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Nucleon and delta masses in twisted mass chiral perturbation theory
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We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation
theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a,
and the quark masses, mq, to be of the same order. We give expressions for the mass and the mass splitting
of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral
Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta
multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the
mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice
spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin
breaking.
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I. INTRODUCTION

Twisted mass lattice QCD (tmLQCD) [1,2] is an alter-
native regularization for lattice QCD that has recently
received considerable attention.1 It has the potential to
match the attractive features of improved staggered fermi-
ons (efficient simulations [4], absence of ‘‘exceptional
configurations’’ [1], O�a� improvement at maximal twist
[5], operator mixing as in the continuum [2,6,7]) while not
sharing the disadvantage of needing to take roots of the
determinant to remove unwanted degrees of freedom. Thus
tmLQCD offers a promising and interesting new way to
probe the properties and interactions of hadrons nonper-
turbatively from first principles.

Because of the limitations in computational capabilities,
the quark masses, mq, used in current simulations are still
unphysically large. Thus extrapolations in mq are neces-
sary if physical predications are to be made from lattice
calculations. This can be done in a systematic and model
independent way through the use of chiral perturbation
theory (�PT). Since �PT is derived in the continuum, it
can be employed only after the continuum limit has been
taken, where the lattice spacing, a, is taken to zero.
However, when close to the continuum, it can be extended
to lattice QCD at nonzero a, where discretization errors
arising from the finite lattice spacing are systematically
included in a joint expansion in a and mq. For tmLQCD
with mass-degenerate quarks, the resulting ‘‘twisted mass
chiral perturbation theory’’ (tm�PT) has been formulated
previously [8–10], building on earlier work for the un-
twisted Wilson theory [11–13].

So far, tm�PT has only been applied to the mesonic
(pionic) sector. There have been studies on pion masses
and decay constants for mq � a�2QCD [8], the phase struc-
ture of tmLQCD for mq � a2�3QCD [9,10,14–17], and
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quantities involving pions that do not involve final state
interactions up to next-to-leading order (NLO) in the
power counting scheme where mq � a�2QCD [18]. How-
ever, as pointed out in Ref. [18], many of the pionic
quantities considered are difficult to calculate in numerical
simulations because they involve quark-disconnected dia-
grams. This motivated us to extend tm�PT to the baryon
sector, which has heretofore not been done, enabling us to
study analytically baryonic quantities that do not involve
quark-disconnected diagrams. Numerical studies of the
baryons in tmLQCD are already underway, and the first
results from quenched simulations studying the nucleon
and delta spectra have been obtained recently in Ref. [19].

In the baryon sector, the extension of �PT to the lattice
at finite lattice spacing to O�a� [20], and to O�a2� [21], has
been done for a theory with untwisted Wilson fermions.
We extend that work here to include the effects of ‘‘twist-
ing,’’ i.e. our starting underlying lattice theory is now
tmLQCD. Specifically, we study the parity and flavor
breaking effects due to twisting in the masses and mass
splittings of nucleons and deltas in an SU�2� chiral effec-
tive theory. The mass splittings are of particular interest to
us as they allow one to quantify the size of the parity-flavor
breaking effects in tmLQCD; furthermore, they present
fewer difficulties to numerical simulations than their coun-
terparts in the mesonic sector, which involve quark-
disconnected diagrams.

We consider here tmLQCD with mass nondegenerate
quarks [22], which includes an additional parameter, the
mass splitting, �q. This allows us to consider the theory
both in and away from the strong isospin limit. With
simulations in the near future most likely able to access
the region wheremq � a�2QCD, the power counting scheme
we will adopt is

1� "2 � a�QCD �
mq

�QCD
�

�q
�QCD

; (1)

with "2 denoting the small dimensionless expansion pa-
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rameters. In the following, we will work to O�"4� in this
power counting.

The remainder of this article is organized as follows. In
Secs. II A and II B, we briefly review the definition of
tmLQCD with mass nondegenerate quarks, and we show
how the mass splitting can be included in the Symanzik
Lagrangian and the O�a� meson chiral Lagrangian. Higher
order corrections from the meson Lagrangian are not
needed for the baryon observables to the order we work.
In Sec. II C, we extend the heavy baryon �PT (HB�PT) to
include the twisting effects to O�"4�. In Sec. III we present
the nucleon and delta masses in tm�PT in the strong
isospin limit, including lattice discretization errors and
the flavor and parity breaking induced by the twisted
mass term. In Sec. IV we extend the calculation to include
isospin breaking effects and discuss the subtleties that
arise. We conclude in Sec. V.
2One way to see this is to note that the mass terms in such a
case, m0 � i�5�3�0 � �3�0, can be written as �x0 � �3y0��
exp�i$�5� exp�i%�5�3�, where x0=y0 � tan%= tan$. Thus, the
twisted mass term can be transformed away leaving just the
normal mass term and the mass splitting term. However, since
this involves an U�1� axial transformation which is anomalous,
an i$F ~F term is introduced into the action which we see now is
complex (because of the factor of i). Thus, since the gauge action
is real, this means that the fermionic action (before the trans-
formation) must be complex, and so the fermionic determinant
obtained from it must also be complex. Observe that this also
implies that a theory in which both the twist and the mass
splitting are implemented by �3 is $-dependent.
II. MASS NONDEGENERATE TWISTED MASS
CHIRAL PERTURBATION THEORY

In this section, we work out the extension of the baryon
chiral Lagrangian to O�a2� given in Ref. [21] in tmLQCD.
We start by briefly outlining the construction of the
Symanzik Lagrangian in the mass nondegenerate case,
which follows the same procedures as those in the mass-
degenerate theory with minimal modifications.

A. The effective continuum quark level Lagrangian

The fermionic part of the Euclidean lattice action of
tmLQCD with two mass nondegenerate quarks is

SLF �
X
x

� l�x�

"
1

2

X
�

���r?
� �r�� �

r
2

X
�

r?
�r�

�m0 � i�5�1�0 � �3�0

#
 l�x�; (2)

where we have written the action given in Ref. [22] for a
general twist angle (not necessarily maximal), and in the
so-called ‘‘twisted basis’’ [5]. The quark (flavor) doublets
 l and � l are the dimensionless bare lattice fields (with ‘‘l’’
standing for lattice and not indicating left-handed), and r�

and r?
� are the usual covariant forward and backward

dimensionless lattice derivatives, respectively. The matri-
ces �i are the usual Pauli matrices acting in the flavor
space, with �3 the diagonal matrix. The bare normal
mass m0, the bare twisted mass �0, and the bare mass
splitting �0 are all dimensionless parameters; an implicit
identity matrix in flavor space multiplies the bare mass
parameter m0. The notation here is that both m0 and �0 are
positive such that the upper component of the quark field is
the lighter member of the flavor doublet with a positive
bare mass.

Note that in the mass-degenerate case twisting can be
done using any of the �i, the choice of �3 is merely for
014506
convenience. Given the identity

exp
�
�i

�
4
�k

�
�a exp

�
i
�
4
�k

�
� �kab�b; (3)

one can always rotate from a basis where the twist is
implemented by �a, a � 1; 2, to a basis where it is imple-
mented by �3 using the vector transformation

� ! � exp�i��k�;  ! exp��i��k� ;

k � 1; 2; 3; � � 

�
4
;

(4)

where the appropriate sign for � is determined by the index
a. However, with �3 used here to split the quark doublet so
that the mass term is real and flavor diagonal, it cannot be
used again for twisting if the fermionic determinant is to
remain real.2

Following the program of Symanzik [23], and the same
enumeration procedure detailed in Ref. [10], one can ob-
tain the effective continuum Lagrangian at the quark level
for mass nondegenerate quarks that describes the long
distance physics of the underlying lattice theory. Its form
is constrained by the symmetries of the lattice theory. To
O�"4� in our power counting, in which we treat a�2QCD �

mq � �q, we find that the Pauli term is again the only
dimension five symmetry breaking operator just as in the
mass-degenerate case [10] (the details of this argument are
provided in Appendix A),

L eff � Lg � � �D6 �m� i�5�1�� �q�3� 

� b1a � i���F�� �O�a2�; (5)

where Lg is the continuum gluon Lagrangian, m is the
physical quark mass, defined in the usual way by

m � Zm�m0 � ~mc�=a; (6)

� is the physical twisted mass

� � Z��0=a � Z�1
P �0=a; (7)

and �q is the physical mass splitting

�q � Z��0=a � Z�1
S �0=a: (8)

The factors ZP and ZS are matching factors for the non-
-2
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singlet pseudoscalar and scalar densities, respectively.
Note that the lattice symmetries forbid additive renormal-
ization to both �0 and �0 [22]. The quantity ~mc is the
critical mass, aside from an O�a� shift (see Ref. [18] and
discussion below).

Anticipating the fact that the mesons contribute to the
baryon masses only through loops, and so will be of O�"3�
or higher, we only need to have a meson chiral Lagrangian
to O�a� for the order we work; Leff as given in Eq. (5) is
sufficient for its construction. To build the effective chiral
Lagrangian for baryons to O�"4� on the other hand, terms
of O�a2� in Eq. (5) are of the appropriate size to be
included. However, except for the operator which breaks
O�4� rotation symmetry, a2 � ��D�D�D� , the O�a2�
operators do not break the continuum symmetries in a
manner different than the terms explicitly shown in
Eq. (5), and thus their explicit form is not needed. The
O�4� breaking term will lead to operators in the baryon
chiral Lagrangian at the order we work. However, it is
invariant under twisting and thus contributes as those in
the untwisted theory [21].

B. The SU�2� meson sector

The low energy dynamics of the theory are described by
a generalized chiral Lagrangian found by matching from
the continuum effective Lagrangian (5). As usual, the
chiral Lagrangian is built from the SU�2� matrix-valued
field �, which transforms under the chiral group SU�2�L �
SU�2�R as

�! L�Ry; L 2 SU�2�L; R 2 SU�2�R: (9)

The vacuum expectation value,�0 � h�i, breaks the chiral
symmetry spontaneously down to an SU�2� subgroup.
The fluctuations around �0 correspond to the Goldstone
bosons (pions).

From a standard spurion analysis, the chiral Lagrangian
at O�"2� is (in Euclidean space3)

L � �
f2

8
Tr�@��@��y� �

f2

8
Tr��y�� �y��

�
f2

8
Tr�Ây���yÂ�; (10)

where f is the decay constant (normalized so that f� �

132 MeV). The quantities � and Â are spurions for the
quark masses and discretization errors, respectively. At the
end of the analysis they are set to the constant values

�! 2B0�m� i��1 � �q�3� � m̂� i�̂�1 � �̂q�3;

Â! 2W0a � â;
(11)

where B0 �O��QCD� and W0 �O��3QCD� are unknown
3We will work in Euclidean space throughout this article.
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dimensionful constants, and we have defined the quantities
m̂, �̂, and â.

As explained in Ref. [18], since the Pauli term trans-
forms exactly as the quark mass term, they can be com-
bined by using the shifted spurion

�0 � �� Â; (12)

leaving the O�"2� chiral Lagrangian unchanged from its
continuum form. This corresponds at the quark level to a
redefinition of the untwisted component of the quark mass
from m to

m0 � m� aW0=B0: (13)

This shift corresponds to an O�a� correction to the critical
mass, so that it becomes

mc � Zm ~mc=a� aW0=B0: (14)

Since the O�"2� Lagrangian takes the continuum form,
and the mass splitting term does not contribute at this
order, the vacuum expectation value of � at this order is
that which cancels out the twist in the shifted mass matrix,
exactly as in the mass-degenerate case:

h0j�j0iLO � �0 �
m̂� â� i�̂�1

M0
� exp�i!0�1�; (15)

where

M0 �
�������������������������������
�m̂� â�2 � �̂2

q
: (16)

Note that M0 is the leading order result for the pion mass
squared, i.e. m2� � M0 at O�"2�. If we define the physical
quark mass by

mq �
��������������������
m02 ��2

q
; (17)

then it follows from (15) that

cos!0 � m0=mq; sin!0 � �=mq: (18)

Details of the nonperturbative determination of the twist
angle and the critical mass can be found in [18], and will
not be repeated here.

At O�"4�, the mass nondegenerate chiral Lagrangian for
the pions retains the same form as that in the mass-
degenerate case [10,18], because the mass splitting does
not induce any additional symmetry breaking operators in
Leff . The O�"4� pion Lagrangian contains the usual
Gasser-Leutwyler operators of O�m2;mp2; p4�, where m
is a generic mass parameter that can bem,�, or �q, as well
as terms of O�am; ap2; a2� associated with the discretiza-
tion errors. Now as we stated earlier, since the pions will
enter only through loops in typical calculations of baryon
observables, keeping the pion masses to O�"4� will lead to
corrections of O�"5�, which is beyond the order we work.
As our concern is not in the meson sector, the O�"2� pion
Lagrangian (10) is thus sufficient for our purpose in this
work.
-3
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C. The SU�2� baryon sector

With the effective continuum theory and the relevant
part of the effective chiral theory describing the pions in
hand, we now include the lowest lying spin- 12 and spin- 32
baryons into tm�PT by using HB�PT [24–26], which we
will refer as the twisted mass HB�PT (tmHB�PT). In
SU�2� the spin- 12 nucleons are described by a doublet

N �
p
n

� �
; (19)

and the delta resonances form a flavor quartet. As they are
spin- 32 , they are described by a Rarita-Schwinger field,

Tijk� , which is totally symmetric in flavor and satisfies
��T� � 0. The delta fields are normalized such that

T111 � &��; T112 �
1���
3

p &�;

T122 �
1���
3

p &0; T222 � &�:
(20)

The free Lagrangian for the nucleons and deltas to O�"2�
consistent with the symmetries of the lattice theory is (in
Euclidean space)

L� � Niv �DN � 2$MNM
tw
�N � 2�MNN tr�M

tw
� �

� 2�WNN tr�W�� � �T�iv �DT�� � &�T�T��

� 2�M�T�M
tw
� T�� � 2�M�T�T�� tr�M

tw
� �

� 2�W�T�T�� tr�W��; (21)

where the trace is taken in flavor space, and the notation
( � � � ) denotes contractions of the flavor (tensor) indices as
defined in e.g. Ref. [27]. The ‘‘twisted mass’’ spurion field
is defined by

M tw

 �

1

2
�6ymtw

Q 6
y 
 6�mtw

Q �y6�; mtw
Q �

�0

2B0
;

(22)

withmtw
Q being the ‘‘twisted’’ mass spurion for the baryons.

The ‘‘Wilson’’ (discretization) spurion field is defined by

W 
 �
1

2
�6ywQ6y 
 6wy

Q6�; wQ �
�2QCD
2W0

Â; (23)

with wQ being the Wilson spurion for the baryons. Note
that we have made simplifications using the properties of
SU�2� matrices when writing down Eq. (21). When setting
the spurions to their constant values, W� is proportional
to the identity matrix in flavor space. Thus the operators
NW�N and �T�W�T��, although allowed under the
014506
symmetries of tmLQCD, are not independent operators
with respect to NN tr�W�� and �T�T�� tr�W��, respec-
tively. This is also true of the nucleon and delta operators
involving Mtw

� in the isospin limit (but not away from it).
The independent operators we choose to write down are
those with the simplest flavor contractions, and this will be
the case henceforth whenever we make simplifications
using the properties of SU�2�.

In Eq. (21), the four-vector, v�, is the heavy baryon
four-velocity, and our conventional here is that v � v � 1.
The parameter& is the mass splitting between the nucleons
and deltas which is independent of the quark masses (often
referred to as the nucleon-delta mass splitting in the chiral
limit), and we treat &�m� � "2 following [24–26,28].
The chiral covariant derivative D� acts on the nucleon and
delta fields as

�D�N�i � @�Ni � �V��i
jNj;

�D�T��ijk � @�T�ijk � �V��i
i0T�i0jk � �V��j

j0T�ij0k

� �V��k
k0T�ijk0 :

(24)

The vector and axial-vector fields are defined by

V� �
1

2
�6@�6y � 6y@�6�;

A� �
i
2
�6@�6

y � 6y@�6�; 62 � �:
(25)

The dimensionless low energy constants (LECs), $M, �M,
�M, and �M have the same numerical values as in the usual
untwisted two-flavor HB�PT.

As was noted in Ref. [18], the shifting from � to �0 �

�� Â, which corresponds to the shift of the physical mass
m to m0 at the quark level does not, in general, remove the
discretization (Â) term, and this is seen explicitly here with
the presence of the discretization terms.

The Lagrangian describing the interactions of the nucle-
ons and deltas with the pions is

L� � 2gANS � AN � 2g&&T�S �AT�

� g&N�T
kji
� A�;i0

i �ji0Nk � H:c:�; i; j; k � 1; 2; 3:

(26)

The tensor �ij is the rank-2 analogue of the totally anti-
symmetric tensor �ijk. The vector S� is the covariant spin
operator [24,25]. The LECs in (26) are the same as those in
the untwisted two-flavor HB�PT. Note that the O�"2� free
Lagrangian (21) and interaction Lagrangian (26) are the
same as those given in Ref. [21] when the twist is removed,
i.e. when � � 0. With nonvanishing twist, the mass op-
erators carry a twisted component and the vacuum is
-4



4As detailed in Ref. [18], the twist angle that one determines
nonperturbatively in practice, call it !, will differ from !0 by
O�a�. This will give rise to a relative O�a� contribution to the
pion terms. But since the pions come into baryon calculations
only through loops, the correction will be of higher order than we
work. Thus, to the accuracy we work, we may use either ! or
!0.
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twisted from the identity to point in the direction of the
twist (the flavor �1 direction here) [18].

Following Ref. [18], we expand � about its vacuum
expectation value, defining the physical pion fields and
the physical 6 fields by

� � T�phT ; 6 � T 6phV�6ph�;

T � exp�i!0�1=2�; �ph � exp�i
���
2

p
� � �=f�;

T ; V 2 SU�2�:

(27)

Now, if we make the following chiral transformation
(under which the effective chiral Lagrangian is invariant)

�! L�Ry; 6! L6Vy � V6Ry; Ni ! VijNj;

Tijk� ! Vii
0
Vjj

0
Vkk

0
Ti

0j0k0
� ; �0 ! L�0Ry;

Â! LÂRy; L; R; V 2 SU�2�; (28)

using the particular SU�2� matrices L � Ry � T y, we
have in the transformed effective chiral Lagrangian

�! �ph; 6! 6ph;

A� !
i
2
�6ph@�6

y
ph � 6yph@�6ph�;

V� !
1

2
�6ph@�6

y
ph � 6yph@�6ph�;

(29)

and

Mtw

 ! M
 �

1

2
�6yphmQ6

y
ph 
 6phm

y
Q6ph�;

mtw
Q ! mQ � T y �0

2B0
T y;

W
 ! W tw

 �

1

2
�6yphw

tw
Q 6

y
ph 
 6ph�w

tw
Q �y6ph�;

wQ ! wtwQ � T y

��2QCD
2W0

Â
�
T y:

(30)

Note that since L � Ry � T y 2 SU�2�, and 6 �

Ly6phV � Vy6phR,

� � Ly�phR � 62 � �Ly6phV� � �V
y6phR�

� Ly62phR) 62ph � �ph: (31)

We see that the 6 field is now 6ph, the field associated
with the physical pions, and the twist is transferred from
the twisted mass (Mtw


 ) term to the ‘‘twisted Wilson’’
(W tw


 ) term, making the mass term in the HB�PT now
the same as that in the untwisted theory. The new mass
spurion, mQ, and the ‘‘twisted Wilson’’ spurion, wtwQ , now
take constant values

mQ ! mq � �q�3; wtwQ ! a�2QCD exp��i!0�1�:

(32)

We will call this the ‘‘physical pion basis’’ since this is the
014506
basis where the pions are physical [18], and we will work
in this basis from now on, unless otherwise specified.4 A
technical point we note here is that, in the isospin limit
where twisting can be implemented by any of the three
Pauli matrices, say �k, the physical pion basis can be found
following the same recipe detailed above but with �1 in T
replaced by �k throughout.

Rotating to the physical pion basis where the 6 field is
now the physical 6ph field in all field quantities, the form of
the interaction Lagrangian remains unchanged as given in
(26), while the O�"2� free heavy baryon chiral Lagrangian
(21) changes to

L� � Niv �DN � 2$MNM�N � 2�MNN tr�M��

� 2�WNN tr�W
tw
� � � �T�iv �DT�� � &�T�T��

� 2�M�T�M�T�� � 2�M�T�T�� tr�M��

� 2�W�T�T�� tr�W
tw
� �: (33)

Note that W tw
� is also proportional to the identity matrix in

flavor space when set to its constant value. Thus if we build
the free chiral Lagrangian directly in the physical pion
basis, the same simplifications due to SU�2� we used in
writing down Eq. (21) apply. Note that at this point, one
cannot yet tell whether the nucleon (N) and the delta (T�)
fields are physical. This has to be determined by the theory
itself. We will return to this point when calculating the
nucleon and delta masses below.

At O�"4�, there are contributions from O�am� and
O�a2� operators. The enumeration of the operators is simi-
lar to that set out in Ref. [21], except now the Wilson
spurion field carries a twisted component. The operators
appearing in the O�"4� chiral Lagrangian will involve two
insertions off the following: M
, W tw


 , and the axial
current A�. Note that since parity combined with flavor
is conserved in tmLQCD, any one insertion of M� or
W tw

� must be accompanied by another insertion of M� or
W tw

� . Now operators with two insertions of M� or A�,
which contribute to baryon masses at the tree and the one-
loop level, respectively, have the same form as those in the
untwisted theory (and so give the same contribution).
These have been written down in [29] and will not be
repeated here. Operators with an insertion of either a
combination of v �A and M� (which have the same
form as in the untwisted theory), or a combination of v �
A and W tw

� , will also not contribute to the baryon masses
at O�"4�.
-5
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At O�am�, there are two independent operators contrib-
uting to the masses in the nucleon sector,

L � � �
1

��
�nWM�

1 NM�N tr�W
tw
� �

� nWM�

2 NN tr�W tw
� � tr�M���; (34)

and two independent operators contributing to the masses
in the delta sector,

L � �
1

��
�tWM�

1 �T�M�T�� tr�W
tw
� �

� tWM�

2 �T�T�� tr�W
tw
� � tr�M���; (35)

where �� � 4�f.5 Note that there are no operators in-
volving the commutator, �M�;W

tm
� �, because it is iden-

tically zero. There are also operators involving
M� �W tw

� at O�am�, but these again do not contribute
to the baryon masses at the order we work.

Note that the scale used in Eqs. (34) and (35) above to
make the dimensions correct is not the QCD scale, �QCD,
but the �PT scale, ��. This follows from the naive dimen-
sional analysis of Ref. [30], and from the fact that these
operators also function as counterterms for divergences
arising from the leading loop diagrams, which have con-
tributions proportional to O�am�. We use the same analysis
to set the dimensionful scale in all the following operators
which contribute to the nucleon and delta masses to the
order we work.

At O�a2�, there are operators that do not break the chiral
symmetry arising from the bilinear operators and four-
quark operators (see e.g. Ref. [13] for a complete listing)
in the O�a2� part of Leff . These give rise to the tmHB�PT
operators

L � � a2�3QCD��bNN � t�T�T���: (36)

There are also chiral symmetry preserving but O�4� rota-
tion symmetry breaking operators which arise from the
bilinear operator of the form a2 � ��D�D�D� in the
O�a2� part of Leff . These give rise to the tmHB�PT
operators

L � � a2�3QCD��bvNv�v�v�v�N

� tv�T�v�v�v�v�T�� � t �v�T�v�v�T���: (37)

Note that these chiral symmetry preserving operators are
clearly not affected by twisting [the O�4� symmetry break-
ing operator at the quark level from which they arise
involve only derivatives with no flavor structure, and
f��; �5g � 0], and so they have the same form and con-
tribute to the baryon masses in the same way as in the
5We will use this definition as our convention, which differs
from the more standard convention, �� � 2

���
2

p
�f, employed by

other authors.
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untwisted theory. The chiral symmetry breaking operators
at O�a2� are those with two insertions of the Wilson
spurion fields. For the nucleons, there are two such inde-
pendent operators,

L � � �
1

�QCD
�nW�

1 NN tr�W tw
� � tr�W tw

� �

� nW�

1 NN tr�W tw
�W tw

� ��; (38)

and, for the deltas, there are three such independent opera-
tors,

L� �
1

�QCD
�tW�

1 �T�T�� tr�W
tw
� � tr�W tw

� �

� tW�

1 �T�T�� tr�W
tw
�W tw

� �

� tW�

2 Tkji� �W tw
� �ii

0
�W tw

� �jj
0
Ti

0j0k
� �: (39)

In the isospin limit where the mass splitting vanishes
(�q ! 0), more simplifications occur in the O�"4� chiral
Lagrangian. The nucleon operators with coefficients nWM�

1

and nWM�

2 are the same up to a numerical factor, and the
same holds for delta operators with coefficients tWM�

1 ,
tWM�

2 , tWM�

3 , and for operators with coefficients tW�

1 and
tW�

2 .
Note that, in the untwisted limit, the O�"4� chiral

Lagrangian reduces to that given in Ref. [21]. In particular,
with the twist set to zero, operators with two insertions of
W tw

� will not contribute to the nucleon or the delta mass
until O�a2m� �O�"6�. But for nonvanishing twist, they
contribute at O�a2�.
III. NUCLEON AND DELTA MASSES IN THE
ISOSPIN LIMIT

There have been extensive studies of the nucleon masses
and, to a lesser extent, the delta masses in HB�PT and
other variants of �PT. A partial list of references of these
studies includes [21,26,28,29,31–41]. In this work, we are
concerned with corrections to the masses of the nucleons
and the deltas due to the effect of the twisted mass pa-
rameter. We will therefore only give expressions for the
mass corrections arising from the effects of lattice discre-
tization and twisting in tmLQCD. A calculation of the
nucleon and delta masses in the continuum in infinite
volume to O�m2q� can be found in Ref. [29]. The mass
corrections due to finite lattice spacing to O�a2� in the
untwisted theory with Wilson quarks can be found in
Ref. [21], and the leading finite volume modifications to
the nucleon mass can be found in Ref. [42].

In this section, we present the results of nucleon and
delta masses calculated in tmHB�PT, in the isospin limit,
where the quark doublet is mass degenerate, and the twist
is implemented by �3. As we discussed in Sec. II A, in the
isospin limit, the content of tmLQCD is the same regard-
less of which Pauli matrix is used to implement the twist—
-6



FIG. 1. Diagrams depicting LO and NLO mass contributions to the nucleons in tmHB�PT in the physical pion basis. The solid,
double solid, and dashed lines denote nucleons, deltas, and pions, respectively. The solid triangle represents an insertion of the twisted
Wilson operator as given in Eq. (33). The solid squares denote the couplings of the baryons to the axial current whose form is given in
Eq. (26).
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the action for one choice is related to another by a vector
rotation. This must also hold true of the effective chiral
theory that arises from tmLQCD. Indeed, the heavy baryon
Lagrangian constructed in Sec. II C with �1 twisting can be
rotated into that with �3 twisting by making a vector trans-
formation, which is given by Eq. (28) but with L � R �

V � exp�i �4 �2�.

A. Nucleon masses in the isospin limit

In the continuum, the mass of the nucleons in infinite
volume HB�PT with two flavor-degenerate quarks is or-
ganized as an expansion in powers of the quark mass,
which can be written as6

MNi � M0�&;�R� �M�1�
Ni
�&;�R� �M�3=2�

Ni
�&;�R�

�M�2�
Ni
�&;�R� � � � � ; (40)

whereNi stands for either the proton �i � p� or the neutron
�i � n�, and M�n�

Ni
is the contribution to the ith nucleon of

O�mn
q� calculated in the continuum and infinite volume

two-flavor �PT in the isospin limit [29]. The quantity
M0�&;�R� is the renormalized nucleon mass in the chiral
limit; it is independent of mq and Ni, but depends on the
renormalization scale �R and on &, the renormalized mass
splitting between the nucleons and deltas which is inde-
pendent of the quark masses. Here, we are interested in the
corrections to this formula due to the effects of lattice
discretization and twisting arising from tmLQCD. We
denote these lattice corrections to the nucleon mass at
O�"2n� �O�mn

q� �O�an� (factors of �QCD needed to

make the dimensions correct are implicit here) as :M�n�
Ni

,
and the nucleon mass in tmHB�PT is now written as
6Here we use a different convention from some of the more
recent nucleon mass calculations.
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Mtm
Ni

� M0 � �M�1�
Ni

� :M�1�
Ni
� � � � � : (41)

Throughout this work, we use dimensional regularization
with a modified minimal subtraction scheme where we
consistently subtract off terms proportional to

1

"
� �E � 1� log4�: (42)

The leading correction in tm�PT comes in at tree level,
arising from the twisted Wilson nucleon operator in the
free heavy baryon Lagrangian (33). It reads

:M�1�
Ni
�!� � �4�Wa�2QCD cos�!�; (43)

where, to the accuracy we work, ! can either be !0 or the
twist angle nonperturbatively determined. Note that this
correction is the same for both the proton and the neutron.
At leading order, the nucleon mass is automatically O�a�
improved, as :M�1�

Ni
vanishes at maximal twist, ! � �=2.

At zero twist, ! � 0, it reduces to that in the untwisted
theory [20,21].

The next contribution to the nucleon mass comes from
the leading pion loop diagrams shown in Fig. 1. However,
at the order we work, the form of the O�m3=2� nucleon
mass contribution is unchanged from the continuum. For
completeness we give its full expression here:

M�3=2�
Ni

� �
3

16�f2
g2Am

3
� �

8g2&N
3�4�f�2

F �m�;&;�R�;

(44)

where m2� � M0 � 2B0mq is the physical pion mass-
squared given in Eq. (16), and the function F is given by
F �m;:;�R� � �m2 � :2�
� ������������������
:2 �m2

p
log

�
:�

�����������������������������
:2 �m2 � i"

p

:�
�����������������������������
:2 �m2 � i"

p

�
� : log

�
m2

�2R

�

�
:
2
m2 log

�
m2

�2R

�
: (45)
The corrections to M�2�
Ni

come from both the tree level
and the one-loop diagrams, as shown in Fig. 2. The twisted
Wilson operator in the free Lagrangian (33) gives rise to a
tadpole diagram, which produces a contribution of O�am�.
The leading Wilson spurions also contribute to O�am�
when inserted inside the pion-nucleon loops, and are partly
canceled by wave function corrections. The tree level
contributions come from the operators given in Eqs. (34)
and (36)–(38). Just as in the untwisted continuum theory,
these act both as the higher dimensional operators and as
counterterms that renormalize divergences from the lower
-7



FIG. 2. Diagrams depicting mass contributions to the nucleons at next-to-next-to-leading order (NNLO) in tmHB�PT in the physical
pion basis. The solid, double solid, and dashed lines denote nucleons, deltas, and pions, respectively. The solid triangle denotes an
insertion of the twisted Wilson operator as given in (33). The solid squares denote the coupling of the baryons to the axial current
whose form is given in (26). The clear triangle denotes a tree level insertion of the operators given in Eqs. (34) and (36)–(38).
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order loop contributions. For instance, coefficients nWM�

1
and nWM�

2 are renormalized to absorb divergences from the
tadpole and one-loop contributions mentioned above. As
mentioned in Sec. II C, the operators with these coeffi-
cients are suppressed by �� instead of �QCD because
014506
they are the counterterms for the loop divergences. These
coefficients are taken to be the renormalized coefficients
(finite) in the mass calculations, and to contain the counter-
terms needed in our renormalization scheme. The correc-
tions to M�2�

Ni
read
:M�2�
Ni
�!� � 12�W

a�2QCD
�2�

m2� log
�
m2�
�2R

�
cos�!� � 16g2&N��W � �W�

a�2QCD
�2�

�J �m�;&;�R� �m2�� cos�!�

� 2�nWM�

1 � 2nWM�

2 �
a�2QCD
��

mq cos�!� � a2�3QCD�b� bv� � a2�3QCD�2n
W�

1 sin2�!� � 4nW�

1 cos2�!��; (46)

where the function J is given by

J �m;:;�R� � �m2 � 2:2� log
�
m2

�2R

�
� 2:

������������������
:2 �m2

p
log

�
:�

�����������������������������
:2 �m2 � i"

p

:�
�����������������������������
:2 �m2 � i"

p

�
: (47)
Note that the O�"4� corrections are again the same for both
the proton and the neutron. At maximal twist, the O�"4�
corrections are given by

:M�2�
Ni
�! � �=2� � a2�3QCD�2n

W�

1 � b� bv�; (48)

while at zero twist these reduce to the corrections given in
Ref. [21]. We see that the nucleon masses are also auto-
matically O�a� improved at O�"4�.

To the order we work, the expressions for the nucleon
mass corrections in tmHB�PT given in Eqs. (43) and (46),
together with the untwisted continuum HB�PT expres-
sions for the nucleon masses, provide the functional form
for the dependence of the nucleon masses on the twist
angle !, and the quark mass mq, which can be used to fit
the lattice data.

B. Delta masses in the isospin limit

Before we present our delta mass expressions, we stress
that they can only be fit to tmLQCD data for sufficiently
large quark masses such that the delta is a stable particle.
This corresponds to m� * 300 MeV, which is pushing the
bounds of validity of chiral perturbation theory [42].
However, these expressions can be used to study the con-
vergence of �PT for these pion masses, where the LECs
can be determined. With the value of the LECs known, the
mass calculations can be analytically continued to pion
masses where the delta becomes unstable, and be used to
predict e.g. their lifetimes.

The delta masses in the continuum, infinite volume
HB�PT with a flavor doublet of degenerate quarks have
a similar expansion as that for the nucleons given in
Eq. (40). The mass expansion of the ith delta is conven-
tionally written

MTi � M0�&;�R� �&�M�1�
Ti
�&;�R� �M�3=2�

Ti
�&;�R�

�M�2�
Ti
�&;�R� � � � � ; (49)

where

T1 � &��; T2 � &�; T3 � &0; T4 � &�;

(50)

and M�n�
Ti

is the contribution to the ith delta of O�mn
q�

calculated in the continuum and infinite volume two-flavor
�PT in the isospin limit [29]. As in the case of the nucle-
ons, M0�&;�R� is the renormalized nucleon mass in the
chiral limit, and the parameter & is the renormalized mass
-8



FIG. 3. Diagrams depicting LO and NLO mass contributions to the deltas in tmHB�PT in the physical pion basis. The solid, double
solid, and dashed lines denote nucleons, deltas, and pions, respectively. The solid triangle is an insertion of the twisted Wilson operator
given in Eq. (33). The solid squares denote the couplings of the baryons to the axial current whose form is given in Eq. (26).
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splitting between the nucleons and deltas which is inde-
pendent of the quark masses.7

Both parameters, M0 and &, are flavor singlets, and are
therefore renormalized in the same way. In the nucleon
sector, all flavor singlet mass contributions that are inde-
pendent of the quark mass go into renormalizing the
parameter M0. In the delta sector, the choice of which
parameter to renormalize, M0 or &, is arbitrary. For con-
venience we choose M0 to be the renormalized nucleon
mass in the chiral limit. Thus, & is simply the difference
between the nucleon and delta masses in the chiral limit, to
a given order in the chiral expansion. Both M0 and & are
parameters which must be fit to the lattice data. For the
delta masses, we use the same renormalization scheme as
for the nucleons.

We again denote the correction of O�"2n� to the delta
masses due to the effects of lattice discretization and twist-
ing arising from tmLQCD as :M�n�

Ti
, and the delta masses in

tmHB�PT are written as

Mtm
Ti

� M0 � &� �M�1�
Ti

� :M�1�
Ti
� � � � � : (51)

The leading mass correction arises at tree level from the
twisted Wilson delta operator given in Eq. (33),

:M�1�
Ti
�!� � �4�Wa�

2
QCD cos�!�: (52)
7There are some subtle issues involved in calculating & in
HB�PT due to the fact that it is a flavor singlet, and so can
modify all operators/LECs in the chiral Lagrangian. However,
since one cannot vary &, all the LECs associated with modifying
& are not determinable. Nevertheless, one can simply fit for the
physical value of & determined by the lattice, and use that value
in all expressions in which it arises. For further discussion on this
point, see Refs. [29,40].
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Just as for the nucleons, this does not split the delta masses
and vanishes at maximal twist.

The O�"3� delta mass contributions are similarly given
as for the nucleons. The contributing diagrams are shown
in Fig. 3. They do not cause any splitting between the
deltas, and receive no discretization corrections. For com-
pleteness, we list the full mass expression at this order
here:

M�3=2�
Ti

� �
25g2&&
432�f2

m3� �
2g2&N
3�4�f�2

F �m�;�&;�R�:

(53)

Form� >&, the deltas are stable particles, but form� <&
the deltas become unstable [as can be seen from the fact
that the function, F �m�;�&;�R�, picks up an imaginary
component]. When the deltas are unstable, one will not be
able to use these expressions to fit the lattice data.
However, these expressions can be used to fit the lattice
data for m� * 300 MeV, and then analytically continued
to light enough pion masses for which the deltas are
unstable.

At O�"4�, contributions due to the effects of twisting
arise from similar diagrams as in the nucleon case, and are
shown in Fig. 4. A splitting in the delta masses first arises at
this order, which comes from the operator with coefficient
tW�

2 given in (39). The mass corrections read
:M�2�
Ti
�!� � 12�W

a�2QCD
�2�

m2� log
�
m2�
�2R

�
cos�!� � 4g2&N��W � �W�

a�2QCD
�2�

J �m�;�&;�R� cos�!�

� 2�tWM�

1 � 2tWM�

2 �
a�2QCD
��

mq cos�!� � a2�3QCD�t� tv� � a2�3QCD�4t
W�

1 cos2�!� � 2tW�

1 sin2�!�

� tW�

2 :Tisin
2�!��; (54)
where

:Ti �
�
�1 for Ti � &��;&�

1
3 for Ti � &�;&0:

(55)

Note the appearance of the mass splitting, :Ti , in :M�2�
Ti

.
We see from above that, starting at O�"4�, the delta mul-
tiplet is split into two mass-degenerate pairs, with one pair
containing &�� and &�, and the other &� and &0. At
-9



FIG. 4. Diagrams depicting mass contributions to the deltas at NNLO in tmHB�PT in the physical pion basis. The solid, double
solid, and dashed lines denote nucleons, deltas, and pions, respectively. The solid triangle denotes an insertion of the discretization
operator in Eq. (33). The solid squares denote the coupling of the baryons to the axial current whose form is given in Eq. (26). The
clear triangle denotes a tree level insertion of the operators given in Eqs. (35)–(37) and (39).
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maximal twist, :M�2�
Ti

becomes

:M�2�
Ti
�! � �=2� � a2�3QCD�t� tv � 2tW�

1 � tW�

2 :Ti�;

(56)

while at zero twist it reduces to that given in Ref. [21]. Just
as in the nucleon case, the delta masses to O�"4� are also
automatically O�a� improved.

As is the case with the nucleons, to the order we work,
the expressions for the delta mass corrections in tmHB�PT
given in Eqs. (52) and (54), together with the untwisted
continuum HB�PT expressions for the delta masses pro-
vide the functional form for the dependence of the delta
masses on the twist angle !, and the quark massmq, which
can be used to fit the lattice data.

C. Mass splittings

Having derived the expressions for the nucleon and delta
masses in tmHB�PT to order O�"4� in the isospin limit, we
now focus on the mass splittings between the nucleons and
between the deltas. The mass contributions in the contin-
uum, M�n�

Ni
and M�n�

Ti
, clearly do not give rise to mass

splittings for the nucleons and deltas, since they are calcu-
lated with degenerate quarks. Therefore, any mass splitting
can only come from the mass corrections arising from
tmLQCD.

From the results of Secs. III A and III B, we find that to
O�"4� the protons and neutrons remain degenerate, while
the delta multiplet splits into two degenerate pairs, with
&�� and &� in one pair and &� and &0 in the other. The
splitting between the degenerate pairs in the delta multiplet
is given by

M&�;0 �M&��;� �
4

3
tW�

2 a2�3QCDsin
2�!�

�
4

3
tW�

2 a2�3QCD
�2

m2q
: (57)

We reiterate here that the O�a� uncertainty inherent in the
definition of the twist angle results in a correction to
M&�;0 �M&��;� of O�a3� �O�"6�, which is of higher
order than we work. Hence, to the accuracy we work, we
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may use !0 or any other nonperturbatively determined
twist angle for ! above.

Just as the case of the pion mass splitting worked out in
Ref. [18], this delta splitting must vanish quadratically in
a� � amq sin�!� on general grounds, since the masses do
not violate parity. One would therefore expect, naively, the
splitting to be O�a2m2q� �O�"8�. But, as our results show,
there is in fact a mass dependence in the denominator such
that the effect is O�"4�. Suppose we take a�1 � 2 GeV and
�QCD � 0:5 GeV, then we would find a mass splitting,

M&�;0 �M&��;� � 0:04tW�

2 GeV: (58)

Using naive dimensional analysis, we expect tW�

2 �O�1�,
and we would have a mass splitting of the delta pairs on the
order of 50 MeV. We point out that, in the recent quenched
study [19], a mass splitting of on the order of 50 to
100 MeV is found. However, our formula can only be
applied to lattice data from unquenched simulations, which
have yet to be done, since it is derived in a fully un-
quenched theory. Nevertheless, it is encouraging that the
quenched results are not dramatically different from the
estimate we give above with a reasonable value of �QCD.

Now, the degeneracies we found for the nucleons and the
delta multiplet above hold not only at O�"4�, but in fact
they hold to all orders in tm�PT. This can be understood by
considering the lattice Wilson-Dirac operator associated
with the action of tmLQCD given in Eq. (2) in the isospin
limit with �3 twisting,

DWD �
1

2

X
�

���r?
� �r�� �

r
2

X
�

r?
�r� �m0

� i�5�3�0; (59)

which has the self-adjointness property [22]

�1�5DWD�5�1 � Dy
WD: (60)

It follows then that the propagator for the upper and lower
component of the quark doublet,  l�x�, call them Su�x; y�
and Sd�x; y� respectively, satisfy the relations
-10
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�5Su�x; y��5 � Syd �y; x�; �5Sd�x; y��5 � Syu �y; x�:

(61)

This means that any baryon two-point correlator is invari-
ant under the interchange of the quark states in the quark
doublet combined with Hermitian conjugation, leading to
the degeneracies mentioned above. An argument of this
type has been given in Ref. [19].

The same can also be shown in a chiral Lagrangian
treatment, as must be the case. Now one of the symmetries
of tmLQCD with two-flavor-degenerate quarks and
�3-twisting is the pseudoparity transformation, P 1

F, where
ordinary parity is combined with a flavor exchange [5],

P 1
F :

8>>><
>>>:
U0�x� ! U0�xP�; xP � ��x; t�
Uk�x� ! Uy

k �xP�; k � 1; 2; 3;
 l�x� ! i�1�0 l�xP�
� l�x� ! �i � l�xP��0�1

(62)

and U� are the lattice link fields. At the level of HB�PT,
this is manifested as the invariance of the chiral Lagrangian
under the transformations

p�x� $ n�xP�; &��;��x� $ &�;���xP�;

&�;0�x� $ &0;��xP�; �Fk�1Ok�x� ! �Fk�1�1Ok�xp��1;

(63)

where for an operator in the chiral Lagrangian, Ok is any
operator matrix that contracts with the flavor indices of the
nucleon (N) or delta (T�) fields in the operator. If the N or
T� fields contained in an operator have a total of 2F flavor
indices, �Fk�1Ok is the tensor product of F operator matri-
ces which contract with the F distinct pairs of these flavor
indices. The degeneracies in the nucleons and the delta
multiplets discussed above would then follow if all the
operators in the chiral Lagrangian that contribute to the
baryon masses have a structure that satisfies the condition

�Fk�1Ok�x� � �Fk�1�1Ok�xP��1; (64)

Consider first the case for the nucleons. Since the nu-
cleon fields are vectors in flavor space, we can take F � 1
without loss of generality (the nucleon fields can only
couple to one operator matrix). Since the chiral
Lagrangian is built with just M
, W tw


 , A�, and V�,
the operator matrix Ok can only be constructed from
combinations of these fields. We need not consider combi-
nations involving just M� and W tw

� , since the flavor
structure of both is trivial, i.e. proportional to the identity.
We also need not consider mass contributions arising from
pion loops, because they must have the same flavor struc-
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ture as the tree level local counterterms used to cancel the
divergences in these loops. Therefore, we do not have to
consider operators involving A� and V�, which give rise
to mass contributions only through pion-nucleon interac-
tions. This leaves us with only combinations involving
M� and W tw

� as possible candidates to break the degen-
eracy in the nucleons. As was discussed in Sec. II C, be-
cause of the parity-flavor symmetry of tmLQCD, Ok can
not contain just a single M� or W tw

� , but must always
have an even number from the set fM�;W

tw
� g. Now any

such combination would indeed have a pure tree level
part, however, it is also proportional to the identity in
flavor space. Thus there is no operator matrix, Ok, that
one can construct which violates the condition Ok�x� �
�1Ok�xP��1.

The arguments for the case of the deltas runs similar to
that for the nucleons. For the same reason given in the
nucleon case, we need not consider operator structures that
involve M�, W tw

� , A�, and V�. We need only consider
operator structures involving an even number from the set
fM�;W

tw
� g. For the deltas, F can be three since each delta

field has three flavor indices. But since two of the Ok in
�3k�1Ok must come from the set fM�;W

tw
� g to satisfy the

parity-flavor symmetry of tmLQCD, we can take F to be at
most two without loss of generality. Now each of M� and
W tw

� has a tree level part that is proportional to �3; thus,
under P 1

F, O1 �O2 where Ok can be either M� or W tw
� ,

satisfies the symmetry condition (64). Therefore, one can
not construct operators for the deltas that break the degen-
eracy between the pairs in the delta multiplet.

IV. NUCLEON AND DELTA MASSES AWAY FROM
THE ISOSPIN LIMIT

In this section, we present results for mass corrections
due to twisting away from the isospin limit, where the
quarks are now mass nondegenerate. To the order we
work, the corrections due to the mass splitting come in
only at tree level. For clarity, we will only point out the
change arising from the quark mass splitting; we will not
repeat the discussion on the nucleon and delta masses that
are the same both in and away from the isospin limit.

A. The flavor-diagonal basis for the mass matrix at
O�"4�

The natural choice for splitting the quark doublet is to
use the real and flavor-diagonal Pauli matrix, �3, since the
quark states one uses on the lattice correspond to the
quarks in QCD in the continuum limit. But as was dis-
cussed in Sec. II A above, twisting cannot be implemented
with �3 in this case (the fermionic determinant would be
complex otherwise), and so �1 is used instead. This means
that the quark mass matrix in Leff given in Eq. (5),
m� i��5�1 � �q�3, can never be made flavor diagonal
-11
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through an appropriate change of basis if both the twist and
the mass splitting are nonvanishing, because �1 and �3
cannot be simultaneously diagonalized.

Since the twist is implemented by a flavor nondiagonal
Pauli matrix away from the isospin limit, flavor mixings
are induced for nonzero twist: the quark states in tmLQCD
are now linear combinations of the physical quarks of
continuum QCD. At the level of the chiral effective theory,
this manifests itself in that the hadronic states described by
the tm�PT Lagrangian are linear combinations of the
continuum QCD hadronic states we observe, viz. the pions,
nucleons, deltas, etc.

If the effects from twisting are perturbative as compared
to the isospin breaking effects, the hadronic states de-
scribed by tm�PT will be ‘‘perturbatively close’’ to their
corresponding continuum QCD states, i.e. the difference
between them is small compared to the scales in the theory
(see Appendix B for an explicit demonstration). In this
case, we can still extract QCD observables directly from
tm�PT, as the corrections will be perturbative in the small
expansion parameter. However, if the twisting effects are
on the same order as the isospin breaking effects so that the
flavor mixings are large, these corrections will not be
perturbative.8 Nevertheless, one can still extract informa-
tion for the QCD observables: One can still measure the
masses of these tmLQCD hadronic states in lattice simu-
lations, and one can fit these to the analytic expressions for
these masses calculated in tm�PT to extract the values of
the LECs. The LECs associated with the continuum �PT
contributions have the same numerical values as in tm�PT.
Therefore, if one determines these from tmLQCD simula-
tions, one knows the masses of the QCD hadronic states.

At the order we work, flavor mixings are manifested in
the appearance of flavor nonconserving pion-baryon verti-
ces in the Feynman rules of tmHB�PT, and in that the
baryon mass matrix is not flavor diagonal. Since we work
in the physical pion basis where the twist is carried by the
Wilson spurion (now flavor nondiagonal) instead of the
mass spurion (now flavor diagonal), flavor mixings can
only arise from operators with one or more insertions of
the Wilson spurion field. Because of this, the flavor non-
conserving pion-baryon vertices and the nondiagonal terms
in the mass matrix must be proportional to a, the lattice
spacing, and so must vanish in the continuum limit where
8A qualitative guide to the size of the flavor mixings can be
found in the ratios of two-point correlation functions. Define the
ratio of QCD delta states by

Rij �
h&i&ji � h&j&ii

h&i&ii � h&j&ji
:

Flavor mixing should be small if the off-diagonal elements of Rij
are small. To determine the size of the flavor mixings quantita-
tively, one has to look at the splitting in the delta multiplet. We
will discuss this further in the text below.
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the effects of the twist are fake and can be removed by a
suitable chiral change of variables [1,2].9

For the nucleons, flavor mixings induce only unphysical
flavor nonconserving pion-nucleon vertices which vanish
in the continuum limit; the nucleon matrix is still flavor
diagonal at the order we work. In fact, this is true to all
orders in tmHB�PT. The reason is the same as that given in
Sec. III C. We need only consider the tree level part of the
possible operator structures that one can construct from the
spurion fields in tmHB�PT. Now the only spurion field that
has a tree level part with nondiagonal flavor structure is
W tw

� , and as we discussed above, it must be paired either
with another W tw

� or with M�, which renders the flavor
structure of the tree level part of the combination trivial.
Thus we may take the basis of nucleons used in the
tmHB�PT Lagrangian as the physical nucleon basis.

For the deltas, not only are there flavor nonconserving
pion-delta vertices, at the order we work, the delta mass
matrix is already flavor nondiagonal at tree level. This
happens for the deltas because the tensor nature of the
T� field allows more freedom in the way the flavor struc-
ture of the delta operator can be constructed. Thus, in order
to have only physical tree level mass terms for the deltas,
we must change to a basis where the delta mass matrix is
diagonal, which can now only be done order by order.

When diagonalizing the delta mass matrix, we need, in
principle, to diagonalize the mass matrix that contains all
the mass contributions from both tree and loop level to the
order that one works. But we find the difference between
diagonalizing the delta mass matrix including both tree and
loop level contributions at the order we work, and diago-
nalizing that with only the tree level mass contributions,
give rise to corrections only to the loop level mass con-
tributions, which are higher order than we work. Thus, we
will diagonalize the delta mass matrix containing just the
tree level mass terms in our calculation for the delta
masses.

To the order we work, if the tree level mass is given by

v �&M&v&; v �& � � �&�� �&0 �&� �&� �;

v& � �&�� &0 &� &� �T;
(65)

where v �& and v& are vectors of the delta basis states used
in the tmHB�PT Lagrangian, andM& is the tree level mass
matrix, the physical delta basis is given by

v0& � S�1 � v&; v0�& � v �& � S; (66)
9This shows again the convenience of the pion physical basis,
where all the effects of symmetry breaking in the lattice theory
are parametrized and contained in the Wilson spurion fields,
which then vanish as the symmetries are restored in the contin-
uum limit.
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where S is the matrix of eigenvectors of M& such that

S �M& � S�1 � D; (67)

with D the corresponding diagonal eigenvalue matrix.
This implies that

v �&M&v& � �v0�& � S�1� � �S �D � S�1� � �S � v0&�

� v0�&Dv0&: (68)

The full details of the diagonalization are provided in
Appendix B. In the following sections, we will work in
this basis for calculating the delta masses.

The Feynman rules in the new basis are obtained from
the same tmHB�PT Lagrangian given above in Sec. II C
but with each of the delta flavor states now rewritten in
terms of the new delta flavor states given by the defining
relations (66). Note that changing to the new delta basis
induces new unphysical flavor nonconserving vertices in
the delta interaction terms given in (26), because in terms
of the new basis states, flavors are mixed. However, these
flavor mixing components are proportional to the off-
diagonal elements of S, which are proportional to the lat-
tice spacing as well as the twist angle (see Appendix B).
Thus they vanish in the limit of vanishing twist or lattice
spacing, and so the unphysical vertices arising from them
also vanish in these limits.

We note and reiterate here that in the isospin limit, this
order by order mass matrix diagonalization is unnecessary
as one can always rotate to a basis where the twist is flavor
diagonal from the outset, and issues of flavor nonconserv-
ing vertices and nondiagonal mass matrices due to flavor
mixings do not arise.10

B. The nucleon masses

Away from the isospin limit, the first change caused by
the mass splitting occurs in the continuum mass contribu-
tion M�1�

Ni
, since the quark masses

mu � mq � �q; md � mq � �q; mq; �q > 0

(69)

are no longer equal.
At the order we work, the only other change due to the

mass splitting appears at O�"4� in the contribution from the
O�am� nucleon operator with coefficient nWM� given in
Eq. (34). In the isospin limit, its contribution to :M�2�

Ni
�!� is

proportional to mq, but away from the isospin limit it
10In fact, as is shown in Appendix B, if one insists on remaining
in the basis where the twist in flavor is nondiagonal, one would
find that the unphysical terms arising from flavor mixings do not
vanish in the continuum limit.
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becomes

2nWM�

1 a��mq cos�!� ! 2nWM�

1 a��mi cos�!�; (70)

where

mi �

�
mu for i � p
md for i � n:

(71)

The corrections to the nucleon masses from the effects of
lattice discretization and twisting are otherwise the same as
those given in Eqs. (43) and (46).

Note that the nucleon masses are automatically O�a�
improved, just as in the isospin limit.

C. The delta masses

Away from the isospin limit (�q � 0), we calculate the
delta mass and mass corrections in the basis where the
delta mass matrix is diagonal to the order we work. This
diagonalization is worked out in Appendix B, where we
have obtained general expressions for the new delta basis
that are valid in the range from �q � 0 to �q � a�2QCD.
Here, we present the case where �q > 0 and �q �mq �

a�2QCD � a2�3QCD, which is a regime that simulations in
the near future can probe. To the order we work, we may
take the new delta basis states in this regime to be

T0
1 $ j&1i � C1

�
j&��i �

���
3

p
B

4A
j&0i



;

T0
3 $ j&3i � C3

�
�1�

B
4A

�j&0i �

���
3

p
B

4A
j&��i



;

T0
2 $ j&2i � C2

�
j&�i �

���
3

p
B

4A
j&�i



;

T0
4 $ j&4i � C4

��
1�

B
4A

�
j&�i �

���
3

p
B

4A
j&�i



;

(72)

where T0
i � &i denote the deltas in the new basis, Ci are

normalization factors, and

A � 2�q

�
�M � tWM�

1

a�2QCD
��

cos�!�
�
;

B � tW�

2 a2�3QCDsin
2�!�:

(73)

Note that A�O�"2� and B�O�"4� in our power count-
ing, so B=A�O�"2� and the effects of the flavor mixings
is perturbative.

The masses of these states are comprised of the contin-
uum expressions given in Ref. [29] and corrections due to
the effects of discretization and twisting. Note the contin-
uum expressions for the delta masses here are necessarily
changed from that in the isospin limit because mu � md.
The mass corrections due to the effects of lattice discreti-
zation and twisting come in at tree level; the loop contri-
butions remain unchanged from that in the isospin limit.
The tree level mass contributions to the order we work have
-13
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been worked out in Eq. (B7), in the process of diagonalization. We list here the full delta mass corrections to O�"4�, which
we denote by :Mi, to the mass of the delta state denoted by T0

i:

:Mi�!� � �4�Wa�2QCD cos�!� � 12�W
a�2QCD
�2�

m2� log
�
m2�
�2R

�
cos�!� � 4g2&N��W � �W�

a�2QCD
�2�

J �m�;�&;�R� cos�!�

� 2tWM�

1

a�2QCD
��

m0
i

3
cos�!� � 4tWM�

2

a�2QCD
��

mq cos�!� � a2�3QCD�t� tv�

� a2�3QCD�4t
W�

1 cos2�!� � 2tW�

1 sin2�!� � tW�

2 :0isin
2�!��; i � 1; . . . ; 4; (74)
where

m0
i �

8>>><
>>>:
3mu for i � 1
2mu �md for i � 2
mu � 2md for i � 3
3md for i � 4;

:0
i �

�
0 for i � 1; 4
� 2
3 for i � 2; 3:

(75)

Note that :Mi�!� as given in Eq. (74), is the same as the
sum of :M�1�

Ti
and :M�2�

Ti
as given in Eqs. (52) and (54),

respectively, but with the changes

2tWM�

1

a�2QCD
��

mq cos�!� ! 2tWM�

1

a�2QCD
��

m0
i

3
cos�!�;

:Ti ! :0
i: (76)

The full expressions for the delta masses can be obtained
when the continuum contributions are included. To the
order we work, one can obtain the complete mass expres-
sion for delta denoted by T0

i to O�"4� in tmHB�PT by
adding the mass corrections, :Mi�!�, to the continuum
mass of the delta denoted by Ti, whose expression can be
found in Ref. [29].

We stress here that one cannot take the isospin limit
from any of the expressions given above in this subsection.
They have been derived for �q � 0 and with the assump-
tion that the twisting effects are much smaller than the
isospin breaking effects. One must use the general formu-
las given in Eqs. (B6) and (B7) when considering cases
where these conditions are not true.

Observe that, away from the isospin limit, the delta
masses are also automatically O�a� improved at maximal
twist (! � �=2), as all terms proportional to a in :Mi are
proportional to cos�!� as well. Hence, to the order we
work, the contributions due to the isospin breaking are
the same as that in the continuum at maximal twist.

V. SUMMARY

In this paper we have studied the mass spectrum of the
nucleons and the deltas in tmLQCD with mass nondegen-
erate quarks using effective field theory methods. We have
extended heavy baryon chiral perturbation theory for
SU�2� to include the effects of the twisted mass, and we
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have done so to O�"4� in our power counting, which
includes operators of O�am2; ap2; a2�. Using the resulting
tmHB�PT, we have calculated the nucleon and the delta
masses to O�"4�, and we found them to be automatically
O�a� improved as expected from the properties of
tmLQCD.

Because of the twisting, the vacuum is no longer aligned
with the identity in flavor space, which has nontrivial
effects on the physical excitations (pions) of the theory.
Also, depending on whether the quarks are mass degener-
ate or not, the way twisting is implemented determines
what the physical baryon states are in the theory. We have
highlighted these subtleties when doing calculations in
tmHB�PT.

In order for the pions in the theory to be physical, we
have to make a particular (nonanomalous) chiral change of
variables to undo the twisting effects. This requires the
knowledge of the twisting angle but, once that is deter-
mined, the physical pion basis can be determined a priori.
However, whether or not the nucleons and deltas are physi-
cal must still be determined from the theory. In the isospin
limit, both the nucleon and the delta mass matrices are
diagonal, and so the nucleon and delta states contained in
the N and T� fields are physical. However, away from the
isospin limit, only the nucleon mass matrix remains diago-
nal. Thus, the N field can still be regarded as physical, but
the physical deltas are now linear combinations of the
flavor states contained in the T� field. This can be under-
stood from the fact the at the quark level, the physical QCD
states, the u and d quarks, are eigenstates of �3 but not of
�1. So only in the isospin limit, where the twist can always
be implemented by the flavor-diagonal Pauli matrix, �3, are
the states contained in the quark doublet physical quarks.
Away from the isospin limit, the twist cannot be imple-
mented by �3 anymore, and the eigenstates of the
Hamiltonian of the theory are composed of linear combi-
nations of the u and d quarks.

The physical states in tm�PT are in general a mixture of
those in the untwisted �PT. The size of the mixture is
determined by the relative sizes of the discretization ef-
fects, which are O�a2�, and the isospin splitting effects,
which are O��q�. In this work, we have given general
expressions for the nucleon and delta masses with respect
to this mixing of states that are valid in the range from �q �
0 to �q � a�QCD.
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The quantities which provided the motivation for this
work and turned out to be most interesting are the mass
splittings between the nucleons and between the deltas. We
found that, in the isospin limit, the nucleon masses do not
split to any order in tm�PT, while the delta multiplet splits
into two degenerate pairs. This can be understood from the
symmetries of tmLQCD at the quark level and, as we have
shown, also at the level of tm�PT. The mass splitting
between the multiplets, M&�;0 �M&��;� , first arises from
a tree level contribution at O�a2�, and it gives an indication
of the size of the flavor breaking in tmLQCD. This splitting
in the delta multiplet will be easier to calculate in lattice
simulations than the corresponding quantity m2�3 �m2�1;2
in the meson sector [18], since it involves no quark-
disconnected diagrams.

Twisted mass HB�PT can also be extended to partially
quenched theories (extension to partially quenched tm�PT
for pions has recently been done [43]). This will be
useful in the near future as numerical studies of tmLQCD
move from quenched simulations to the more realistic,
if more computationally demanding, partially quenched
simulations.
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APPENDIX A: ABSENCE OF ADDITIONAL
DIMENSION FIVE SYMMETRY BREAKING

OPERATORS INDUCED BY THE MASS SPLITTING

In this appendix, we show that the mass splitting does
not induce any symmetry breaking terms in the effective
continuum Lagrangian at the quark level at quadratic order.
The (mass) dimension six operators in the Symanzik
Lagrangian we can drop for the same reason given in
Ref. [10], since they are either of too high order (cubic
or higher in our expansion) or they do not break the
symmetries further than those of lower dimensions. For
dimension five operators, we will show that the only al-
lowable terms by the symmetries of the lattice theory are
those that either vanish by the equations of motion, or can
be removed by suitable O�a� redefinitions of the parame-
ters in L0, the effective Lagrangian in the continuum limit
(the lowest order effective Lagrangian).

In the mass-degenerate case [10], the only dimension
five operator that appears is the Pauli term. Since in the
limit of vanishing mass splitting (the isospin limit) the
mass nondegenerate theory must be the same as the
mass-degenerate theory, any additional operators induced
by the mass splitting must be proportional to the mass
splitting. These can only be of the form
�2q � O0 : O0 � ,0nf1g; ,0 � f1; �k; �5; �5�kg; k � 1; 2; 3; dim�O0� � 0;

�q � O1 : O1 � fD6 ,0; m,0; �,0gnfD6 �3; m�3g; dim�O1� � 1;
(A1)
TABLE I. The structures of the dimension five operators that
are nonvanishing by the equations of motion and nonremovable
by parameter redefinitions. They are classified by the symmetries
that forbid them.

Structure C P 3
F

~P P 2
F;�q

O0 �2, �5�2 �1, �5, �5�3 �5�1 �3

O1 D6 �5 � f1; �1; �3g D6 �1, D6 �2 D6 �5�2
m�2, m�5�2 m� f�1; �5; �5�3g m�5�1
i��2, i��5�2 i�� f�1; �5; �5�3g i��3 i��5�1
where the notation ‘‘PnQ’’ means ‘‘the set P excluding the
set Q.’’ The quantities O0 and O1 are all the possible
independent structures with the correct dimension, which
do not lead to dimension five operators vanishing by the
equations of motion, or are not removable by redefinitions
of parameters in L0. However, none of these operators are
allowed under the symmetries of the lattice theory.
Specifically, they are forbidden by charge conjugation
(C) and the pseudoparity transformations that combine
the ordinary parity transformation (P ) with a parameter
sign change

~P � P � ��! ���; (A2)

or a flavor exchange or both,

P 2
F;�q

� P 2
F � ��q ! ��q�; P 3

F; (A3)

where
P 2;3
F :

8>>><
>>>:
U0�x� ! U0�xP�; xP � ��x; t�
Uk�x� ! Uy

k �xP�; k � 1; 2; 3;
 �x� ! i�2;3�0 �xP�
� �x� ! �i � �xP��0�2;3

(A4)

and U� are the SU�2� lattice link fields. Note that we have
displayed the symmetries
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of the lattice theory [5,22] in the form which applies to the
effective continuum theory.

In Table I, we show explicitly which symmetry forbids
each of the possible structures of O0 and O1 listed in
(A1).11 We group the operators in columns according to
the symmetry under which they are forbidden.

The conclusion of the above discussion is that the mass
splitting does not induce any additional operators that do
not vanish by the equations of motion, or cannot be re-
moved by redefinitions of the parameters in the theory.
Thus beyond L0, the effective continuum Lagrangian con-
tains only the Pauli term to the order we work, exactly as in
the mass-degenerate case.
11Most of what we show can be readily inferred from [22]. What
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APPENDIX B: DIAGONALIZATION OF THE
DELTA MASS MATRIX

Here we diagonalize the tree level mass matrix for the
delta states. We reiterate that the difference between first
diagonalizing the tree level mass contributions then calcu-
lating loop effects, versus calculating the loop contribu-
tions then diagonalizing, is of higher order than we work.
To proceed, first we list all the independent operators to
O�"4� that have tree level mass contributions:
O�"2�: �T�M�T��; �T�T�� tr�M��; �T�T�� tr�W
tw
� �

O�am�: �T�M�T�� tr�W
tw
� �; �T�T�� tr�W

tw
� � tr�M��

O�a2�: �T�T�� tr�W
tw
� � tr�W tw

� �; �T�T�� tr�W
tw
�W tw

� �; Tkji� �W tw
� �ii

0
�W tw

� �jj
0
Ti

0j0k
� :

(B1)

The tree level delta mass matrix at the order we work, M&, is then given by

v �&M&v& � v �&

�A� C � B��
3

p 0 0

� B��
3

p 1
3 �A� 2B� � C 0 0

0 0 � 1
3 �A� 2B� � C � B��

3
p

0 0 � B��
3

p A� C

0
BBBBB@

1
CCCCCAv& � v �&fC14�4 � K&gv&; (B2)

where the vectors v �& and v& are vectors of the (QCD) delta basis states,

v �& � � �&�� �&0 �&� �&� �; v& � �&�� &0 &� &� �T; (B3)

and

K& �

�A � B��
3

p 0 0

� B��
3

p 1
3 �A� 2B� 0 0

0 0 � 1
3 �A� 2B� � B��

3
p

0 0 � B��
3

p A

0
BBBBB@

1
CCCCCA: (B4)

The entries in M& are given by

A � 2�q

�
�M � tWM�

1

a�2QCD
��

cos�!�
�
; B � tW�

2 a2�3QCDsin
2�!�;

C � 2mq��M � 2�M� � 4�Wa�
2
QCD cos�!� � 2mq�t

WM�

1 � 2tWM�

2 �
a�2QCD
��

cos�!� � a2�3QCD�t� tv�

� a2�3QCD�4t
W�

1 cos2�!� � 2tW�

1 sin2�!��:

(B5)

Note that, to the accuracy we work, ! can be either !0 or the nonperturbatively determined twist angle.
Except for the operators

�T�M�T��; �T�M�T�� tr�W
tw
� �; Tkji� �W tw

� �ii
0
�W tw

� �jj
0
Ti

0j0k
� ;

which contribute toK&, all other operators listed in (B1) above have trivial flavor structure, and so contribute to the identity
part of M&. Hence, to diagonalize M&, we need only diagonalize K&. The orthogonal matrix that accomplishes this is
is new here is the need for ~P , and the use of P 2
F;�q

.

-16



NUCLEON AND DELTA MASSES IN TWISTED MASS . . . PHYSICAL REVIEW D 72, 014506 (2005)
S �

�2A�B�2X��
1=2

2X1=2�

� ��2A�B�2X��
1=2

2X1=2�

0 0��
3

p
B

2X1=2� �2A�B�2X��
1=2

��
3

p
B

2X1=2� ��2A�B�2X��
1=2 0 0

0 0 �2A�B�2X��
1=2

2X1=2�

� ��2A�B�2X��
1=2

2X1=2�

0 0
��
3

p
B

2X1=2� �2A�B�2X��
�1=2

��
3

p
B

2X1=2� ��2A�B�2X��
�1=2

0
BBBBBBBB@

1
CCCCCCCCA
; (B6)

������������������������������p

where X
 � A2 
 AB� B2, and each column of S is a
normalized eigenvector of M& (and hence K& also). The
diagonal matrix one obtains after diagonalizing M& is then

D � S�1 �M& � S �
1

3
diag

�A� B� 2X� � 3C
�A� B� 2X� � 3C
A� B� 2X� � 3C
A� B� 2X� � 3C

0
BBB@

1
CCCA;

(B7)

where each entry in D is an eigenvalue of M&.
Now if �q � 0, A � 0. Hence, since in our power count-

ing A�O�"2� and B�O�"4�, we may expand X
 in the
ratio of B=A�O�"2� � 1 as

X
 � A

�������������������������
1


B
A
�
B2

A2

s
� A

�
1


1

2

B
A
�
3

8

B2

A2
�O�"6�

�
;

(B8)

from which it follows that

S �

1 �
��
3

p
B

4A 0 0��
3

p
B

4A 1� B
4A 0 0

0 0 1 �
��
3

p
B

4A

0 0
��
3

p
B

4A 1� B
4A

0
BBBBB@

1
CCCCCA;

D � diag

�A� C
A
3 �

2B
3 � C

� A
3 �

2B
3 � C

A� C

0
BBB@

1
CCCA;

(B9)

up to corrections of O�"4� for S and O�"6� for D.
If �q � 0, i.e. in the isospin limit, A � 0 and X
 � B. In

this case, one cannot find S and D in the isospin limit by
taking the limit A! 0 in (B9), since expansion in the ratio
of B=A is clearly not valid. Instead, one has to go back to
014506
Eqs. (B6) and (B7), which in the isospin limit reduce to

S �

1
2 �

��
3

p

2 0 0��
3

p

2
1
2 0 0

0 0
��
3

p

2 � 1
2

0 0 1
2

��
3

p

2

0
BBBBB@

1
CCCCCA;

D � diag

�B� C
B
3 � C

�B� C
B
3 � C

0
BBB@

1
CCCA;

(B10)

and the eigenvalues contained in D given in Eq. (B10) are
the masses of the deltas at tree level in the isospin limit
given in Eqs. (52) and (54). Note that, as discussed in the
text, in the isospin limit we need not perform any mass
matrix diagonalization at all, since we can simply rotate
from the outset to the basis where the twist is implemented
by the diagonal �3.

The new delta basis states are defined by

v0& � S�1 � v&; v0�& � v �& � S; (B11)

in which the delta mass matrix is diagonal to the order we
work. By writing the old (unprimed) delta basis states in
terms of the new (primed) basis states using the defining
relations given above, i.e.

v& � S � v0&; v �& � v0�& � S�1; (B12)

the Lagrangian in the new delta basis can be obtained. Note
that in the case where �q � 0, the new basis states con-
tained in v0& are ‘‘perturbatively close’’ to that contained in
v&, i.e. the difference is O�"2� as can be easily seen from
Eq. (B9). This is of course not true if we are in a region
where B� A, or �q � a2�3QCD.
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