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Supersymmetric monopole quantum mechanics on a sphere
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We study N � 2 supersymmetric quantum mechanics of a charged particle on sphere in the background
of Dirac magnetic monopole. We adopt CP�1� model approach in which the monopole interaction is free
of singularity. It turns out that this approach admits a compact N � 2 superspace formulation. In order to
exploit manifest U(1) covariance in the superspace formalism, we introduce a gauged chiral superfield
which is annihilated by the gauge covariant superderivative instead of the usual superderivative. We carry
out the Dirac quantization of the resulting system and compute the quantum mechanical spectrum. We
obtain the condition for the spontaneous breaking of supersymmetry explicitly in terms of the monopole
charge and a parameter which characterizes the operator ordering ambiguity. We find that the supersym-
metry is spontaneously broken unless a certain combination of these quantities satisfies some quantization
condition.
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I. INTRODUCTION

Quantum mechanics in the background of Dirac mag-
netic monopole [1] exhibits many interesting features such
as quantization of the electric charge, modified orbital
angular momentum and hidden conformal symmetries as-
sociated with the time reparametrization invariance [2,3].
The supersymmetric magnetic monopole quantum me-
chanics has attracted a great deal of attention recently
due to the existence of hidden superconformal symmetry
[4] and in relation with superconformal mechanics [5]. In
this paper, we study N � 2 supersymmetric quantum me-
chanics [6] of a charged particle on a sphere in the back-
ground of Dirac magnetic monopole by using the chiral
superfield formalism.

Our motivation for considering this system is twofold.
One is that the supersymmetric quantum mechanics on
general target manifold (regardless of the presence of
magnetic monopole) is interesting in itself and its study
revealed many important aspects of supersymmetry [7].
The other concerns with the number of supersymmetries
allowed when the magnetic monopole interaction is
present. It is well known that the chiral N � 2 superfield
formulation of supersymmetric quantum mechanics on S2

is possible because of its Kähler structure [8,9]. However,
as far as the magnetic monopole interaction is concerned,
most of the previous work dealt with N � 1 superfields in
R3 [10]. Later, it was found that this system admits another
supersymmetry and its relation with the constrained dy-
namics on a sphere was discussed [11]. More recently,N �
2 supersymmetric quantum mechanics of a charge-
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monopole system confined to S2 has been investigated in
terms of unconstrained variables [12]. Utilizing the shape-
invariance of the system, they obtained the energy spec-
trum and a complete set of energy eigenstates [12] with a
particular choice of the operator ordering [13].

In this work, we adopt CP�1� model approach [14]
where the dynamical variables take the value on S3, but
the dynamics is reduced to S2 by imposing U(1) gauge
symmetry. This has the merit that the quantum mechanical
Lagrangian of magnetic monopole is free of singularity
[15] and one does not have to deal with the multivalued
action [16]. It also has the advantage that the rotational
generators are well realized. We find that this approach
allow a compact N � 2 superfield formulation of the sys-
tem including the monopole interaction. In order to exploit
the U(1) gauge covariance we introduce gauged chiral
superfield which is annihilated by the gauge covariant
superderivative, in which the time derivative in the usual
superderivative is replaced with the gauge covariant one.
This gauge covariant superderivative still satisfies the usual
important property that it commutes with the supersym-
metry generators [see Eqs. (2.1), (2.5), and (2.7)].

In quantizing the system there appears a parameter
associated with the choice of operator ordering in defining
the basic commutation relations. We study how physical
quantities such as energy and angular momentum depend
on this parameter. We obtain the exact quantum mechani-
cal energy spectrum and discuss the possibility of sponta-
neous breaking of supersymmetry in terms of the
monopole charge and the ordering parameter.

Let us briefly recall the bosonic CP�1� model. The
Lagrangian is given by

L0 � 2jDtzij
2; (1.1)

with Dt � @t � ia, where a is the auxiliary field. Impose
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.015002


HONG, LEE, LEE, AND OH PHYSICAL REVIEW D 72, 015002 (2005)
the condition �z � z �
P2
i�1 jzij

2 � 1 with z �
z1
z2

� �
.

Because of the U(1) invariance, the dynamics is reduced
from S3 to S2, which is the CP�1� model. Eliminating the
auxiliary field a by using the equation of motion, we obtain

L1 � 2j _z	 � _�z � z�zj2; (1.2)

where the overdot denotes the time derivative. The mag-
netic monopole background interaction is given by

L2 � ig��z � _z� _�z � z�; (1.3)

where g is the magnetic monopole charge1. Observe that
the Lagrangian L1 is invariant under the U(1) gauge sym-
metry generated by z! ei��t�z, whereas L2 changes by a
total time derivative. They are free of singularities. The
singular Lagrangian emerges through the Hopf fibration
~x � �z ~� z [17] and the introduction of local coordinates

z1 � 1=
�����������������
1	 j�j2

p
, z2 � �=

�����������������
1	 j�j2

p
. The stereographic

projection � � tan�2 e
i� produces the monopole interaction

which is singular along the negative z-axis. The choice � �

cot�2 e
i� gives singularity along the positive z-axis. Both

choices yield the standard kinetic Lagrangian L1 �
1
2
_~x � _~x.

This paper is organized as follows. In Sec. II, we define
gauge covariant superderivatives and gauged chiral super-
field. We then construct N � 2 supersymmetric monopole
Lagrangian. In Sec. III, we quantize the system via Dirac
quantization method and discuss operator ordering ambi-
guity. In Sec. IV, we compute the energy spectrum and
analyze the spontaneous supersymmetry breaking phe-
nomena. Section V includes summary and discussions.
II. N � 2 SUPERSYMMETRIC
MONOPOLE LAGRANGIAN

We present our N � 2 supersymmetric Lagrangian in a
U(1) covariant manner. First, we introduce superspace
�t; �; ��� with � being a complex Grassmann variable and
�� being its complex conjugate. We define the gauge cova-
riant superderivatives as

D � @� � i ��Dt; �D � @ �� � i�Dt; (2.1)

where Dt denotes U(1) covariant derivative,

Dtz � �@t � ia�z; Dt �z � �@t 	 ia��z: (2.2)

for some real field a, which we will specify shortly. Note
that the covariant superderivatives D and �D satisfy

D2 � �D2 � 0; �D; �D�	 � �2iDt: (2.3)

N � 2 gauged chiral superfield, 
i, is defined as usual by
imposing the condition �D
i � 0. Thus, we get


i � zi 	 � i � i� ��Dtzi; �i � 1; 2�: (2.4)
1Here, we set the electric charge e � �1.
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A couple of comments are in order. Note that the super-
constraint [See Eq. (2.15) and below] reduces both zi and
 i to single complex variables and the �z;  � forms aN � 2
(or a complex N � 1) gauged chiral multiplet. We will
drop the index i from now on unless a specification is
necessary. Also, Dtzi term of Eq. (2.4) is essential in order
to satisfy the chirality condition �D
i � 0. In this regard,
our chiral supersymmetric CP�1� formulation is different
from that of Ref. [14] where Dtz term is replaced with
complex auxiliary field and the U(1) covariance is realized
with an introduction of a fermionic real superfield.
Supersymmetry generators are similarly modified to

Q � @� 	 i ��Dt; �Q � @ �� 	 i�Dt; (2.5)

which satisfy

�Q; �Q�	 � 2iDt; (2.6)

and fulfill the relations

Q2 � �Q2 � 0; �D;Q�	 � �D; �Q�	

� � �D;Q�	 � � �D; �Q�	 � 0: (2.7)

Transformation rules of the chiral field components are
obtained by applying Q and �Q to the superfields. From

Q
 � �z� �� � i� ����Dtz� �  � i� ��Dt ; (2.8)

we get

�z �  ; � � 0; ��Dtz� � Dt : (2.9)

Similarly, from

Q �
 � ��z	 ��� � 	 i� ����Dt �z� � 2i ��Dt �z; (2.10)

we find

��z � 0; � � � 2iDt �z; ��Dt �z� � 0: (2.11)

Note that both of these transformation rules require for
consistency that

�a � 0: (2.12)

Calculation for �Q leads to the similar transformation rules
for the component fields and the consistency condition,
��a � 0. We summarize the supertransformation of the
fields,

�z �  ; ��z � 0; � � 0;

� � � 2iDt �z; ��z � 0; �� �z � � ;

�� � 2iDtz; �� � � 0:

(2.13)

Our supersymmetric action is then proposed by

L �
Z

d ��d��
1

2
D
 �D
� � 2ga (2.14)

with the superconstraint

�
 �
� 1 � 0: (2.15)
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This superfield constraint incorporates the familiar con-
straints [14], �z � z� 1 � 0, �z �  � 0 � � � z, and deter-
mines the field a,

a � �
i
2
��z � _z� _z � z� �

1

2
� �  : (2.16)

It is important to note that the field a obtained above is
indeed invariant under the supersymmetry transformations
to yield Eq. (2.12). This is what makes our whole construc-
tion consistent. After performing the � and �� integrations
(and using the constraints), we obtain

L � 2jDtzj
2 	

i
2
� � �Dt �Dt

� �  � � 2ga: (2.17)

Substituting Eq. (2.16) into Eq. (2.17), we can express the
N � 2 supersymmetric Lagrangian in the following form,

L � 2j _z� � �z � _z�zj2 	
i
2
� � � _ � _� �  �

�
i
2
��z � _z� _z � z� � �  

	 ig��z � _z� _z � z� i � �  �: (2.18)

The fact that the Lagrangian is supersymmetric should be
clear for it was written in terms of superfields. At the
component field level it can be most easily verified using
Eq. (2.17). It is interesting to note that the supersymmetric
magnetic monopole interaction term in Eq. (2.18) is given
by the field a itself. In this model U(1) gauge transforma-
tion of the monopole potential is realized by the local U(1)
symmetry which is responsible for the reduction from
S3 ! S2. In Appendix A, we give the full equations of
motion.
III. DIRAC QUANTIZATION AND
OPERATOR ORDERING

In this section, we perform the canonical quantization of
the system. We define the momenta p and �p conjugate to
the fields z and �z, respectively, by2

p � 2Dt �z	
i
2
� � �  	 2g� �z;

�p � 2Dtz�
i
2
� � �  	 2g�z:

(3.1)

The Hamiltonian is obtained as

H � 2jDtzj2 �
1

2
� � �  �2 � g � �  ; (3.2)

supplemented by the following four second class con-
straints
2Here, we have chosen a specific ordering of the quantum
mechanical operators p and �p. Especially we take Dtz � _z�
iza and its conjugate Dt �z � _z	 ia�z.
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C1 � �z � z� 1; C2 � p � z	 �z � �p;

C3 � �z �  ; C4 � � � z:
(3.3)

There is also a first class constraint given by

C0 � �i��z � �p� p � z� � � �  	 2g; (3.4)

which generates the U(1) transformation. We first define
the Poisson brackets via

fzi; pjg � f�zi; �pjg � �ij; f � i;  jg	 � �i�ij; (3.5)

with the remaining brackets being zero. We use the Dirac
brackets given by

fA;BgD � fA;Bg � fA;Cag�abfCb; Bg; (3.6)

where �ab is the inverse matrix of �ab � fCa; Cbg. After
some computation and quantizing the Dirac brackets by
replacing fA;BgD ! �i�A;B�, we obtain

�pi; zj� � �i�ij 	
i
2
�zizj; �pi; �zj� �

i
2
�zi �zj;

�pi; pj� �
i
2
�pi �zj � pj �zi�;

� �pi; pj� �
i
2
� �zj �pi � zipj� �   i � j 	 ! � j i;

� � i;  j�	 � �ij � �zizj; �pi; � j� � i � i �zj;

(3.7)

with  	 ! � 1. The above brackets are supplemented by
their Hermitian conjugates, and remaining commutators
are zero. Note that the brackets in the first and fourth lines
of Eq. (3.7) have no operator ordering ambiguity. In the
second line, the ordering is fixed by the antisymmetry
property, while ordering in the third line is chosen by the
condition that the variables �zi; �zi;  i; � i; pi; �pi� commute
with the second class constraint, C2, ordered as p � z	 �z �
�p � 0. Similar ordering choice appeared before in the
bosonic CP�1� model [18]. Note that this does not fix the
operator ordering completely in the fermionic case, and we
still have undetermined  and ! in Eq. (3.7).

We then compute the Noether charge associated with
phase symmetry of the fermionic variables

NF � � �  ; (3.8)

which turns out to be the fermion number operator. In fact,
using the constraints one can derive the following result.

� � �  �2 � � �  ; (3.9)

therefore NF � 0 or 1. The supersymmetry charges are
given by

Q � p �  ; �Q � � � �p: (3.10)

Note that the supercharges have no ordering ambiguity.
One can easily check that � � �  ;Q� � �Q, � � �  ; �Q� �
�Q. Thus, Q and �Q play the role of lowering and raising

operator of the fermion number.
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The global SU(2) rotations are generated by

z1
z2

� �
! e��i=2�wa�a z1

z2

� �
; (3.11)

whose operator-ordered conserved charge is given by

Ka �
i
2
�z�a �p�

i
2
p�az	 %�z�az	

1

2
� �a : (3.12)

Here we have added the third term associated with the
operator ordering ambiguity. After some computation, we
find that Ka’s generate the SU(2) algebra

�Ka;Kb� � i&abcKc; (3.13)

provided the following conditions are satisfied

 �
1

2
�1	 4%�; ! �

1

2
�1� 4%�: (3.14)

Note that the angular momentum algebra Eq. (3.13) is
satisfied independent of the value %. In Appendix B, we
give various commutation relations of Ka’s with other
operators and express them in terms of space unit vector
~x � �z ~� z.

IV. ENERGY SPECTRUM AND
SUPERSYMMETRY BREAKING

The quantum mechanical Hamiltonian is defined by

Hq �
1

2
�Q; �Q�	

�
1

2
p � �p�

1

2
g2 �

1

2
�g	 2%� � �  �

1

8
� � �  �2;

(4.1)

which differs from the classical Hamiltonian Eq. (3.2) by
operator ordering. This Hamiltonian can be expressed in
terms of Ka operators as

Hq �
1

2
�K2 � �g	 %��g	 %	 1��: (4.2)

Thus, we obtain the energy spectrum as follows

E �
1

2
�k�k	 1� � ~g�~g	 1��; (4.3)

where k � 0; 12 ; 1; � � � is the angular quantum number as-
sociated withKa operator and ~g � g	 %. Some comments
are in order at this point. The energy E must be positive
definite because of the first equation of (4.1). Moreover, the
spectrum is obtained by exploiting the rotational invari-
ance. In the case of % � 0, the method of raising and
lowering operators can be used to construct the energy
eigenvalues [12]. The Hamiltonian commutes with the
fermion number NF and Ka’s and thus the spectrum has
a 2�2k	 1�-fold degeneracy.

We observe that k must satisfy the following inequality
due to the positive definiteness of the energy spectrum
015002
k � j~g	
1

2
j �

1

2
: (4.4)

In Fig. 1, we give the diagram for k versus ~g. Each
horizontal solid line denotes the allowed values of ~g for a
given angular momentum k. For a given value of ~g in this
range, the energy spectrum is given by the vertical inter-
sections with k � const. lines. The circular dots at the end
of each horizontal line represent the supersymmetric vac-
uum state, and for these particular values of ~g, supersym-
metry is unbroken. Observe that there exists a reflection
symmetry in the parameter space of the monopole charge;
a given value of ~g yields the same energy with ~g0 � �~g�
1. The spectrum is symmetric with respect to ~g � � 1

2 axis.
Supersymmetry is spontaneously broken unless the mini-
mum values of k reside on the lines k � ~g or k � ��~g	 1�
in Fig. 1. In other words, the breaking occurs unless the
parameter % is quantized, % � n=2 for some integers n.

Let us examine some cases. For symmetric ordering
with the value of � ;!; %� � �12 ;

1
2 ; 0�, the energy spectrum

is given by

E �
1

2
�k�k	 1� � g�g	 1��: (4.5)

With the substitution k � n	 g �n � 0; 1; 2; � � ��, the
above spectrum (4.5) agrees with the previous calculations
based on the method using the shape-invariance [12]. The
complete spectrum in Ref. [12] also gives the same multi-
plicities as our result. We observe that supersymmetry is
unbroken due to the Dirac quantization condition g � n=2
in this case. For asymmetric ordering with value of
� ;!; %� � �� 1

2 ;
3
2 ;�

1
2�, we have

E �
1

2

�
k�k	 1� � g2 	

1

4

�
: (4.6)
-4
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Similar relation appeared in Ref. [11] where the Casimir
invariant in the right hand side of Eq. (4.6) is associated
with the hidden supersymmetry which is generated by the
Killing-Yano tensor [19] in the N � 1 superspace
approach.
V. SUMMARY AND DISCUSSIONS

In summary, we investigated N � 2 supersymmetric
quantum mechanics of a charged particle on sphere in
the background of magnetic monopole. Our formulation
has a couple of novel aspects. First, we introduced gauged
chiral superfield which is annihilated by gauge covariant
superderivatives. These gauge covariant superderivatives
and their associated supercharges fulfill the usual relations
of supersymmetry in Eq. (2.7). We also adopted CP�1�
model approach which admits a compact N � 2 super-
space formulation of the problem. Then, we carried out
the Dirac quantization and computed the exact quantum
mechanical spectrum. We found that the spontaneous
breaking of supersymmetry occurs unless the parameter
% is quantized.

The spontaneous breaking of supersymmetry occurs in
this system for generic values of %. Recall that the parame-
ter ~g which characterizes the breaking is composed of two
factors; the monopole charge g and the parameter % rep-
resenting the effect of the operator ordering ambiguity.
Even in the case without monopole, spontaneous super-
symmetry breaking occurs except for the case where % �
n=2. On the other hand, the monopole effect can be domi-
nant in the large g case in which the background space
becomes fuzzy sphere [20,21]. It would be interesting to
explore the connection between the fuzzy sphere and su-
persymmetry further in the present framework.

Finally, it would be worthwhile to study the spontaneous
supersymmetry breaking in a second quantized version of
our system. For example, in a recent paper of Ref. [21], it is
shown that the instanton sectors of SUSY U(1) bundles on
S2 breaks the complex N � 2 SUSY down to N � 1 on the
supersphere and fuzzy supersphere, and the Goldstone
modes form an atypical representation of N � 2 SUSY.
Therefore, it would be interesting to study the complex
N � 2 extension of our system in a second quantized
version and investigate whether similar phenomena occur.
ACKNOWLEDGMENTS

We would like to thank Choonkyu Lee and Jin-Ho Cho
for useful discussions, and the APCTP for their hospitality
during our visit. We also thank the referee for pointing out
Ref. [21] to us. S. T. H. would like to acknowledge finan-
cial support in part from the Korea Science and
Engineering Foundation Grant No. R01-2000-00015. The
work of P. O. was supported by the Korea Research
Foundation Grant No. R05-2004-000-10682-0.
015002
APPENDIX A: CLASSICAL EQUATIONS
OF MOTIONS

In order to derive the classical equations of motion, we
consider the N � 2 SUSY Lagrangian given by

L � 2j _z� ��z � _z�zj2 	
i
2
� � � _ � _� �  �

�
i
2
��z � _z� _z � z� � �  	 ig��z � _z� _z � z� i � �  �

	 N��z � z� 1� 	��z �  	 � � z ��; (A1)

where N, �, and �� are the Lagrange multipliers associated
with the second class constraints derived from (2.15).
Variations of the Lagrangian (A1) over the variables z
and  produce their equations of motion

Dtp��
i
4
� � � 	 2g�p�

1

8
� � � 	 2g�2 �z	N �z� �� � ;

Dt �
i
2
 � � � 	 2g� 	 iz ��;

(A2)

where the Lagrangian multipliers are given by

N � Dtp � z	
i
4
� � �  	 2g�p � z	

1

8
� � �  	 2g�2;

� � �
i
2
� � �p;

�� �
i
2
p �  :

(A3)

The equations of motion for �z and � can be readily read off
from the Hermitian conjugates of the above corresponding
equations.
APPENDIX B: QUANTUM COMMUTATORS

Using the commutators Eq. (3.7), we find that

�Ka; X� � �
�a
2
X; X � �z; �p;  �; (B1)

and

�Ka; �X� � �X
�a
2
; �X � ��z; p; � �: (B2)

Note that these relations hold independent of % and con-
firm that Ka’s are indeed generators of rotations. We also
have

�Ka;Q� � �Ka; �Q� � �Ka; � �  � � 0: (B3)

In terms of unit vector ~x � �z ~� z, the angular momentum
generator ~K � Ka is given by

~K � ~x� _~x	 �g	 %	 1� � �  � ~x: (B4)

Note that besides �%	 1� ~x term, this expression is the
same as the well-known angular momentum in R3 in the
bosonic case [3].
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Grosse, C. Klimčik, and P. Prešnajder, Commun. Math.
Phys. 178, 507 (1996); A. Y. Alekseev, A. Recknagel, and
V. Schomerus, J. High Energy Phys. 09 (1999) 023; A. P.
Balachandran, B. P. Dolan, J. Lee, X. Martin, and D.
O’Connor, J. Geom. Phys. 43, 184 (2002); M. Hatsuda,
S. Iso, and H. Umetsu, Nucl. Phys. B671, 217 (2003); K.
Hasebe and Y. Kimura, Nucl. Phys. B709, 94 (2005).

[21] A. P. Balachandran, A. Pinzul, and B. Qureshi, hep-th/
0506037.
-6


