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We make a theoretical study of the s-wave interaction of the nonet of vector mesons with the octet of
pseudoscalar mesons starting from a chiral invariant Lagrangian and implementing unitarity in coupled
channels. By looking for poles in the unphysical Riemann sheets of the unitarized scattering amplitudes,
we get two octets and one singlet of axial-vector dynamically generated resonances. The poles found can
be associated with most of the low lying axial-vector resonances quoted by the Particle Data Group:
b1�1235�, h1�1170�, h1�1380�, a1�1260�, f1�1285�, and two poles to the K1�1270� resonance. We evaluate
the couplings of the resonances to the VP states and the partial decay widths in order to reinforce the
arguments in the discussion.
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I. INTRODUCTION

The realization that QCD at low energies can be studied
by means of effective chiral Lagrangians using fields asso-
ciated to the observables mesons and baryons [1–4] has
brought a substantial progress in hadronic physics by
means of chiral perturbation theory. A further useful step
in this direction has been given with the introduction of
unitary techniques which has allowed to extend to higher
energies the predictions of chiral perturbation theory, as
well as to tackle new problems barred to a pure perturba-
tive expansion [5–10]. The unitary extensions of chiral
perturbation theory, U
PT, have brought new light in the
study of the meson-meson and meson-baryon interaction
and have shown that some well-known resonances qualify
as dynamically generated, or in simpler words, they are
quasibound states of two mesons or a meson and a baryon.
This is the case of the low lying scalar mesons �, f0�980�,
a0�980�, ��900� [8–12], which appear from the interaction
of pseudoscalar mesons. Another case of successful appli-
cation of these chiral unitary techniques is the interaction
of mesons with baryons [6,7,13–16] showing that the
��1405� and the N��1535� were dynamically generated
resonances. A more systematic study of these latter inter-
actions has shown that there are two octets and one singlet
of resonances from the interaction of the octet of pseudo-
scalar mesons with the octet of stable baryons [17,18].
Work along these lines has continued by studying the
interaction of the octet of pseudoscalar mesons with the
decuplet of baryons [19,20] which also has led to the
generation of many known resonances, like the N��1520�
and the ��1520�.

The studies of the meson-meson and meson-baryon
interaction along these lines also have shown that some
mesons or baryons are not dynamically generated, they are
not a consequence of the interaction between the meson or
baryon components and they qualify better as genuine, or
preexistent states, a word that can be substantiated as that
they would remain in the limit of large Nc where the loops
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of intermediate states vanish. This is the case of the vector
mesons of the � octet [10,21].

A suggestive step forward in the direction of studying
the meson-meson interaction along these lines would be to
study the interaction of the octet of pseudoscalar mesons
with the octet of vector mesons (nonet including � and !
with the standard mixing). Work in this direction already
has been done in [22] and, interestingly, most of the low
lying axial-vector mesons appear as dynamically generated
resonances. If this were the case, this would have many
practical as well as conceptual repercussions and, hence,
extra efforts to corroborate these findings, looking also for
uncertainties, are needed. In [22] the search for resonances
was done by looking at the speed plots of the physical
amplitudes. A search for poles of the amplitudes in the
unphysical Riemann sheets in the complex plane is a more
powerful tool to investigate resonances, and a thorough
study along these lines is called for also. The present work
goes in this last direction and we have done a thorough job
investigating the following points:
(1) T
-1
he poles of the amplitudes have been systemati-
cally searched for in the complex energy plane
following the trajectories in terms of an SU(3)
breaking parameter. This has allowed us to make
an SU(3) study of the problem, as well as the effects
of SU(3) symmetry breaking, very useful to under-
stand the meaning of the poles and their number.
(2) T
he study of the amplitudes around the poles also
has allowed us to determine the coupling of the
resonances to the different coupled channels and
from there the partial decay widths into the different
channels. This study has been useful to make an
association of the resonances found with those of the
Particle Data Group (PDG) [23] (see Table I).
(3) W
e have changed the association of the poles to the
known resonances in some cases with respect to
[22], in particular, in the case of the K1�1270�
resonance, which we claim comes from two distinct
poles with very different properties. This has some
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TABLE I. 1	 resonances from the Particle Data Group [23].
The K1�1270� and K1�1400� are assumed to be a mixture of K1A
and K1B.

JPC I � 1 I � 0 I � 1=2

1	� b1�1235� h1�1170�, h1�1380� K1B
K1�1270�; K1�1400�

1		 a1�1260� f1�1285�, f1�1420� K1A

1Not
agree w
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practical consequences in the partial decay widths
and the dominance of certain channels in different
reactions, which would help clarifying the puzzle of
these resonances.
(4) A
t the same time, and in order to help new research-
ers in the field, we have substantially simplified the
formalism of [22], making it more amenable and
transparent.
The results obtained here support the bulk of the claims
made in [22], but the larger amount of information on these
resonances obtained here brings new elements that set on
firmer grounds the association of these resonances with the
experimental ones. This substantiates the idea that the low
lying axial-vector resonances are dynamically generated,
with the exception of the higher mass ones, the f1�1420�
and the K1�1400�, which do not fit easily in our scheme,
while at the same time we suggest that the K1�1270�
corresponds actually to two poles, which would have
many experimental repercussions.
II. PSEUDOSCALAR-VECTOR MESON
INTERACTION

A. Tree level potential

There is not a unique formulation to treat the vector
mesons in an effective theory. The ambiguity comes from
the freedom in considering the nature of the vector-meson
to be or not a gauge boson of a certain symmetry and from
the election of their transformation properties under a
certain realization of chiral symmetry. For a review see,
for example, Ref. [24]. Despite the differences between the
treatments of vector mesons, the equivalence between the
different approaches can be shown at lowest order [24].
Considering the vector mesons as fields transforming ho-
mogeneously under the nonlinear realization of chiral
symmetry, the interaction of two-vector and two-
pseudoscalar mesons at lowest order in the pseudoscalar
fields can be obtained from the following interaction
Lagrangian [24]1

L I � �
1

4
Trf�r�V� �r�V���r�V� �r�V��g; (1)

where Tr means SU(3) trace and r� is the covariant
e the different factor �1=4 instead of �1=2 in [24] to
ith our normalization of the fields.
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derivative defined as

r�V� � @�V� 	 
��; V��; (2)

where 
; � stands for commutator and �� is the vector
current

�� �
1

2
�uy@�u	 u@�u

y� (3)

with

u2 � U � ei�
��
2

p
=f�P: (4)

In the previous equations f � 92 MeV is the pion decay
constant and P and V are the SU(3) matrices containing the
octet of pseudoscalar and the nonet of vector mesons
respectively:

P �

1��
2

p �0 	 1��
6

p �8 �	 K	

�� � 1��
2

p �0 	 1��
6

p �8 K0

K� �K0 � 2��
6

p �8

0
BB@

1
CCA;

V� �

1��
2

p �0 	 1��
2

p ! �	 K�	

�� � 1��
2

p �0 	 1��
2

p ! K�0

K�� �K�0 �

0
B@

1
CA
�

:

(5)

The Lagrangian of Eq. (1) is invariant under the chiral
transformations SU�3�L � SU�3�R, since r�V� transforms
as [25]

r�V� ! hr�V�hy: (6)

We are interested in the two-vector–two-pseudoscalar am-
plitudes. Hence, expanding the Lagrangian of Eq. (1) up to
two-pseudoscalar meson fields we find

L VVPP � �
1

4f2
Tr�
V�; @�V��
P; @�P��; (7)

which would account for the Weinberg-Tomozawa inter-
action for the VP! VP process [22,24,26,27].

Note that in Eq. (5) in the pseudoscalar octet we are
considering only the �8 � � and not the �0. The inclusion
of the �0 effects in strong interactions can be accommo-
dated in the higher order Lagrangians [28]. Since the
meson decay constant f is different for different mesons,
one also could use different values of f for the different
pseudoscalars, as done in [13,16]. We shall comment on
the results obtained when we take this into account.

In the vector-meson multiplet we have assumed ideal
!1–!8 mixing:

��!1=
���
3

p
�!8

��������
2=3

p
; !�!1

��������
2=3

p
	!8=

���
3

p
: (8)

(Throughout the work we will use the phase convention
j�	> � �j1	 1> , j�	> � �j1	 1> , jK�> �
�j1=2� 1=2> , and jK��> � �j1=2� 1=2> corre-
sponding jII3> isospin states).
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TABLE III. Cij coefficients in isospin base for S � 0, I � 0. The first column indicates the G
parity.

G 1��
2

p � �K�K 	 K� �K� �� !� �� 1��
2

p � �K�K � K� �K�

	 1��
2

p � �K�K 	 K� �K� �3 0 0 0 0
� �� 0 0 0 0

���
6

p

� !� 0 0 0 0 �
���
3

p

� �� 0 0 0 �4
���
3

p

� 1��
2

p � �K�K � K� �K� 0
���
6

p
�

���
3

p ���
3

p
�3

TABLE II. Cij coefficients in isospin base for S � 1, I � 1
2 .

�K !K �K K�� K��

�K 0 0 0 �
��
3
2

q
�

��
3
2

q
!K 0 0 0

��
3

p

2

��
3

p

2

�K 0 0 �2 � 3
2

1
2

K�� �
��
3
2

q ��
3

p

2 � 3
2 0 0

K�� �
��
3
2

q ��
3

p

2
1
2 0 �2

TABLE IV. Cij coefficients in isospin base for S � 0, I � 1. The first column indicates the G
parity.

G 1��
2

p � �K�K 	 K� �K� �� !� �� �� 1��
2

p � �K�K � K� �K�

	 1��
2

p � �K�K 	 K� �K� �1 �
���
2

p
1

���
3

p
0 0

	 �� �
���
2

p
0 0 0 0 0

	 !� 1 0 0 0 0 0
	 ��

���
3

p
0 0 0 0 0

� �� 0 0 0 0 �2
���
2

p

� 1��
2

p � �K�K � K� �K� 0 0 0 0
���
2

p
�1

2Recall that the G-parity operation can be defined through its
action on an eigenstate of hypercharge (Y), isospin (I), and third
isospin projection (I3) as GjY; I; I3> � ���1�Y=2	Ij �
Y; I; I3 > , with � being the charge conjugation of a neutral
nonstrange member of the SU(3) family.
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From the Lagrangian of Eq. (7) one obtains the full
amplitude which we deduce in the appendix, where we
also make the projection over s wave, which leads to

Vij�s� � �
& � &0

8f2
Cij

	
3s� �M2 	m2 	M02 	m02�

�
1

s
�M2 �m2��M02 �m02�



; (9)

where & (&0) stands for the polarization four-vector of the
incoming (outgoing) vector meson. The masses M�M0�,
m�m0� correspond to the initial (final) vector mesons and
initial (final) pseudoscalar mesons, respectively, and we
use an averaged value for each isospin multiplet. The
indices i and j represent the initial and final VP states,
respectively.

We can identify the VP channel by its strangeness (S)
and isospin (I), �S; I� � �1; 1=2�, (0,0), and (0,1). There are
other possible �S; I� combinations but, since advancing
some results we will not find poles there, we will not
consider them in the discussion. For the (0,0) channel the
allowed isospin channels are �K�K,��,!�, ��, and K� �K;
for the (0,1) channels they are �K�K,��,!�, ��, ��, and
014002
K� �K; and for �1; 1=2� we have �K, !K, �K, K��, and
K��. Note that for the (0,0) and (0,1) cases the isospin
states have well-definedG parity2 except the �K�K andK� �K
states, but the combinations 1=

���
2

p
�j �K�K >�jK� �K>� are

actually G-parity eigenstates with eigenvalues �.
In Tables II, III, and IV we show the Cij coefficients in

isospin base for �S; I� � �1; 1=2�, (0,0), and (0,1), indicat-
ing also the G parity in the (0,0) and (0,1) cases.

Let us now discuss an interesting consequence in the
sign and strength of the potential obtained, which can give
us an indication about whether this Lagrangian can pro-
duce pseudobound states with a suitable unitarization pro-
cedure. The interaction of two octets gives the following
decomposition in irreducible representations of SU(3):

8 � 8 � 1 � 8a � 8s � �10 � 10 � 27: (10)
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Note that although we shall work with a nonet of vector
mesons (including the � and !) the singlet component
does not lead to an interaction term from Eq. (7).

The coefficients Cij of Eq. (9) can be expressed in any
desired base: charge, isospin, SU(3), etc. Since the SU(3)
matrices are given in terms of the physical charge fields,
the most easy way to express the Cij coefficients is in this
base, but with the use of the SU(3) Clebsch-Gordan coef-
ficients it is straightforward to obtain the coefficients C in
the SU(3) base, ,. They give

C,- � diagf�6;�3;�3; 0; 0; 2g (11)

in the order of 1, 8a, 8s, �10, 10, and 27. As we shall see, a
minus sign in a coefficient of Eq. (11) implies an attractive
potential, which is needed to have a bound state. Therefore,
in the SU(3) limit, we should expect attraction in the
singlet and the two octets, no interaction in the decuplets,
and repulsion in the 27plet. Therefore, a priori, one could
expect, after the unitarization procedure that we will ex-
plain below, two octets and one singlet of dynamically
generated axial-vector (JP � 1	) resonances. In addition,
in the exact SU(3) symmetric case the two octets would be
degenerate.

B. Unitarization procedure

In the literature several unitarization procedures have
been used to obtain a scattering matrix fulfilling exact
unitarity in coupled channels, like the inverse amplitude
method [5,9] or the N=D method [10]. In this latter work
the equivalence with the Bethe-Salpeter equation used in
[8] was established.

In the present work we make use of the Bethe-Salpeter
equation to resum the diagrammatic series expressed in
Fig. 1

There are some subtle differences with respect, for in-
stance, to the pseudoscalar-pseudoscalar case, coming
from the polarization vectors appearing in the potential
and the particular form of the vector-meson propagator in
the loop. For the sake of clarity in the exposition we have
relegated the explanation to Appendix B. From the reasons
explained in Appendix B we can do the evaluation of the
scattering matrix for transverse polarization modes of the
external vector mesons, which leads to the following uni-
tarized amplitude:

T � 
1	 VĜ��1��V� ~& � ~&0; (12)

where Ĝ � G�1	 1
3

q2l
M2
l
� is a diagonal matrix with the lth

element, Gl, being the two-meson loop function containing
+ + + ...

FIG. 1. Diagrammatic representation of the resummation of
loops in the unitarization procedure.
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a vector and a pseudoscalar meson:

Gl�
���
s

p
� � i

Z d4q

�2��4
1

�P� q�2 �M2
l 	 i&

1

q2 �m2l 	 i&
;

(13)

with P the total incident momentum, which in the center of
mass frame is �

���
s

p
; 0; 0; 0�.

The structure of Eq. (12) explains why a minus sign in
the C,- coefficients of Eq. (11) together with Eq. (9),
implies attraction, (ReG is negative in the region of rele-
vance and 1	 VĜ can lead to poles with V positive).

In the dimensional regularization scheme the loop func-
tion of Eq. (13) gives

Gl�
���
s

p
� �

1

16�2


a��� 	 ln

M2
l

�2
	
m2l �M

2
l 	 s

2s
ln
m2l
M2
l

	
ql���
s

p 
ln�s� �M2
l �m

2
l � 	 2ql

���
s

p
�

	 ln�s	 �M2
l �m

2
l � 	 2ql

���
s

p
�

� ln�s� �M2
l �m

2
l � � 2ql

���
s

p
�

� ln�s	 �M2
l �m

2
l � � 2ql

���
s

p
� � 2�i�

�
; (14)

where � is the scale of dimensional regularization.
Changes in the scale are reabsorbed in the subtraction
constant a���, so that the results remain scale independent.
In Eq. (14), ql denotes the three-momentum of the vector
or pseudoscalar meson in the center of mass frame and is
given by

ql �
1

2
���
s

p
�����������������������������������������������������������������������

s� �Ml 	ml�

2�
s� �Ml �ml�
2�

q
; (15)

where Ml and ml are the masses of the vector and pseudo-
scalar mesons, respectively. For the evaluation of the loop
in the physical, or first, Riemann sheet one has to take the
solution for the square root with Im�ql� positive. Note that
in Eq. (14) there is an ambiguity in the imaginary part of
the ln function coming from their multivaluedness. This
ambiguity can be removed, for a generally complex

���
s

p
, by

comparing the result with the one obtained numerically by
regularizing Eq. (13) by means of a cutoff of a natural size,
of the order of 1000 MeV. By doing this, we have checked
that the prescription for the ln which gives a result in
accordance with the cutoff method is to use the ln with
its argument defined with a phase from �� to �with a cut
in the negative real axis. On the other hand, this compari-
son with the cutoff method allows us also to determine the
subtraction constant which turns out to be of �� 1:85.

In [22] a different regularization procedure is used by
choosing the G function to vanish for

���
s

p
equal to the mass

of the vector meson. A similar choice, making the G
function vanish at the mass of the baryon, is shown to
lead to realistic results in the meson-baryon interaction
case [18]. In the present work we will use both approaches
-4
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FIG. 2. Comparison of the perturbative expansion to the uni-
tarized amplitude for K��! K�� with only one channel (K��)
and in the chiral limit (m� � 0). All the lines represent the
modulus square. Dotted line: tree level potential ��V�; dashed-
dotted line: expansion of T at one loop, ��V� 	 ��V�G��V�;
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FIG. 3. Same as Fig. 2 but with all the allowed VP channels
and with finite pseudoscalar masses.
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in order to have an idea of the theoretical uncertainties in
the results.

On the other hand, note that we do not include the width
of the vector mesons in their propagators in Eq. (13). We
shall take this into account in a coming section.

C. Comparison to perturbative expansion

This unitarization procedure can be understood as an
analytical extrapolation of perturbation theory to higher
energies in the same way as is done for ordinary chiral
perturbation theory with pseudoscalar meson-meson or
meson-baryon interaction [8,11,13,15]. Perturbation the-
ory with the Lagrangian of Eq. (7) would proceed like
ordinary chiral perturbation theory for pseudoscalar
meson-meson and meson-baryon interaction, with loop
divergences canceled with higher order Lagrangians (see
[24]) which are ordered in terms of increasing number of
derivatives in the fields. The expansion appears as a power
series of the momentum over one scale (expansion parame-
ter), �
 � 4�f ’ 1:2 GeV (in the chiral limit of pseudo-
scalar masses going to zero). At one loop level one would
need the next order Lagrangian to reabsorb the loop diver-
gences and one would have the direct s-channel loop as
well as the crossed loop term. The unitary amplitude
should match the perturbative expansion at low energies,
but our procedure only provides the s-channel loop and
furthermore does not use information of higher order
Lagrangians. The philosophy behind this is that the con-
tribution of crossed loops generates a smooth energy de-
pendence in the energy region of our concern and can be
reabsorbed in the subtraction constant a of the loop func-
tion G [10]. Similarly, one also is assuming that the one
loop calculation with the lowest order Lagrangian, with the
use of a G function with natural size subtraction constant,
can account for the effect of the higher order Lagrangians.
This is what characterizes the dynamically generated reso-
nances, in contrast to cases like the � meson (a genuine
resonance of basically two constituent quarks) which re-
quire the explicit use of a higher order Lagrangian [10].

In order to illustrate the previous discussion, we shall
now compare results for the amplitudes obtained with the
unitarity amplitude of Eq. (12) and its perturbative expan-
sion up to two loops. We choose as an example the K��!
K�� in �S; I� � �1; 1=2� and !�! !�, �S; I� � �0; 1�.
First we show, in Fig. 2, results for the K��! K��
amplitude using only one channel (K��) and in the chiral
limit (m� � 0). In Fig. 2 we can see the modulus squared
of the amplitudes calculated with the approximations
��V�, ��V� 	 ��V�G��V�, ��V� 	 ��V�G��V� 	
��V�G��V�G��V� and the unitary amplitude. We can
see that for low momenta there is a nice convergence of
the perturbative series to the unitary result up to about
150 MeV=c. However, the unitary amplitude has a reso-
nant structure with a peak around 250 MeV=c where the
perturbative expansion is seen to fail drastically. Note that
014002
the lowest order ��V� (in the chiral limit) is of order q, as
can be seen from Eq. (1) or expanding Eq. (7).

The real case has finite pseudoscalar masses and coupled
channels (�K, !K, �K, K��, K��) and one has different
thresholds for different channels. This case is shown in
Fig. 3. This fact changes the behavior of the amplitudes
close to the K�� threshold, where they no longer vanish,
and, although the perturbative expansion is seen to con-
verge to the unitary amplitude, the convergence is now
slower. Once more we see a lack of convergence when we
get close to the resonance peak around 170 MeV=c.

In Fig. 4 we show the same amplitudes as before for the
!�! !� cases. Now, the tree level amplitude is zero, see
-5
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Table IV, and the first resonance appears around
350 MeV=c. We see that the convergence of the perturba-
tive expansion extends up to higher momenta than in the
previous case, up to about 250 MeV=c. A combined con-
clusion from these two cases is that the perturbative ex-
pansion works well as long as we are not close to the lowest
resonance, and of course, as long as q is small compared to
�
. This reflects the mathematical theorem of complex
variable that a series converges up to the first singularity, in
our case the poles in the complex plane associated to the
resonances. It is worth noting that what limits the conver-
gence of the series expansion is the appearance of the
lowest resonance, which in the present work appears at
momenta much smaller than �
. The unitary amplitude
has no problems of convergence, based as it is in the N=D
method, as long as one uses a proper interaction and
includes all relevant coupled channels. Up to energies of���
s

p
’ 1:5 GeV we consider that we are taking into account

the relevant channels. This is a momentum of about
500 MeV=c for the �� channel, which has the highest
momentum. This momentum is still smaller than the
600 MeV=c of the �� interaction, where the chiral unitary
approach was shown to be rather successful in [10].
Nevertheless we shall comment in the results sections on
possible consequences from the inclusion of channels other
than VP.

Contrary to the perturbative expansion, the unitary am-
plitude allows for poles corresponding to bound states or
resonances. In the next section we address this issue.
III. SEARCH FOR POLES

A. Unphysical Riemann sheets

The association of physical resonances to poles of the
scattering matrix in unphysical Riemann sheets is a very
powerful tool to identify the resonances. The results of the
scattering theory say that bound states reflect as a pole for
Im�q�> 0 and Re�q� � 0, with q the momentum ql of
014002
Eq. (15), i.e., in the real s axis below the lowest threshold.
The resonances can appear only for Im�q�< 0 which
means s with an argument larger than 2� and Re�s� above
the lowest threshold. This is what we will call second
Riemann sheet (R2) for the function T for the variable s.
If these poles are not very far from the real axis they occur
in

���
s

p
� �M� i�=2� � �����spp with M and � the mass and

width of the resonance, respectively. Of course the only
meaningful physical quantity is the value of the amplitudes
for real

���
s

p
, i.e., the reflection of the pole on the real axis.

Therefore, only poles not very far from the real axis would
be easily identified experimentally as a resonance.

The effect of passing s to R2 has consequences only for
the G functions. To evaluate G in R2 we can use the
Schwartz reflection theorem which states that if a function
f�z� is analytic in a region of the complex plane including a
portion of the real axis in which f is real, then 
f�z���� �
f�z�. The loop function Gl satisfies these conditions, there-
fore, for Re�

���
s

p
�>ml 	Ml we have

Gl�
���
s

p
� i&� � 
Gl�

���
s

p
	 i&���

� Gl�
���
s

p
	 i&� � i2 ImGl�

���
s

p
	 i&�: (16)

Since the beginning of R2 is equal to the end of R1 we
have

GIIl �
���
s

p
	 i&� � GIl �

���
s

p
� i&�

� GIl �
���
s

p
	 i&� � i2 ImGIl �

���
s

p
	 i&�; (17)

where the superindices I and II refer to R1 and R2,
respectively.

The imaginary part of the loop function can be very
easily evaluated from Eq. (13), for instance with Cutkosky
rules, giving ImGIl �

���
s

p
	 i&� � � q

8�
��
s

p .

In principle Eqs. (16) and (17) are true only very close to
the real axis but, since the analytic continuation to general
complex plane is unique, we can write for a general

���
s

p

GIIl �
���
s

p
� � GIl �

���
s

p
� 	 i

q
4�

���
s

p ; (18)

with Im�q�> 0. In Eq. (18) one can use for GIl either
Eq. (14) or the result of the cutoff method.

One could also have gone to R2 by using Eq. (14) but
with the solution of ql with Im�ql�< 0; but again one finds
the problem of the multivaluedness of the ln functions. We
have checked, by comparing with the result obtained from
Eq. (18), that one can use Eq. (14) as it is written with the
prescription of the ln explained below Eq. (14) and using���
s

p
in the form a	 ib, a, and b real.

When looking for poles we will use GIl �
���
s

p
� for

Re�
���
s

p
�<ml 	Ml and GIIl �

���
s

p
� for Re�

���
s

p
�>ml 	Ml.

This prescription gives the pole positions and half widths
closer to those of the corresponding Breit-Wigner forms in
the real axis. In this way, when being below the lowest
threshold, we also could obtain possible pure bound states.
-6
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B. SU(3) symmetry breaking scan

The use of physical vector and pseudoscalar masses,
both in the potential Vij as in the loop functions, allows
for SU(3) symmetry breaking. By following a similar
procedure to Refs. [17,20], we are going to look for poles
starting from the exact SU(3) limit and breaking SU(3)
symmetry gradually. This can be accomplished by using a
unique vector-meson mass M0 and pseudoscalar mass m0
[obtained as an average of the physical masses inside each
SU(3) multiplet] and changing the masses in the following
way:

M2
i �x� � M

2
0 	 x�M

2
i �M

2
0�;

m2i �x� � m
2
0 	 x�m

2
i �m

2
0�;

(19)

with 0 � x � 1. In this way, the masses used are the SU(3)
averaged masses for x � 0 and the physical masses for x �
1. In Fig. 5 we show the position of the poles for the �S; I�
channels (0,0), (0,1), and �1; 1=2�, [the only �S; I� channels
for which we find poles], evaluating the loop functions
with the subtraction constant method.

In the exact SU(3) limit (x � 0) we find two degenerate
octet poles in all the �S; I� channels at

���
s

p
� �1168	

i0� MeV and also a singlet pole for the (0,0) channel at���
s

p
� �1067	 i0� MeV. Hence, our guess at the end of

Sec. II Athat there could be two octets and one singlet of
dynamically generated resonances gets confirmed. As we
break SU(3) gradually, by increasing x, two branches for
each �S; I� channel of the octet and one for the singlet
emerge. The branches end in the physical mass situation,
x � 1. Note that each branch for the (0,0) and (0,1) chan-
nels has well-defined G parity while this is not the case for
�1; 1=2� since this corresponds to nonzero strangeness. In
the plot we also have written for each pole our guess for the
correspondence with physical 1	 resonances of the PDG.
These assignments will be justified in the detailed discus-
sion of Sec. IV.
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FIG. 5. Trajectories of the poles in the scattering amplitudes
obtained by increasing the SU(3) breaking parameter, x, from 0
to 1. The loop functions are regularized by means of the sub-
traction constant method.
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The plot in Fig. 5 is instructive but must be interpreted
with caution. In principle, the real part of the pole position
at x � 1 should reflect the mass of the resonance while 2
times the imaginary part should be the width. One may
wonder how stable are the results with respect to reason-
able changes in the regularization scheme. An estimation
of the uncertainties can be done by using the regularization
method of fixingG � 0 at the vector mass [22]. The results
are qualitatively similar for the trajectories and the real part
for the pole positions at x � 1 differ in the worst of the
cases in less than 100 MeV and in most cases by less than
30 MeV. The imaginary part of the pole positions also
differs in similar amounts, but relative to the absolute
values of the mass and width of the resonances, the differ-
ences in the width are more significant. Yet, here we must
observe that the width obtained so far is only a first
approximation for the following reasons:
(a) W
-7
e have not considered other decay channels which
are not made of a vector and a pseudoscalar. Other
channels to which the resonance couples weakly can
in practice give a sizeable partial decay width be-
cause of the large phase space available. For ex-
ample, this would be the case of the b1�1235� going
to four pions, where the phase space is favored with
respect to our VP channels. While including these
extra channels in the coupled channels approach
goes beyond the scope of the present work, it is
important to note that the weaker strength of the
couplings to these channels makes their repercus-
sion on the real part of the pole positions less
relevant since there are no restrictions of phase
space for the real part of the amplitudes. Hence,
we might expect small changes in the real part of
the pole positions from these neglected sources,
however, not altering the important fact that these
poles appear for these quantum numbers.
(b) T
he second reason is that so far we have not con-
sidered the width of the vector mesons in their
propagators in the loop functions. For the case of
the � and the K� it is important to take this into
consideration. We shall take this into account in the
results section, and we shall see that this modifies
the width of the resonances but only very slightly
their mass. We also will use another method to
account for the width of the vector mesons by using
the coupling of the resonances to the VP channels
and evaluating the partial decay widths by means of
a convolution with the mass distribution of the
vector and axial-vector mesons. This will be seen
in the next section.
C. Couplings and partial decay widths

The physical interpretation of the poles becomes clearer
if we realize that close to a pole, and if it is not very close to
a threshold, the amplitude takes the form of a Breit-Wigner
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structure. By looking at the structure of the covariant
amplitude in Appendix B Eq. (B5), and considering the
fact that the poles appear in the Vb�1� b� term, close to a
pole the amplitude has the form (in one channel for sim-
plicity)

T ’
Vb
1� b

�
g�� �

P�P�

P2

�
&�&

0
�; (20)

which has the structure of a resonant pole amplitude (see
Fig. 6)

T ’ g2
1

P2 �M2
R

�
�g�� 	

P�P�

M2
R

�
&�&0�: (21)

Generalizing to different channels and considering only the
transverse polarizations, the amplitudes close to a pole in
the second Riemann sheet can be expressed as

Tij ’
gigj
s� sp

; (22)

where we have omitted the trivial ~& � ~&0 factor. Hence the
factors gi, which stand as the effective coupling of the
dynamically generated axial-vector resonances to the
channel i, can be calculated from the residues of the
amplitudes at the complex poles.

With the values of the couplings we can evaluate the
partial decay widths of the axial-vector mesons into each
VP channel, which reads

�A!VP �
jgVPj2

8�M2
A

q: (23)

In the case where there is little phase space for the decay,
or it takes place due to the width of the particles, we fold
the expression for the width with the mass distribution of
the particles as

�A!VP�
1

�2
Z �MA	2�A�2

�MA�2�A�2
dsA

Z �MV	2�V �2

�MV�2�V �2
dsV�AVP�

�����
sA

p
;

�����
sV

p
�

� Im


1

sA�M2
A	 iMA�A

�
Im


1

sV�M2
V	 iMV�V

�

�"�
�����
sA

p
�

�����
sV

p
�MP�"

� �����
sA

p
�

������
sthA

q �

�"
� �����
sV

p
�

������
sthV

q �
; (24)

where " is the step function, �AVP � jgVPj2

8�sA
q with q �
g i g j
ji

FIG. 6. Effective interpretation of the PV ! PV scattering
process close to a pole.
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1
2
����
sA

p 91=2�sA; sV;M2
P�, �A, and �V are the axial and vector

mesons total width, and
������
sthA

q
,

������
sthV

q
are the threshold ener-

gies for the dominant A and V decay channels.
In Eq. (24) the convolution is done using the masses and

total widths of the particles listed by the PDG [23].

IV. DETAILED STUDY OF THE 1	 RESONANCES

A. S � 0, I � 0

In Fig. 7 we show the results for the diagonal Tii matrix
elements as a function of the energy with the loop func-
tions evaluated with the subtraction constant method (we
will call it amethod) (left column), with the prescription of
G � 0 at the vector-meson mass energy (b method) (cen-
tral column) and with the cutoff method including the
widths of the vector mesons in the loops (c method) (right
column). This latter method evaluates Eq. (13) performing
the q0 integration analytically and the ~q integration with a
cutoff qmax � 1000 MeV substituting M2

l ! M2
l � iMl�.

We do not show the results with the cutoff method
without widths in the vector-meson propagator in the loops
since they are very similar to the ones with the a method
(actually, the subtraction constant has been chosen to agree
with the cutoff method). We can clearly see the reflection
on the real axis of the poles found in Fig. 5 in this (0,0)
channel, which corresponds to the a method. The a and b
methods give qualitative similar results but there are sig-
nificant differences at low energies, although not so large at
higher energies. When we include the width in the vector-
meson propagators of the loops, we obtain a broadening of
the amplitudes. All these discrepancies give an idea of the
uncertainty we have in the model.

In Table V we show the position of the poles obtained
with the amethod and the couplings to the different isospin
channels.

The pole at 919� i17 MeV, which is found for the
channels with negative G parity, may be identified with
the h1�1170� resonance. According to the PDG [23] the
only decay channel seen so far is ��, although we find this
pole in all the channels allowed by the quantum numbers,
even if they are kinematically closed. However, in Fig. 7
these other channels are difficult to see since the amplitude
is dominated in this region by the �� channel.

The partial widths obtained for the axial-vector reso-
nance decaying into VP are presented in Table VI. The
results that we obtain are compatible with the scarce ex-
perimental information in the sense that the only decay
channel seen is the ��, which is the only one relevant in
our case. We can see that the widths for this channel
calculated with the a and b methods are qualitatively
similar. It is also instructive to see that with the c method
(see third column of Fig. 7) we see the apparent full width
of the resonance (around 90 MeV), which is in reasonable
agreement with the sum of all the partial decay widths in
Table VI for the h1�1170�.
-8



-400

-200

0

200

400
R

e 
T

K
*
K (+)

φη
ωη
ρπ

K
*
K(-)

-400

-200

0

Im
 T

1000 1200 1400 1600
0

2

4

6

8

|T
|2  /1

05

1000 1200 1400 1600

√
_
 s  (MeV)

1000 1200 1400 1600

a) b) c)

h
1
(1170)

h
1
(1380)

f
1
(1285)

FIG. 7. Amplitude for S � 0, I � 0 for the different allowed channels. Left column: subtraction constant method in the loop
functions; central column: with the prescription of G � 0 at the vector-meson mass energy; right column: cutoff method considering
vector-meson width in the propagator.

LOW LYING AXIAL-VECTOR MESONS AS . . . PHYSICAL REVIEW D 72, 014002 (2005)
The 1245� i7 MeV pole can be assigned to the
h1�1380� resonance. Note that the PDG [23] shows the
isospin of this resonance is not given, although in the
classification schemes it is assumed to have I � 0. Our
assignment, as well as suggested in [22], is also I � 0.

The only experimentally observed decay channel of the
h1�1380� is �K�K (with G parity negative). In Table VI we
see our results for the different partial decay widths. It is
TABLE V. Pole positions and couplings fo

�����spp
919� i17

gi jgij
1��
2

p � �K�K 	 K� �K� � � � � � �

�� 46� i13 48 �3
!� 23� i28 36 3
�� �3453	 i1681 3840
1��
2

p � �K�K � K� �K� 781� i498 926 6

014002
difficult to extract conclusions from Table VI given the
scarce experimental data, but we should stress that the only
channel experimentally seen is precisely the dominant one
in our calculations. In this case the sum of our partial VP
decay channels is compatible with the total experimental
width. We also see that method c gives a width (around
40 MeV) qualitatively similar to the sum of the partial
decay widths in Table VI.
r S � 0, I � 0. (All the units are MeV.)

1245� i7 1288� i0

gi jgij gi jgij

� � � � � � 7230	 i0 7230
311	 i47 3311 � � � � � �

020� i22 3020 � � � � � �

648� i959 1157 � � � � � �

147	 i183 6150 � � � � � �

-9



TABLE VI. Partial decay widths for S � 0, I � 0. (All the
units are MeV.)

�exptot �expi �thi �a� �thi �b�

h1�1170� ! �K�K 	 c:c: 360� 40 � � � 0.5 1.4
h1�1170� ! �� ‘‘ seen 77 115
h1�1170� ! !� ‘‘ � � � 0 0
h1�1170� ! �� ‘‘ � � � 0 0

h1�1380� ! �K�K 	 c:c: 91� 30 seen 45 36
h1�1380� ! �� ‘‘ � � � 9 4
h1�1380� ! !� ‘‘ � � � 25 16
h1�1380� ! �� ‘‘ � � � 0 0

f1�1285� ! �K�K 	 c:c: 24� 1 not seen 0.3 0.2

L. ROCA, E. OSET, AND J. SINGH PHYSICAL REVIEW D 72, 014002 (2005)
The pole at 1288� i0 MeV is below the �K�K threshold
which is the only allowed PV channel for positiveG parity,
and therefore the pole appears as a bound state of �K�K 	
c:c:. Actually, in Fig. 7 with the a and bmethods, jTj2 goes
to infinity at the pole position. It is reasonable to assign this
pole to the f1�1285� resonance. The reason why we do not
get width for this resonance, while the PDG states it to be
24 MeV [23], is because there are other decay channels
different to VP that we are obviously not considering, [like
4� (33%), ��� (52%), or K �K� (10%)] . In fact the
�K�K 	 c:c: is quoted by the PDG as ‘‘not seen’’ which

agrees, in a first approximation, with the result obtained
here as a bound state. If we evaluate the partial decay width
into this channel, with the coupling obtained and with the
convolution of the widths, we get about 0.3 MeV which
justifies why this decay channel has so far not been seen.
This small number is actually rather unstable since it can
be made even an order of magnitude bigger by enlarging
the limits in the convolution of Eq. (24). The apparent
width from the jTj2 plot when considering the vector-
meson width in the propagator of the loop functions is
around 20 MeV. With all these apparent instabilities in the
widths, one should not lose the important point which is
that, comparatively to the other resonances, the width for
this resonance is very small. It is worth noting that the
f1�1285� couples only to K� �K in our theory and with such
a large strength qualifies strongly as a quasibound K� �K or
�K�K state. The small experimental total width indicates a

small coupling to other channels which are kinematically
open and barely change the nature of the resonance as a
bound system of K� �K.

When arriving to this point it is important to note that
there is experimentally another resonance, the f1�1420�,
which is assigned by the PDG to the 1		 nonet. However,
in our scheme this resonance has no counterpart. This is
because, as explained in Secs II A and III B, the interaction
of two octets gives one singlet plus two octets (three poles),
therefore there is no way, with the interaction of one vector
and one pseudoscalar meson, to generate dynamically one
more pole in this channel and, therefore, there is no room
014002
for one more resonance like the f1�1420�. Therefore, in our
scheme, the f1�1420� cannot be considered as a dynami-
cally generated resonance from the PV interaction.

On the other hand, the h1�1170� state that we generate
(the original singlet in Fig. 5) has the same quantum
numbers as the isoscalar member of the octet of the
b1�1235� and the h1�1380�; hence, the set of the
b1�1235�, h1�1170�, and h1�1380�, together with the
strange partners that we will discuss below, agree with
the association of a nonet to all these states of the PDG.

B. S � 0, I � 1

In Fig. 8 we show the results for the jTj2 with the same
three methods used in the previous subsection.

We clearly see the reflections in the real axis of the poles
found in the complex plane (shown in Table VII).

The pole at 1247� i28 MeV, which is found for the
channels with positive G parity, may be assigned to the
b1�1235� resonance. The PDG lists the full width to be
142 MeV [23] and the decay channels are quoted as !�
(dominant), �� (seen), 4� (< 50%), K �K� (< 14%), and
�� (< 1:5%) (see Table VIII). Therefore, one could ex-
pect that the VP decay channels would account for around
50% of the total width. This is compatible with what we
obtain, as can be seen in Table VIII. Note also that the
channel quoted as dominant by the PDG is indeed the
dominant one in our results. It is interesting also to call
the attention to the fact that the strongest coupling of the
b1�1235� is to K� �K as it was the case of the h1�1380�,
consistently with the fact that they belong to the same
SU(3) octet in the SU(3) limit. It is interesting to see that
this feature remains in spite of the SU(3) breaking. The
method c provides an apparent total width of about
80 MeV.

The pole at 1011� i84 MeV, which is found for the
channels with negative G parity, could be assigned to the
a1�1260� resonance. Note that the values for the mass and
width quoted for this resonance by the PDG, 1230� 40
and 250–600 MeV, respectively, have a large uncertainty.
This can justify the discrepancy in the position of the pole
we obtain. For the partial decays widths there is no good
data quoted by the PDG (every one of the many decay
channels are just quoted as ‘‘seen’’). However, in the de-
tailed explanation by the PDG, some experiment gives for
�� 60% and for �K�K 	 c:c: 8–15 MeV% [23], what
would be in reasonable agreement with what we obtain.
The method c provides an apparent width of about
300 MeV which is tied to the slow fall down of jTj2 at
the right of the peak, which differs from a typical Breit-
Wigner shape.

It is interesting to note that the octet of the a1�1260�
resonance has been considered as one of the fundamental
fields in chiral theories which deals explicitly with spin-1
fields [25]. In this latter work the Li parameters of [28]
have been derived assuming exchange of these vector
-10
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mesons (and scalars). The comment is worth making be-
cause the use of the chiral interaction between the pseu-
doscalar and vector mesons used here, together with the
unitarization procedure, generates dynamically the
a1�1260� resonance and, hence, introducing it further as
an explicit degree of freedom would lead to
doublecounting.

There is another observation worth making which is the
fact that there is another a1 resonance listed by the PDG
[23] at higher energies, the a1�1640�, which we do not
generate dynamically and is more likely to be a genuine q �q
TABLE VII. Pole positions and couplings for S � 0, I � 1.

�����spp
1011� i84 1247� i28

gi jgij gi jgij
1��
2

p � �K�K 	 K� �K� � � � � � � 6172� i75 6172
�� � � � � � � 2087� i385 2122
!� � � � � � � �1869	 i300 1893
�� � � � � � � �3041	 i498 3082
�� �3795	 i2330 4453 � � � � � �
1��
2

p � �K�K � K� �K� 1872� i1486 2390 � � � � � �

TABLE VIII. Partial decay widths for S � 0, I � 1. (All the
units are MeV.)

�exptot �expi �thi �a��
th
i �a�

b1�1235� ! �K�K 	 c:c: 142� 9 � � � 7 10
b1�1235� ! �� ‘‘ <1:5% 12 13
b1�1235� ! !� ‘‘ dominant 25 25
b1�1235� ! �� ‘‘ seen 8 9

a1�1260� ! �� 250� 600 seen (60%?) 106 156
a1�1260� ! �K�K 	 c:c: ‘‘ seen (< 10%?) 6 11
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meson. At the same time we further observe the fact that no
other b1 resonance is quoted by the PDG.

C. S � 1, I � 1=2

In Fig. 9 we show the results for the amplitudes with the
same three methods considered in the other channels.

In Table IX we show the pole positions and the cou-
plings obtained. The lowest pole couples strongly to K��,
very weakly to K��, and moderately to the rest of chan-
nels. On the contrary, the higher pole couples strongly to
�K and K�� while moderately to the other channels.

In Fig. 10 we plot, as an illustrative example, the modu-
lus squared of the scattering matrix in the second Riemann
sheet for three different channels. The pole structure can be
clearly seen as well as the relative strength of each channel
in the two different poles (similar plots can be obtained for
the rest of channels).

The PDG shows two physical S � 1, I � 1=2 [23]
resonances with JP � 1	, which are the K1�1270� and
the K1�1400�. Actually these two resonances have been
usually considered to be a mixture of the K1 members of
the 1		 and 1	� octets, called K1A and K1B, respectively.
At this point we have difficulty assigning the poles found to
these resonances. In order to have a feeling of which
reasonable assignment to make we study the partial decay
widths of these two resonances. This is shown in Table X.
In the table we have assumed for convolution purposes and
phase space the mass of the resonance to be 1270 MeVand
in the last column we show the expected partial decay
width coming from the poles in Table IX. We can see
that the resonance at 1112 MeV couples strongly to the
K�� and leads to a partial decay width in this channel of
1113 MeV (around 150 MeV should we considered the
mass to be 1400 MeV). On the other hand, the 1216 MeV
resonance couples dominantly to �K. In view of this, one
-11



TABLE IX. Pole positions and couplings for S � 1, I � 1=2.

�����spp
1112� i64 1216� i4

gi jgij gi jgij

�K 1587� i872 1811 1097� i400 1168
!K �1860	 i649 1970 �1033	 i375 1099
�K �1524	 i1154 1912 5274	 i297 5282
K�� 27	 i155 157 3459� i95 3460
K�� 4187� i2098 4683 340� i984 1041
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FIG. 10. jTj2 in the second Riemann sheet for �

TABLE X. Partial decay widths for S � 1, I � 1=2. In the last
column, the first element is the value obtained with the coupling
to the lower pole and the second element is the result with the
coupling to the higher pole. (All the units are MeV.)

�exptot �expi �thi �a� �thi �b�

K1�1270� ! �K 90� 20 � � � (0,0) (0,0)
K1�1270� ! !K ‘‘ 11% (5,2) (10,0.1)
K1�1270� ! �K ‘‘ 42% (7,52) (5,12)
K1�1270� ! K�� ‘‘ � � � (0,0) (0,0)
K1�1270� ! K�� ‘‘ 16% (113,6) (194,1)
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would be tempted to assign the 1112 MeV pole to the
K1�1400� resonance and the 1216 MeV pole to the
K1�1270� since this is the experimental case. Yet, the
difference of 300 MeV in the mass in the case of the
K1�1400� is not an appealing feature, since this difference
is much larger than the K1�1400� width (174 MeV). There
is another possible scenario which we find more appealing.
The detailed explanation of the PDG on the determination
of the decay widths shows a clear discrepancy between
different methods of determination of the K1�1270� width.
In particular, a set of experiments using K beams leads to
much larger widths (about a factor 3) than another set that
uses pion beams. This could find an explanation if one
assumed that the experimental K1�1270� resonance is a
superposition of two resonances that couple with different
strength to a particular channel. This is indeed the case for
the two poles that we find—one of them coupling strongly
to K�� and the other one to �K. Different experiments
which favor mechanisms that give a bigger weight to one
of these channels would lead to very different widths of the
resonance. This is the case with the recent findings that the
��1405� resonance corresponds to actually two poles and
different experiments favor one or the other pole, leading
to different visible widths of the resonance [17,18,29].
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FIG. 11. Schematic interpretation of the coupling of the dy-
namically generated axial-vector resonance to a PV state.

TABLE XI. Couplings for S � 1, I � 1=2 in SU(3) base.

1112� i64 1216� i4

g27 �8	 i94 316� i21
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There are some experimental features in the different
experiments that could be understood within the two-pole
structure that we obtain. Indeed, some experiments provide
a dominance of theK1�1270� decay into �K [30–32] while
other experiments show a clear dominance of the K��
decay mode [33]. In our theoretical approach the domi-
nance of the �K decay in a reaction has to be interpreted as
a sign that the dynamics of the reaction favors the second
pole (which couples mostly to �K) and this would have a
small width. This is indeed the case experimentally, and the
total width is about 60 MeV (similar to our results). On the
other hand, the dominance of the K�� decay channel in
another experiment would have to be interpreted as the
dynamics of this reaction favoring the coupling to the first
resonance. In this case the total width would be large and
indeed this is what is seen in the experiment of [33] where
the total width is about 190 MeV (we obtain 125 MeV with
the a method or 200 MeV with the b method).

In Ref. [22] a broad bump in the speed plot was asso-
ciated to theK1�1400� resonance but we find no pole in that
amplitude in that region.

It is interesting to see that, when breaking the SU(3)
symmetry, the S � 0 states of the two octets in Fig. 5 do
not mix because they have well-defined G parity (this is
opposite to the case of the meson-baryon interaction [17]
where one did not have this constraint). However, when we
go to S � 0, then the states are no longer eigenstates of G
parity and the octets mix. This is a well-known case for the
K1 axial-vectors where there is much discussion about the
mixing in the literature.3

We next proceed to see which is the mixing angle for the
two poles in S � 1, I � 1=2 that we find. We write

jK1�1270�; 1> � sin:jK1A >	 cos:jK1B>;

jK1�1270�; 2> � cos:jK1A >� sin:jK1B>;
(25)

where jK1�1270�; 1> is the state associated to the lower
mass pole and jK1�1270�; 2> to the upper mass pole. In
Eq. (25) jK1A> corresponds to the SU(3)
j8a; 1; 1=2;	1=2> state and jK1B> to the
j8s; 1; 1=2;	1=2> state (in the notation jirrep; Y; I; I3 > ,
with irrep being the name of the irreducible representation
of SU(3), Y the hypercharge, I the total isospin, and I3 the
third component of I). (Note that we have chosen I3 �
	1=2 although the following discussion works obviously
for any allowed I3.)

The couplings considered so far are (see Fig. 11), by
definition,

gi � <Rjtji�I � 1=2; I3 � 	1=2�>; (26)

where jR> is the generic name for the physical resonance
associated to either pole. By making use of SU(3) Clebsch-
Gordan coefficients, we can obtain the relation of the
3For a review of the theoretical status on this mixing angle see,
for instance, the introduction of Ref. [34].
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couplings in isospin base to the ones in SU(3) base, giving

g�K
g�K
gK��

gK��

0
BBB@

1
CCCA �

�
����
3
10

q
1��
6

p 1����
30

p 1��
6

p

� 1
2
��
5

p � 1
2 � 3

2
��
5

p 1
2

3
2
��
5

p 1
2 � 1

2
��
5

p 1
2

1
2
��
5

p � 1
2

3
2
��
5

p 1
2

0
BBBBBB@

1
CCCCCCA
g27
g�10
g8s
g8a

0
BBB@

1
CCCA: (27)

By using in the left-hand side of Eq. (27) the values
obtained in Table IX we get the results shown in Table XI.

As mentioned after Eq. (10), the singlet component of
the � and ! [see Eq. (8)] does not lead to an interaction
term, and this is already assumed in Eq. (27) where only
the octet component of the � is taken. We could as well
have taken instead of g�K in Eq. (27) the coupling
�

���
2

p
g!K and in the exact SU(3) limit this would lead to

the same results. When SU(3) is broken, the use of either
coupling in the Eqs. (27) will give us an idea about the
uncertainties in this SU(3) decomposition.

In Table XI we can see that the couplings to the 27plet
and the decuplet are almost negligible in comparison to the
two octets, in fact, they are compatible with zero within the
uncertainties we can assume in our model. This means that
the two poles found are essentially a mixing of the anti-
symmetric and symmetric octets. The above reasoning is
more than qualitative since it allows us to quantify the
weight of the SU(3) components of the resonance and
therefore the mixing angle defined in Eq. (25). In order
to obtain this mixing angle let us write Eq. (25) in a more
generic way:

jR> � a27j27; R >	a�10j�10; R >	a8s j8s; R>

	 a8a j8a; R>; (28)

where we have used the short notation j27; R> �
j27; 1; 1=2;	1=2; R> and so on for the rest. The aj coef-
ficients must satisfy

P
jajj

2 � 1. To obtain the mixing
angle :we have to evaluate a8s and a8a since, by definition,
they are a8s � cos: and a8a � sin: for jK1�1270�; 1> .

On the other hand, up to lowest order in SU(3) breaking,
we have
g�10 �346	 i15 �406	 i51
g8s 4259� i2455 �3783� i947
g8a 2317� i928 5208� i636

-13
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g8s � <Rjtj8s> ’ a�8s < 8s; Rjtj8s> � a�8s t8s ; (29a)

g8a � <Rjtj8a> ’ a�8a < 8a; Rjtj8a> � a�8a t8a : (29b)

Therefore, had we known t8s , t8a , we would know a8s , a8a
by using g8s , g8a from Table XI. To evaluate t8s and t8a we
can go to the SU(3) limit, which by virtue of Eq. (11)
should be the same. In this limit the two octet poles are in
the same place. The couplings t8s , t8a are easily evaluated
since the matrix elements of the potential in the SU(3) base
are already known in Eq. (11). Hence, by performing the
Bethe-Salpeter resummation in this base, we readily obtain
the poles corresponding to each SU(3) irreducible repre-
sentations and the couplings. The amplitudes behave in the
pole as

<8sjTj8s> �
t28s
s� sp

; (30)

and analogously for 8a and singlet, the only channels
where there are poles. We find t8s � t8a � 5568 MeV.

In the case of physical masses, x � 1, using the same
values for t8s and t8a that we have obtained in the SU(3)
limit and the couplings g8s , g8a of Table XI we obtain the
following results: for the pole 1112� i64 MeV we get
from Eq. (29a) : ’ 28�, and from Eq. (29b) : ’ 27�.
Should we have used �

���
2

p
g!K instead of g�K in the

calculations we would get : ’ 22� from Eq. (29a) and : ’
34� from Eq. (29b). These discrepancies give an idea of the
uncertainties in our calculations.

For the pole 1216� i4 MeV, we get from Eq. (29a) 44�,
and from Eq. (29b) 20�. And with g!K 43� and 11�,
respectively, which implies that we have a larger uncer-
tainty in this case. In fact, for the pole 1112� i64 MeVwe
get

P
jajj

2 � 0:98 by using g�K and 1.17 by using g!K,
and for the pole 1216� i4 MeV, 1.38 and 1.43. The
deviation of these numbers with respect to 1 gives an
idea of the uncertainties.

In summary, we get a mixing angle of the order of 30�

with an uncertainty of about 40%. We should however
refrain from making any association of the mixing angle
found here with the mixing angle ofK1A, K1B mentioned in
the literature since this latter one is used to produce the
K1�1270� and K1�1400� resonances, and here we are mix-
ingK1A,K1B to produce jK1�1270�;1> and jK1�1270�;2> .

Along this work we have devoted some attention to
uncertainties in the theory. We would like to call the
attention to another source of uncertainties which would
affect all channels. So far we have used only the pion decay
constant f � f� � 92 MeV in the Lagrangian. We could
have used different values for f�, fK, f�. In order to
estimate uncertainties from this source we have proceeded
as in [13] and taken an average f � 1:15f�. We find that
all the poles obtained so far still appear but the pole
positions are somewhat changed. The trajectories of the
poles in the complex plane are essentially the same but
014002
with real parts shifted about 50 MeV to higher energies
(using the same subtraction constant). The imaginary parts
are accordingly increased since there is now more phase
space. The most significant changes in the imaginary part
of the pole positions are for the poles associated to the
h1�1170� (100% increase), a1�1260� (40% increase), and
K1�1270; 1� (50% increase) and small changes in the rest.
These increases are mostly tied to the increased phase
space. However, we have so far evaluated the partial decay
widths of the resonances, using the couplings obtained and
the physical masses of the resonances. We have checked
that the couplings of the resonances barely change with the
use of the new f constant (less than 10% change in general
and less than 5% in the dominant channels) and hence,
within the uncertainties discussed along the work, the
results and the conclusions are unchanged from this new
source of uncertainty.

The overall conclusion of all these tests is that the
existence of the poles and their basic properties are very
solid and not contingent to the difference sources of un-
certainties discussed in the paper.
V. CONCLUSIONS

In this work we have done a systematic search for
possible JPC � 1		; 1	�, dynamically generated reso-
nances through the interaction of vector and pseudoscalar
mesons. The starting point has been a chiral Lagrangian
which, by expanding up to two pseudoscalar fields, leads to
a Weinberg-Tomozawa term which accounts for the two-
vectors and two-pseudoscalar meson interaction. From this
Lagrangian we have argued, by going to the SU(3) limit,
that from the interaction of the two octets we could expect
attraction for one singlet and two octets. After that, we
have implemented unitarity in coupled channels to account
for the resummation of VP loops in L � 0. This resumma-
tion has been accounted for by means of a Bethe-Salpeter-
like equation in coupled channels, where some subtleties in
the evaluation of the loop functions coming from the use of
vector mesons have been discussed. The regularization of
the loops has been done with dimensional regularization by
means of a subtraction constant fixed to agree with the
numerical result obtained performing the integration with a
cutoff of natural size. We also compare our method with
another one where the loop functions are fixed to zero
when

���
s

p
is equal to the vector-meson mass. This served

to have an idea of uncertainties in the theory.
We have looked for poles of the scattering amplitudes in

the second Riemann sheet. In the SU(3) symmetric case,
considered by taking equal masses for the vectors and
equal masses for the pseudoscalars, we found two poles
in the same position corresponding to two degenerate
octets and one pole corresponding to the singlet. As
SU(3) symmetry is gradually broken, the two degenerate
poles split apart in trajectories [different for each �S; I�
-14
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channel] ending in the physical situation, when the physi-
cal masses are used.

By evaluating the residues of the amplitudes in the poles,
we have obtained the couplings of the axial-vector dynami-
cally generated resonances to each VP channel, which has
allowed us to evaluate the different partial decay widths. In
view of the information supplied by the pole positions,
couplings, and partial widths, we have done a correspon-
dence of the poles found to the h1�1170�, h1�1380�,
f1�1285�, b1�1235�, a1�1260�, andK1�1270�. For this latter
case we found actually two poles coupled strongly to K��
and K�, respectively, which also differed appreciably in
the width. We suggested that different experiments give
different weight to each of these resonances and this could
explain the discrepancies in the widths obtained in differ-
ent reactions. This would also explain the correlation found
between experiments finding a dominance of the �K decay
(which produce a small width) and those finding a domi-
nance of the K�� decay mode (which produce a large
width). We also evaluated the couplings of our two
K1�1270� states, finding a reasonable mixing of around
30�.

The only axial-vector resonances for which we do not
find poles are the f1�1420� and the K1�1400� for different
reasons: from the interaction of two octets one can only
generate one singlet and two octets, therefore there is no
room for more poles apart from those discussed above.
Actually we only found a pole with the f1 quantum num-
bers which suits better to the f1�1285�. In the two poles that
we find in the S � 1, I � 1=2 channel there are no clues to
identify one of them to the K1�1400� resonance.

The conclusions reached in this paper about the dynami-
cal nature of these axial-vector mesons should have ex-
perimental repercussions in the sense that, with the
information obtained in the present work, one can make
predictions for production of these resonances in different
reactions, which are amenable of experimental search. This
has been the case for other dynamically generated reso-
nances and we hope the present paper encourages work in
this direction.
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APPENDIX A: S WAVE AND ON SHELL VP ! V0P0

TREE LEVEL AMPLITUDE

Let us evaluate the s-wave projection of the tree level
amplitude for the process V�q�P�p� ! V�q0�P�p0�.
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After performing the SU(3) trace in Eq. (7) we get the
general expression

L � �
1

4f2
Cij�@

�V�@�PV
0�P0 � @�V�PV

0�@�P
0

� V�@�P@
�V 0�P0 	 V�P@

�V0�@�P
0�; (A1)

where now V�, V0
�, P, and P0 are the meson fields, [not the

SU(3) matrices of mesons]. Equation (A1) leads to the
following amplitude:

tij � �
& � &0

4f2
Cij�p	 p0��q	 q0� � �

& � &0

4f2
Cij�s� u�;

(A2)

where s � �p	 q�2 � �p0 	 q0�2 and u � �p0 � q�2 �
�q0 � p�2 are the usual Mandelstam kinematical variables.

The partial wave expansion of the amplitude can be
written as

T �
X

�2l	 1�fl�s�Pl�x�; (A3)

with x � cos:, : the center of mass scattering angle, and
Pl are the Legendre polynomials.

Hence, the s-wave projection of the scattering amplitude
is

fl�0�s� �
1

2

Z 1

�1
T�s; t�x0�; u�x0��Pl�0�x

0�dx0: (A4)

The l � 0 partial wave is what we will call the potential
Vij.

Expressing u in terms of x and taking the momenta on
shell, we have u � m02 	M2 � 2E�p0�E�q� � 2j ~p0jj ~qjx,
and the term proportional to x vanishes when performing
the integration, and thus the s-wave projection of the
amplitude reads

Vij�s� � �
& � &0

4f2
Cij�s�m02 �M2 	 2E�p0�E�q��;

(A5)

with

E�p0� �
1

2
���
s

p �s�M02 	m02�;

E�q� �
1

2
���
s

p �s	M2 �m2�:

(A6)

Altogether, the tree level on-shell and s-wave amplitude
is

Vij�s� � �
& � &0

8f2
Cij

	
3s� �M2 	m2 	M02 	m02�

�
1

s
�M2 �m2��M02 �m02�



: (A7)
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APPENDIX B: VECTOR MESONS POLARIZATION
IN THE RESUMMATION OF THE LOOPS

Here we are going to explain some subtleties about the
treatment of the polarization vectors of the vector mesons
in the resummation of the loops in the Bethe-Salpeter
equation.

First let us show that, in order to look for poles, we can
deal only with the transverse vector-meson polarization
modes. Let us consider the case with only one channel
(the generalization to coupled channels is straightforward).
Let us consider the loop diagram of Fig. 12.

The Feynman rule is

t � V&�i
Z d4q

�2��4
1

�P� q�2 �m2 	 i&

1

q2 �M2 	 i&

�

�
�g�� 	

q�q�

M2

�
V&0�; (B1)

where we have taken for the tree level t � V& � &0.
Note that we have factorized on shell the V functions

which, as shown in [8] using the Bethe-Salpeter equation
or in [10] using the N=D method, leads to a well-defined
renormalization scheme.

Since the integral only depends on an external momen-
tum P, the result of the integral must be of the form

b0g�� 	 c0P�P�; (B2)

which can be written as

V�bB�� 	 cC���; (B3)

with B�� � g�� � P�P�

P2 and C�� � P�P�

P2 , where we have
factorized one of the vertices, V. The B and C tensors are
idempotent and orthogonal in the sense that

B��B9� � B�9; C��C9� � C�9; B��C9� � 0:

(B4)

Therefore in the iteration of the loops we have two inde-
pendent series that sum up to

Vb
1� b

�
g�� �

P�P�

P2

�
	
Vc
1� c

P�P�

P2
: (B5)

In the center of mass frame we have P� � �
���
s

p
; 0; 0; 0�.

The transverse vector mesons (which have only space
components) only contribute to the left term of Eq. (B5),
while the longitudinal vector mesons (which have also time
q

P−q

P

FIG. 12. Vector-pseudoscalar loop.
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component in the polarization vectors) contribute to both
terms of Eq. (B5).

Therefore, when looking for poles of the T matrix, since
if there are poles they should exist for all modes and the
second term of Eq. (B5) does not contribute for transverse
modes, the poles can be only in Vb=�1� b� which is
common for all modes. In practice we find that c is 1 order
of magnitude smaller than b and of opposite sign and the
second term of Eq. (B5) leads indeed to no poles.

Therefore, in order to look for poles we can only con-
sider transverse polarization vectors. In this case the tree
level VP potential can be written as t � V& � &0 � �V ~& �
~&0, and Eq. (B1) reads

t � �V&ii
Z d4q

�2��4
1

�P� q�2 �m2 	 i&

1

q2 �M2 	 i&

�

�
�gij 	

qiqj
M2

�
��V�&0j: (B6)

The term qiqj can be replaced by 1=3 ~q2=ij. In addition,
as shown in Ref. [35], the ~q2 term can be taken on shell
[ ~q2ON � 1=�4s�9�s;M2; m2�] since the off shell part ~q2 �
~q2ON can be reabsorbed into the renormalization of the
couplings. Therefore Eq. (B6) can be expressed as

t � V2&i&iG
�
1	

1

3

~q2ON
M2

�
; (B7)

with

G�
���
s

p
� � i

Z d4q

�2��4
1

�P� q�2 �m2 	 i&

1

q2 �M2 	 i&
:

(B8)

Thus the series of Fig. 1 would give

T � �V&i&i 	 ��V�2&i&iG
�
1	

1

3

~q2ON
M2

�

	 ��V�3&i&iG2
�
1	

1

3

~q2ON
M2

�
2
	 ::: (B9)

which sums up to

T �
�V

1	 VG�1	 1
3

~q2ON
M2 �

~& � ~&0: (B10)

Equation (B10) easily can be generalized to more than
one channel giving a Bethe-Salpeter-like coupled channel
equation

T � 
1	 VĜ��1��V� ~& � ~&0; (B11)

where Ĝ � G�1	 1
3

q2l
M2
l
� is a diagonal matrix with the lth

element, Gl, being the two meson loop function containing

a vector and a pseudoscalar meson. The term 1
3

q2l
M2
l

is small

and has no such repercussion in the final results. By
comparing Eq. (B11) and Eq. (B5) we can see that b �
�VĜ.
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