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Spin correlations and velocity scaling in color-octet nonrelativistic QCD matrix elements
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We compute spin-dependent decay matrix elements for S-wave charmonium and bottomonium in
lattice nonrelativistic quantum chromodynamics (NRQCD). Particular emphasis is placed upon the color-
octet matrix elements, since the corresponding production matrix elements are expected to appear in the
dominant contributions to the production cross sections at large transverse momenta. We use three slightly
different versions of the heavy-quark lattice Green’s functions in order to minimize the contributions that
scale as powers of the ultraviolet cutoff. The lattice matrix elements that we calculate obey the hierarchy
that is suggested by the velocity-scaling rules of NRQCD.
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I. INTRODUCTION

The production rates of the J= and the � at large
transverse momentum (pT) at the Fermilab Tevatron pro-
vide important tests of our understanding of heavy-
quarkonium systems and of quantum chromodynamics
(QCD) itself. The dominant mechanism for both J= and
� production at large pT is expected to be the fragmenta-
tion of a gluon into a heavy-quark (Q �Q) pair [1,2]. Because
the heavy-quark massm provides a large momentum scale,
in addition to pT , the production of this heavy-quark pair
can be calculated perturbatively. The evolution of the Q �Q
pair into the J= or the � is a nonperturbative process. In
the color-singlet model [3–15], it is assumed that the Q �Q
pair is in a color-singlet state. That assumption leads to
predictions that are more than an order of magnitude below
the Tevatron data [16]. A less ad hoc approach to quark-
onium production is based on the effective field theory
nonrelativistic QCD (NRQCD) [17–19]. This approach is
known as NRQCD factorization. The predictions of
NRQCD factorization fit the Tevatron data and indicate
that the dominant production mechanism at large pT pro-
ceeds through the fragmentation of a gluon into a Q �Q pair
in a color-octet state.

The effective field theory NRQCD separates long-
distance, nonperturbative quarkonium dynamics (p &

mv) from short-distance, perturbatively calculable pro-
cesses (p * m). Here m is the heavy-quark mass, p is
the magnitude of the relative three-momentum of the Q
and �Q in the quarkonium rest frame, and v is the typical
relative velocity of the Q and �Q in the quarkonium rest
frame. If � is the ultraviolet (UV) cutoff of NRQCD, then
physics with p <��m is reproduced in the effective
field theory, while physics with p >� is integrated out,
but affects the coefficients of local interactions in the
effective theory. The Lagrangian of NRQCD can be ex-
panded in powers of the velocity v. To any finite order in v
only a limited number of interactions appears in this
Lagrangian. Hence, it is useful in calculations for systems
05=72(1)=014009(11)$23.00 014009
in which v2 � 1. We note that in bottomonium v2 � 0:1,
while in charmonium v2 � 0:3.

In the context of NRQCD, scaling rules can be deduced
for the leading behavior of operator matrix elements in the
limit in which the heavy-quark velocity v approaches zero
[19,20]. When these ‘‘v-scaling rules’’ are applied to the
production of the J= and the � at large pT , they predict
that, in the nonperturbative evolution of the Q �Q pair into
the quarkonium, the non-spin-flip interactions dominate
over the spin-flip interactions, with corrections of order
v2. Hence, the J= is predicted to take on most of the
transverse polarization of the gluon [21]. However, the
CDF data for the polarization [22] show decreasing trans-
verse polarization with increasing pT and disagree with the
NRQCD prediction [23] in the largest pT bin.

The existing calculations of polarization at the Tevatron
neglect spin-flip processes in the NRQCD matrix elements,
under the assumption that, because of the v-scaling rules,
the spin-flip contributions are relatively suppressed.
However, the v-scaling rules predict only the leading
power of v, not its coefficient. It is usually assumed in
making estimates that the coefficients are of order unity,
but it could happen that the coefficients of the spin-flip
terms are anomalously large or that the coefficients of the
non-spin-flip terms are anomalously small. It has also been
suggested that the v-scaling rules themselves may need to
be modified in the case of charmonium [24–28].

One would like to test the applicability of estimates
based on the v-scaling rules by direct calculation of the
relevant NRQCD operator matrix elements. At present,
lattice QCD is the only technique that is available for
calculating color-octet matrix elements. Unfortunately, it
is not known how to formulate that calculation of color-
octet production matrix elements in Euclidean lattice field
theory. However, one does know how to calculate the
corresponding decay matrix elements in lattice NRQCD
[18,29,30]. Since the decay matrix elements are predicted
to obey the same velocity-scaling rules as their production
counterparts, a test of v-scaling estimates in the context of
-1  2005 The American Physical Society
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decay matrix elements might shed some light on the valid-
ity of v-scaling estimates for production matrix elements.
In this paper, we present lattice NRQCD calculations of the
decay matrix elements that are related by crossing to those
production matrix elements that are expected to dominate
S-wave quarkonium production at large pT . Preliminary
results of these calculations were presented in Ref. [31].

We use the methods developed by Lepage et al. [20] to
compute heavy-quark Green’s functions in lattice
NRQCD. From these, we construct quarkonium propaga-
tors and use the methods of Refs. [29,30] to extract the
spin-dependent color-octet matrix elements that contribute
to the decays of the J= , c, �, and b (S-wave quarko-
nia) in lattice NRQCD. We perform the lattice measure-
ments on a set of 400 123 � 24 quenched configurations at
� � 6=g2 � 5:7. This � value was chosen because it
corresponds to a momentum space cutoff ��mb. In the
case of charmonium one would like to have ��mc.
However, for lattices that are significantly coarser than
those with � � 5:7, it is not clear, even with highly im-
proved actions, that one is close enough to the continuum
limit to make contact with perturbation theory. We there-
fore use � � 5:7 lattices for charmonium and study some
of the effects of those contributions that diverge as powers
of �=mc by varying the algorithm for calculating lattice
heavy-quark Green’s functions.

Our bottomonium measurements suggest that the
NRQCD v-scaling rules are useful in determining which
matrix elements are most important, and that those contri-
butions that are suppressed as powers of v show an even
greater suppression than one would expect from the
v-scaling factors alone. For charmonium the situation is
complicated by our inability to use ��mc, but there are
indications that the v-scaling rules are also a good guide
014009
here. Calculation of the perturbative coefficients that relate
lattice and continuum matrix elements could help to clarify
this situation.

In Sec. II we introduce the NRQCD Lagrangian through
relative order v4, NRQCD factorization of quarkonium
production and decay rates, and the lattice implementa-
tions of NRQCD that we use. We discuss the explicit
calculations that we performed and present our results in
Sec. III. Section IV contains discussions and our
conclusions.
II. NRQCD

A. Continuum NRQCD

As we indicated in the Introduction, NRQCD is an
effective field theory with a UV momentum-space cutoff
��m. It is useful in describing bound states of heavy
quarks. In the case of Q �Q bound states (quarkonium), the
terms in the effective Lagrangian can be classified accord-
ing to their leading power behavior in v, where v is the
typical heavy-quark (or antiquark) velocity in the quark-
onium rest frame [18,20]. The terms of leading order in v2

in the NRQCD Lagrangian density are just the Schrödinger
Lagrangian density:

L 0 �  y

�
iDt �

D2

2m

�
 � �y

�
iDt �

D2

2m

�
�; (1)

where Dt � @t � igA0, D � @� igA,  is the Pauli
spinor field that annihilates a heavy quark, and � is the
Pauli spinor field that creates a heavy antiquark.

In order to reproduce QCD completely, we would need
an infinite number of interactions. For example, at next-to-
leading order in v2 we have
�Lbilinear �
c1
8m3

	 y
D2�2 � �y
D2�2�� �
c2
8m2

	 y
D  gE� gE  D� � �y
D  gE� gE  D���

�
c3
8m2

	 y
iD� gE� gE� iD�  � � �y
iD� gE� gE� iD�  ���

�
c4
2m

	 y
gB  �� � �y
gB  ����: (2)
1A recent study of certain two-loop contributions to quark-
onium production [32] has revealed that, if factorization is to
hold, then the matrix elements must be modified from the form
given in Eq. (4) by the inclusion of lightlike eikonal lines that run
from each of the Q �Q bilinears to the far future. It is not known if
this modification preserves the factorized form in higher orders.
In practice, we work to a given precision in v. For the
calculations presented in this paper, the contributions given
above suffice.

It has been conjectured that, at large transverse momen-
tum pT , the inclusive quarkonium production cross section
can be written in a factorized form (Ref. [19]):

�
H� �
X
n

Fn
��

mdn�4
h0jOH

n 
��j0i: (3)

The ‘‘short-distance coefficients’’ Fn
�� are essentially the
partonic cross sections to make a Q �Q pair with a given set
of quantum numbers convolved with parton distributions.
These partonic cross sections can be calculated as an
expansion in �s. The Fn multiply vacuum matrix elements
of four-fermion operators of the form

O H
n � �y!n 

 X
X

jH � XihH � Xj

!
 y!0n�: (4)

! contains Pauli matrices, color matrices, and the covariant
derivatives Dt � @t � igA0, D � @� igA.1 The operator
-2



2In the continuum phenomenology of quarkonium production,
the short-distance coefficients are usually calculated in dimen-
sional regularization. In dimensional regularization, power in-
frared divergences in the short-distance coefficients are set to
zero. This implies that, in the corresponding continuum NRQCD
matrix elements, the UV power-divergent contributions are
removed order-by-order in perturbation theory. Therefore, if
the lattice matrix elements are to be close in value to the
continuum matrix elements, then the effective � in the lattice
calculations must be of order the heavy-quark mass or less.
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matrix elements contain all of the long-distance, nonper-
turbative physics and are, essentially, the probabilities for a
Q �Q pair with a given set of quantum numbers to evolve
into a heavy-quarkonium state. The matrix elements are
universal, i.e. process independent. NRQCD predicts the
leading scaling behavior of the matrix elements with v
(Ref. [19]). As a consequence of these v-scaling rules, the
sum over operator matrix elements can be regarded as an
expansion in powers of v, where v2 � 0:3 for charmonium
and v2 � 0:1 for bottomonium.

A similar factorization formula applies to inclusive
quarkonium decays [19]:

�
H ! LH� �
X
n

2Imfn
��

mdn�4
Q

hHjOn
��jHi; (5)

except that the matrix elements are now between quark-
onium states, rather than vacuum states, and the four-
fermion operators have the form On �  y!n��

y!0n .
While the coefficients fn
�� can be calculated perturba-
tively, the quarkonium matrix elements hHjOn
��jHi are
nonperturbative and can be calculated directly in lattice
NRQCD. An important feature of NRQCD factorization is
that both quarkonium decay and production occur through
color-octet, as well as color-singlet, Q �Q states. While the
production matrix elements are the crossed versions of
quarkonium decay matrix elements, only the color-singlet
production and decay matrix elements are simply related.

The NRQCD operator matrix elements in Eqs. (3) and
(5) depend explicitly on the cutoff�. In the physical decay
and production rates, this cutoff dependence in the matrix
elements is canceled by a corresponding cutoff dependence
in the short-distance coefficients. However, we note that
the v-scaling rules for NRQCD matrix elements are de-
rived under that assumption that the UV cutoff � is of
order mv. The matrix elements of NRQCD, in common
with those of other effective field theories, contain contri-
butions that diverge, in the limit �! 1, both as loga-
rithms and powers of �=m. When � is larger than mv,
these divergent contributions potentially spoil the
v-scaling rules, with the power divergences being espe-
cially important numerically.

As an effective field theory, NRQCD is expected to be
valid up to values of � close to m [19,20]. For bottomo-
nium,� � mb is large enough that the physics at momenta
greater than � can be treated perturbatively. While this
choice should not invalidate the v-scaling rules for UV
convergent contributions to matrix elements, it remains to
be seen whether the v-scaling rules remain valid for matrix
elements whose leading contributions diverge as �! 1.
The measurements described in this paper test this con-
jecture, as well as the v-scaling rules for��mv. In lattice
evaluations of the NRQCD matrix elements, the value of
the cutoff is determined, in part, by the lattice spacing. As
014009
we shall see, the effective cutoff in the matrix elements is
also affected by the specific forms of the lattice action and
Green’s functions that are employed.2 This latter property
allows one to control the effective cutoff in NRQCD matrix
elements without affecting the interactions that determine
the quarkonium masses and wave functions. Such an ap-
proach is especially useful in the case of charmonium, for
which the cutoff � � mc is too small to include all of the
nonperturbative bound-state physics.

B. Lattice NRQCD

The first part of this subsection summarizes the lattice
formulation of NRQCD that has been given by Lepage et
al. [20].

In order to produce a lattice formulation of NRQCD, one
must first formulate NRQCD in Euclidean space. This can
be accomplished by performing the following substitutions
in the NRQCD Lagrangian:

t! �it; @t ! i@t; Dt ! iDt;

$! �i$; E ! �iE:
(6)

The gauge fields are incorporated into unitary matrices
U&
x�, which, as usual, are defined on the links of the
lattice. Covariant derivatives are replaced on the lattice by
covariant finite differences, which are defined by

�i 
x� �
1

2
	Ui
x� 
x� {̂��Uy

i 
x� {̂� 
x� {̂��;

�
2�
i  
x� �

1

2
	Ui
x� 
x� {̂�� 2 
x��Uy

i 
x� {̂� 
x� {̂��;

�
2� �
X
i

�
2�
i ;

�
4� �
X
i


�
2�
i �2:

(7)

Here we have adopted the standard lattice convention of
working in a system of units in which the lattice spacing a
has been set to unity.

Tadpole improvement is implemented by making the
replacement

U&
x� !
U&
x�

u0
; (8)

with u0 chosen as the fourth root of the average plaquette
[33]. For the tadpole-improved action, we expect the per-
-3



3Note that additional vertices along the heavy-quark Green’s
function cannot enter the time slice of the four-fermion interac-
tion because the heavy-quark propagators have a definite time
ordering.
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turbation series for quantities at the scale � to converge
well [33]. Therefore, we replace each of the coefficients ci
in �Lbilinear with its lowest-order value, namely, unity.

The order-v2 lattice Hamiltonian is now

H0 � �
�
2�

2m
: (9)

The order-v4 corrections to this Hamiltonian are

�H � �

�
2��2

8m3
�

ig

8m2

� E�E ��

�
g

8m2
�  
�� E� E��� �

g
2m

� B

�
�
4�

24m
�


�
2��2

16nm2
: (10)

All of the terms except the last two are simple discretiza-
tions of those in the continuum expression for �Lbilinear

[Eq. (2)]. The second-to-last term is the order-a2 correction
to the discretization of the D2 operator in H0. The last term
is the order-a2 correction to the approximation
exp
�H0� � 	1�H0=
2n��2n, which is used below in
computing the evolution of a heavy-quark Green’s function
over one lattice time step. Here, n is an integer to be
specified below. We note that the form of �H in Eq. (10)
is not tadpole-improved correctly by the replacement (8).
That is because, in the higher-order derivatives �
4� and

�
2��2, there are canceling factors UyU � 1 that are,
incorrectly, replaced with 1=u20. The corrections to this
replacement amount to constant shifts of the
Hamiltonian. Nevertheless, we retain the form of �H in
Eq. (10), with the replacement (8), because, as noted by the
NRQCD collaboration, it makes the contributions from �H
to the evolution of the heavy-quark Green’s functions
small. The smallness of the �H contributions can be dis-
cerned from the fact that the spin-averaged ‘‘masses’’ of
the quarkonia are little affected by the inclusion of these
order-v4 corrections.

We make use of two different forms of the heavy-quark
Green’s functions, which are equivalent through order v4.
One is the form that was used in the early spectroscopy
papers of the NRQCD collaboration [30,34]. In this form,
for a source S
x��t;0, the retarded Green’s function Gr
x; t�
at positive time is given recursively by

Gr
x; 0� � S
x��t;0;

Gr
x; 1� �
�
1�

H0
2n

�
n
Uy
4

�
1�

H0
2n

�
n
Gr
x; 0�;

Gr
x; t� 1� �
�
1�

H0
2n

�
n
Uy
4

�
1�

H0
2n

�
n

1� �H�Gr
x; t�:

(11)

We call this form of the Green’s function the ‘‘nrqcd
scheme.’’ A second form of the Green’s function is defined
for positive time by
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Gr
x; 0� � S
x��t;0;

Gr
x; t� 1� �
�
1�

�H
2

��
1�

H0
2n

�
n
Uy
4

�
1�

H0
2n

�
n

�

�
1�

�H
2

�
Gr
x; t�: (12)

This second form was used by the NRQCD collaboration
in their heavy-light meson calculations [35]. For our cal-
culation, we modify it with the rule that we replace any
factor 
1� �H=2�2 that appears as a result of consecutive
time-evolution steps with 
1� �H�. This replacement re-
sults in an equivalent Green’s function to the order in v to
which we work. We implement it because it ensures that
the quarkonium spectra of the nrqcd scheme and this
second scheme, which we call the ‘‘hybrid scheme’’ are
identical. In both the nrqcd and hybrid schemes, we take
Gr
x; t� � 0 for t < 0. In each scheme, we define a corre-
sponding ‘‘advanced’’ Green’s function Ga, which satisfies
the same evolution equations as the Hermitian conjugate of
Gr, but with the boundary condition that it vanishes for t >
0.

We note that the nrqcd and hybrid Green’s functions
correspond to the same heavy-quark and antiquark propa-
gation, except in the initial and final time slices. The hybrid
scheme applies �H to every time slice, including the initial
and final time slices. In contrast, the nrqcd scheme does not
apply �H to the initial and final time slices, but applies �H
to all of the other time slices. In the operator matrix
elements that we measure, the four-fermion operator is at
the sink of the heavy-quark and antiquark propagators.
Hence, in the nrqcd scheme, the interactions in �H, which
include those that change the spin, are turned off for one
time step on either side of the four-fermion operator.

In order to see the effect of the nrqcd scheme (and
related schemes to be described later), let us initially ignore
all of the interactions of the heavy-quark and antiquark
with the gauge field A, including those in H0 and U4, in the
time step on either side of the four-fermion operator. We
call this variant the nrqcdx scheme. In the nrqcdx scheme,
the vertices at which A interacts with the heavy-quark
vanish on the time slice that contains the four-fermion
vertex. Since this condition is a restriction on the temporal
distance between the four-fermion vertex and the nearest
heavy-quark-gluon vertex, its effect can be incorporated
into the heavy-quark propagator that connects these verti-
ces.3 One simply sets this propagator to zero at zero
temporal separation. Now let us examine how this affects
the momentum-space Feynman rule for the propagator.
The momentum-space free-field heavy-quark propagator
is given by the Fourier transform of the temporal propa-
-4
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gator exp	�k2t=
2m��, which has support only for t � 0:

~G 0
k0;k� �
X1
t�0

e�ik0t exp
�
�

k2

2m
t
�
: (13)

Here k is the heavy-quark or antiquark momentum, the
upper (lower) sign is for the quark (antiquark), and we have
approximated the lattice Hamiltonian by the continuum
expression. In the nrqcdx scheme, the vanishing of the
propagator at zero temporal separation is implemented by
removing the t � 0 contribution from the above sum. That
is, one replaces a free-field heavy-quark propagator adja-
cent to the four-fermion vertex with

~G 1
k0;k� �
X1
t�1

e�ik0t exp
�
�

k2

2m
t
�

� exp
�
�ik0 �

k2

2m

�
~G0
k0;k�: (14)

On the right-hand side of Eq. (14), the oscillatory factor
exp
�ik0� provides additional damping of the k0 integra-
tion, while the Gaussian factor exp	�k2=
2m�� cuts off the
integration over the spatial components of the momentum
at jkj �

����
m

p
. In the absence of these factors, the cutoff is of

the order of the maximum value of the components of the
lattice momentum, i.e., /. In the nrqcdx scheme, the
factors in Eq. (14) cut off diagrammatic loops that contain
interactions in �H, but only for those loops that involve the
four-fermion vertex. We note that these factors appear
twice in each loop—once for each of the two heavy-quark
propagators in the loop that attach to the four-fermion
vertex.

As we have mentioned, the NRQCD matrix elements
that we measure contain contributions to that grow as
powers of the lattice cutoff. These arise in the lowest
nontrivial order in perturbation theory from loops involv-
ing the four-fermion vertex. Hence, the change in the
effective cutoff for such loops that is provided by the
nrqcdx scheme helps to control the numerical size of the
power-behaved contributions in our simulations. We em-
phasize that the change in the effective cutoff affects only
the interactions that renormalize the four-fermion operator.
It has no effect, for example, on the interactions that
produce the quarkonium masses or wave functions.

It is useful to examine the effect of the nrqcdx scheme in
coordinate space. If the four-fermion operator is at t � 0,
then first interactions after the four-fermion interaction do
not occur until t � 1, at which time the heavy-quark
Green’s function is just the free-field Green’s function

Gr
1;x� �
�
m
2/

�
3=2
exp

�
�mx2

2

�
: (15)

Hence, in coordinate space, the effect of the nrqcdx scheme
is to smear out the four-fermion interaction spatially over a
distance of order 1=

����
m

p
.
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Now let us return to the effects of including, in the time
slices that are adjacent to the four-fermion interaction, the
interactions with the gauge field A that are contained in H0
andU4. This discussion is relevant to the nrqcd scheme and
to the coulomb scheme, which we introduce later. By
ignoring the effects of the Coulomb gluon field A0 � $,
we have ignored the effects of the potential in the
Schrödinger equation. This is a reasonable approximation
until the separation of the Q �Q pair is of the order of the
typical Q �Q separation in the bound state, at which point
one can take the spatial smearing to be given roughly by
the size of the Q �Q bound state. Since we work in the
Coulomb gauge, the effects of the heavy-quark interactions
with the spatial gauge field A are subleading in v relative to
the effects of the potential.
III. CALCULATIONS AND RESULTS

We are interested in matrix elements between quark-
onium states of operators of the form

O1

1S0;0� �  y��y ; (16a)

O1

3S1;�1� �  y����y�� ; (16b)

O1

3S1;0� �  y�3��

y�3 ; (16c)

and

O8

1S0;0� �  yTa��yTa ; (17a)

O8

3S1;�1� �  y��T

a��y��T
a ; (17b)

O8

3S1;0� �  y�3Ta��y�3Ta ; (17c)

where the subscripts 1 and 8 indicate color-singlet and
color-octet operators, respectively, and S denotes a
S-wave operator. In 2s�1Ss;m, s is the total spin quantum
number, m is the quantum number of the component of the
spin along the quantization axis, Ta is a SU(3) color matrix
in the fundamental representation satisfying Tr
TaTb� �

1=2��ab, and the �’s are Pauli spin matrices. In Eqs. (17),
there is an implied sum over the color index a. The matrix
elements of the operators in Eqs. (16) and (17) in quark-
onium states are those that appear in the NRQCD factori-
zation formula for decays (5). We note that, according to
the v-scaling rules of NRQCD, the matrix elements of the
color-octet operators are suppressed by at least v3 relative
to the leading color-singlet matrix elements.

We are interested in the matrix elements of the operators
in Eqs. (16) and (17) between both the spin-singlet (pseu-
doscalar) and spin-triplet (vector) S-wave quarkonium
states. What we measure is the ratio of octet to singlet
matrix elements

R
si;mi; sf;mf� �
h2si�1Ssi;mi

jO8

2sf�1Ssf;mf

�j2si�1Ssi;mi
i

h2si�1Ssi;mi
jO1


2si�1Ssi;mi
�j2si�1Ssi;mi

iVS
:

(18)

where the initial (final) spins and z-components of spin are
-5



FIG. 1 (color online). The effective quarkonium mass (energy)
as measured with point and Gaussian-smeared (extended)
sources for the J= and the �. E is the effective energy, and
T is the time separation between the source and the sink. The
effective energies shown are measured in the nrqcd updating
scheme that is described in Sec. II. The plots in the hybrid
scheme and for the c and the b are similar.
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si (sf) and mi (mf), respectively. The subscript VS indi-
cates that we have used the vacuum-saturation approxima-
tion [19] for the denominator. That is, we replace the sum
over intermediate states in the operator with the vacuum
state. We do, in fact, measure the corresponding ratios for
the case of color-singlet operators in the numerator, and we
find that the spin-diagonal ratios are close to 1, indicating
that our use of the vacuum-saturation approximation is
valid and that the off-diagonal matrix elements are all
small, as is predicted by v scaling.

Now let us describe how we measure R on the lattice.
First, we create a Q �Q pair, using a source on a time slice t.
We propagate this pair to a second time slice t0 > t, using
the equations for the retarded Green’s functions given in
Sec. II. Then we annihilate the Q �Q pair at a point, in the
spin and color state that corresponds to the operator of
interest. We then re-create the Q �Q pair at the same point
and propagate this pair to time slice t00 > t0, where it is
annihilated at a sink. In practice we use sinks on the time
slice t00 as sources and propagate the Q �Q pair back to t0 by
using the ‘‘advanced’’ Green’s functions, conjugating these
to give us the Green’s functions that we need. We call the
quantity that we have just described the ‘‘lattice-matrix-
element precursor.’’ For T � t0 � t and T0 � t00 � t0 suffi-
ciently large, we annihilate the Q �Q pair from an almost
pure quarkonium ground-state wave function. The quark-
onium propagator falls as exp
�ET�, where E is the energy
of this ground state. By computing a ratio of color-octet to
color-singlet lattice-matrix-element precursors, we cancel
this exponential falloff, as well as the amplitude factors
that are associated with the overlaps between the sources
and sinks and the quarkonium wave function. The result, in
the limit of large T and T0, is precisely the lattice version of
the ratio R.

In our calculations, we use one of two stochastic sources
on the initial time slice to generate our retarded Green’s
functions. The first of these sources consists of a complex
random number that is uniformly distributed in U
1� at
each site. The second of these sources consists of a
Gaussian smearing of this U
1� random source. By choos-
ing the Q and �Q Green’s functions to have conjugate U
1�
sources, we obtain a stochastic estimator of a point source
for the Q �Q pair at each site on the initial time slice. By
choosing theU
1� source for theQ and the conjugate of the
Gaussian-smeared U
1� source for the �Q (or vice versa),
we obtain a stochastic estimator of a Gaussian source for
the Q �Q pair at each site on the initial time slice. The
advanced Green’s functions are treated similarly.

We calculate the quarkonium propagators and matrix
elements on each of 400 equilibrated 123 � 24 quenched
lattices at � � 5:7. We use the parameters that were de-
termined by the NRQCD collaboration [30,34,36]. For b
quarks, we use m � 3:15, and for c quarks we use m �
0:8. We take u0 � 0:860 846 184, which we obtained from
our own measurements of the average plaquette. We
014009
choose for the width of our Gaussian source 2.5 lattice
units, for both charmonium and bottomonium. Figure 1
shows effective quarkonium ‘‘mass’’ (energy) plots for
point and Gaussian-smeared sources as functions of the
time separation T between the source and the sink. These
plots indicate that the Gaussian width that we take is
-6
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reasonable, as it leads to an early approach to the asymp-
totic value of the energy. The fits to the effective energy in
the nrqcd scheme with the extended source/sink give an c
energy of E0 � 0:6165
6�, with a confidence level of 78%
for a fit over the T
T0�-range 8–19, and a J= energy of
E1 � 0:6938
7�, with a confidence level of 80% for a fit
over the T
T0�-range 10–22. The corresponding fits for
bottomonium give an b energy of E0 � 0:5065
3�, with
a confidence level of 60% over the T
T0�-range 8–22, and
an � energy of E1 � 0:5215
3�, with a confidence level of
59% for a fit over the T
T0�-range 5–22. These results are
to be compared with those of the NRQCD collaboration,
which obtained E0 � 0:6182
7� for the c, E1 � 0:697
1�
for the J= , E0 � 0:5029
5� for the b, and E1 �
0:5186
6� for the �.

Now let us turn to the matrix elements. Here we recall
that the decay matrix elements that we measure are related
to the production matrix elements that are of primary
interest through the crossing of the quarkonium from the
intermediate state to the initial state. In the production of
the J= or the � by gluon fragmentation—the dominant
process at large pT —the gluon fragments into aQ �Q pair in
a triplet spin state with transverse polarization. Hence, we
are most interested in the decay matrix elements in which
the annihilated Q �Q pair is transversely polarized.

We measure ratios R of color-octet matrix elements to
color-singlet matrix elements defined in Eq. (18). For these
measurements we use both the hybrid and the nrqcd
schemes for calculating the required heavy-quark Green’s
functions.

Let us first examine the bottomonium matrix elements.
Here the spin-singlet quarkonium is the b and the spin-
triplet quarkonium is the�. We fit the measured ratios over
a range of T and T0 values with T � T0 < 24 in order to
maximize the information that we extract from sometimes
noisy ‘‘data.’’ Our measurements are shown in Table I.
TABLE I. Ratios R of bottomonium color-oc
elements, as defined in Eq. (18). The label ‘‘sing
state 3S1;m, ‘‘up’’ denotes a state 3S1;�1, ‘‘down
(long.) denotes a state 3S1;0. The spin transition i
state f in the numerator of R. In the case of triplet
sum over mf in annihilated states. The labels ‘‘n
calculating the heavy-quark lattice NRQCD Green
gives the v-scaling factors of the various ratio
evaluating the v-scaling factors, we take v2 � 0:

Spin transition hybrid

singlet ! triplet 7:169
6� � 10�3 2
triplet ! singlet 2:414
3� � 10�3

singlet ! singlet 6:1
5� � 10�5

triplet ! triplet 8:1
6� � 10�5

up ! up 7:3
6� � 10�5

long. ! transverse 2:7
3� � 10�6

down ! up 5:53
2� � 10�6
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The errors presented in Table I are statistical only. For
the matrix elements that connect the singlet and triplet spin
states and, in the hybrid scheme, for the up ! down matrix
element, the signal is excellent, and the systematic errors
associated with our choices of fits are probably less than
the statistical errors. Such estimates of fitting errors are
obtained by examining the fits over a number of choices of
fitting ranges in T and T0 (132 choices for each matrix
element) and taking into account the range of fitted values
and statistical errors for the matrix element of interest.
Where possible, we consider only those fits for which T
and T0 are large enough that the value of the matrix element
appears to have reached a stable plateau. In the remainder
of this paper, when we refer to systematic errors, we mean
systematic errors associated with our choices of fits, unless
we explicitly state otherwise.

For the three diagonal matrix elements in both schemes,
in which the signal is noisy but still substantial, the system-
atic errors could be as large as 20%. The signal for the
longitudinal ! transverse matrix element in the hybrid
scheme is sufficiently weak that the systematic errors could
be as much as 50%. Finally, the signals for the two triplet
spin-flip matrix elements in the nrqcd scheme are so noisy
that we are only willing to place bounds on their values.

Now let us compare our results with expectations from
the v-scaling rules of NRQCD. The v-scaling factors of the
ratios R are given in the last column of Table I. For
purposes of using the v-scaling factors to estimate the sizes
of matrix elements, we include the color factor 1=
2Nc�
that arises in the free Q �Q matrix elements, as suggested in
Ref. [37]. We evaluate the v-scaling factors by taking v2 �
0:1 for bottomonium. Such v-scaling estimates are based
on the assumption that the coefficients in the expansions of
the matrix elements in powers of v are of order unity. It is
that assumption that we wish to test by our explicit calcu-
lation. Of course, if it turns out that the coefficients are
tet matrix elements to color-singlet matrix
let’’ denotes a state 1S0;0, ‘‘triplet’’ denotes a
’’ denotes a state 3S1;�1, and ‘‘longitudinal’’
! f is from an initial state i to an annihilated
states, we average over mi in initial states and
rqcd’’ and ‘‘hybrid’’ refer to the methods for
’s functions. The column labeled ‘‘v scaling’’
s R, along with their numerical values. In
1 for bottomonium.

nrqcd v scaling

:72
4� � 10�4 v3=
2Nc� � 5:3� 10�3

9:0
1� � 10�5 v3=
2Nc� � 5:3� 10�3

6:5
5� � 10�5 v4=
2Nc� � 1:7� 10�3

6:9
5� � 10�5 v4=
2Nc� � 1:7� 10�3

6:9
6� � 10�5 v4=
2Nc� � 1:7� 10�3

1� 2� 10�6 v6=
2Nc� � 1:7� 10�4

<5� 10�8 v6=
2Nc� � 1:7� 10�4
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significantly greater than order unity, then the v expansion
will be of little use.

As we have mentioned, the NRQCD matrix elements
that we measure contain contributions that diverge as
powers of � in the limit �! 1. These power-divergent
contributions potentially violate the v-scaling rules, which
were derived under the assumption that � is of order mv.
For the particular matrix elements that we measure, a
perturbative analysis shows that the leading contributions
to the singlet ! triplet matrix elements diverge as
	�s
��=/�
�=mb�

2, the diagonal contributions diverge as
	�s
��=/�

2
�=mb�
2log2
�=mb�, and the triplet spin-flip

contributions diverge as 	�s
��=/�2
�=mb�
4. Unless � is

not much larger than mv, these power-behaved contribu-
tions may lead to significant numerical violations of the
v-scaling rules. As we mentioned earlier, we wish to test
not only whether the v-scaling rules hold for cutoffs ��
mbv, but also whether they continue to hold for cutoffs
��mb. Therefore, in testing the v-scaling rules in the
bottomonium system, we choose �=mb � 1. As we stated
earlier, at � � 5:7, the lattice momentum cutoff itself is
close to the input b-quark mass. Hence, in the case of
bottomonium, no special choice of heavy-quark Green’s
functions is required in order to control power-behaved
contributions, and we focus on the hybrid scheme.

In the hybrid scheme, we note that the singlet ! triplet
matrix elements are the largest color-octet matrix ele-
ments, as is predicted by the v-scaling estimates. The
v-scaling estimates also predict their magnitudes correctly.
The heavy-quark spin symmetry of NRQCD predicts that
the singlet ! triplet matrix element should be a factor 3
larger than the triplet ! singlet matrix element, with cor-
rections to that relation of order v2. This prediction is
borne out by our measurements. The diagonal matrix
elements are suppressed relative to the singlet ! triplet
and triplet ! singlet matrix elements, as expected, but by
considerably more than would be expected from the
v-scaling factors alone, suggesting that their coefficients
in the v expansion are small. The triplet spin-flip matrix
elements are smaller still, as is expected from the v-scaling
estimates, but, again, they are much smaller than would be
expected from the v-scaling factors alone. The suppression
TABLE II. Ratios R of charmonium color-octet matrix elements to
are as in Table I, except that ‘‘coulomb’’ refers to an additional m
functions, as described in the text. For purposes of numerical estim

Spin transition hybrid nrqcd

singlet ! triplet 6:397
8� � 10�2 2:90
3� � 1
triplet ! singlet 2:938
7� � 10�2 1:13
2� � 1
singlet ! singlet 5:03
9� � 10�4 9:7
2� � 1
triplet ! triplet 1:57
2� � 10�3 1:016
8� � 1
up ! up 4:57
6� � 10�4 1:019
8� � 1
long. ! transverse 2:82
4� � 10�4 2:8
7� � 1
down ! up 8:48
5� � 10�4 1:4
2� � 1
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of the triplet spin-flip matrix elements relative to the di-
agonal matrix elements is approximately what would be
expected from the v-scaling factors.

The effects of a change in the effective cutoff � can be
seen when we compare the hybrid-scheme and nrqcd-
scheme values for R in Table I. The nrqcd scheme results
in a smaller effective cutoff for the interactions in �H,
which include all of the spin-dependent interactions. We
see that the nrqcd scheme singlet ! triplet and triplet !
singlet matrix elements are suppressed by a factor of about
26 relative to the corresponding hybrid-scheme matrix
elements. The triplet spin-flip matrix elements also appear
to be suppressed. The diagonal matrix elements are virtu-
ally unchanged. That is expected because the leading con-
tribution to the diagonal matrix elements comes from H0,
whose effective cutoff is not changed in going from the
hybrid scheme to the nrqcd scheme.

Now let us turn to the charmonium case. For charmo-
nium, the heavy-quark mass in lattice units is only 0.8,
while, as usual, the components of the lattice momentum
can range up to / in magnitude. Hence, we expect that the
lowering of the effective cutoff� that is provided by using
the nrqcd scheme will be helpful in reducing the effects of
the power-behaved contributions. In the case of charmo-
nium, we will also consider an additional scheme for
computing the heavy-quark Green’s functions in which
the links Ui
x� are set to unity on the time slice that is
associated with the four-fermion operator (the time slice in
which the Q �Q pair is annihilated and re-created). In other
respects, this scheme, which we call the ‘‘coulomb
scheme’’ is identical to the nrqcd scheme. In the coulomb
scheme, we are neglecting the interactions of the heavy
quark with the fields Ai on the Q �Q-annihilation time slice.
Since we work in the Coulomb gauge, these interactions
are subleading in v2. The effect of the coulomb scheme,
relative to the nrqcd scheme, is to lower the effective cutoff
on H0 so that it is the same as the effective cutoff on �H.
Hence, we expect the diagonal matrix elements to show the
effects of a reduced cutoff.

The values of R in the hybrid, nrqcd, and coulomb
schemes, along with the v-scaling factors, are given in
Table II. Again, the quoted errors are statistical only. In
color-singlet matrix elements, as defined in Eq. (18). The labels
ethod for calculating the heavy-quark lattice NRQCD Green’s

ates of the v-scaling factors, we take v2 � 0:3 for charmonium.

coulomb v scaling

0�3 2:84
4� � 10�3 v3=
2Nc� � 2:7� 10�2

0�3 1:06
1� � 10�3 v3=
2Nc� � 2:7� 10�2

0�4 3:6
3� � 10�4 v4=
2Nc� � 1:5� 10�2

0�3 4:0
4� � 10�4 v4=
2Nc� � 1:5� 10�2

0�3 3:9
4� � 10�4 v4=
2Nc� � 1:5� 10�2

0�6 — v6=
2Nc� � 4:5� 10�3

0�6 1:4
3� � 10�6 v6=
2Nc� � 4:5� 10�3
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FIG. 2 (color online). Values of ratios R for charmonium as a
function of T � T0. The upper plot shows R for the singlet !
triplet spin transition in the hybrid scheme. The lower plot shows
R for the longitudinal ! transverse spin transition in the cou-
lomb scheme.
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the hybrid scheme, the signal for the triplet ! singlet,
singlet ! triplet, and up ! down matrix elements is ro-
bust, and we feel confident that the systematic errors are
less than the statistical errors. The signal for the singlet !
singlet matrix element is noisier, but still quite good, so
that we feel that the systematic error is probably no worse
than the statistical error. The signals for the up ! up and
transverse ! longitudinal matrix elements are even nois-
ier, but still substantial. In these cases, the systematic errors
might be as large as 10%. In the nrqcd scheme, the signals
for the triplet ! singlet, singlet ! triplet, and singlet !
singlet matrix elements are as clean as those in the hybrid
scheme. The signals for the two diagonal triplet matrix
elements show some rise as T and T0 are increased, and the
systematic error could be as large as 10%. The signals for
the two triplet spin-flip matrix elements are so noisy that
the values given should be considered only to be order-of-
magnitude estimates. In the coulomb scheme, the signals
for all of the matrix elements are noisier than in either of
the other two schemes. The triplet ! singlet and singlet !
triplet elements probably have systematic errors that are
comparable with their statistical errors. The diagonal ma-
trix elements could have systematic errors as large as 20%,
while the signals for the triplet spin-flip matrix elements
are so noisy that we can only say that these matrix elements
are small. In Fig. 2 we show examples of the signals for the
charmonium ratios R as functions of T � T0. The upper
plot shows R for the singlet ! triplet transition in the
hybrid scheme, which has one of the clearest signals that
we have seen. The lower plot shows R for the
longitudinal ! transverse transition in the coulomb
scheme, which has one of the noisiest signals that we
have seen.

Now let us compare these results with the predictions
from the v-scaling factors, which are shown in the last
column of Table II. As in the bottomonium case, we
include the color factor 1=
2Nc� that arises in the free
Q �Q matrix elements (Ref. [37]). The charmonium
v-scaling factors are the same as those for bottomonium,
except that we evaluate them by setting v2 � 0:3. Again,
as in the case of bottomonium, the triplet ! singlet and
singlet ! triplet matrix elements in the hybrid scheme
show good agreement with the v-scaling predictions. The
other matrix elements are somewhat smaller than would be
expected from the v-scaling predictions, perhaps indicat-
ing that their coefficients in the v expansion are small.
However, here we notice that the triplet spin-flip and non-
spin-flip matrix elements are of similar size. As we have
mentioned, we know that the effective cutoff in the char-
monium case is larger than m and that the spin-flip matrix
elements diverge as 	�s
��=/�2
�=mc�

4 at large �, while
the non-spin-flip matrix elements diverge only as
	�s
��=/�2
�=mc�

2log2
�=mc�. Therefore, it is not sur-
prising that the triplet spin-flip matrix elements appear to
be anomalously large in comparison with the non-spin-flip
014009
matrix elements. In the nrqcd scheme, which effectively
lowers the cutoff on the interactions in �H, we see a
considerable reduction in the size of the triplet spin-flip
matrix elements, as well as in the triplet ! singlet and
singlet ! triplet matrix elements, which diverge as
	�s
��=/�
�=mc�

2. However, the sizes of the diagonal
matrix elements are not reduced, but merely made closer
in value, as would be expected when all off-diagonal
matrix elements are small. This indicates that these diago-
-9
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nal matrix elements get sizable contributions from the
interactions in H0, whose effective cutoff is not reduced
in the nrqcd scheme. In the coulomb scheme, in which the
effective cutoff of the interactions inH0 is also reduced, we
see that the diagonal matrix elements are reduced in size
relative to those in the nrqcd scheme. The triplet ! singlet
and singlet ! triplet matrix elements are almost identical
in size to their nrqcd -scheme counterparts because the
effective cutoff on the interactions in �H is the same (to
leading order in v) in both schemes. In addition, to the
extent that we can infer anything from the very noisy
signals for the triplet spin-flip matrix elements in the
coulomb scheme, the values of these matrix elements are
consistent with their remaining unchanged in going from
the nrqcd scheme to the coulomb scheme. We can therefore
conclude that, were we able to carry out the lattice com-
putation directly at ��mc, the size ordering of matrix
elements would be as predicted by the v-scaling estimates.
However, the suppression of the matrix elements of higher
order in v would be even more than that which is predicted
by those estimates, indicating that the those matrix ele-
ments have relatively small coefficients in the v expansion.
We conclude that the v expansion is a useful tool for
establishing a hierarchy of charmonium decay matrix
elements.
IV. SUMMARY AND CONCLUSIONS

We have calculated, in lattice NRQCD, color-octet,
spin-dependent matrix elements that appear in the
NRQCD factorization expression (5) for decays of botto-
monium and charmonium. The lattice action we used is
correct through order v4 and contains the standard tadpole
improvement, as well as order-a2 improvements to the
terms of leading order in v. The decay matrix elements
that we calculated are related by crossing symmetry to the
production matrix elements that appear in the dominant
contributions at large pT to the production of the� and the
J= . In our calculations, we made use of various forms of
the lattice heavy-quark Green’s functions, which are
equivalent to the order in v to which we work, but which
allow us to vary the effective momentum cutoff for inter-
actions of the heavy-quark fields with the gauge fields. Our
goals were to test the accuracy of estimates of the sizes of
matrix elements that are based on the v-scaling rules of
NRQCD and to test the convergence of the v expansion.

In the case of bottomonium, we found that estimates that
are based on the v-scaling factors are reasonable for the
singlet ! triplet and triplet ! singlet matrix elements.
The diagonal singlet ! singlet and triplet ! triplet matrix
elements are suppressed relative to these leading-order
matrix elements, but by even more than one would expect
from the v-scaling factors alone. The suppression of the
triplet spin-flip matrix elements relative to the triplet non-
spin-flip matrix elements is consistent with predictions that
are based on the v-scaling factors. In all cases, the
014009
v-scaling predictions correctly indicate the hierarchy of
matrix elements.

In the case of charmonium, the situation is made less
clear by the fact that, in order to describe the quarkonium
physics on the lattice, we are forced to work with lattice
spacings that correspond to UV momentum cutoffs that are
considerably larger than the heavy-quark mass.
Consequently, we expect the matrix-element calculations
to contain large contributions that grow as a power of the
cutoff and that violate the v-scaling rules of NRQCD. By
using various forms of the heavy-quark Green’s functions,
we are able to vary the effective UV cutoffs of the matrix
elements. The indications from our studies of the effects of
varying these cutoffs are that the v-scaling rules are a good
guide as to which matrix elements are important, but that
the matrix elements are smaller than one would expect
from the v-scaling factors alone. Again, the v-scaling
predictions correctly indicate the hierarchy of matrix ele-
ments. Of course, the cutoff dependences of the matrix
elements are canceled in physical quantities, such as the
quarkonium production and decay rates, by corresponding
cutoff dependences in the accompanying short-distance
coefficients. A more complete understanding of the effects
of varying the UV cutoffs could be obtained by studying
the cutoff dependences of the matrix elements in perturba-
tion theory. For example, one could calculate the matching
coefficients between lattice matrix elements and contin-
uum (dimensionally-regulated) matrix elements. The
matching coefficients are infrared safe and, hence, are
amenable to a perturbative treatment. Such a calculation
involves both one- and two-loop contributions in lattice
and continuum perturbation theory, and is beyond the
scope of this paper.

Phenomenological color-octet production matrix ele-
ments for the triplet ! triplet transition, normalized
against the color-singlet matrix elements, as in R in
Tables I and II, lie in the ranges 5:1–16� 10�3 for the
�
1S� and 1:9–24� 10�3 for the J= (Ref. [38]). The
lattice decay matrix elements for the triplet ! triplet tran-
sition are somewhat smaller than the phenomenological
range of production matrix elements for the J= and
considerably smaller than the phenomenological range of
production matrix elements for the �. However, effects
from multiple-gluon radiation, which may decrease the
phenomenological values of the color-octet matrix ele-
ments, have not yet been included in the analyses of the
� matrix elements. Furthermore, decay matrix elements
need not be equal to the corresponding production matrix
elements, even though they have the same v-scaling be-
havior. We also note that lattice matrix elements differ
from continuum matrix elements. We do not expect the
differences to be large for tadpole-improved lattice calcu-
lations, provided that the lattice cutoff is of order or smaller
than the heavy-quark mass. However, that situation does
not hold in our charmonium calculations.
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The charmonium color-octet singlet ! triplet decay ma-
trix element is relatively large, which suggests that the
color-octet triplet ! singlet production matrix element
may also be large. This would imply that, at large pT at
the Tevatron, where the color-octet, spin-triplet process
dominates S-wave quarkonium production, the c produc-
tion rate may be comparable to the J= production rate.
Once the size of the effective UV cutoff is reduced, the
longitudinal ! transverse decay matrix element is small
relative to the up ! up decay matrix element. This sug-
gests that a similar hierarchy may hold for the
transverse ! longitudinal and up ! up production matrix
014009
elements, which would support the prediction of large
transverse polarization at large pT at the Tevatron.
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