3 tan:W � cot:W	=4 and
2~‘ � �tan:W � cot:W	=4. The production cross section
for scalar sleptons—except for selectrons— is given by
[22]

-�e�e�! ~‘�i ~‘
�
i 	

�
��2

12
23

2644

s
�
A2

~‘i
��2

~‘
�22

~‘
	s�4�~‘A~‘i

�s�M2
Z	

�s�M2
Z	

2��MZ#Z	
2

375;
(40)

with i � L;R; A~‘L
� 2��~‘ � 2~‘	 or A~‘R

� 2��~‘ � 2~‘	 for
left- and right-handed sleptons, respectively.

It is useful to write down this expression of the P wave
cross section in the following manner:

-�e�e� ! ~‘ ~‘	 �
4�2

3s
23d�s	: (41)

B. Bound state production cross section

We shall write the threshold cross section of the bound
state in terms of its Schrödinger Green function. To review
briefly the method, explained in more detail in [23], con-
sider the bound state described by a Schrödinger equation
with a suitable potential V�x	. The threshold cross section
is then proportional to the imaginary part of derivative
taken at the origin of the P wave Green function of the
problem G1�x; y; E	. E is the energy displacement from
threshold, and the finite width of the state is taken into
account by the substitution E! E� i#.

The cross section for the production of a bound state can
be normalized to the QED process e�e� ! ����:

R �
-�e�e� ! 2P	

-�e�e� ! ����	
(42)

�
4�

m4
~‘

d�s	=m
�
Tr

@
@xi

@
@yj

G�1	�x; y; E	
	��������x�0;y�0

; (43)

where d�s	 is the usual expression of the Born cross section
for the process e�e� ! ~� ~� written in Eq. (40). In our
015005
investigation the interaction among the two superpartners
is driven by a Coulombic interaction with

V�r	 � �
�
r

(44)

Adapting the notations of [24] we set E �
���
s

p
� 2m ~� as

the energy displacement from threshold, k2 � �m ~�E, the
wavelength � � 9m�=8, and the wave number ) � �=k.
Now the explicit form for the ‘ � 1 Green function G1 of
Eq. (43) takes the form

G1�0; 0; k	 �
m ~�

36�
�
�
2�k2 � �2	

�
k
2�

� ln
�
k
�f

�
� 2
E

�
11

6
�  1�1� )	

	
�
k2

2

�
(45)


E is Euler’s constant,  1 is the digamma function, loga-
rithmic derivative of the # function and �f is a soft scale
estimated from a relativistic framework (see [23] and
references therein). The derivative of Eq. (45) needed for
computing the cross section Eq. (43) has a simple expres-
sion, as we have

T r
@
@xi

@
@yj

G�1	�x; y; k	
��������x�0;y�0

� 9G�1	�0; 0; k	: (46)

From Eq. (45) one can readily notice that the leading term
in the cross section Eq. (43) for large E is given by k3,
-8
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whereas the peaks of the bound state energy levels are
determined by the digamma function in ).

The Green function method is a nonrelativistic proce-
dure. We have therefore to ensure that the velocity of the
sleptonium constituents is low enough in order to keep
relativistic corrections negligible. Starting from the pa-
rametrization of the center of mass energy

���
s

p
� 2m~‘ �

E and assuming an upper value for the constituent velocity
2MAX we obtain an upper bound for the energy offset from
threshold

E � EMAX � m~‘2
2
MAX (47)

by means of a series expansion in E. This relation trans-
lates to the maximal allowed value of Lorentz boost pa-
rameter 


EMAX

m~‘
�

2
MAX � 1


2
MAX

: (48)

We thus define the nonrelativistic domain by imposing that
the value of 
 differs from 1 by less than � 10%. This then
gives 2MAX � 1=

���
5

p
and therefore, for a slepton mass

m~‘ � 100 GeV, an energy offset from threshold equal to
EMAX � 20 GeV. From Eq. (47) one could also observe
that the acceptable (nonrelativistic) threshold energy range
increases when larger values of the constituent mass are
considered.

In addition we emphasize that the entire procedure of
treating the bound state breaks down away from threshold,
independently of where relativistic corrections may be-
come important.
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E (GeV)
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8

σ 
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b)

Green
Born

FIG. 5. Comparison of the Green function method and the
Born level expression for the cross section, for the right smuon.
Here we assume that m ~�R

� 200 GeV and a displacement from
threshold of up to 20 GeV.
VI. RESULTS AND DISCUSSION

We shall analyze the threshold behavior of cross section
for a range of masses and SUSY parameters for which the
bound state formation is envisaged, as discussed in Sec. IV.
Following [23] we observe that the relevant region for our
analysis is the one above threshold, i.e. for E> 0. In fact
the region below threshold, E< 0, is characterized by
peaks in the cross section located at the discrete energy
values of bound states. Their width is given by the annihi-
lation modes which, as shown in IV is of the order of the eV
at most. From Eq. (14) one can estimate the separation of
the discrete peaks. They merge when the peaks are not
distant enough

m
4
�2

�
1

n2
�

1

�n� 1	2

	
� # (49)

The last resolved peak has a quantum number n given by

2n� 1

n2�n2 � 1	
�

4#

m�2 � 1 (50)

Because of the beam energy spread of the collider, much
larger than a few eVof the natural width of the state and of
the order of few GeV [25] this structure cannot be ob-
015005
served. The difference from the usual Born cross section
results therefore should be sought for E> 0.

The effect of the bound state to the cross section at
threshold is to accumulate and merge the peaks towards
the E � 0 value, giving a larger result than the naive Born
cross section, as we could see in Fig. 4 and 5.
-9
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A. The signal and its statistical significance

Let us now discuss in some detail the signal

e�e� ! 2P! 1S� “soft 
” ! 

; (51)

where the soft photon is assumed to be undetected since its
energy is of only 1 or 2 MeV, see Eq. (15). Indeed it is
known [26] that the photon energy resolution of the calo-
rimetric detector is, for low-energy photons, of the type
�E=E � 0:11=

����������������
E=GeV

p
which implies that �E=E � 1 for

E � 10 MeV. Therefore the 1–2 MeV soft photon of our
signal will surely be much below the energy resolution and
will be undetected.

The observed final state is therefore two hard back-to-
back photons. This two-photon signal of the production of
the 2P sleptonium bound state is to be compared with the
QED two-photon process e�e� ! 

 which is expected
to be the dominant background. The number of events of
the signal can thus be estimated by:

Nsig: � L-B Br�2P! 1S� 
	Br�1S! 

	; (52)

where -B is the threshold cross section for the production
of the bound state computed with the Green function
method. Given the fact that Br�2P! 1S� 
	 � 1 we
have

Nsig: � L-B Br�1S! 

	: (53)

The statistical significance (SS) of the signal can thus be
estimated by:

SS �
Nsignal���������������������
Nbackground

p �
L-BBr�1S! 

	�������������

L-


q : (54)

A comment is in order at this point. The two-photon decay
of the bound state is isotropic in the rest frame of the bound
state which however will approximately coincide with the
laboratory frame as we are assuming threshold production
with E � 20 GeV. The distortion introduced in the labo-
ratory system when boosting the isotropic distribution of
the two-photon signal from the bound state rest frame
depends on the 2�M	 of the bound state. Indeed in the
bound state rest frame let :� be the angle of the direction of
the two outgoing (back-to-back) photons:

d-B
d cos:�

�
-B�s	
4

; (55)

where the phase space integration has been reduced of a
factor of 1=2 due to the identical particles in the final state.
The distribution can be boosted [27] to the laboratory
frame where the bound state has a velocity 2�s	;

���
s

p
�

2m~‘ � E, E being the offset from the threshold:

d-B
d cos:

�
-B�s	
4

1� 22

�1� 2 cos:	2
; (56)

where now : is the direction of the photon in the laboratory
015005
frame. On the other end the angular differential distribution
of the photons for the QED process e�e� ! 

 is given
by:

d-


d cos:

�
��2

s
1� cos2:

1� cos2:
; (57)

which is symmetric and peaked in the forward and back-
ward directions. Again a factor of 1=2 has been included in
the phase-space factor due to the identical particles of the
final state. Applying an angular cut in the forward and
backward directions

:0 < :< �� :0

it is possible to suppress the background in such a way as to
obtain an interesting statistical significance. We define a
cut dependent statistical significance:

SS �:0	 �
Nsig:�:0	�������������������
Nback�:0	

p
�

L� Br�1S! 

	
R��:0
:0

sin:d:�d-B=d cos:	���������������������������������������������������������������
L
R��:0
:0

sin:d:�d-

=d cos:	
q :

(58)

Defining z0 � cos:0 one easily finds:

SS �z0	 �

�����
L

p
-B�s	�����������������

2��2=s
p Br�1S! 

	

1�22

1�22z20

z0
2�����������������������������

log�1�z01�z0
	 � z0

q (59)

The statistical significance as function of the angular cut is
shown in Fig. 6 and 7. We observe a very mild dependence
on :0 apart from values of :0 � 0 and :0 � �=2. For these
limiting values the statistical significance approaches zero.
When :0 ! 0, SS�:0	 ! 0 since the QED two-photon
background total cross section is divergent. On the other
hand when :0 ! �=2 one is integrating over a region of
phase space of vanishing measure so that both cross sec-
tions vanish as z0 � cos:0 in this limit. One notices that for
values of :0 in the range 0:4 � :0 � 0:8 the statistical
significance is almost constant and ranges from SS � 4
to SS � 11 for values of the energy offset, respectively, of
E � 10 GeV and E � 20 GeV, and for a fixed slepton
mass m~‘R

� 100 GeV.
In Fig. 8 we show the dependence of the statistical

significance SS�:0	 computed with :0 � 0:55 which cor-
responds to the maximum of the curves in Fig. 6 for two
given values of the energy offset E � 10 GeV and E �
20 GeV as function of the sleptonium bound state MB �

2m~‘R
. We see that even going to higher values of the

slepton mass m~‘ � 200 GeV the statistical significance is
still at an interesting value SS � 2 (at E � 20 GeV).

It should also be checked that along with interesting
values of the statistical significance one has also interesting
absolute values of the cross sections, i.e. an observable
-10
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number of events. Indeed from Fig. 4 at E � 20 GeV,
m~‘R

� 100 GeV, one can see that -B � Br�1S! 

	 �
80� 0:63 fb � 50 fb. This would correspond to a total
number of signal events Nsig: � 5000 assuming an annual
integrated luminosity L0 � 100 fb�1. For E � 20 GeV,
m~‘R

� 200 GeV one finds -B � Br�1S! 

	 �
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FIG. 7. Statistical significance (signal to noise ratio) of the
cross section given by the Green function method and the 


QED background as a function of the angular cut angle :0, for
the right smuon ~�R. We assume m ~�R

� 200 GeV; the various
curves represent different displacements from threshold.
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8� 0:63 fb � 5 fb. This would correspond to a total num-
ber of signal events Nsig: � 500, 10 times lower than the
100 GeV mass case. The above estimates have been done
using the total cross section -B. We have checked that
taking into account the distortion of the boost to the
laboratory system from the rest frame of the bound state,
where the two-photons are isotropically distributed,
changes the above estimates by an amount which is at
most of 1%.
VII. CONCLUSIONS

In this work a novel signature at the next LC is proposed
for the detection of a sleptonium bound state (of a charged
NLSP) assuming that the energy of the collider happens to
be around the threshold. It is well known that GMSB
models are characterized by large regions of the parameter
space in which the NLSP is a charged slepton ~‘R �
�~eR; ~�R; ~�1	. While interesting signatures of the production
of a pair of charged sleptons NLSP have already been
considered in the literature, here we discuss the formation,
decay spectroscopy and possible detection of the NLSP
(charged slepton) bound state and its possible signature at
the next LC. For the sake of simplicity we have considered
only the case of ~‘R � ~�R.

At an e�e� collider the smuonium bound state is pro-
duced in a 2P state. We assume a standard Coulombic
interaction to describe the bound states and thereby esti-
mate the energy levels and their separation which are
needed to establish whether or not the formation takes
-11
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place. As a criterion for formation we have chosen the
more conservative condition, as opposed to the level gap
criterion, obtained by requiring that the revolution time be
larger than the lifetime of the rotating constituents. We find
out that the formation of the 2P bound state is assured for������
F0

p
� 14:7m~‘ and thus for all relevant values of

������
F0

p
, the

fundamental scale of SUSY-breaking. We have first ana-
lyzed the decay channels of the 2P state. These include: a)
decay into a pair of gravitinos, 2P! ~G ~G , b) decay to a
pair of standard model fermions 2P! f �f and c) the dipole
transition 2P! 1S� 
. Studying the partial widths and
the branching ratios we find that for all practical purposes
the 2P state decays to the 1S state emitting a photon whose
energy is of a few MeV (%E2P�1S).

In turn the decay channels of the 1S state are to the
following final states: 

; 
Z; ZZ;W�W�; hh and it turns
out that the dominant decay is 1S! 

 as shown in
Figs. 2 and 3,. Thus as the MeV photon from the 2P decay
goes undetected because its energy is below the detector
resolution, the following signal of the sleptonium bound
state is defined

e�e� ! 2P! 1S� “soft
” ! 

;

where the observed final state is two hard back-to-back
photons, and ’’practically’’ no missing energy.

The bound state production cross section has been esti-
mated using the Green function method. Because of the
fact that there a bound state actually exists, this effect
accounts for a dramatically different cross section with
015005
respect to the case of the Born production. For energies
just under the threshold, there are several peaks centered at
the discrete energy levels of the bound state. Approaching
the threshold level from below, those peaks merge and
accumulate towards E � 0 level. This fact translates to
the energies above threshold as well (E> 0), increasing
the cross section of the continuum. The net effect is a larger
cross section with respect to the naive Born case. This
effect grows with the strength of the coupling of the
particles which form the bound state itself. It is still very
noticeable even for a weak coupling like the sleptonium
case, as it is larger than the Born cross section for about
10% to 30%, the difference increasing with the displace-
ment from threshold.

We have given an analysis of the two-photon signal
comparing it to the QED two-photon cross section (at
leading order) defining a statistical significance depending
on the angular cut which is introduced in order to reduce
the QED background. We find that at an energy offset of
E � 20 GeV from the threshold, the statistical significance
SS�:0	 (computed for an angular cut :0 � 0:55 which
maximizes it) goes from SS � 11 at m~‘R

� 100 with
Nsig: � 5000 to SS � 2 for m~‘R

� 200 with Nsig: � 500.
Our study has been done assuming a charged slepton co-

NLSP scenario which is a peculiarity of GMSB models. On
the basis of the results discussed above we conclude that
the study of a charged slepton NLSP bound state through
the two-photon signature at the next LC has the potential to
shed insights into the mechanism of SUSY-breaking.
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