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We show that the leading-power B meson wave function can be extracted reliably from the photon
energy spectrum of the B! �l� decay up to O�1=m2

b� and O�	2
s� uncertainty, mb being the b quark mass

and 	s the strong coupling constant. The O�1=mb� corrections from heavy-quark expansion can be
absorbed into a redefined leading-power B meson wave function. The two-parton O�1=mb� corrections
cancel exactly, and the three-parton B meson wave functions turn out to contribute at O�1=m2

b�. The
constructive long-distance contribution through the B! V ! � transition, V being a vector meson,
almost cancels the destructive O�	s� radiative correction. Using models of the leading-power B meson
wave function available in the literature, we obtain the photon energy spectrum in the perturbative QCD
framework, which is then compared with those from other approaches.
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I. INTRODUCTION

The two-parton leading-power (LP) Bmeson wave func-
tion (distribution amplitude)�� plays an essential role in a
perturbative analysis of exclusive B meson decays based
on the kT factorization theorem [1–3] (collinear factoriza-
tion theorem [4–9]). Its behavior certainly matters and has
been investigated in various approaches recently. Models
of the distribution amplitude ���x� with an exponential
tail in the large x region have been proposed [10], where x
is the longitudinal momentum fraction carried by the light
spectator quark. Neglecting three-parton distribution am-
plitudes in a study by means of the equations of motion
[11,12], ���x� was found to be proportional to a step
function with a sharp drop at large x [13]. The wave
function ���x; kT�, where kT is the transverse momentum
carried by the light spectator quark, was also derived in the
same framework [13]. All these models depend on at least
one shape parameter, whose determination requires experi-
mental inputs from exclusive B meson decays.

In this paper we shall show that the radiative decay B!
�l� provides the cleanest information of the LP B meson
wave function ��. This mode has been widely studied in
[3,8,14–28] due to different motivations: for extracting the
B meson decay constant fB and the Cabibbo-Kobayashi-
Maskawa matrix element jVubj, for demonstrating the
next-to-leading-order (NLO) calculation and the proof of
the QCD factorization theorem, for deriving resummation
of large logarithmic corrections, for studying long-distance
effect and the annihilation mechanism, etc. The subject on
the extraction of the B meson wave function from the B!
�l� data has not yet been discussed. It will be shown that
two-parton next-to-leading-power (NLP) [O�1=mb�] cor-
rections cancel exactly, mb being the b quark mass. The
contributions from higher Fock states, the three-parton B
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meson wave functions, turn out to be of O�1=m2
b�. The

constructive long-distance contribution through the B!
V ! � transition, V being a vector meson, almost cancels
the destructive O�	s� radiative correction, 	s being the
strong coupling constant. The effect from bremsstrahlung
photon emissions vanishes like the lepton mass because of
helicity suppression. Therefore, the extraction of �� from
the measured photon energy spectrum of the B! �l�
decay suffers only O�1=m2

b� and O�	2
s� uncertainty.

We identify and discuss the higher-power corrections to
the B! �l� decay in Sec. II, and calculate the long- and
short-distance effects in Sec. III. Section IV is the conclu-
sion. The hard kernel associated with the three-parton
distribution amplitudes is derived in the Appendix, whose
explicit expression is necessary for demonstrating the
smallness of the higher-Fock-state contribution. Our con-
clusion differs from that drawn in [29], in which the semi-
leptonic decay B! �l� was regarded as a more ideal
process for extracting the B meson wave function. The
argument is that the radiative decay B! �l�, receiving a
large long-distance uncertainty, does not serve the purpose.
As stated above, this long-distance effect is in fact canceled
by the O�	s� short-distance one almost exactly.
II. HIGHER-POWER CORRECTIONS

In this section we identify and discuss higher-power
corrections to the B! �l� decay. The B meson momen-
tum P1 and the photon momentum P2 are parametrized, in
the light-cone coordinates, as

P1 �
mB���
2

p �1; 1; 0T�; P2 �
mB���
2

p �0; �; 0T�; (1)

respectively, where � � 2E�=mB, mB being the B meson
mass, denotes the photon energy fraction. The decay am-
plitude is decomposed into
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1

e
h��P2; �T�j �u���1
 �5�bj �B�P1�i

� ���	����T v
	P�2FV�q

2� � i
��T��v � P2�


 ���T � v�P2��FA�q
2�; (2)

where e is the electron charge, �T the polarization vector of
the photon, v � P1=mB the B meson velocity, and q2 �
�P1 
 P2�

2 � �1
 ��m2
B the lepton-pair invariant mass.

The decay spectrum is then given, in terms of the form
factors FV;A, by

d�
d�

�
	G2

FjVubj
2

96�2 m5
B�1
 ���3
F2

V�q
2� � F2

A�q
2��; (3)

with 	 � e2=�4�� and the Fermi constant GF.
The collinear factorization theorem for the form factors

FV;A in the large � region has been proved in [24,27],
which are expressed as the convolution of hard kernels
with the Bmeson distribution amplitudes in the momentum
fractions x of the light spectator quark. A hard kernel,
being infrared finite, is calculable in perturbation theory.
The B meson distribution amplitudes, collecting the soft
dynamics in exclusive B meson decays, are not calculable
but universal. In the framework of the factorization theo-
rem, there are four sources of higher-power corrections to
the B! �l� decay:
(1) T
he heavy-quark expansion of the heavy-light cur-
rent in Eq. (2),

�u���1
 �5�b! �u���1
 �5�h�
1

2mb
�u��

� �1
 �5�iD6 h�O�1=m2
b�; (4)

where the operator D represents the covariant de-
rivative, and the rescaled b quark field h is related to
the full field b by

h�z� �
1� v6
2

eimbv�zb�z�: (5)

The factorization of the transition matrix element
associated with the first (second) term in the above
expansion leads to the LP (NLP) B meson distribu-
tion amplitudes.
(2) T
k kP

P
P − k

1
P − k

1

2

2

(b)(a)

FIG. 1. Lowest-order diagrams for the B! �l� decay.
he higher-power interactions in the Lagrangian of
the heavy-quark effective theory (HQET). The in-
sertion of the HQET interactions,

O1 �
1

mb

�h�iD�2h; O2 �
g

2mb

�h'��G��h;

(6)

into the transition matrix element associated with
the first term in Eq. (4) yields O�1=mb� corrections.
We mention that there exists an alternative heavy-
quark effective theory, in which the higher-power
corrections are formulated in a different way [30].
014003
(3) T
-2
he higher Fock states of the Bmeson. The nonlocal
matrix element,

h0j �u�z�gG	��uz�h�0�j �B�P1�i; (7)

defines the three-parton distribution amplitudes,
where G	��uz� is the gluon field strength evaluated
at the coordinate uz, 0 � u � 1. The additional
valence gluon, attaching internal off-shell quark
lines, introduces one more hard propagator, i.e.,
one more power of 1=mb.
(4) T
he subleading parton-level diagrams (hard ker-
nels). The two-parton lowest-order hard kernels
are displayed in Fig. 1, where the upper quark line
represents a b quark. It is easy to observe that
Fig. 1(a) [1(b)] represents the LP (NLP) hard kernel,
since the internal quark line is off shell bymb

�� (m2
b)

with �� being a hadronic scale, such as the mass
difference mB 
mb.
A. Heavy-quark expansion

The factorization of soft dynamics from the transition
matrix element associated with the first term on the right-
hand side of Eq. (4),

h��P2; �T�j �u���1
 �5�hj �B�P1�i; (8)

leads to the nonlocal matrix element [10],

Z dz
d2zT
�2��3

ei�k
�z

kT �zT �h0j �u(�z�h)�0�j �B�P1�i

� i
fB���
2

p f�P6 1 �mB��5
n6 ����k� � n6 
�
�k��g)(; (9)

which defines the two-parton LP B meson wave functions
��, with the null vectors n� � �1; 0; 0T� and n
 �
�0; 1; 0T�, and the light quark momentum k. Because the
photon momentum P2 has been chosen in the minus direc-
tion, the hard kernels for the form factors FV;A are inde-
pendent of the component k
, which becomes irrelevant.
We construct the B meson distribution amplitudes ���x�,
x � k�=P�

1 , from the B meson wave functions
���x; kT� � P�

1 ���xP�
1 ; kT� by integrating the latter

over kT ,

���x� �
Z
d2kT���x; kT�: (10)
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The dependence of ���x� and of ���x; kT� on the renor-
malization scale � has been suppressed.

Define the moments of the B meson distribution ampli-
tude ���x�,

�0 �
Z
dx
���x�
x

; �1 �
Z
dx���x�: (11)

The asymptotic behavior of���x� has been extracted from
a renormalization-group equation, which exhibits a de-
crease slower than 1=x [31,32]. That is, the normalization
�1 of the Bmeson distribution amplitude is divergent after
taking into account the evolution effect. It has been argued
that a non-normalizable B meson distribution amplitude
does not cause trouble in practice [33], since only the
inverse moment �0 matters at LP [25,34], which is con-
vergent. Note that a hard kernel would not be as simple as
1=x at higher orders in 	s, and information of more mo-
ments is also necessary. In the following discussion we
shall neglect the evolution effect, and assume that ���x� is
normalized to unity, i.e., �1 � 1. Since the B meson
distribution amplitudes absorb soft dynamics, the light
quark momentum k is of O� ���. We then have the relative
importance �1=�0 �

��=mb for x�O� ��=mb�.
The factorization of soft dynamics from the transition

matrix element associated with the second term on the
right-hand side of Eq. (4) gives the nonlocal matrix ele-
ment,

h0j �u(�z�iD6 h)�0�j �B�P1�i: (12)

The factorization of the transition matrix elements with the
insertion of theO�1=mb� interactions in Eq. (6) into Eq. (8)
leads to

h0ji
Z
d4yT
 �u(�z�h)�0�O1;2�y��j �B�P1�i: (13)
014003
The contributions from Eqs. (12) and (13) can be absorbed
into the nonlocal matrix element,

h0j �u(�z�b)�0�j �B�P1�i; (14)

where the rescaled b quark field h has been replaced by the
full field b. It is easy to check that the heavy-quark expan-
sion of Eq. (14) generates Eqs. (12) and (13). This absorp-
tion makes sense, because Eqs. (12) and (13), concerning
only the initial b quark, are universal for all exclusive B
meson decays. The decomposition in Eq. (9) still holds, but
the B meson distribution amplitudes ��, redefined by
Eq. (14) in terms of the full field b, exhibit a
renormalization-group evolution different from that in
Eq. (9) [35].

B. Three-parton distribution amplitudes

We explain that the nonlocal matrix element in Eq. (7) is
negligible in the current accuracy: the three-parton distri-
bution amplitudes, whose contributions to the form factors
are supposed to be ofO�1=mb�, turn out to appear at 1=m2

b.
The three-parton distribution amplitudes ~�V , ~�A, ~XA, and
~YA in coordinate space are defined via the decomposition,

h0j �u(�z�gG	��uz�n
�

h)�0�j �B�P1�i

� fB

�
�P6 1 �mB��5

�
�v	n6 
 
 v � n
�	�� ~�V�t; u�


 ~�A�t; u�� 
 i'	�n�
 ~�V�t; u� 
 n
	 ~XA�t; u�

�
n
	
v � n


n6 

~YA�t; u�

��
)(
; (15)

with the variable t � v � z. The corresponding hard kernels
arise from the contraction of all the structures � � v	n6 
,
v � n
�	; . . . , in Eq. (15) with Fig. 2, written as
M �3�
a /

trf�6 �T
un6 ��
	�P6 2 
 k6 1 
 uk6 2� 
 �u�P6 2 
 k6 1 
 uk6 2��

	n6 �����1
 �5��P6 1 �mB��5�g


�P2 
 k1 
 uk2�
2�2

; (16)
k2

k
1

P
2

P − k − k1 1 2

FIG. 2. Three-parton contribution to the B! �l� decay.
where k1 (k2) is the momentum carried by the light quark
(gluon). The derivation of the above expression is referred
to the Appendix.

For � � v � n
�	, Eq. (16) vanishes because of ��T �
n� � ��T � �P2 
 k1 
 uk2� � 0. Express '	�n�
 �

i�n
	 
 n6 
�	�, in which the first term has the same
structure as of ~XA. The second term n6 
�	 renders
Eq. (16) vanish for the same reason. For the other struc-
tures v	n6 
, n
	, and n
	n6 
, we always have �	 � ��.
Once �	 � ��, Eq. (16) is proportional to

M �3�
a �

P1 � �k1 � uk2�


�P2 � �k1 � uk2��
2 : (17)

Note that k�1 and k�2 are of O� ���, and that the moments of
the three-parton B meson distribution amplitudes are at
-3
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most of O� ��2� [10]. Therefore, when convoluting Eq. (17)
with the three-parton distribution amplitudes, the resultant
contribution to the form factors FV;A is of O� ��2=m2

b�
compared to the LP one from Fig. 1(a). The same higher
Fock state has been shown to give a power-suppressed
correction to the B! �l� decay in the framework of the
soft-collinear effective theory (SCET) [23]. With a similar
reasoning, the three-parton B meson wave functions also
contribute at O�1=m2

b� in kT factorization theorems. We
emphasize that the three-parton B meson wave functions
are relevant in the NLP analysis of the B! � transition
form factors. This is the reason the B! �l� decay is a
cleaner mode than the B! �l� decay for determining the
LP B meson wave function.

C. NLP hard kernels

Contracting Fig. 1 with the two structures in Eq. (9), we
get the quark-level amplitudes,

M�
a �

i

4
���
2

p
tr
�6 ��P6 2 
 k6 ����1
 �5��P6 1 �mB��5n6 ��

�P2 
 k�2
;

M�
b �

i

4
���
2

p

�
tr
���1
 �5��q6 
 k6 �mb��6

��P6 1 �mB��5n6 ��

�q
 k�2 
m2
b

;

(18)

and M

a;b with the null vector n� in M�

a;b being replaced
by n
. As stated above, Fig. 1(a) is LP, because of �P2 


k�2 � 
2P2 � k�O�mb
���, and Fig. 1(b) is NLP, because

of �q
 k�2 
m2
b � 
2P1 � P2 �O�m2

b�. The contribu-
tion from Fig. 1(b) has not yet been considered in the
literature. We shall neglect the mass difference between
the B meson and the b quark in M�;


b in our analysis
accurate up to NLP.

The collinear factorization formulas for FV;A are written
as

FV�A��q
2� � fB

Z
dx
���x�H

�
V�A��x; ��

��
�x�H


V�A��x; ���; (19)

where the hard kernelsH are extracted according to Eq. (2)
by keeping only the longitudinal component k� in Eq. (18).
In terms of the LP and NLP moments in Eq. (11), Eq. (19)
becomes

FV;A�q
2� �

fB
�mB

�
�0 �

�
1�

1

�

�
�1

�
; (20)

in which the coefficient 1 of �1 comes from Fig. 1(a) and
1=� from Fig. 1(b). It has been mentioned that the equality
of FV and FA at LP is attributed to the spin symmetry in the
large-recoil region [20]. The coefficient 1=� implies the
increase of the subleading-power correction with the de-
crease of the photon energy. This is why a perturbation
014003
theory is reliable only in the large � region. The distribu-
tion amplitude �
�x�, contributing only through the nor-
malization of the combination,

Z
dx
���x� 
�
�x�� � 0; (21)

disappears from Eq. (20). As shown in Eq. (20), the nor-
malization �1 does appear at NLP, which is divergent
under the evolution. This is another example that the
QCD-improved factorization (QCDF) approach based on
collinear factorization theorem breaks down at NLP
[34,36].

The decay spectrum in Eq. (3) becomes

d�
d�

�
	G2

FjVubj
2

48�2 f2Bm
3
B�1
 ���

�
�2

0 �

�
1�

1

�

�
2
�2

1

�
:

(22)

The above expression indicates that the NLP terms for the
spectrum have canceled, and only the O�1=m2

b� term �2
1 is

left. In this case we can estimate the O�1=m2
b� effect using

the models for the B meson distribution amplitudes avail-
able in the literature [13,37],

���x� �
1� �x
 1�

212
2�x�2�21
 x�; (23)

with the shape parameter 1 � ��=mb. The value of �� has
been found to range between 0.5 and 0.7 GeV [25,38,39],
which corresponds to 1 � 0:1–0:15 approximately.
Certainly, there are other models of the B meson distribu-
tion amplitudes (see [40]).

Employing the inputs 	 � 1=137, GF � 1:166 39�
10
5 GeV
2, jVubj � 3:9� 10
3, fB � 190 MeV, and
mB � 5:28 GeV, we derive the photon energy spectra of
the B! �l� decay for 1 � 0:1 and for 1 � 0:15 in Fig. 3.
The specific models in Eq. (23) lead to the relation
�1=�0 � 1. Therefore, the subleading-power term is in-
-4
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deed negligible at large �, whose contribution is around
5%. However, this term diverges quickly at small �, break-
ing the perturbative expansion in 1=mb. The form factors
FV;A in Eq. (20) contain a dominant monopole component
proportional to �0=�, and a small dipole component pro-
portional to �1=�2, which is important only at small �.
This is the reason one always obtains a symmetric spec-
trum in � at LP from a perturbation theory [20] as shown in
Fig. 3. To generate an asymmetric spectrum, the dipole
component must be enhanced as postulated in [16,26].
Therefore, an asymmetric spectrum signals an important
NLP contribution, i.e., a breakdown of the factorization
theorem.

It has been explained that the undesirable feature of the
B meson distribution amplitude under evolution is a con-
sequence of collinear factorization, which can be removed
in kT factorization [35]. The evolution effect on the
kT-dependent B meson wave function was also studied in
[41]. Moreover, applying the kT factorization theorem to
the B! �l� decay, which has been proved in [3], we can
extend the spectrum to lower � as demonstrated below.
Keeping both the longitudinal momentum k� and the
transverse momentum kT in Eq. (18), the hard kernels in
the kT factorization theorem are derived. Defining the LP
and NLP functions,

�0��� � m2
B

Z
dx

Z
d2kT

���x; kT�

�xm2
B � k2T

;

�1��� � m2
B

Z
dx

Z
d2kT

�
���x; kT�

�m2
B � k2T

�
x�
�x; kT�

���xm2
B � k2T�

�
;

(24)

respectively, we obtain the form factors,

FV;A�q
2� �

fB
mB


�0��� ��1����: (25)

Because of kT �O� ��� in the B meson, �1��� is of
O� ��=mb� relative to �0��� in the large � region. Again,
only a single B meson wave function is relevant in the LP
analysis of the B! �l� decay, consistent with the obser-
vation in [42]. Compared to Eq. (20), both�� appear in the
kT factorization theorem at NLP.

The decay spectrum is then given, according to Eq. (3),
by

d�
d�

�
	G2

FjVubj
2

48�2 f2Bm
3
B�1
 ���3
�2

0��� ��2
1����:

(26)

Similarly, the NLP terms have canceled, and only the
O� ��2=m2

b� term �2
1��� is left. We adopt the models for

the B meson wave functions in [13], whose kT dependence
is coupled to the x dependence through a ) function,
014003
���x; kT� � ���x�
1

�
)�k2T 
 x�21
 x�m2

B�: (27)

Using the same input parameters, we obtain the photon
energy spectra from the kT factorization theorem in Fig. 4
for 1 � 0:1 and for 1 � 0:15. These spectra are symmetric
in �, and modified only slightly by the higher-power
correction. Hence, the higher-power correction is under
control in the kT factorization theorem compared to that
in the collinear factorization theorem: the power behavior
1=� of the spectrum in the small � region has been
smeared into � ln2�. It implies that the perturbative QCD
(PQCD) approach based on the kT factorization theorem
[43–46] has a better convergence at the subleading level.
III. LONG- AND SHORT-DISTANCE
CORRECTIONS

In this section we discuss the long-distance and short-
distance corrections to the B! �l� decay spectrum. For
this purpose, the form factors are written, in the kT facto-
rization theorem, as

FV;A�q2� �
fB
mB


�0��� ���1�
0 ���� � FLD

V;A�q
2�; (28)

where ��1�
0 and FLD

V;A denote the O�	s� and long-distance
correction to the leading result, respectively. We shall
estimate the latter by considering the B! V ! � transi-
tion. This correction is certainly significant in the small �
(large q2) region, where the internal quark becomes soft,
and easily forms a resonance with the spectator quark.
Hence, it could break the QCD factorization of the form
factors FV;A at small �. At large �, the long-distance
contribution may be suppressed by the values of the B!
V transition form factors [15].
-5
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The long-distance amplitude is written as [47]

1

e
h��P2; �T�j �u���1
 �5�bj �B�P1�i

�
X
V

h��P2; �T�jJ	emjV�P2; �T�i

i��T	

P2
2 
m2

V � imV�V

� hV�P2; �T�j �u���1
 �5�bj �B�P1�i; (29)

with the vector mesons V � (;!; . . . , and their massesmV
and widths �V . Take the B meson transition into a trans-
versely polarized ( meson as an example, for which the
first matrix element on the right-hand side of Eq. (29) gives

h��P2; �T�jJ
	
emj(�P2; �T�i � 


i
2
m(f(�

	
T ; (30)

f( being the ( meson decay constant. The second matrix
element is decomposed into

h(�P2; �T�j �u���1
 �5�bj �B�P1�i

� 

2V�q2�
mB �m(

���('�
��
T P

(
1P

'
2


 i�mB �m(�A1�q
2���T�; (31)

with the B! ( form factors V�q2� and A1�q
2�. Combining

Eqs. (30) and (31), we extract from Eq. (29),

FLD
V �q2� �

f(
m( 
 i�(

mB

mB �m(
V�q2�;

FLD
A �q2� �

f(
m( 
 i�(

�mB �m(�

�mB
A1�q

2�:

(32)

For the long-distance contribution through the B! !
transition, we have the similar expressions to Eq. (32),
but with the charge factor 1=2 in Eq. (30) being replaced
by 1=6, and the appropriate replacement of the vector
meson mass and of the decay constant. The B!  tran-
sitions do not contribute in this case.
0.2 0.4 0.6 0.8 1
η

1 10 -18

2 10 -18

3 10 -18

4 10 -18

5 10 -18

6 10 -18

dΓ
dη
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Total
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λ = 0.1

1.

2.

3.

FIG. 5. Spectra in units of GeV
1 for 1 � 0:1 and 1 � 0:15 with th
dotted lines to the inclusion of the long-distance contribution, the da
lines to the inclusion of both the long-distance and the NLO contrib
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For the ( and ! mesons, we employ the inputs [47]

m( � 0:771 GeV; �(=m( � 0:21;

f( � 0:217 GeV; m! � 0:783 GeV;

�!=m! � 0; f! � 0:195 GeV:

(33)

For the B! (, ! form factors, we adopt the models
derived from the light-front QCD [48], which have been
parametrized as

F�q2� �
F�0�

1
 a�q2=m2
B� � b�q2=m2

B�
2 ; (34)

with the constants,

V�q2�: F�0� � 0:27; a � 1:84; b � 1:28;

A1�q2�: F�0� � 0:22; a � 0:95; b � 0:21:

(35)

We restrict the above formalism in the region,

�> 1

q2max

m2
B

� 0:275; (36)

with q2max being the maximal value of q2 in the B! !
transition, in which Eq. (34) holds. The long-distance
contribution increases FV;A by about 30%–50% for 1 �
0:1–0:15 at large �, consistent with the observations in
[15,25,49]. Its effect to the decay spectrum is quite impor-
tant, especially for �< 0:8, as shown in Fig. 5.

The B! (;! transition form factors at large recoil
could be regarded as an O�	s� object [42]. This observa-
tion hints that we should attempt to take into account the
NLO short-distance correction to FV;A. The NLO correc-
tion to the B! �l� decay has been computed by several
groups [22–24] in the collinear factorization theorem
(SCET or QCDF). However, we need the result from the
kT factorization theorem (with the parton transverse mo-
0.2 0.4 0.6 0.8 1
η

5 10 -19
1 10 -18

5 10 -18
2 10 -18

5 10 -18
3 10 -18

5 10 -18

dΓ
dη

LP+LD

LP+SD

Total

LP

λ = 0.15

e solid lines corresponding to the LP contribution only, the dash-
shed lines to the inclusion of the NLO correction, and the dotted
utions.

-6



B MESON WAVE FUNCTION FROM THE B! �l� DECAY PHYSICAL REVIEW D 72, 014003 (2005)
menta kT being included), which is quoted from [20]:

��1�
0 ��� � 


	s�2E��

4�
CFm2

B

Z
dx

Z
d2kT

���x; kT�

�xm2
B � k2T

�

�
ln2

�
x



5

2
ln
�
x
�

4�2

3

 ln2

�
1�

k2T
2k�2

�

� 2�i ln
�
1�

k2T
2k�2

��
: (37)

The weaker evolution of fB will be neglected for simplic-
ity. Because of the large negative double logarithm, the
NLO correction to the form factors FV;A is destructive, and
about 30% of the leading result for both 1 � 0:1 and 1 �
0:15 at large �. The resummation of this double logarithm
to all orders has been discussed in [20,22–24,28].

We emphasize that the NLO hard kernel depends on a
factorization scheme, in which the B meson wave function
is defined [23]. Therefore, it is not very legitimate to adopt
an expression straightforwardly from some other works in
the literature. The calculation of the NLO hard kernel for
the B! �l� decay in the factorization scheme specified in
[35] is in progress, which will be published elsewhere. The
NLO correction in SCET has been further factorized into a
function characterized by the scale mb, and another by����������
mb

��
q

. As stated in [23], this further factorization is not
numerically essential for mb � 5 GeV. On the other hand,
the model-dependent estimate of the long-distance contri-
bution also suffers large uncertainty. Hence, we just intend
to point out the potential strong cancellation between the
long-distance and short-distance corrections in this mode.
As shown in Fig. 5, after combining both subleading con-
tributions, the net effect has been greatly reduced.
Especially, for the shape parameter 1 � 0:1, the cancella-
tion is almost exact for �> 0:8. We conclude that the
leading result in the large � region is stable under these
corrections.

Using the lifetime of a charged Bmeson 9B� � 1:674�
10
12 s and considering only the leading contribution, we
obtain the branching ratios for 1 � 0:15–0:1,

B�B! �l�� � �1:8–4:8� � 10
6; (38)

from Eq. (26) in the kT factorization theorem (PQCD),
with only theO� ��2=m2

b� andO�	2
s� uncertainty. The values

in Eq. (38) are more or less consistent with other estimates
in the literature: a model-dependent evaluation of the
structure-dependent photon emission contribution gave
the branching ratio 10
7–10
6 [14]. Using the B meson
bound-state wave function from a Salpeter equation, 0:9�
10
6 has been obtained [17,21]. Both a simple nonrelativ-
istic model and light-front QCD lead to 3:5� 10
6

[18,19]. Light-cone sum rules and the pole-model calcu-
lation give 2� 10
6 [16] and 2:26� 10
6 [26], respec-
tively. At last, the experimental upper bound at 90%
014003
confidence level is [50]

B�B! �l��< 2:0� 10
6: (39)
IV. CONCLUSION

In this paper we have studied the B! �l� decay in the
PQCD approach based on the kT factorization theorem.
This formalism is well defined at the subleading level,
since the two-parton LP B meson wave functions remain
normalizable even after including the evolution effect.
Note that the QCDF approach based on the collinear
factorization theorem fails at NLP. We have shown that
the O�1=mb� corrections from the heavy-quark expansion
can be absorbed into the LP B meson wave functions
redefined by the nonlocal matrix element in Eq. (14).
The NLP contributions from the hard kernels to the decay
spectrum cancel. The three-parton Bmeson wave functions
turn out to be suppressed by 1=m2

b in this special mode. The
constructive long-distance contribution almost cancels the
destructive NLO radiative correction for both the form
factors FV and FA. The B meson wave function �� can
then be extracted from the observed B! �l� decay spec-
trum using the leading formalism, which suffers only the
O�1=m2

b� and O�	2
s� uncertainly. We conclude that the

B! �l� decay is the cleanest mode for determining this
important nonperturbative input for the perturbation theo-
ries of exclusive B meson decays. The determination can
be refined by including the evolution and resummation
effects into the factorization formulas [20,22–24,28].

Measuring the B! �l� spectrum in the lepton and
photon energies [20],

d2�
d�dy

�
	G2

FjVubj
2m3

B

64�2 �1
 ��f
F2
V�q

2� � F2
A�q

2��

� 
2�1
 y��1
 y
 �� � �2�


 2FV�q2�FA�q2���2
 2y
 ��g; (40)

with the lepton energy fraction y � 2El=mB, 1
 � � y �
1, we can extract the information of the form factors FV
and FA separately. It is then possible to fix the two two-
parton B meson wave functions �� simultaneously from
Eq. (25). At this NLP level, the three-parton wave func-
tions are still absent following the reasoning in Sec. II B.
The long-distance contribution and the NLO corrections
also cancel each other as indicated in Eq. (28). With the
B! �l� branching ratio around 10
6, the above experi-
mental determination is possible.
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APPENDIX: THREE-PARTON CONTRIBUTION

We start with Eq. (1.3) in Ref. [51]:

G�1��z� �
Z
d4w

i�z6 
 w6 �

2�2�z
 w�4
igA6 �w�

iw6

2�2w4 ; (A1)

which describes the interaction of a quark with a gluon. In
momentum space the above expression becomes

G�1��z� �
Z d4l

�2��4

�
Z d4k2

�2��4
ei�k2�l��z

i�k6 2 � l6 �

�k2 � l�2
�	

il6

l2
ig ~A	�k2�;

(A2)

where l (k2) is the momentum carried by the incoming
quark (gluon). The Feynman parametrization gives

G�1��z� � 

Z
du

Z d4l

�2��4
eil�z

Z d4k2
�2��4

� eiuk2�z
�l6 � uk6 2��	�l6 
 �uk6 2�

�l2�2
ig ~A	�k2�; (A3)

where the variable change l� �uk2 ! l, �u � 1
 u has
been applied.

In the case we are considering, the gluon momentum k2
is of O� ���, since the B meson is dominated by soft dy-
namics. We expand the above expression up to O�k2�:
014003
G�1��x� � 

Z
du

Z d4l

�2��4
eil�z

Z d4k2
�2��4

eiuk2�z
�
l6 �	l6

�l2�2

�
uk6 2�

	l6

�l2�2



�ul6 �	k6 2
�l2�2

�
ig ~A	�k2�

� 

Z
du

Z d4l

�2��4
eil�z

�
l6 �	l6

�l2�2
igA	�uz�

�
un6 ��

	l6 
 �ul6 �	n6 �

�l2�2
ig@�A	�uz�n�


�
:

(A4)

The first term on the right-hand side of Eq. (A4), contrib-
uting to a phase factor [51], will be dropped. For conve-
nience, we work in the light-cone gauge A� � 0, in which
the second and third terms are rewritten as

G�1��z� � i
Z
dugG	��uz�n�


Z d4l

�2��4

� eil�z
un6 ��

	l6 
 �ul6 �	n6 �

�l2�2
: (A5)

It is clear that the field strength gG	��uz�n�
 can be
factored together with the rescaled b quark field h and
the light quark field �u into the nonlocal matrix element in
Eq. (15). The integrand depending on l is then identified as
the hard kernel in momentum space for the three-parton
contribution. Employing Eq. (A5) for Fig. 2, and substitut-
ing P2 
 k1 
 uk2 for l, we obtain Eq. (16).
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