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Towards the infrared limit in SU�3� Landau gauge lattice gluodynamics
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We study the behavior of the gluon and ghost dressing functions in SU�3� Landau gauge at low
momenta available on lattice sizes 124–324 at � � 5:8, 6:0 and 6:2. We demonstrate the ghost dressing
function to be systematically dependent on the choice of Gribov copies, while the influence on the gluon
dressing function is not resolvable. The running coupling given in terms of these functions is found to be
decreasing for momenta q < 0:6 GeV. We study also effects of the finite volume and of the lattice
discretization.
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I. INTRODUCTION

Studying the relation of nonperturbative features of
QCD, such as confinement and dynamical chiral symmetry
breaking, to the properties of propagators, there are two
popular approaches at present: lattice gauge theory and
Dyson-Schwinger equations (DSE). The latter approach
allows to address directly the low-momentum region for
a coupled system of quark, gluon and ghost propagators
which is of interest for hadron physics [1]. In particular
their infrared behavior could be related to the mechanism
of chiral symmetry breaking and to confined gluons [1,2].

In fact, the DSE approach has revealed that in the
infrared momentum region a diverging ghost propagator
G is intimately connected with a suppressed gluon propa-
gator D	
. In Landau gauge, they can be written as

D	
�q� �
�
�	
 �

q	q

q2

�
ZD�q

2�

q2
; (1)

G�q� �
ZG�q

2�

q2
: (2)

Here ZD�q2� and ZG�q2� denote the dressing functions of
the corresponding propagators. They describe the devia-
tion from the momentum dependence of the free propaga-
tors. Based on the Dyson-Schwinger approach and under
mild assumptions these functions are predicted to behave
in the limit q2 ! 0 as follows [1]:

ZD�q
2� / �q2��D; ZG�q

2� / �q2���G (3)

with exponents satisfying �D � 2�G. In Landau gauge
�G � 0:595 [3,4]. Thus the ghost propagator diverges
stronger than 1=q2 and the gluon propagator is infrared
suppressed. This is in agreement with the Zwanziger-
Gribov horizon condition [5–7] as well as with the
Kugo-Ojima confinement criterion [8]. Zwanziger [5] has
suggested that in the continuum this behavior of the propa-
gators in Landau gauge results from the restriction of the
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gauge fields to the Gribov region , where the Faddeev-
Popov operator is non-negative.

Using further the ghost-ghost-gluon vertex, the gluon
and ghost dressing functions can be used to determine a
renormalization group invariant running coupling in a
momentum subtraction scheme as [9–11]

�s�q2� �
g20
4�

Z2
G�q

2�ZD�q2� (4)

which then enters the quark DSE [1,2]. This definition
relies on the fact that the ghost-ghost-gluon vertex renor-
malization function Z1�q

2� is constant, which is true at
least to all orders in perturbation theory [12]. Indeed, a
recent numerical investigation of Z1 for the SU�2� case
shows that also nonperturbatively Z1 is finite and constant
[13]. Applying the behavior given in Eq. (3) the running
coupling approaches a finite value �s�0� � 8:915=N for
SU�N� at zero momentum in the DSE approach [3].

Nevertheless, numerical investigations of those features
in lattice simulations are still necessary to check to what
extent the truncation of the coupled set of DSEs influences
the final result. There are several studies in Landau gauge
which confirm the anticipated behavior at least for the
SU�2� case [11,14–16]. Also lattice studies ([17–19],
[20,21] and references therein) for the SU�3� case indicate
the correctness of the proposed infrared behavior. How-
ever, as recent DSE investigations show [22–24] the in-
frared behavior of the gluon and ghost dressing functions
and of the running coupling is changed on a torus. In
particular, the running coupling decreases at low momenta.

This paper presents a lattice study of the gluon and ghost
dressing functions and of the running coupling at low
momenta in SU�3� Landau gauge. We also focus, more
carefully than usually, on the problem of the Gribov am-
biguity in lattice simulations. In continuum, a gauge orbit
has more than one intersection (Gribov copies [7]) with the
transversality plane (where @	A	 � 0 holds for the gauge
potential A	) within the Gribov region . Expectation
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values taken over this region are argued to be equal
to those over the fundamental modular region � which
includes only the absolute maximum of the gauge func-
tional [5].

On a finite lattice, however, this equality cannot be
expected [5]. In the literature it is widely taken for granted
that the gluon propagator does not depend on the choice of
Gribov copy, while an impact on the SU�2� ghost propa-
gator has been observed [25–27]. However, in a more
recent investigation [28] an influence of the Gribov copies
ambiguity on the SU�3� gluon propagator has been
demonstrated, too. Here we assess the importance of the
Gribov ambiguity on a finite lattice for the SU�3� ghost
propagators.

This paper is structured as follows: In Sec. II we shall
define all quantities which are investigated in this study.
Then, after specifying the lattice setup used, the depen-
dence of the gluon and ghost propagator on the choice of a
Gribov copy and lattice discretization as well as finite-
volume effects are discussed in Sec. III. We also discuss
the problem of exceptional gauge copies in Sec. IV. In
Sec. V the behavior of the running coupling is presented. In
the appendix we show how the inversion of the Faddeev-
Popov (F-P) operator can be accelerated by precondition-
ing with a Laplacian operator.
II. DEFINITIONS

To study the ghost and gluon propagators using lattice
simulations one has to fix the gauge for each thermalized
SU�3� gauge field configuration U � fUx;	g. We adopted
the Landau gauge condition which can be implemented by
searching for a gauge transformation

Ux;	 ! gUx;	 � gxUx;	g
y
x�	̂

which maximizes the Landau gauge functional

FU�g �
1

4V

X
x

X4
	�1

ReTrgUx;	 (5)

while keeping the Monte Carlo configurationU fixed. Here
gx are elements of SU�3�.

The functional FU�g has many different local maxima
which can be reached by inequivalent gauge transforma-
tions g, the number of which increases with the lattice size.
As the inverse coupling constant � is decreased, increas-
ingly more of those maxima become accessible by an
iterative gauge fixing process starting from a given (ran-
dom) gauge transformation gx. The different gauge copies
corresponding to those maxima are called Gribov copies,
due to their resemblance to the Gribov ambiguity in the
continuum [7]. All Gribov copies fgUg belong to the same
gauge orbit created by the Monte Carlo configuration U
and satisfy the differential Landau gauge condition (lattice
transversality condition) �@	gA	��x� � 0 where
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�@	gA	��x� � gA	�x� 	̂=2� � gA	�x� 	̂=2�: (6)

Here gA	�x� 	̂=2� is the non-Abelian (Hermitian) lattice
gauge potential which may be defined at the midpoint of a
link

gA	�x� 	̂=2� �
1

2iag0
�gUx;	 � gUy

x;	�

�
1

6iag0
Tr�gUx;	 � gUy

x;	�: (7)

In this way it is accurate to O�a2�. The bare gauge coupling
g0 is related to the inverse lattice coupling via � � 6=g20 in
the case of SU�3�. In the following, we will drop the label g
for convenience, i.e. we consider U to be already put into
the Landau gauge such that g � 1 maximizes the func-
tional in Eq. (5) relative to the neighborhood of the identity.

The gluon propagator Dab
	
�q

2� is the Fourier transform
of the gluon two-point function, i.e. the expectation value

Dab
	
�q� � h ~Aa	�k� ~A

b

��k�i � �abD	
�q� (8)

which is required to be color-diagonal. Here ~Aa	�k� is the
Fourier transform of Aa	�x� 	̂=2� and q denotes the mo-
mentum

q	�k	� �
2

a
sin

��k	
L	

�
(9)

which corresponds to a integer-valued lattice momentum k.
Since k	 2 ��L	=2; L	=2 the lattice equivalent of q2�k�
can be realized by different k. According to Ref. [29],
however, a subset of lattice momenta k has been considered
only for the final analysis of the gluon propagator, although
the fast-Fourier-transform algorithm provides us with all
lattice momenta. Details are given below.

Assuming reality and rotational invariance we envisage
for the (continuum) gluon propagator the general tensor
structure:

D	
�q� �
�
�	
 �

q	q

q2

�
D�q2� �

q	q

q2

F�q2�

q2
(10)

withD�q2� and F�q2� being scalar functions. On the lattice
these functions are extracted by projection and are ex-
pected to scatter, rather than being smooth functions of
q2. Using the Landau gauge condition the longitudinal
form factor F�p2� vanishes. Recalling the mentioned
Gribov ambiguity of the chosen gauge copy there is no a
priori reason to assume the estimator of D�q2� is not
influenced by the choice.

The ghost propagator is derived from the F-P operator,
the Hessian of the gauge functional given in Eq. (5). We
expect that the properties of the F-P operator differ for the
different maxima of the functional (Gribov copies). This
should have consequences for the ghost propagator as is
shown below.
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After some algebra the F-P operator can be written in
terms of the (gauge-fixed) link variables Ux;	 as

Mab
xy �

X
	

Aabx;	�x;y � Babx;	�x�	̂;y � Cabx;	�x�	̂;y (11)

with

Aabx;	 � ReTr�fTa; Tbg�Ux;	 �Ux�	̂;	�;

Babx;	 � 2 � ReTr�TbTaUx;	;

Cabx;	 � 2 � ReTr�TaTbUx�	̂;	:

Here Ta and Tb are the (Hermitian) generators of the su�3�
Lie algebra satisfying Tr�TaTb � �ab=2.

The ghost propagator is calculated as the following
ensemble average:

Gab�q� �
1

V

X
x;y

he�2�ik��x�y��M�1abxy iU: (12)

It is diagonal in color space:Gab�q� � �abG�q�. Following
Refs. [25,30] we have used the conjugate gradient (CG)
algorithm to invert M on a plane wave ~ c with color and
position components  ac �x� � �ac exp�2�ik � x�. In fact,
we applied the preconditioned CG algorithm (PCG) to
solve Mab

xy)
b�y� �  ac �x�. As preconditioning matrix we

used the inverse Laplacian operator ��1 with diagonal
color substructure. This significantly reduces the amount
of computing time as it is discussed in more detail in the
appendix.

After solving M ~) � ~ c the resulting vector ~) is pro-
jected back on ~ c such that the average Gcc�q� (divided by
V) over the color index c can be taken explicitly. Since the
F-P operator M is singular if acting on constant modes,
only k � �0; 0; 0; 0� is permitted. Because of high compu-
tational requirements to invert the F-P operator for each k,
separately, the estimator on a single, gauge-fixed configu-
ration is evaluated only for a preselected set of momenta k.
In Table I a detailed list is given.
TABLE I. Statistics of the data used in our final analysis. The 6th
been calculated for. If entries are given in squared bracket all of the

No. � Lattice # conf # copies

1 5.8 244 40 30
2 6.2 124 150 20
3 6.2 164 100 30
4 6.2 244 35 30
5 5.8 164 40 30
6 6.0 164 40 30
7 6.2 164 40 30
8 5.8 244 25 40 f�k; k
9 6.0 244 30 40 f�k; k
10 6.2 244 30 40 f�k; k
11 5.8 324 14 10
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III. RESULTS FOR THE GHOST AND GLUON
PROPAGATORS

A. Lattice samples

For the purpose of this study we have analyzed pure
SU�3� gauge configurations which have been thermalized
with the standard Wilson action at three values of the
inverse coupling constant � � 5:8, 6:0 and 6:2. For ther-
malization an update cycle of one heatbath and four micro-
canonical over-relaxation steps was used. As lattice sizes
we used 164, 244 and 324. For tests, exposing the inherent
problems of the Gribov problem under the aspect of vol-
ume dependence, also smaller lattices (84 and 124) have
been considered at lower cost.

To each thermalized configurationU a random set ofNcp

local gauge transformation fgxg was assigned. Each of
those served as starting point for a gauge fixing procedure
for which we used standard over-relaxation with over-
relaxation parameter tuned to ! � 1:63. Keeping all
Ux;	 fixed this iterative procedure creates a sequence of
local gauge transformations gx at sites x with increasing
values of the gauge functional [Eq. (5)]. Thus, the final
Landau gauge is iteratively approximated until the stop-
ping criterion in terms of the transversality [see Eq. (6)]

max
x

�@	gA	�x�2 < 10�14 (13)

is fulfilled. Consequently, each random start results in its
own local maximum of the gauge functional. Certain ex-
trema of the functional are found multiple times. In fact,
this happened frequently on the small lattices, 84 and 124,
but rather seldom on larger lattices. Note that we used the
maximum in relation (13) which is very conservative.
However, the precision of transversality dictates how sym-
metric the F-P operator M can be considered. This is
crucial for its inversion and thus dictates the final precision
of the ghost propagator.

To study the dependence on Gribov copies of the propa-
gators, in the course of Ncp repetitions for each U, the
column lists all tuples of momentum k the ghost propagator has
ir permutations are meant.

Selected k for G�k�

��1; 0; 0; 0�
��1; 0; 0; 0�
��1; 0; 0; 0�
��1; 0; 0; 0�

f�k; k; k; k�; k � 1 . . . 6g, �2; 1; 1; 1�
f�k; k; k; k�; k � 1 . . . 6g, �2; 1; 1; 1�
f�k; k; k; k�; k � 1 . . . 6g, �2; 1; 1; 1�

; k; k�; k � 1 . . . 6g, �2; 1; 1; 1�, ��1; 0; 0; 0�, �1; 1; 0; 0�, �1; 1; 1; 0�
; k; k�; k � 1 . . . 6g, �2; 1; 1; 1�, ��1; 0; 0; 0�, �1; 1; 0; 0�, �1; 1; 1; 0�
; k; k�; k � 1 . . . 6g, �2; 1; 1; 1�, ��1; 0; 0; 0�, �1; 1; 0; 0�, �1; 1; 1; 0�
�1; 0; 0; 0�, �1; 1; 0; 0�, �1; 1; 1; 0�, �1; 1; 1; 1�, �2; 1; 1; 1�
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gauge copy with the largest functional value is stored under
the name best copy (bc). The first gauge copy is also stored,
labeled as first copy (fc). However, it is as good as any
other arbitrarily selected gauge copy.

The more gauge copies one gets to inspect, the bigger
the likeliness that the copy labeled as bc actually represents
the absolute maximum of the functional in Eq. (5). With
increasing number Ncp of copies the expectation value of
gauge variant quantities, evaluated on bc representatives, is
converging more or less rapidly as we will discuss next.

B. How severe is the lattice Gribov problem for the
propagators?

First we present results of a combined study of the gluon
and ghost propagators on the same sets of fc and bc
representatives of our thermalized gauge field configura-
tions. This allows us to assess the importance of the Gribov
copy problem.

Numerically, it turns out that the dependence of the
ghost propagator on the choice of the best copy is most
severe for the smallest momentum. In addition, this de-
pends on the lattice size and �. Therefore we studied first
the dependence of the ghost and gluon propagators at
lowest momentum on the (same) best copies as function
of the number of gauge copies Ncp under inspection. This
was done at � � 6:2 where we used 124, 164 and 244

lattices. The number of thermalized configurations used
for these three lattice sizes are given in Table I. To check
the dependence on � also a simulation at � � 5:8 on a 244

lattice was performed.
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)
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D
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FIG. 1 (color online). The upper panels show the ghost propagato
�0; 1; 0; 0� of the smallest lattice momentum, measured always on the
dependence is shown for the gluon D�k� propagator, however, as a
panels show the relative difference �F � 1� Fcbc=Fbc of the corresp
overall best copy.
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The results of this investigation are shown in Fig. 1.
While there the ghost propagator is shown as an average
over the two realizations k � �1; 0; 0; 0� and k � �0; 1; 0; 0�
of the smallest lattice momentum q�k�, the gluon propa-
gator has been averaged over all four nonequivalent real-
izations. Note that D�k� � D��k�. It is clearly visible that
the expectation value of the gluon propagator does not
change within errors as Ncp increases, independent of the
lattice size and �. Contrarily, the ghost propagator at � �
5:8 on a 244 lattice saturates (on average) if calculated on
the best among Ncp � 15 gauge copies. At � � 6:2 the
number of gauge fixings attempts reduces to 5 � Ncp � 10
on a 164 and 244 lattice. On the 124 lattice a small impact
of Gribov copies is visible, namely 1<Ncp � 5. The
lower panels of Fig. 1 show the relative difference �F �
1� Fcbc=Fbc of the corresponding (current best) func-
tional values Fcbc to the value Fbc of the overall best
copy after Ncp � 20, respectively Ncp � 30, attempts.
This may serve as an indicator how large Ncp has to be
on average for the chosen algorithm to have found a
maximum of F close to the global one.

In order to study further the low-momentum dependence
of the gluon and ghost dressing functions, ZD and ZG, as
given by Eqs. (1) and (2) we have performed similar
simulations using lattice sizes 124, 164, 244 and 324 at � �
5:8, 6.0 and 6.2. Following Ref. [31] these values of �
correspond to a�1 � 1:446, 2.118 and 2.914 GeV using the
Sommer scale r0 � 0:5 fm. These values of the lattice
spacing a associated to � turn out to be more appropriate
as those formerly used by us and others (see [18,19,28,29]).
31

32

33

34

35

244 β = 6.2

k= ([1,0],0,0)

52

54

56

58

60 k= ([1,0,0,0])

0

1

0 5 10 15 20 25 30

N cp

41

42

43

44

244 β = 5.8

k= ([1,0],0,0)

23

24

25

26 k= ([1,0,0,0])

0

1

2

0 5 10 15 20 25 30

N cp

r G�k� as average over two realizations k � �1; 0; 0; 0� and k �
best gauge copy among Ncp copies. In the middle panels the same
verage over all four permutations of k � �1; 0; 0; 0�. The lower
onding current best functional values Fcbc to the value Fbc of the
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We have fixed a conservative number ofNcp � 30 gauge
copies per thermalized configuration on a 164 lattice and
Ncp � 40 on a 244 lattice. Both the gluon and the ghost
propagator, respectively, their dressing functions, have
been measured on the same set of fc and bc copies.
Because of the large amount of computing time necessary
for the 324 lattice we could afford to measure the ghost
propagator for the first and best among only Ncp � 10
copies, which is certainly not enough.

The data for the gluon propagator D�k� have been de-
termined for all momenta at once. However, we used only a
subset of momenta for the final analysis. In fact, inspired
by Ref. [29], only data D�k� with k lying in a cylinder with
radius of one momentum unit along one of the diagonals
n̂ � 1=2��1;�1;�1;�1� have been selected. Since we
are using a symmetric lattice structure only data with k
satisfying

P
	k

2
	 � �

P
	k	n̂	�

2 � 1 are surviving this cy-
lindrical cut. In agreement with [29] this recipe has dras-
tically reduced lattice artifacts, in particular, for large
momenta. Additionally, we try to keep finite-volume arti-
facts at lower momenta under control by removing all data
D�k� with one or more vanishing momentum components
k	 [29]. However, this we have done only for data on a 124

and 164 lattice. In Sec. III C we shall discuss in more detail
finite-volume effects at various momenta.

In view of this we have chosen appropriate sets of
momenta for the ghost propagator, as listed in Table I in
detail.

The final results of the dressing functions ZD and ZG
measured on bc copies are shown in the upper panels of
Fig. 2. All momenta q�k� have been mapped to physical
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o
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FIG. 2 (color online). The upper panels show the dressing functio
gauge copies as functions of the momentum q2 (scaled to physical un
panels show the ratio hZfci=hZbci determined on first (fc) and best (
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momenta using the lattice spacings a given above. As
expected the ghost dressing function diverges with de-
creasing momenta, while the gluon dressing function de-
creases after passing a turnover at about q2 � 0:8 GeV2.
However, for the purpose of the expected infrared behavior
given in Eq. (3) the data for momenta q2 < 0:25 GeV2 are
not sufficiently abundant to extract a critical exponent
�G > 0:5 as expected from the Dyson-Schwinger ap-
proach. In particular, the fit parameters are not stable under
a change of the upper momentum cutoff. The best fits give
�G � 0:25.

In the lower panels of Fig. 2 we present the ratio of the
dressing functions, hZfci=hZbci, calculated using jackknife
from first and best gauge copies as a function of the
momentum. There the data from simulations on a 324

lattice have been excluded, since only Ncp � 10 gauge
copies have been inspected which would result in an under-
estimate of the ratio hZfci=hZbci. As is clear from these
panels we do not observe a systematic dependence on the
choice of Gribov copies for the gluon propagator. In con-
trast the ghost propagator is systematically overestimated
for fc (arbitrary) gauge copies. This effect holds up to
momenta of about 2 GeV2.

Comparing also the ratios for the ghost propagator at
q < 1 GeV, the rise at � � 6:0 is obviously larger than
that at � � 5:8. In both cases the data are from simulations
on a 244 lattice. Thus, it seems that by increasing the
physical volume (lower �) the effect of the Gribov ambi-
guity gets smaller if the same physical momentum is
considered. This cannot be due to a too small number
Ncp of inspected gauge copies since, judged from Fig. 1,
Ncp � 40 seems to be on the safe side.
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ns of the ghost ZG and gluon propagator ZD measured on best
its at � � 5:8, 6:0 and 6:2) using various lattice sizes. The lower

bc) gauge copies using jackknife.
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FIG. 4 (color online). The ghost (left) and the gluon (right)
dressing functions at (approximately) fixed physical volume
V1 � �2:2 fm�4 are shown as functions of momentum q2. The
data at � � 5:8 (6.0) correspond to a lattice spacing of about
a � 0:136 fm (0.093 fm). Only data on bc gauge copies are
shown here.
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FIG. 3 (color online). The ghost (upper panels) and gluon
(lower panels) dressing functions are shown for different lattice
sizes as functions of momentum q2. The left panels show data at
� � 5:8 and the right ones at � � 6:2. Only data on bc gauge
copies are shown here. The lines are drawn to guide the eye.
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We conclude: the ghost propagator is systematically
dependent on the choice of Gribov copies, while the impact
on the gluon propagator is not resolvable within our statis-
tics. However, there are indications that the dependence on
Gribov copies decreases with increasing physical volume.
This is also in agreement with the data listed in the two
lattice studies [25,26] of the SU�2� ghost propagator G,
while it is not explicitly stated there. In fact, in Ref. [26] the
ratio Gfc=Gbc at � � 2:2 on a 84 lattice is larger than that
on a 164 lattice at the same physical momentum.

C. Systematic effects of lattice spacings and volumes

We remind that in Fig. 2 we have dropped all data related
to a 164 lattice with one or more vanishing momentum
components k	. According to [29] this keeps finite-volume
effects for the gluon propagator under control. It is quite
natural to analyze here the different systematic effects on
the gluon and ghost propagators of changing either the
lattice spacing a or the physical volume V. However, due
to the preselected set of momenta for the ghost propagator
and the values chosen for �, we can study this here only in
a limited way and in a region of intermediate momenta. For
the gluon propagator this has been done in more detail by
other authors (see e.g. [32]).

Keeping first the lattice spacing fixed we have found that
both the ghost and gluon dressing functions calculated at
the same physical momentum q2 decrease as the lattice
size L4 is increased. This is illustrated for various momenta
in Fig. 3. There both dressings functions versus the physi-
cal momentum are shown for different lattice sizes at either
� � 5:8 or � � 6:2. Note, in this figure we have not
dropped data with vanishing momentum components k	
to emphasize the influence of a finite volume on those
(low) momenta. We also show data from simulations on
a 84 and 124 lattice. One clearly sees that the lower the
momenta the larger the effect due to a finite volume. In
comparison with � � 5:8 this is even more drastic at � �
6:2. At this � the lattice spacing is about a � 0:068 fm.
Thus the largest volume considered at � � 6:2 is about
�1:6 fm�4, which is even smaller than the physical volume
of a 164 lattice at � � 5:8.

Altogether we can state that for both dressing functions
finite-volume effects are clearly visible at volumes smaller
than �2:2 fm�4, which corresponds to a 164 lattice at � �
5:8. The effect grows with decreasing momenta or decreas-
ing lattice size (see the right panels in Fig. 3). At larger
volumes, however, the data for q > 1 GeV coincide within
errors for the different lattice sizes (left panels). Even for
q < 1 GeV we cannot resolve finite-volume effects for
both dressing functions based on the data related to a 244

and 324 lattice.
Based on our chosen values for� and the lattice sizes we

can select equal physical volumes only approximately.
Hence also the physical momenta are only approximately
the same if the ghost and gluon dressing functions are
014507
compared at different �, e.g. at different lattice spacings.
Therefore, it is difficult to analyze the systematic effect of
changing a if for both dressing functions small variations
in q2 are hidden. Consequently, in Fig. 4 we show the data
for the ghost and gluon dressing functions approximately at
the same physical volume V � �2:2 fm�4 for different a,
-6
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albeit as functions of q2. This allows us to disentangle by
eyes a change of the data due to varying a from the natural
dependence of the propagators on q2. Inspecting Fig. 4 one
concludes that the gluon dressing function at the same
physical momentum and volume increases with decreasing
lattice spacing. A similar effect (beyond error bars) we
cannot report for the ghost dressing function.

IV. THE PROBLEM OF EXCEPTIONAL
CONFIGURATIONS

We turn now to a peculiarity of the ghost propagator at
larger � which has also been observed by some of us in an
earlier SU�2� study [26]. While inspecting our data we
found, though rarely, that there are outliers in the Monte
Carlo time histories of the ghost propagator at lowest
momentum. Those outliers are not equally distributed
around the average value, but are rather significantly larger
than this.

In Fig. 5 we present time histories of the ghost propa-
gator G�k� measured of fc and bc gauge copies for two
smallest momentum realizations k � �1; 0; 0; 0� and k �
�0; 1; 0; 0�, separately. From left to right the panels are
ordered in increasing order of the lattice sizes 124, 164

and 244 at � � 6:2 and 244 at � � 5:8.
As can be seen from this figure in the majority extreme

spikes are reduced (or even not seen) when the ghost
propagator could be measured on a better gauge copy
(bc) for a particular configuration. Furthermore, it is ob-
vious that the exceptionality of a given gauge copy is
exhibited not simultaneously for all different realizations
of the lowest momentum. Consequently, to reduce the
impact of such large values on the average ghost propa-
gator one should better average over all momentum real-
izations giving rise to the same momentum q. This has
been done for the results shown in Figs. 1 and 2 at least for
10

20

30

G
(k

)

124 β = 6.2

k= (1,0,0,0)

10

20

30
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k= (0,1,0,0)

164 β = 6.2
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FIG. 5 (color online). The time histories of the ghost propagator ca
244 lattice at � � 6:2 and 244 lattice at � � 5:8. From left to right
No. 10 and No. 1/No. 8. The upper and lower panels show data for the
respectively.
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the lowest momentum at � � 6:2. However, compared to
the gluon propagator it takes much more computing time to
determine the ghost propagator for all its different realiza-
tions of momentum q�k�.

In addition, we have tried to find a correlation of such
outliers in the history of the ghost propagator with other
quantities measured in our simulations. For example we
have checked whether there is a correlation between the
values of the ghost propagatorG�k� as they appear in Fig. 5
with low-lying eigenvalues and eigenvectors of the F-P
operator. They are apparent in the contribution of the low-
est 10 F-P eigenmodes to the ghost propagator at this
particular k. This we shall present in a subsequent publi-
cation [33] where we shall discuss the spectral properties
of the F-P operator and its relation to the ghost propagator.
V. THE RUNNING COUPLING

We shall now focus on the running coupling �s�q2� as
defined in Eq. (4) where g20=�4�� � 3=�2��� for SU�3�.
Given the raw data for the gluon and ghost dressing func-
tions on bc gauge copies the average Z2

G�q
2�ZD�q2� and its

error have been estimated using the bootstrap method with
drawing 500 random samples. Since the ghost-ghost-
gluon-vertex renormalization function Z1 has been set to
one, there is an overall normalization factor which has
been fixed by fitting the data for q2 > q2c to the well-known
perturbative results of the running coupling �2-loop at 2-
loop order (see also [11]). Defining x � q2=�2

2-loop, the 2-
loop running coupling is given by

�2-loop�x� �
4�

�0 lnx

�
1�

2�1

�2
0

ln�lnx�
lnx

�
: (14)

The �-function coefficients are �0 � 11 and �1 � 51 for
the SU�3� gauge group and are independent of the renor-
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lculated on first (fc) and best (bc) gauge copies on a 124, 164 and
the corresponding runs listed in Table I are No. 2, No. 3, No. 4/
lowest momentum realization k � �1; 0; 0; 0� and k � �0; 1; 0; 0�,

-7



A. STERNBECK et al. PHYSICAL REVIEW D 72, 014507 (2005)
malization prescription. The value of �2-loop has been fixed
by the same fit. The lower bound q2c has been chosen such
that an optimal value for .2=dof has been achieved.

The results are shown in Fig. 6. There also the 1-loop
contribution is shown where we used the same lower bound
q2c. The best fit of the 2-loop expression to the data gives
�2-loop � 0:88�7� GeV (.2=dof � 0:96), while �1-loop �
0:64�7� is obtained (.2=dof � 1:05) using just the 1-loop
part. For q2c we used q2c � 30 GeV2. The value for �2-loop
is similar within errors to the SU�2� result given in
Ref. [11].

Approaching the infrared limit in Fig. 6 one clearly sees
a running coupling �s�q2� increasing for q2 > 0:4 GeV2.
However, after passing a maximum at q2 � 0:4 GeV2

�s�q
2� decreases again. Such turnover is in agreement

with DSE results obtained on a torus [22–24]. Therefore,
one can argue that this behavior is a finite lattice effect
although we cannot resolve a difference between the differ-
ent lattice sizes used. A similar infrared behavior for the
running coupling has also been observed in different lattice
studies [20,21]. But opposed to [20] the existence of a
turnover is independent on the choice of Gribov copy, since
qualitatively, we have found the same behavior for �s�q2�
calculated on fc gauge copies.

For completeness we mention that running couplings
decreasing in the infrared have also been found in lattice
studies of the 3-gluon vertex [34,35] and the quark-gluon
vertex [36].

Apart from the finite-volume argument given above to
explain such a behavior, which prevents us from seeing the
limit �s�0� � 0 mentioned in the introduction, one could
also put into question whether one can really set Z1�q� � 1
at lower momenta. A recent investigation dedicated to the
ghost-ghost-gluon-vertex renormalization function Z1�q�
0.0

0.5

1.0

1.5

0.1 1 10 100

α
s
(q

2
)

q2 [GeV2]

Λ1−loop= 0.64(7) GeV
Λ2−loop= 0.88(7) GeV

q2
c

α2−loop

α1−loop

β = 5.8 164

244

324

β = 6.0 164

244

β = 6.2 164

244

FIG. 6 (color online). The running coupling �s�q� as a func-
tion of momentum q2 determined on bc gauge copies.
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for the case of SU�2� [13] supports that Z1�q� � 1 at least
for q > 1 GeV.
V. CONCLUSIONS

We have reported on a numerical study of the gluon and
ghost propagators in Landau gauge using several lattice
sizes at � � 5:8, 6:0 and 6:2. Studying the dependence on
the choice of Gribov copies, it turns out that for the gluon
propagator the effect of Gribov copies stays inside numeri-
cal uncertainty, while the impact on the ghost propagator
increases as the momentum or � is decreased. However,
there are indications that the influence of Gribov copies
decreases as the physical volume is increased. This is at
least expected in the light of Ref. [5]. There it is argued that
in the continuum expectation values of correlation func-
tions hA�x1� . . .A�xn�i over the fundamental modular re-
gion � are equal to those over the Gribov region , since
functional integrals are dominated by the common bound-
ary of � and . Thus Gribov copies inside  should not
affect expectation values in the continuum.

While the effect of the Gribov ambiguity on the ghost
propagator becomes smaller with increasing �, exception-
ally large values appear in the history of the ghost propa-
gator in agreement with what has been observed first in
Ref. [26]. These outliers we have not seen simultaneously
for all lattice momenta k realizing the same lowest mo-
mentum q�k�. However, they are apparent in the contribu-
tion of the lowest 10 F-P eigenmodes to the ghost
propagator at this particular k [33]. Therefore it is good
practice to measure the ghost propagator for more than one
k with the same momentum q�k�, in order to reduce the
systematic errors coming from such exceptional values.

We have studied the effects of finite volume on one hand
and of finite lattice spacing on the other. The first ones are
found to be essential for volumes smaller than �2:2 fm�4 at
the same � whereas the discretization effects at the same
volume are modest. Our available data did not allow us to
extend this analysis to physical momenta below 1 GeV,
where the Gribov ambiguity shows up and where a similar
separation of finite-volume and discretization effects
would be desirable. However, we could observe from
Fig. 2 that enlarging the volume by decreasing � leads to
a reduction of the systematic Gribov effect in the ghost
propagator.

The dressing functions, ZD and ZG, of the gluon and
ghost propagators have allowed us to estimate the behavior
of a running coupling �s�q2� in a momentum subtraction
scheme. Going from larger momenta q2 to lower ones
�s�q

2� is steadily increasing until q2 � 0:4 GeV2. For
q2 < 0:3 GeV2, however, �s�q2� is decreasing. A decreas-
ing running coupling at low momenta is in qualitative
agreement with recent DSE results obtained on a torus
[22–24]. Therefore one might conclude that the decrease
is due to finite lattice volumes we used. It makes it
questionable whether lattice simulations in near future
-8



TABLE II. The average number of iterations and CPU time per
processor (PE) using the CG and PCG algorithm to invert the F-P
operator are given. All inversions have been performed at � �
5:8 with source �bc exp�2�ik � y� where k � �1; 0; 0; 0�. To
compare the different lattice sizes 4 PEs have always been used.

CG PCG Speed up
Lattice Iter. CPU [sec] Iter. CPU [sec] Iter. CPU [sec]

84 1400 3.7 570 2.4 60% 35%
164 3900 240 1050 130 73% 46%
324 9900 13400 2250 3900 77% 71%

TOWARDS THE INFRARED LIMIT IN SU�3� LANDAU . . . PHYSICAL REVIEW D 72, 014507 (2005)
can confirm the predicted infrared behavior of the gluon
and ghost dressing functions with related exponents
�D � 2�G.
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APPENDIX: SPEEDING UP THE INVERSION OF
THE F-P OPERATOR

For the solution of the linear system M ~) � ~ c with
symmetric matrix M, the conjugate gradient (CG) algo-
rithm is the method of choice. Its convergence rate depends
on the condition number, the ratio of largest to lowest
eigenvalue of M. When all Ux;	 � 1 obviously the F-P
operator is minus the Laplacian � with a diagonal color
substructure. Thus instead of solving M ~) � ~ c one rather
solves the transformed system

�M��1�� ~)� � ~ c:

In this way the condition number is reduced, however, the
price to pay is one extra matrix multiplication by ��1 per
iteration cycle. In terms of CPU time this should be more
than compensated by the reduction of iterations.

The preconditioned CG algorithm (PCG) can be de-
scribed as follows:
014507
initialize:

~r �0� � ~ �M ~)�0�; ~p�0� � ��1 ~r�0�;

/�0� � � ~p�0�; ~r�0��

start do loop: k � 0; 1; . . .

~z�k� � M ~p�k�; ��k� � /�k�=�~z�k�; ~p�k��

~) �k�1� � ~)�k�
� ��k� ~p�k�

~r �k�1� � ~r�k� � ��k� ~z�k�

~z �k�1� � ��1 ~r�k�1�

/�k�1� � �~z�k�1�; ~r�k�1��

if �/�k�1� < "� exit do loop

~p �k�1� � ~z�k�1� �
/�k�1�

/�k�
~p�k�

end do loop :

Here ��; �� denotes the scalar product.
To perform the additional matrix multiplication with

��1 we used two fast Fourier transformations F , due to
�����1 � F�1q�2�k�F . The performance we achieved is
presented in Table II. We conclude that on larger lattice
sizes the reduction of iterations is about 70%–75%, while
the resulting reduction of CPU time depends on the lattice
size. This is because we are using the fast Fourier trans-
formations in a parallel CPU environment. If the ratio of
used processors to the lattice size is small (see e.g. the data
for 324 lattice at this table), almost the same reductions of
CPU time as for the number of iterations is achieved.

Further improvement may be achieved by using the
multigrid Poisson solver to solve �~z�k� � ~r�k�. This method
is supposed to perform better on parallel machines.
Perhaps a further improvement is possible by using as
preconditioning matrix ~M�1 � ���1 � ��1M1�

�1 �
. . . which is an approximation of the F-P operator M �
���M1 to a given order [6] (see also [21]). However, the
larger the order, the more matrix multiplications per itera-
tion cycle are required. This may reduce the overall per-
formance. We have not checked so far which is the optimal
order.
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