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Motivated by the recent indications of the possibility of sizable deviations of the mixing-induced CP
violation parameter, Sf, in the penguin-dominated b! sq �q transition decays such as B0 !
�	;!; �0; 0; ; �0; f0�KS from sin2� determined from B! J= KS, we study final-state rescattering
effects on their decay rates and CP violation. Recent observations of large direct CP asymmetry in modes
such as B0 ! K���; ���� suggest that final-state phases in two-body B decays may not be small. It is
therefore important to examine these long-distance effects on penguin-dominated decays. Such long-
distance effects on Sf are found to be generally small [i.e. O�1� 2%�] or negligible except for the !KS
and �0KS modes where Sf is lowered by around 15% for the former and increased by the same percentage
for the latter. However, final-state rescattering can enhance the !KS, 	KS, 0KS, �0KS, and �0KS rates
significantly and flip the signs of direct CP asymmetries of the last two modes. Direct CP asymmetries in
!KS and �0KS channels are predicted to be A!KS � �0:13 and A�0KS � 0:47, respectively. However,
direct CP asymmetry in all the other b! s penguin-dominated modes that we study is found to be rather
small ( & a few percent), rendering these modes a viable place to search for the CP-odd phases beyond the
standard model. Since �Sf ( � �fSf � SJ= KS , with f being the CP eigenvalue of the final state f)
and Af are closely related, the theoretical uncertainties in the mixing-induced parameter Sf and the direct
CP asymmetry parameter Af are also coupled. Based on this work, it seems difficult to accommodate
j�Sfj> 0:10 within the standard model for B0 ! �	;!; �0; 0; ; �0�KS; in particular, 0KS is especially
clean in our picture. For f0KS, at present we cannot make reliable estimates. The sign of the central value
of �Sf for all the modes we study is positive but quite small, compared to the theoretical uncertainties, so
that at present conclusive statements on the sign are difficult to make.
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I. INTRODUCTION AND MOTIVATION

Possible new physics beyond the standard model (SM) is
being intensively searched via the measurements of time-
dependent CP asymmetries in neutral Bmeson decays into
final CP eigenstates defined by

�B�t� ! f� � �B�t� ! f�

�B�t� ! f� � �B�t� ! f�

 Sf sin��mt�

�Af cos��mt�; (1.1)

where �m is the mass difference of the two neutral B
eigenstates, Sf monitors mixing-induced CP asymmetry,
and Af measures direct CP violation (in terms of the
BABAR notation, Cf 
 �Af). The CP-violating parame-
ters Af and Sf can be expressed as

A f 
 �
1� j�fj

2

1� j�fj
2 ; Sf 


2 Im�f
1� j�fj

2 ; (1.2)

where

�f 

qB
pB

A�B0 ! f�

A�B0 ! f�
: (1.3)

In the standard model �f � fe�2i� [see Eq. (2.14) below]
for b! s penguin-dominated or pure penguin modes with
f 
 1 (� 1) for final CP-even (odd) states. Therefore, it
05=72(1)=014006(17)$23.00 014006
is expected in the standard model that�fSf � sin2� and
Af � 0 with � being one of the angles of the unitarity
triangle.

The mixing-induced CP violation in B decays has al-
ready been observed in the golden mode B0 ! J= KS for
several years. The current average of BABAR [1] and Belle
[2] measurements is

sin2� � SJ= KS 
 0:726� 0:037: (1.4)

However, the time-dependent CP asymmetries in the
b! sq �q-induced two-body decays such as B0 !
�	;!;�0; 0; f0�KS are found to show some indications
of deviations from the expectation of the SM. The BABAR
[3] and Belle [4] results and their averages are shown in
Table I. In the SM, CP asymmetry in all above-mentioned
modes should be equal to SJ= K with a small deviation at
most O�0:1� [5]. As discussed in [5], this may originate
from the O��2� truncation and from the subdominant
(color-suppressed) tree contribution to these processes.
From Table I we see some possibly sizable deviations
from the SM, especially in the 0KS mode in which the
discrepancy �S0KS 
 �0:30� 0:11 is a 2:7� effect
where

�Sf � �fSf � SJ= KS : (1.5)
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TABLE I. Mixing-induced and direct CP asymmetries �fSf (first entry) and Af (second
entry), respectively, for various penguin-dominated modes with f being the CP eigenvalue of
the final state. Experimental results are taken from [3,4].

Final state BABAR [3] Belle [4] Average

	KS 0:50� 0:25�0:07�0:04 0:08� 0:33� 0:09 0:35� 0:20
�0:00� 0:23� 0:05 0:08� 0:22� 0:09 0:04� 0:17

!KS 0:50�0:34�0:38 � 0:02 0:76� 0:65�0:13�0:16 0:55�0:30�0:32

0:56�0:29�0:27 � 0:03 0:27� 0:48� 0:15 0:48� 0:25
0KS 0:30� 0:14� 0:02 0:65� 0:18� 0:04 0:43� 0:11

0:21� 0:10� 0:02 �0:19� 0:11� 0:05 0:04� 0:08
�0KS 0:35�0:30�0:33 � 0:04 0:32� 0:61� 0:13 0:34�0:27�0:29

�0:06� 0:18� 0:03 �0:11� 0:20� 0:09 �0:08� 0:14
f0KS 0:95�0:23�0:32 � 0:10 �0:47� 0:41� 0:08 0:39� 0:26

0:24� 0:31� 0:15 �0:39� 0:27� 0:09 �0:14� 0:22
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If this deviation from SJ= K is confirmed and established in
the future, it may imply some new physics beyond the SM.

In order to detect the signal of new physics unambigu-
ously in the penguin b! smodes, it is of great importance
to examine how much of the deviation of Sf from SJ= K is
allowed in the SM [5–10]. In all these previous studies and
estimates of �Sf, effects of final-state interactions (FSI)
were not taken into account. In view of the striking obser-
vation of large direct CP violation in B0 ! K���, it is
clear that final-state phases in two-body B decays may not
be small. It is therefore important to understand their
effects on �Sf.

The decay amplitude for the pure penguin or penguin-
dominated charmless B decay in general has the form

M�B0 ! f� 
 VubV

usF

u � VcbV

csF

c � VtbV

tsF

t: (1.6)

Unitarity of the Cabibbo-Kobayashi-Maskawa quark-
mixing matrix (CKM) elements leads to

M�B0 ! f� 
 VubVusAuf � VcbV

csAcf

� A�4Rbe�i$Auf � A�
2Acf; (1.7)

where Auf 
 Fu � Ft, Acf 
 Fc � Ft, Rb �

jVudVub=�VcdVcb�j 

������������������
��2 � �2

p
with ��, �, A, � being

the Wolfenstein parameters [11]. The first term is sup-
pressed by a factor of �2 relative to the second term. For
a pure penguin decay such as B0 ! 	K0, it is naively
expected that Auf is, in general, comparable to Acf in mag-
nitude. Therefore, to a good approximation �fSf �
sin2� � SJ= K. For penguin-dominated modes such as
!KS; �0KS;�0KS, Auf also receives tree contributions
from the b! u �us tree operators. Since the Wilson coeffi-
cient for the penguin operator is smaller than the one for
the tree operator, Auf could be significantly larger than Acf.
As the first term carries a weak phase $, it is possible that
Sf is subject to a significant ‘‘tree pollution.’’ To quantify
the deviation, it is known that to the first order in rf �
014006
��uAuf�=��cA
c
f� [8,12]

�Sf 
 2jrfj cos2� sin$ cos'f;

Af 
 2jrfj sin$ sin'f;
(1.8)

with 'f 
 arg�Auf=A
c
f�. Hence, the magnitude of the CP

asymmetry difference �Sf and direct CP violation are
both governed by the size of Auf=A

c
f. However, for the

aforementioned penguin-dominated modes, the tree con-
tribution is color suppressed and hence in practice the
deviation of Sf is expected to be small [5]. (However, we
shall see below that a sizable �Sf can occur in !KS and
�0KS modes. For a review of model calculations of �Sf,
see [13].)

Since the penguin loop contributions are sensitive to
high virtuality, new physics beyond the SM may contribute
to Sf through the heavy particles in the loops (for a review
of the new physics sources contributing to Sf, see [14]).
Another possibility is that final-state interactions are the
possible tree pollution sources to Sf. Both Auf and Acf will
receive long-distance (LD) tree and penguin contributions
from rescattering of some intermediate states. In particular,
there may be some dynamical enhancement of light
u-quark loop. If tree contributions to Auf are sizable, then
final-state rescattering will have the potential of pushing Sf
away from the naive expectation. Take the penguin-
dominated decay B0 ! !K0 as an illustration. It can pro-
ceed through the weak decay B0 ! K��� followed by
the rescattering K��� ! !K0. The tree contribution to
B0 ! K���, which is color allowed, turns out to be
comparable to the penguin one because of the absence of
the chiral enhancement characterized by the a6 penguin
term. Consequently, even within the framework of the SM,
final-state rescattering may provide a mechanism of tree
pollution to Sf. By the same token, we note that although
B0 ! 	K0 is a pure penguin process at short distances,
it does receive tree contributions via long-distance
rescattering.
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In this work, we shall study the effects of final-state
interactions on the time-dependent CP asymmetries Sf and
Af. In [15] we have studied the final-state rescattering
effects on the hadronic B decays and examined their im-
pact on direct CP violation. The direct CP-violating partial
rate asymmetries in charmless B decays to ��=�K and
�� are significantly affected by final-state rescattering and
their signs are generally different from that predicted by
the short-distance (SD) approach such as QCD factoriza-
tion (QCDF) [16–18]. Evidence of direct CP violation in
the decay B0 ! K��� is now established, while the com-
bined BABAR and Belle measurements of B0 ! ����

imply a 3:6� direct CP asymmetry in the ���� mode
[19]. In fact, direct CP asymmetries in these channels are a
lot bigger than expectations (of many people) and may be
indicative of appreciable LD rescattering effects, in gen-
eral, in B decays. Our predictions for CP violation agree
with experiment in both magnitude and sign, whereas the
QCD factorization predictions (especially for ����) [18]
seem to have some difficulties with the data.

Besides some significant final-state rescattering effects
on direct CP violation, another motivation for including
FSIs is that there are consistently 2 to 3 � deviations
between the central values of the QCDF predictions for
penguin-dominated modes such as B! K�;K	;
014006
K	;K0 and the experimental data [18]. This discrep-
ancy between theory and experiment for branching ratios
may indicate the importance of subleading power correc-
tions such as FSI effects and/or the annihilation topology.

Since direct CP violation in charmless B decays can be
significantly affected by final-state rescattering, it is clearly
important to try to take into account the FSI effect on the
mixing-induced and direct CP asymmetries Sf and Af of
these penguin-dominated modes. The layout of the present
paper is as follows. In Sec. II we discuss the short-distance
contributions to the b! sq �q transition decays B0 !
�	;!; �0; �0; 0; ; f0�KS within the framework of QCD
factorization. We then proceed to study the final-state
rescattering effects on CP asymmetries Sf and Af in
Sec. III. Section IV contains our conclusions.

II. SHORT-DISTANCE CONTRIBUTIONS

A. Decay amplitudes in QCD factorization

We shall use the QCD factorization approach [16–18] to
study the short-distance contributions to the decays B0 !
�	;!; �0; �0; 0; ; f0�K

0. In QCD factorization, the fac-
torization amplitudes of the above-mentioned decays are
given by
h	K0jHeffjB
0i 


GF���
2
p �pB � "


	�

X
p
u;c

�p

��
�a3 � a5��K

0	� � �ap4 � r
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p
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1
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�
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1
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h0K0jHeff jB
0i 
 i

GF���
2
p

X
p
u;c

�p

�
FBK0 �m

2
0 ��m

2
B �m

2
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�fq0���
2
p

�
a2�K
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p
u � 2.3�K

00q� �
1

2
.3;EW�K

00q�
�

� fc0 �a2�K
00c�'

p
c � .3�K

00c��
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�
.3�K

00s� � .
p
4 �K

00s� �
1

2
.3;EW�K

00s� �
1

2
.p4;EW�
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sK
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0 �
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hf0K
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X
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p
6 ��f0K
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�ap10 � r
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p
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2
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�
b3�f0K

0� �
1

2
bEW3 �f0K

0�

��
; (2.1)
where F1;0 and A0 denote pseudoscalar and vector form
factors in the standard convention [20], �p � VpbV


ps,

.3�M1M2� 
 a3�M1M2� � a5�M1M2�;

.p4 �M1M2� 
 ap4 �M1M2� � r
M2
, ap6 �M1M2�;

.3;EW�M1M2� 
 �a7�M1M2� � a9�M1M2�;

.p4;EW�M1M2� 
 ap10�M1M2� � r
M2
, ap8 �M1M2�;

(2.2)

and

r	, �-� 

2m	

mb�-�

f?	 �-�

f	
; r�,�-� 


2m2
�

2mb�-�mq�-�
;

rK, �-� 

2m2

K

mb�-��ms�-� �mq�-��
;

r
0

, �-� 

2m2

0

2mb�-�ms�-�

�
1�

fq0���
2
p
fs0

	
; (2.3)

with the scale dependent transverse decay constant f?V
being defined as

hV�p; "�j �q�-/q
0j0i 
 f?V �p-"


/ � p/"


-�: (2.4)

Note that the a6 penguin term appears in the decay ampli-
tude of B0 ! 	K0 owing to the nonvanishing transverse
decay constant of the 	 meson. The scalar decay constant
�fq of f0�980� in Eq. (2.1) is defined by hf0j �qqj0i 
 mf0

�fq.
The decay amplitude for B0 ! K0 is obtained from B0 !
0K0 by replacing 0 ! . Note that the use of nonzero q2

in the argument of form factors in Eq. (2.1) means that
some corrections quadratic in the light quark masses are
automatically incorporated.

The effective parameters api with p 
 u; c can be calcu-
lated in the QCD factorization approach [16]. They are
014006
basically the Wilson coefficients in conjunction with short-
distance nonfactorizable corrections such as vertex correc-
tions and hard spectator interactions. In general, they have
the expressions [16,18]

api �M1M2� 
 ci �
ci�1
Nc
�
ci�1
Nc

CF.s
4�

�

�
Vi�M2� �

4�2

Nc
Hi�M1M2�

�
� Ppi �M2�;

(2.5)

where i 
 1; . . . ; 10, the upper (lower) signs apply when i
is odd (even), ci are the Wilson coefficients, CF 
 �N2

c �
1�=�2Nc� with Nc 
 3, M2 is the emitted meson, and M1

shares the same spectator quark with the B meson. The
quantities Vi�M2� account for vertex corrections,
Hi�M1M2� for hard spectator interactions with a hard gluon
exchange between the emitted meson and the spectator
quark of the B meson, and Pi�M2� for penguin contrac-
tions. The explicit expressions of these quantities together
with the annihilation quantities b3 and bEW3 can be found in
[16,18].

For B! �
0�K decay, �

0�
q and �

0�
s in Eq. (2.1) refer to

the nonstrange and strange quark states, respectively, of
�
0�. The decay constants fq;s;c

�
0 �

are defined by

h�
0��p�j �q$-$5qj0i 
 �

i���
2
p fq

�
0�
p-;

h�
0��p�j�s$-$5sj0i 
 �if

s
�
0 �
p-;

h�
0��p�j �c$-$5cj0i 
 �if

c
�
0 �
p-;

(2.6)

with q 
 u or d. Numerically, we shall use [21]
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fq0 
 89 MeV; fs0 
 131 MeV;

fc0 
 �6:3 MeV; fq 
 108 MeV;

fs 
 �111 MeV; fc 
 �2:4 MeV;

(2.7)

recalling that, in our convention, f� 
 132 MeV. As for
the B! �

0� form factor, we shall follow [17] to use the

relation FB
�0 �

0 
 �fq
�
0�
=fs

�
0 �
�FB�0 to obtain the values of the

form factors FB
�0 �

0 . The wave functions of the physical 0

and  states are related to that of the SU(3) singlet state 0

and octet state 8 by

0 
 8 sin	� 0 cos	;  
 8 cos	� 0 sin	;

(2.8)

with the mixing angle 	 
 ��15:4� 1:0�� [21].
The decay B! f0�980�K has been discussed in detail in

[22]. Since the scalar meson f0�980� cannot be produced
via the vector current owing to charge conjugation invari-
ance or conservation of vector current, the tree contribution
to B0 ! f0K

0 vanishes under the factorization approxima-
tion. Just as the SU(3)-singlet 0, f0�980� in the two-quark
picture also contains strange and nonstrange quark content

jf0�980�i 
 j �ssi cos1� j �nni sin1; (2.9)

with �nn � � �uu� �dd�=
���
2
p

. Experimental implications for
the mixing angle 1 have been discussed in detail in [22,23];
it lies in the ranges of 25� < 1< 40� and 140� < 1<
165�. Based on the QCD sum-rule technique, the decay
constants ~fs and ~fn defined by hfq0 j �qqj0i 
 mf0

~fq with
fn0 
 �nn and fs0 
 �ss have been estimated in [22] by
taking into account their scale dependence and radiative
corrections. It turns out that ~fs�1 GeV� � 0:33 GeV [22],
for example. In the two-quark scenario for f0�980�, the
decay constants �fn;s are related to ~fn;s via [22]

�f s 
 ~fs cos1; �fn 
 ~fn sin1: (2.10)

The hard spectator function relevant for B! f0K decay
has the form

Hi�f0K� 

�fufB

F
Bfu0
0 �0�m

2
B

Z 1

0

d�
�

"B���
Z 1

0

d4
�4
"K�4�

�
Z 1

0

d
�

�
"f0�� �

2mf0

mb

�4
4
"p
f0
��

�
; (2.11)

for i 
 1, 4, 10, and Hi 
 0 for i 
 6, 8, where �4 � 1� 4
and � 
 1� . As for the parameters au;c6;8�K

0f0� appear-
ing in Eq. (2.1), they have the same expressions as
au;c6;8�f0K

0� except that the penguin function ĜK [see
Eq. (55) of the second reference in [16]] is replaced by
014006
Ĝf0 and "p
K by "p

f0
. For the distribution amplitudes "f0 ,

"p
f0

and the annihilation amplitudes, see [22] for details.
Although the parameters ai�i � 6; 8� and a6;8r, are

formally renormalization scale and $5 scheme indepen-
dent, in practice there exists some residual scale depen-
dence in ai�-� to finite order. To be specific, we shall
evaluate the vertex corrections to the decay amplitude at
the scale - 
 mb. In contrast, as stressed in [16], the hard
spectator and annihilation contributions should be eval-
uated at the hard-collinear scale -h 


����������
-$h

p
with $h �

500 MeV. There is one more serious complication about
these contributions; that is, while QCD factorization pre-
dictions are model independent in the mb !1 limit,
power corrections always involve troublesome endpoint
divergences. For example, the annihilation amplitude has
endpoint divergences even at twist-2 level and the hard
spectator scattering diagram at twist-3 order is power sup-
pressed and possesses soft and collinear divergences aris-
ing from the soft spectator quark. Since the treatment of
endpoint divergences is model dependent, subleading
power corrections generally can be studied only in a phe-
nomenological way. We shall follow [16] to parametrize
the endpoint divergence XA �

R
1
0 dx=�1� x� in the anni-

hilation diagram as

XA 
 ln
�
mB

$h

	
�1� �Ae

i	A� (2.12)

with �A � 1. Likewise, the endpoint divergence XH in the
hard spectator contributions can be parametrized in a simi-
lar way.

B. Consideration of mixing-induced CP asymmetry

Consider the mixing-induced CP violation in the decay
modes �	;!; �0; �0; 0; ; f0�KS mediated by b! sq �q
transitions. Since a common final state is reached only
via K0 � K0 mixing,

�f 

qB
pB

qK
pK

A�B0 ! MK0�

A�B0 ! MK0�

�
VtbVtd
VtbV


td

VcdVcs
VcdV


cs

A�B0 ! MK0�

A�B0 ! MK0�
: (2.13)

We shall use this expression for �f to compute CP asym-
metries Sf and Af. For M 
 V, A�B0 ! VK0� has the
same expression as�A�B0 ! VK0� with the CKM mixing
angles �p ! �p owing to CPjVK0i 
 �jVK0i, while for
M 
 P, A�B0 ! PK0� is obtained from A�B0 ! PK0�
with �p ! �p. If the contributions from VubVus terms
are neglected, then we will have
-5



TABLE II. SD and LD contributions to the branching ratios (in
units of 10�6) for various penguin-dominated modes. The first
and second theoretical errors correspond to the SD and LD ones,
respectively (see the text for details). The world averages of
experimental measurements are taken from [19].

SD SD� LD Expt

B0 ! 	K0 5:6�1:9�1:8 8:6�1:2�2:9�1:2�1:8 8:3�1:2�1:0

B0 ! !K0 2:0�3:5�1:3 5:6�2:9�3:7�1:2�2:1 5:6� 0:9

B0 ! �0K0 2:8�3:2�1:6 5:2�3:2�2:6�1:5�1:2 5:1� 1:6

B0 ! 0K0 42:1�45:6�19:4 69:4�51:3�50:4�21:4�19:2 68:6� 4:2

B0 ! K0 1:8�1:2�0:9 1:8�1:2�0:1�0:8�0:0 <2:0

B0 ! �0K0 5:8�5:5�3:1 9:6�5:5�8:4�2:9�3:0 11:5� 1:0

B0 ! f0K
0 8:1�3:1�2:6 8:1�3:1�0:0�2:7�0:0

a 11:3� 3:6

aOnly the intermediate states K��� and ��K� are taken into
account; see Sec. III for details.
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A�B0 ! MK0�

A�B0 ! MK0�
� f

VcdV

cs

VcdVcs
) �f � f

Vtd
Vtd

 fe�2i�

) �fSf � sin2�: (2.14)

Note that f 
 1 for f0KS and f 
 �1 for
�	;!; �0; 0; ; �0�KS.

From Eq. (2.1) we see that among the seven modes under
consideration, only !KS, �0KS, �0KS, and �

0�KS receive
tree contributions from the tree diagram b! sq �q (q 

u; d). However, since the tree contribution is color sup-
pressed, the deviation of�fSf from sin2� is expected to
be small. Nevertheless, the large cancellation between a4
and a6 penguin terms in the amplitudes of B0 ! !K0 and
B0 ! �0K0 render the tree contribution relatively signifi-
cant. Hence, �Sf is expected to be largest in the !KS and
�0KS modes. Since the typical values of the effective
Wilson parameters obtained from Eq. (2.5) are

a2 � 0:18� 0:11i; a3 � �0:003� 0:005i;

a5 � 0:008� 0:006i; au4 � �0:03� 0:02i;

ac4 � �0:03� 0:006i; au6 � �0:06� 0:02i;

ac6 � �0:06� 0:004i;

(2.15)

and rK, � 0:57, it is not difficult to see from Eq. (2.1) that
'f lies in the region 0> 'f >��=2 for the!KS and f0KS
modes,�> 'f > �=2 for �0Ks, and�=2> 'f > 0 for the
remaining three. Therefore, based purely on SD contribu-
tions, it is expected that �Sf > 0 for all the modes except
for �0KS and that Af is negative for !KS, f0KS and
positive for 	KS, �0KS, �0KS, �

0�KS.

C. Numerical results

To proceed with the numerical calculations, we shall
follow [16,18] for the choices of the relevant parameters
except for the form factors and CKM matrix elements. For
form factors we shall use those derived in the covariant
light-front quark model [24] and assign a common value of
0.03 for the form factor errors, e.g. FB��0� 
 0:25� 0:03.
For CKM matrix elements, see the unitarity triangle analy-
sis in [25]. For definiteness, we shall follow the first
reference in [25] to use the Wolfenstein parameters A 

0:801, � 
 0:2265, �� 
 0:189, and � 
 0:358 which cor-
respond to sin2� 
 0:723 and $ 
 63�. We assign 15�

error for the unitarity angle $, recalling that two values
$ 
 �62�10�12�

� and $ 
 �64� 18�� are obtained in [25].
For endpoint divergences encountered in hard spectator
and annihilation contributions we take the default values
�A 
 �H 
 0. We will return to this point below when
discussing long-distance rescattering effects.

The obtained branching ratios for the decays B0 !
�	;!; �0; �0; 0; ; f0�K

0 are shown in the second column
of Table II, while the corresponding CP violation asym-
metries Sf and Af are depicted in Table III. In general, our
014006
results for branching ratios and direct CP asymmetries are
in agreement with [18]. Some differences result from
different inputs of the form factors and CKM parameters.
It is evident that, as far as the central values are concerned,
the predicted branching ratios by the SD QCD factoriza-
tion approach are generally too low compared to experi-
ment especially for !K0, �0KS, and �0K0. Note that
B�B0 ! !K0� & 10�6 is predicted in the early QCD fac-
torization calculation [26]. The very large (small) branch-
ing ratio for 0K0 (K0) is understandable as follows.
There are two distinct penguin contributions to �

0�K0:
one couples to the d quark content of the �

0�, while the
other is related to the s quark component of the �

0� [see
also Eq. (2.1)]. If the � 0 mixing angle is given by
�19:5�, the expressions of the 0 and  wave functions
will become very simple:

j0i 

1���
6
p j �uu� �dd� 2�ssi;

ji 

1���
3
p j �uu� �dd� �ssi:

(2.16)

It is evident that the SD K0 amplitude vanishes in the
SU(3) limit, whereas the constructive interference between
the penguin amplitudes accounts for the large rate of 0K0.
In reality the � 0 mixing angle is ��15:4� 1:0�� [21],
but this does not affect the above physical picture.

Owing to the large cancellation between the a4 and a6
penguin terms, the main contribution to the decay B0 !
f0K

0 arises from the penguin diagram involving the
strange quark content of f0�980�, namely, the term with
the scalar decay constant �fs. Consequently, the maximal
branching ratio 9:9� 10�6 occurs near the zero mixing
angle. The result of B�B0 ! f0K

0� 
 8:1� 10�6 shown
in Table II corresponds to 1 
 150�. Note that the decay
B0 ! f0�980�K

0 was measured by BABAR [27] with the
result
-6



TABLE III. SD and LD contributions to the time-dependent CP asymmetry. The first and second theoretical errors correspond to the
SD and LD ones, respectively (see the text for details).

Final state �nfSf Af�%�

SD SD� LD Expt SD SD� LD Expt

	KS 0:747�0:002�0:039 0:759�0:007�0:005�0:041�0:006 0:35� 0:20 1:4�0:3�0:5 �2:6�0:8�1:1�1:0�0:9 4� 17

!KS 0:850�0:052�0:055 0:736�0:022�0:025�0:035�0:014 0:55�0:30�0:32 �7:3�3:5�2:6 �13:2�3:9�2:1�2:8�2:6 48� 25

�0KS 0:635�0:028�0:067 0:761�0:071�0:073�0:079�0:100 � � � 9:0�2:2�4:6 46:6�12:9�10:8�14:7�5:9 � � �

0KS 0:737�0:002�0:038 0:725�0:004�0:005�0:036�0:003 0:43� 0:11 1:8�0:4�0:4 2:1�0:6�0:5�0:3�0:2 4� 8

KS 0:793�0:017�0:044 0:802�0:025�0:002�0:046�0:004 � � � �6:1�5:1�2:0 �3:7�4:4�1:4�1:8�2:4 � � �

�0KS 0:787�0:018�0:044 0:770�0:006�0:015�0:042�0:019 0:34�0:27�0:29 �3:4�2:1�1:1 3:7�1:8�2:0�2:0�0:4 �8� 14

f0KS 0:749�0:002�0:039 0:749�0:002�0:0�0:039�0:0
a 0:39� 0:26 0:77�0:13�0:10 0:75�0:14�0:01�0:09�0:01

a �14� 22

aOnly the intermediate states K��� and ��K� are taken into account (see Sec. III for details). This means that the prediction of the
LD effects on the f0KS mode is less certain.
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B�B0 ! f0�980�K0 ! ����K0� 
 �6:0� 0:9� 1:3�

� 10�6: (2.17)

The absolute branching ratios for B! f0K depends
critically on the branching fraction of f0�980� ! ��. We
use the results from the most recent analysis of [28] to
obtain B�f0�980� ! ��� 
 0:80� 0:14 and B�B0 !
f0�980�K

0� 
 �11:3� 3:6� � 10�6 as shown in Table II.1

In short, although the predicted branching ratios of
�	;!; �0; 0; �0�K0 are consistent with the data within
the theoretical and experimental uncertainties, there are
sizable discrepancies between the SD theory and experi-
ment for the central values of their branching ratios. This
may call for the consideration of subleading power correc-
tions such as the annihilation topology and/or FSI effects.

In Tables II and III we have included the SD theoretical
uncertainties arising from the variation of the unitarity
angle $ 
 �63� 15��, the renormalization scale - from
2mb to mb=2, quark masses (especially the strange quark
mass which is taken to be ms�2 GeV� 
 90� 20 MeV),
and form factors as mentioned before. To obtain the SD
errors shown in Tables II and III, we first scan randomly the
points in the allowed ranges of the above four parameters
in two separated groups: the first one and the last three, and
then add each error in quadrature. For example, for the
decay B0 ! 0KS we obtain 2B 
 �42:1�0:2�45:6�0:2�19:4� � 10�6,
A 
 1:77�0:30�0:22�0:18�0:30%, and S 
 0:737�0:002�0:002�0:038�0:004, where
the first error is due to the variation of $ and the second
error comes from the uncertainties in the renormalization
scale, the strange quark mass and the form factors.

From Table III we obtain the differences between the CP
asymmetry SSDf induced at short distances and the mea-
sured SJ= KS to be
1For comparison, the world average of the branching ratio for
B� ! f0K

� ! ����K� is �8:49�1:35�1:26� � 10�6 [19] and hence
B�B� ! f0K

�� � �15:9�3:8�3:7� � 10�6.

014006
�SSD	KS 
 0:02�0:00�0:04; �SSD!KS 
 0:12�0:05�0:06;

�SSD
�0KS

 �0:09�0:03�0:07; �SSD

�0KS

 0:06�0:02�0:04;

�SSD0KS 
 0:01�0:00�0:04; �SSDKS 
 0:07�0:02�0:04;

�SSDf0KS 
 0:02�0:00�0:04;

(2.18)

where the experimental error of SJ= KS is not included. It
should be noted that these results are not upset by the
approximation of neglecting the error on SJ= KS . Our re-
sults for �SSD	KS and �SSD0KS are consistent with that ob-
tained in [18].2 As expected before, the !KS and �0KS
modes have the largest deviation of Sf from the naive
expectation owing to the large tree pollution. In contrast,
tree pollution in 0KS is diluted by the prominent s�s
content of the 0. As for direct CP violation, sizable direct
CP asymmetries are predicted for !KS and �0KS based on
SD contributions.
III. LONG-DISTANCE CONTRIBUTIONS

As noticed in passing, the predicted branching ratios for
the decays B0 ! �	;!; �0; �0�KS by the short-distance
QCD factorization approach are generally too low by a
factor of 2 compared to experiment. Just like the perturba-
tive QCD (pQCD) approach [29] where the annihilation
topology plays an essential role for producing sizable
strong phases and for explaining the penguin-dominated
VP modes, it has been suggested in [18] that a favorable
scenario (denoted as S4) for accommodating the observed
penguin-dominated B! PV decays and the measured sign
of direct CP asymmetry in B0 ! K��� is to have a large
2Note that unlike [18] we did not include the theoretical
uncertainties arising from power corrections. Otherwise, there
will be a double-counting problem when considering LD rescat-
tering effects.
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annihilation contribution by choosing �A 
 1, 	A 

�55� for PP, 	A 
 �20

� for PV, and 	A 
 �70
� for

VP modes. The sign of 	A is chosen so that the direct CP
violation AK��� agrees with the data. However, there are at
least three difficulties with this scenario. First, the origin of
these phases is unknown and their signs are not predicted.
Second, since both annihilation and hard spectator scatter-
ing encounter endpoint divergences, there is no reason that
soft gluon effects will only modify �A but not �H. Third,
the annihilation topologies do not help enhance the �0�0

and �0�0 modes; both pQCD and QCDF approaches fail to
describe these two color-suppressed tree-dominated
modes. As stressed in [18], one would wish to have an
explanation of the data without invoking weak
annihilation.

As shown in [15], final-state rescattering can have sig-
nificant effects on decay rates and CP violation. For ex-
ample, the branching ratios of the penguin-dominated
decay 	K can be enhanced from �5� 10�6 predicted
by QCDF to the level of 1� 10�5 by FSIs via rescattering
of charm intermediate states [15]. Indeed, it has been long
advocated that charming-penguin long-distance contribu-
tions increase significantly the B! K� rates and yield
better agreement with experiment [30,31]. The color-
suppressed modes D0�0, �0�0, and �0�0 in B decays
can also be easily enhanced by rescattering effects.
Moreover, large nonperturbative strong phases can be gen-
erated from the final-state interactions through the absorp-
tive part of rescattering amplitudes. We have shown
explicitly in [15] that direct CP-violating partial rate asym-
metries in K���, ����, and ���� modes are signifi-
cantly affected by final-state rescattering and their signs,
which are different from what is expected from the short-
distance QCDF approach, and are correctly predicted. In
order to avoid the double-counting problem, we will turn
off the LD effects induced from the power corrections due
to nonvanishing �A and �H; that is, we set �A 
 �H 
 0
and	A 
 	H 
 0; therefore it is important to note that we
are not adding FSI on top of QCDF. We wish to stress that,
in principle, LD rescattering effects can be included in the
framework of QCDF, but that requires modeling of
$QCD=mb power corrections and, in particular, one may
then need to adopt nonvanishing values of �A, �H,	A, and
	H [18], as mentioned above. In this work, we are provid-
ing a specific model for final-state rescattering to comple-
ment QCDF.

Besides direct CP violation, the mixing-induced CP
asymmetry Sf also could be affected by final-state rescat-
014006
tering from some intermediate states. When the intermedi-
ate states are charmless, the relevant CKM matrix element
is VubVus � A�4Rbe�i$ which carries the weak phase $. In
general, the charmless intermediate states will essentially
not affect the decay rates but may have potentially sizable
effect on Sf, whereas the charm intermediate states will
affect both the branching ratios and Sf.

A. Final-state rescattering

At the quark level, final-state rescattering can occur
through quark exchange and quark annihilation. In prac-
tice, it is extremely difficult to reliably calculate the FSI
effects, but it may become amenable to estimate these
effects at the hadron level where FSIs manifest as the
rescattering processes with s-channel resonances and one
particle exchange in the t channel. In contrast to D decays,
the s-channel resonant FSIs in B decays is expected to be
suppressed relative to the rescattering effect arising from
quark exchange owing to the lack of the existence of
resonances at energies close to the B meson mass.
Therefore, we will model FSIs as rescattering processes
of some intermediate two-body states with one particle
exchange in the t channel and compute the absorptive
part of the rescattering amplitude via the optical theorem
[15].

Given the weak Hamiltonian in the form HW 

P
i�iQi,

where �i is the combination of the quark mixing matrix
elements and Qi is a T-even local operator (T: time re-
versal), the absorptive part of final-state rescattering can be
obtained by using the optical theorem and time-reversal
invariant weak decay operator Qi. From the time-reversal
invariance of Q�
 UTQU

y
T �, it follows that

hi; outjQjB; ini 

X
j

Sjihj; outjQjB; ini; (3.1)

where Sij � hi; outjj; ini is the strong-interaction S-matrix
element, and we have used UT jout�in�i

 
 jin�out�i to fix
the phase convention. Equation (3.1) implies an identity
related to the optical theorem. Noting that S 
 1� iT, we
find

2Abshi; outjQjB; ini 

X
j

Tjihj; outjQjB; ini; (3.2)

where use of the unitarity of the S matrix has been made.
Specifically, for two-body B decays, we have
A bsM�pB ! papb� 

1

2

X
j

 
.j
k
1

Z d3 ~qk
�2��32Ek

!
�2��4'4

 
pa � pb �

Xj
k
1

qk

!
M�pB ! fqkg�T�papb ! fqkg�: (3.3)

Thus the optical theorem relates the absorptive part of the two-body decay amplitude to the sum over all possible B decay
-8
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final states fqkg, followed by the strong rescattering fqkg !
papb. In principle, the dispersive part of the rescattering
amplitude can be obtained from the absorptive part via the
dispersion relation

D isA�m2
B� 


P

�

Z 1
s

AbsA�s0�

s0 �m2
B

ds0: (3.4)

Unlike the absorptive part, it is known that the dispersive
contribution suffers from the large uncertainties due to
3The ��� coupling defined here differs from that in [15] by a
factor of 1=

���
2
p

.
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some possible subtractions and the complication from in-
tegrations. For this reason, we will assume the dominance
of the rescattering amplitude by the absorptive part and
ignore the dispersive part in the present work.

The relevant Lagrangian for final-state strong interac-
tions is given by

L 
 Ll �Lh; (3.5)

where
Ll 
 �
1

4
Tr�F-/�V�F-/�V�� � igVPP Tr�V-P@

$
-P� � gVVPC-/.� Tr�@-V/@.V�P�


 �
1

4
Tr�f-/�V�f

-/�V�� � i
gV
2
�	-/K

�-K�/ � K�-/K
�-	/ � K�-/K

�/	- � . . .�

� igVPP�	-K�@
$
-K� � ��-�K0@

$
-K� �

���
2
p
�0@
$
-��� � K�-��@

$
-K0 � K�

�
1���
2
p 0q@

$
-K� � K�@

$
-0s

	

� K0
�
1���
2
p 0q@

$
-K

0 � K0@
$
-
0
s

	
� . . .� � gVVPC

-/.��K��@-K
�
/ @.	�� � K

��@-	/@.K
�
� � � K

0�@-K
�
/ @.�

�
� �

�
���
2
p
���@-�

�
/ @.!�� � . . .�; (3.6)

with P and V being the usual pseudoscalar and vector multiplets, respectively, F-/ 
 f-/ � igV�V-; V/�=2, f-/ 

@-V/ � @/V- and

Lh 
 �igDDP�D
i@-PijD

jy
- �Di-@

-PijD
jy� �

1

2
gDDPC-/.�D

-
i @

/Pij@
$.D�yj � igDDVD

y
i @
$
-D

j�V-�ij

� 2fDDVC-/.��@
-V/�ij�D

y
i @
$.D�j �D�yi @

$.Dj� � igDDVD
/y
i @
$
-D
j
/ �V-�ij

� 4ifDDVD
y
i-�@

-V/ � @/V-�ijD
j
/ : (3.7)
Only those terms relevant for later purposes are shown in
Ll and the convention C0123 
 1 has been adopted. For the
coupling constants, we take g�KK ’ g��� ’ 4:28,3

g	KK 
 4:48,
���
2
p
gVVP 
 16 GeV�1 [32]. In the chiral

and heavy quark limits, we have [33]

gDD� 

gDD�
mD

; gDDV 
 gDDV 

�gV���
2
p ;

fDDV 

fDDV
mD



�gV���
2
p ;

(3.8)

with f� 
 132 MeV. The parameters gV , �, and � (not to
be confused with the Wolfenstein parameter �) thus enter
into the effective chiral Lagrangian describing the inter-
actions of heavy mesons with low momentum light vector
mesons (see e.g. [33]). The parameter gV respects the
relation gV 
 m�=f� 
 5:8 [33]. We shall follow [34] to
use � 
 0:9 and � 
 0:56 GeV�1. The coupling gDD�
has been extracted by CLEO to be 17:9� 0:3� 1:9 from
the measured D� width [35].

B. B0 ! �KS as an example

We next proceed to study long-distance rescattering
contributions to the b! sq �q transition-induced decays
B0 ! �	;!; �0; �

0�; �0; f0�KS. To illustrate the calcula-
tions of rescattering amplitudes, we shall take the 	KS
mode as an example. Its major final-state rescattering
diagrams are depicted in Fig. 1.

The absorptive parts of the B0 ! K��� ! 	K0 ampli-
tude via the K�, K� exchanges are given by
-9



K(∗)±(k)

φ(p3)

K0(p4)

B0

K(∗)−(p1)

π+, ρ+(p2)

D(∗)±
s (k)

φ(p3)

K0(p4)

B0

D(∗)+(p2)

D(∗)−
s (p1)

FIG. 1. Final-state rescattering contributions to the B0 ! 	K0 decay.
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Abs�K���;K�� 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"2 � pB

�
X
�2

2"2 � pB��2i�g	KK�"

3 � p1�

F2�t;mK�

t�m2
K

2ig�KK�"2 � p4�


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"2 � pB
4g	KK

F2�t; mK�

t�m2
K

� g�KK�A
�1�
1 � A

�1�
2 �

�
�p1 � p4 �

�p1 � p2��p2 � p4�

m2
2

	
; (3.9)

Abs�K���;K�� 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"2 � pB

�
X
�2

2"2 � pB��i�g	KK�p1;- ; p3; "

3�

�
�g-/ �

k-k/

m2
K

	
F2�t;mK �

t�m2
K
��i�g�KK�p4;/ ; p2; "2�


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"2 � pB
g	KK

F2�t;mK �

t�m2
K

� g�KK��2A
�2�
1 m

2
3�; (3.10)
where the dependence of the polarization vector in the
amplitude A�B0 ! K���� has been extracted and k �
p1 � p3. In order to avoid using too many dummy indices,
we have defined �A;B;C;D� � C.�$'A.B�C$D',
�A;B;C;- � � C.�$-A.B�C$ and so on for later conve-
nience. Moreover, we have applied the identities [15]

p1- 

:
P-A

�1�
1 � q-A

�1�
2 ;

p1-p1/ 

:
g-/A

�2�
1 � P-P/A

�2�
2 � �P-q/ � q-P/�A

�2�
3

� q-q/A
�2�
4 ; (3.11)

under the integrationZ d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�f�t�

� fp1-; p1-p1/g; (3.12)

with P � p3 � p4, q � p3 � p4. These identities follow
from the fact that the above integration can be expressed
only in terms of the external momenta p3; p4 with suitable
014006
Lorentz and permutation structures. The explicit expres-
sions of A�i�j 
 A�i�j �t;m

2
B;m

2
1; m

2
2; m

2
3; m

2
4� can be found in

[15].
Before proceeding it should be stressed that we have

applied the hidden gauge symmetry Lagrangian Eq. (3.6)
for light vector mesons and the chiral Lagrangian Eq. (3.7),
based on heavy quark effective theory (HQET) and chiral
symmetry, for heavy mesons to determine the strong ver-
tices in Fig. 1. This requires that the involved light pseu-
doscalar or vector mesons be soft. However, the final-state
particles are necessarily hard and the particle exchanged in
the t channel can be far off shell, especially for the
t-exchanged D meson. This is beyond the applicability of
the aforementioned chiral perturbation theory and HQET.
Therefore, as stressed in [15], it is necessary to introduce
the form factor F�t; m� appearing in Eqs. (3.9) and (3.10) to
take care of the off-shell effect of the t-channel exchanged
particle and the hardness of the final particles. Indeed, if
the off-shell effect is not considered, the long-distance
rescattering contributions will become so large that pertur-
-10
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bation theory is no longer trustworthy. For example, since
B! Ds

�D is CKM doubly enhanced relative to B! K�,
the rescattering process B! Ds

�D! K� will overwhelm
the initial B! K� amplitude. Hence, form factors or
cutoffs must be introduced to the strong vertices to render
the calculation meaningful in perturbation theory.

The form factor F�t;m� is usually parametrized as

F�t;m� 

�
$2 �m2

$2 � t

	
n
; (3.13)

normalized to unity at t 
 m2 with $ being a cutoff
parameter which should not be far from the physical
mass of the exchanged particle. To be specific, we write

$ 
 mexc � $QCD; (3.14)
014006
where the parameter  is expected to be of order unity and
it depends not only on the exchanged particle but also on
the external particles involved in the strong-interaction
vertex. The monopole behavior of the form factor (i.e. n 

1) is preferred as it is consistent with the QCD sum-rule
expectation [36]. Although the strong couplings are large
in the magnitude, the rescattering amplitude is suppressed
by a factor of F2�t� �m2$2

QCD=t
2. Consequently, the off-

shell effect will render the perturbative calculation mean-
ingful. Moreover, since in the heavy quark limit t�m2

B,
the final-state rescattering amplitude does vanish in the
mB ! 1 limit, as it should.

Likewise, the absorptive part of the B0 ! K��� !
	K0 amplitude via the K� exchange is given by
Abs�K���;K�� 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"1 � pB

�
X
�1

2"1 � pBi
gV
2
�"3-�2"1 � p3� � "1 � "3�p1 � p3�- � "1-�2p1 � "3��

�
�g-/ �

k-k/

m2
K

	

�
F2�t; mK �

t�m2
K
��i�gKK��p2 � p4�/


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"1 � pB
gV

F2�t;mK �

2�t�m2
K �

� gKK�

�
2
�
2� A�1�1 � A

�1�
2 � �A

�1�
1 � A

�1�
2 �

m2
2 �m

2
4

m2
K

��
p2 � p3 �

�p1 � p2��p2 � p3�

m2
1

	

�

�
A�1�1 � A

�1�
2 � 1� �A�1�1 � A

�1�
2 �

p1 � p2

m2
1

��
�p1 � p3� � �p2 � p4� �

1

m2
K
�m2

1 �m
2
3��m

2
2 �m

2
4�

�

� 2�A�1�1 � A
�1�
2 �

��
p2

m2
K �m

2
2 �m

2
4

m2
K

� p4

m2
K �m

2
2 �m

2
4

m2
K

	
�

�
p2 � p1

p1 � p2

m2
1

	��
: (3.15)
Note that since the �KK vertex is absent, there is no
contribution from the K� exchanged particles.

The B0 ! 	K0 decay also receives contributions from
charmless VV modes. The leading candidate is the K���

mode via the p-wave configuration. However, as we have
checked numerically, its amplitude is 1 or 2 orders of
magnitude smaller than those from the previous two
charmless VP modes and its effect on Sf is quite small.
Given this, we will not go into any further detail on the
rescattering from charmless VV modes. Thus far we have
only considered the contributions where the two intermedi-
ate states originating from the weak vertex are on shell.
There are additional contributions where one of the mesons
coming from the weak vertex and the exchanged meson in
the t channel is on shell. For example, in the diagram of
Fig. 1(a), we can setK� andK� on shell while keeping ��

off shell. This corresponds to the three-body weak decay
B0 ! K�K�K0 followed by the strong rescattering
K�K�K0 ! 	K0 where K0 behaves as a spectator.
However, there are many possible pole contributions to
B0 ! K�K�K0. In addition to B0 ! K��� ! K�K�K0

as inferred from Fig. 1(a), one can also have B0 !
BsK

0 ! K�K�K0, for example. In the present work, we
will only focus on two-body intermediate state contribu-
tions to the absorptive part. Since the analogous three-body
contributions do not occur in Fig. 1(b) and since Fig. 1(a) is
CKM doubly suppressed relative to Fig. 1(b), it is safe to
neglect the additional three-body contributions for our
purposes.

We next turn to the FSI contribution arising from the
intermediate states D���s D��. Note that only the p-wave
configurations of the D���s D�� systems can rescatter into
the 	K0 final state. The absorptive parts of B0 !
D�s D� ! 	K0 amplitudes via Ds exchanges, B!
D�s D�; D�s D� ! 	K0 amplitudes via Ds and Ds ex-
changes, are given by
-11
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Abs�D�s D�;D�s � 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! D�s D��

2"1 � P

�
X
�1

2"1 � P��4i�fDsDs	
F2�t;mDs �

t�m2
Ds

igDsDK"
�
1 ��g�-p1 � "3 � p3�"3- � "


3�p3-�

�

�
�g-/ �

k-k/

m2
Ds

	
p4/


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! D�s D��

2"1 � P

� 4fDsDs	
F2�t;mDs �

t�m2
Ds

gDsDK

�
��A�1�1 � A

�1�
2 �

�
p2 �

p1 � p2

m2
1

p1

	
�

�
p4 � k

k � p4

m2
Ds

	

�

�
1� �A�1�1 � A

�1�
2 �

k � p4

m2
Ds

��
p2 � p3 �

p1 � p2p1 � p3

m2
1

	
�

�
1� �A�1�1 � A

�1�
2 �

P � p1

m2
1

�

�

�
p3 � p4 �

p3 � kk � p4

m2
Ds

	�
;

Abs�D�s D
�;D�s � 


1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! D�s D��

2"2 � P

�
X
�2

2"2 � P2igDsDs	"

3 � p1

F2�t; mDs
�

t�m2
Ds

��i�gDDsKp4 � "2


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! D�s D��

2"2 � P

�

�
2gDsDs	

F2�t; mDs
�

t�m2
Ds

gDDsK�A
�1�
1 � A

�1�
2 �

�
�p1 � p4 �

p1 � p2p2 � p4

m2
2

	�
;

Abs�D�s D�;D�s � 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! D�s D

��

2"2 � P

�
X
�2

2"2 � P4ifDsDs	
F2�t; mDs �

t�m2
Ds

igDDsK�p3; "

3; p1;- �

�
�g-/ �

k-k/

m2
Ds

	
�"2; p4; p2;/ �


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�

�
A�B0 ! D�s D

��

2"2 � P
��8�fDsDs	

F2�t;mDs �

t�m2
Ds

gDDsKm
2
3A
�2�
1 ;

Abs�D�s D�;D�s � 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2��ic�-;/ ; P; p2��

�
X
�1;�2

"-1 "/2 ��4i�fDsDs	
F2�t;mDs

�

t�m2
Ds

��i�gDDsK�p3; "

3; p1; "1�p4 � "2


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2���4ic�fDsDs	
F2�t; mDs

�

t�m2
Ds

� gDDsKm
2
3A
�2�
1 ;
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Abs�D�s D�;D�s � 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2��ic�';� ; P; p2��

�
X
�1;�2

"'1 "
�
2 ��4i�fDsDs	

F2�t; mDs �

t�m2
Ds

igDDsK"
�
1 ��g�-p1 � "


3 � p3�"


3- � "


3�p3-�

�

�
�g-/ �

k-k/

m2
Ds

	
�"2; p4; p2;/ �


 2"3 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2���4ic�fDsDs	
F2�t;mDs �

t�m2
Ds

� gDDsK ���A
�1�
1 � A

�1�
2 ��p1 � p4m2

2 � p1 � p2p2 � p4� �m2
3A
�2�
1 �; (3.16)

where the dependence of the polarization vectors in A�B0 ! D�s D�; D�s D
�� has been extracted out explicitly and � �

gDDV=�2fDDV� and the B! D�s D� decay amplitude has been denoted as

A�B! Ds�p1; �1�D�p2; �2�� 
 "-1 "/2 �ag-/ � bP-P/ � ic�-;/ ; P; p2��: (3.17)

In order to perform a numerical study of the above analytic results, we need to specify the short-distance A�B! D��s D���
amplitudes. In the factorization approach, we have

A�B! DsD�SD 

GF���
2
p VcbVcsa1fDsmDsF

BD
1 �m

2
Ds
��2"Ds � pB�;

A�B! DsD
�SD 


GF���
2
p VcbV


csa1fDs

mDA
BD
0 �m

2
Ds
��2"D � pB�;

A�B! DsD
�SD 
 �i

GF���
2
p VcbV


csa1fDsmDs �mB �mD �"

-
Ds
"/D

�
ABD



1 �m
2
Ds
�g-/ �

2ABD


2 �m
2
Ds
�

�mB �mD �
2 pB-pB/

� i
2VBD


�m2

Ds
�

�mB �mD �
2 C-/.�p

.
Bp

�
D

�
: (3.18)

Since the phase of the parameter a1 originating from vertex corrections [see Eq. (2.5)] is very small, one can neglect the
strong phase of the short-distance amplitudes.

The long-distance contribution to the B0 ! !K0 decay can be performed similarly. Because of the absence of the PPP
vertex and the G-parity argument, the number of FSI diagrams from charmless intermediate states is greatly reduced
compared to the previous case. For example, the K��� intermediate state does not contribute to the K0! amplitude
(through t-channel � and � exchanges) as both KK� and ��! vertices are forbidden. In fact, there is only one relevant
rescattering diagram, namely, B0 ! K��� ! K0! via �� exchange, arising from charmless intermediate states and the
corresponding absorptive part is given by

Abs�K���;��� 

1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"1 � pB

�
X
�1

2"1 � pB�ig�KK��i
���
2
p
g!����p1; "1; k;- ��k;/ ; p4; "4�

�
�g-/ �

k-k/

m2
K

	F2�t;m��

t�m2
�


 2"4 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! K����

2"1 � pB

� ��2
���
2
p
�g�KK

F2�t;m��

�t�m2
��
g!��m2

4A
�2�
1 : (3.19)

Furthermore, we have checked numerically that the B0 ! K��� ! K0! contribution is small. Hence we will skip
further detail on the rescattering from charmless VV modes.

The rescattering amplitudes of B0 ! D�s D�, D�D�, D�D� ! K0! amplitudes via D, D exchanges can be
evaluated in a similar way. The analytic expressions of their absorptive parts are similar to those for 	K0. For example,
014006-13
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A bs�D�s D�;D�� 
 2"4 � pB �
1

2

Z d3 ~p1

�2��32E1

d3 ~p2

�2��32E2

�2��4'4�pB � p1 � p2�
A�B0 ! D�s D

��

2"2 � P

�

� ���
2
p
gDsDK

F2�t;mD�

t�m2
D

gDD!�1� A
�1�
1 � A

�1�
2 �

�
�p2 � p3 �

p1 � p2p1 � p3

m2
1

	�
(3.20)
is the same as Abs�D�s D�;D�s � in (3.16) after the re-
placements gDDsK ! gDsDK, fDsDs	 ! fDD!=

���
2
p

, p1 $

p2, p3 $ p4, A
�1�
1 � A

�1�
2 ! 1� A�1�1 � A

�1�
2 and a suitable

replacement of the source amplitude (note that the replace-
ment of momentum should not be performed in A�i�j ).
Likewise, we can obtain Abs�D�s D�;D��,
Abs�D�s D

�;D��, Abs�D�s D�; D���� from
Abs�D�s D�;D�s �,Abs�D�s D�;D�s �,Abs�D�s D�;
D���s � in (3.16), respectively, with A�2�1 being unchanged
and an additional overall minus sign for D�s D� contri-
butions. This similarity is by no means accidental; it fol-
lows from the so-called CPS symmetry, i.e. CP plus s$ d
switch symmetry. A similar but more detailed discussion is
given in [15] for the case of B! 	K decay.

The final-state rescattering contributions to other
penguin-dominated decays B0 ! ��0; �

0�; f0�KS can be
worked out in a similar manner. The dominant intermedi-
ate states for each decay mode are summarized in Table IV.

C. Results and discussions

Writing A 
 ASD � iAbsALD with AbsALD obtained
above and the form factors given in [24], the results of the
final-state rescattering effects on decay rates, direct and
mixing-induced CP violation parameters are shown in
Tables II and III. As pointed out in [15], the long-distance
rescattering effects are sensitive to the cutoff parameter $
appearing in Eq. (3.14) or  in Eq. (3.14). Since we do not
have first-principles calculations of , we will determine it
from the measured branching ratios and then use it to
predict the CP-violating parameters Af and Sf. As shown
TABLE IV. Dominant intermediate states contributing to vari-
ous final states. For the KS final state, the intermediate states
are the same as that for 0KS.

Final state Intermediate state (exchanged particle)

	KS K����K�, K����K;K�,
D�s D��Ds�, D�s D��Ds;D


s�, D�s D��Ds;D


s�

!KS K������,
D�s D��D;D�, D�s D��D�, D�s D��D;D�

�0KS K������,
D�s D��D;D�, D�s D��D�, D�s D��D;D�

0KS 0 �K0�K0�, K����K;K�
D�s D

��D; Ds �, D�s D��D;Ds;D
; Ds�

�0KS 0 �K0�K0�,
D�s D

��D�, D�s D��D;D�
f0KS ��K��K;��, ��K����,

D�s D��D;Ds�, D�s D��D�

014006
in [15],  
 0:69 for the exchanged particles D and D is
obtained from fitting to the B! K� rates. We take  

0:85 for the exchanged particles D�s� and D

�s� to fit the data
of B0 ! 0K0 rates and  
 1 for other light exchanged
particles such as �, K, K. As for the VP modes, namely,
	KS, !KS, and �0KS, we take D�s� 
 D

�s�

 0:95, 1.4,

and 1.5, respectively, in order to accommodate their rates.4

Note that the result D�s� 
 D
�s�

 1:5 for �0KS is con-

sistent with the value of D 
 D 
 1:6 obtained for
B! �� decays [15] within SU(3) symmetry. For the
decay B0 ! f0KS, since only the strong couplings of f0
to K �K and �� are available experimentally, we shall only
consider the intermediate states K��� and ��K�. The
LD theoretical uncertainties shown in Tables II and III
originate from three sources: an assignment of 15% error
in $QCD, the measured error in the coupling gDD� 

17:9� 0:3� 1:9 [35], and 5% error in the form factors
for B to D�� transitions. They are obtained by scanning
randomly the points in the allowed ranges of the above-
mentioned three parameters. The calculations of hadronic
diagrams for FSIs also involve many other theoretical
uncertainties, some of which are already discussed in
[15]. From Tables II and III it is clear that the SD errors
are in general not significantly affected by FSI effects
and that LD uncertainties are in general comparable to
the SD ones.

We see from Table II that final-state rescattering will
enhance the decay rates of 	KS, !KS, �0KS, 0KS, and
�0KS but it does not affect the KS rate. The seemingly
large disparity between 0KS and KS for FSIs can be
understood as follows. There are two types of exchanged
particles in the rescattering processes, namely, D�� and
D��s (see Table IV). The former (latter) couple to the d (s)
quark component of the �

0�. Since the 0 and  wave
functions are approximately given by Eq. (2.16), it is clear
that the rescattering amplitudes due to the exchanged
particles D�� and D��s interfere constructively for the
0KS production but compensate largely for KS.

It should be stressed that although we have used the
measured branching ratio of 0K0 to fix the LD contribu-
4Note that a monopole momentum dependence is used for the
form factors throughout this paper [see Eq. (3.13)]. If a dipole
form of the momentum dependence is used for D-exchange
diagrams as in [15], we will obtain BSD�LD�	K0� 

�6:1�2:0�0:4�1:9�0:2� � 10�6, SSD�LD	KS


 0:723�0:004�0:009�0:036�0:012, ASD�LD
	KS




�0:070�0:015�0:017 � 0:019, BSD�LD�!K0� 
 �2:5�3:7�0:6�1:4�0:3� � 10�6,
SSD�LD!KS


 0:847�0:029�0:007�0:054�0:013, and ASD�LD
!KS


 0:013�0:034�0:027�0:078�0:029.
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tions and the unknown cutoff parameter , there exist some
other possible mechanisms that can help explain its large
rate. For example, the QCD anomaly effect manifested in
the two gluon coupling with the 0 may provide a dynami-
cal enhancement of the 0K0 production [37]. And it is
likely that both final-state rescattering and the gluon anom-
aly are needed to account for the unexpectedly large
branching fraction of 0K. Note that both contributions
carry negligible CP-odd phase. Hence, whether the anom-
alously large branching ratio of 0K comes from the QCD
anomaly and/or from final-state rescattering, it will be very
effective in diluting the u �u tree contributions and rendering
�S0KS small.

We are not able to estimate the long-distance rescatter-
ing contributions to the f0KS rate from intermediate charm
states due to the absence of information on f0DD and
f0D�s�D


�s� couplings.

Since the modes !KS, �0KS, 	KS, and �0KS receive
significant final-state rescattering contributions, it is natu-
ral to expect that their direct CP asymmetries will be
affected accordingly. It is clear from Table III that the signs
of Af in the last two channels are flipped by final-state
interactions. As for the mixing-induced CP violation Sf,
we see from Table III that !KS and �0KS receive the
largest corrections from final-state rescattering, while the
long-distance correction to	KS is not as large as what was
originally expected. The underlying reason is as follows.
The mixing CP asymmetries SSD!Ks and SSD

�0KS
deviate

from sin2� as they receive contributions from the tree
amplitude. The contribution from the tree amplitude is
relatively enhanced as the QCD penguin amplitude is sup-
pressed by a cancellation between penguin terms (ja4 �

r,a6j  ja4j; ja6j). Final-state rescattering from D��s D��

states with vanishing weak phases will dilute the SD tree
contribution and bring the asymmetry closer to sin2�. For
the	KS mode, the asymmetry SSD	KS is slightly greater than
sin2�. With rescattering from either charmless intermedi-
ate states, such as K�, or from D��s D�� states, the asym-
metry is reduced to S	KS ’ 0:73. When both charmless and
charmful intermediate states are considered, the asymme-
try is enhanced to S	KS ’ 0:76 owing to the interference
effect from these two contributions.

Among the seven modes �	;!; �0; �0; �
0�; f0�KS, the

first three are the states where final-state interactions may
have a potentially large effect on the mixing-induced CP
asymmetry Sf. In order to maximize the effects of FSIs on
Sf, one should consider rescattering from charmless inter-
mediate states that receive sizable tree contributions. Most
of the intermediate states such as K00; K���; . . . ; in B
decays are penguin dominated and hence will not affect Sf.
For the decay B0 ! 	KS, we have rescattering from
K��� and K���. Because of the absence of the penguin
chiral enhancement in B0 ! K��� and the large cancel-
lation between a4 and a6 penguin terms in B0 ! K���, it
014006
follows that the color-allowed tree contributions in these
two modes are either comparable to or slightly smaller than
the penguin effects. As for the!KS mode, there is only one
rescattering diagram, namely, B0 ! K��� ! K0!, aris-
ing from the charmless intermediate states. (The rescatter-
ing diagram from K��� is suppressed as elucidated
before for the 	KS mode.) As a result, one will expect
that the final-state rescattering effect on Sf will be most
prominent in B! !KS, �0KS, and 	KS. Indeed, we see
from Table III that FSI lowers S!KS by 15% and enhances
S�0KS by 17% and S	KS slightly. The theoretical predictions
and experimental measurements for the differences be-
tween SSD�LDf and SJ= KS , �S

SD�LD
f , are summarized in

Table V. It is evident that final-state interactions cannot
induce large �Sf in any of these modes.

It is interesting to study the correlation between Af and
Sf for the penguin-dominated modes in the presence of
FSIs. It follows from Eq. (1.8) that

�Sf
Af


 cos2� cot'f � 0:95 cot'f; (3.21)

for rf 
 ��uAuf�=��cA
c
f�  1. This ratio is independent of

jrfj and hence it is less sensitive to hadronic uncertainties.
Therefore, it may provide a better test of the SM even in the
presence of FSIs. Writing Au;cf 
 jA

u;c
SDje

i'u;cSD � iAu;cLD, we
have

jrfj 

j�uj
j�cj

���������������������������������������������������������������������������������
jAuSD cos'

u
SDj

2 � �jAuSDj sin'
u
SD � A

u
LD�

2
q
���������������������������������������������������������������������������������
jAcSD cos'

c
SDj

2 � �jAcSDj sin'
c
SD � A

c
LD�

2
q ;

'f 
 tan�1
�
tan'uSD �

AuLD
jAuSDj cos'

u
SD

	

� tan�1
�
tan'cSD �

AcLD
jAcSDj cos'

c
SD

	
; (3.22)

where the reality of ALD has been used, and Af and �Sf
can be obtained by using Eq. (1.8). It is interesting to note
that in the absence of LD contributions we have j'SDf j 

j'uSD � '

c
SDj & �=4 for some typical SD (perturbative)

strong phases and, consequently, we expect j�Sf=Afj *

1. This result generally does not hold in the presence of
FSI. For example, in the case of jAuLDj  jA

u;c
SDj & jA

c
LDj, it

is possible to have j�Sf=Afj & 1. From Table V we
obtain

�S	KS=A	KS � �1:3�1:5�;

�S!KS=A!KS � �0:08��1:7�;

�S�0KS=A�0KS � 0:08��1:1�;

�S0KS=A0KS � �0:05�0:6�;

�SKS=AKS � �2:0��1:1�;

�S�0KS=A�0KS � 1:2��1:8�;

(3.23)
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TABLE V. Direct CP asymmetry parameter Af and the mixing-induced CP parameter �SSD�LDf for various modes. The first and
second theoretical errors correspond to the SD and LD ones, respectively (see the text for details). The f0KS channel is not included as
we cannot make reliable estimate of FSI effects on this decay.

Final state �Sf Af�%�

SD SD� LD Expt SD SD� LD Expt

	KS 0:02�0:00�0:04 0:03�0:01�0:01�0:04�0:01 �0:38� 0:20 1:4�0:3�0:5 �2:6�0:8�0:0�1:0�0:4 4� 17

!KS 0:12�0:05�0:06 0:01�0:02�0:02�0:04�0:01 �0:17�0:30�0:32 �7:3�3:5�2:6 �13:2�3:9�1:4�2:8�1:4 48� 25

�0KS �0:09�0:03�0:07 0:04�0:09�0:08�0:10�0:11 � � � 9:0�2:2�4:6 46:6�12:9�3:9�13:7�2:6 � � �

0KS 0:01�0:00�0:04 0:00�0:00�0:00�0:04�0:00 �0:30� 0:11 1:8�0:4�0:4 2:1�0:5�0:1�0:2�0:1 4� 8

KS 0:07�0:02�0:04 0:07�0:02�0:00�0:05�0:00 � � � �6:1�5:1�2:0 �3:7�4:4�1:4�1:8�2:4 � � �

�0KS 0:06�0:02�0:04 0:04�0:02�0:01�0:03�0:01 �0:39�0:27�0:29 �3:4�2:1�1:1 3:7�3:1�1:0�1:7�0:4 �8� 14
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where the SD contributions are shown in parentheses. For
the f0KS mode, �S=A � 3:0 but there is no reliable
estimate of the FSI effect. From Eq. (3.23) we see that
the relation j�Sf=Afj * 1 indeed holds at short distances
except for the 0KS mode where j'SDf j � 65�. The sign flip
of �Sf=Af in the presence of LD rescattering is due to the
sign switching of either Af (for 	KS and �0KS) or �Sf
(for �0KS).

IV. CONCLUSIONS AND COMMENTS

In the present work we have studied final-state rescatter-
ing effects on the decay rates and CP violation in the
penguin-dominated decays B0 ! �	;!; �0; 0; ; �0;
f0�KS. Our main goal is to understand to what extent
indications of possibly large deviations of the mixing-
induced CP violation seen in the above modes from
sin2� determined from B! J= KS can be accounted
for by final-state interactions. Our main results are as
follows:
(1) W
e have applied the QCD factorization approach to
study the short-distance contributions to the above-
mentioned seven modes. There are consistently 2 to
3 � deviations between the central values of the
QCDF predictions and the experimental data.
(2) T
he differences between the CP asymmetry SSDf
induced at short distances and the measured SJ= KS
are summarized in Eq. (2.18). The deviation of SSDf
in the!KS and �0KS modes from sin2� is a 2 to 3�
effect owing to a large tree pollution. In contrast,
tree pollution in 0KS is diluted by the QCD anom-
aly and/or final-state rescattering both of which
carry negligible CP-odd phase. The long-distance
effects on Sf are generally negligible except for the
!KS and �0KS modes where Sf is lowered by
around 15% for the former and enhanced by the
same percentage for the latter and �SSD�LD

!KS;�0KS
be-

come consistent with zero within errors.

(3) F
inal-state rescattering effects from charm inter-

mediate states can account for the discrepancy be-
014006-16
tween theory and experiment for the branching ra-
tios of the modes !KS, 0KS, 	KS, and �0KS.
Moreover, direct CP asymmetries in these modes
are significantly affected; the signs of Af in the last
two modes are flipped by final-state interactions.
Direct CP asymmetries in the !KS and �0KS chan-
nels are predicted to be A!KS � �0:13 and
A�0KS � 0:47, respectively, which should be tested
experimentally.
(4) F
or the f0�980�KS mode, the short-distance contri-
bution gives �S=A � 3:0, but at present we cannot
make reliable estimates of FSI effects on this
channel.
(5) D
irect CP asymmetry in all the �b! s� penguin-
dominated modes is rather small ( & a few %)
except for !KS and �0KS. This strengthens the
general expectation that experimental search for
direct CP violation in b! s modes may be a
good way to look for possible effects of new
CP-odd phases (see e.g. [37]).
(6) S
ince the mixing-induced CP parameter Sf (ac-
tually �Sf � �fSf � SJ= KS) and the direct CP
parameter Af are closely related, so are their theo-
retical uncertainties. Based on this study, it seems
rather difficult to accommodate j�Sfj> 0:10within
the SM, at least in the modes we study in this paper
(except for f0KS, for which we cannot make reliable
estimates).
(7) I
n particular, 0KS and (to some degree) 	KS ap-
pear theoretically cleanest in our picture; i.e. for
these modes the central value of �Sf as well as
the uncertainties on it are rather small. This also
seems to be the case in QCDF [38]. Note also that
the experimental errors on 0KS are the smallest
(see Table III) and its branching ratio is the largest,
making it especially suitable for faster experimental
progress in the near future [39].
(8) T
he sign of �Sf at short distances is found to be
positive except for the channel �0KS. After includ-
ing final-state rescattering effects, the central values
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of �Sf are positive for all the modes under consid-
eration, but they tend to be rather small compared to
the stated uncertainties so that it is difficult to make
reliable statements on the sign at present. However,
since the Sf and Af are strongly correlated, im-
proved measurements could provide enough useful
information that stronger statements on the sign
could be made in the future.
014006
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