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Two-photon exchange contribution to elastic electron-nucleon
scattering at large momentum transfer
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We estimate the two-photon exchange contribution to elastic electron-proton scattering at large
momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can
relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other
wide-angle scattering processes. We find that the interference of one- and two-photon exchange
contribution is able to substantially resolve the difference between electric form factor measurements
from Rosenbluth and polarization transfer experiments. Two-photon exchange has additional consequen-
ces which could be experimentally observed, including nonzero polarization effects and a positron-proton/
electron-proton scattering asymmetry. The predicted Rosenbluth plot is no longer precisely linear; it
acquires a measurable curvature, particularly at large laboratory angle.
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I. INTRODUCTION

There are two experimental methods for extracting the
ratio of electric (GpE) to magnetic (GpM) proton form factors
from electron-proton scattering: unpolarized measure-
ments employing the Rosenbluth separation technique,
and polarization experiments. In the latter case, one mea-
sures the correlation of the spin of the incident polarized
electron with the polarization components of the outgoing
proton, parallel Pl or perpendicular Ps (in the scattering
plane) to its momentum [1–3]. The ratio of cross sections
for the two outgoing proton polarizations gives GE=GM
directly:
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whereQ2 � �q2 � �t is the momentum transfer squared,
� is the laboratory scattering angle, and 0 	 " 	 1.
Equivalent information may be obtained in scattering of
longitudinally polarized electrons on a polarized proton
target.
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The Rosenbluth method relies on measuring the differ-
ential cross section

d�
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/ G2M �
"


G2E; (4)

with the proportionality factor being well known, and
isolating the " dependent term. In each case, the extraction
method for GE=GM assumes single-photon exchange be-
tween the electron and nucleon.

Recent polarization experiments at the Thomas
Jefferson Laboratory (JLab) [4,5] have confirmed the ear-
lier Rosenbluth measurements from SLAC [6]. However,
at large Q2, all of the Rosenbluth measurements are at
distinct variance with JLab measurements of GpE=G

p
M ob-

tained using the polarization technique [1,2]. Since GpE
contributes to the unpolarized cross section at only a few
percent level for theQ2 range in question, it is necessary to
identify any possible systematic corrections to the
Rosenbluth measurements at the percent level which could
be responsible for this discrepancy.

One possible explanation for the discrepancy between
the Rosenbluth and polarization methods is the presence of
two-photon exchange effects, beyond those which have
already been accounted for in the standard treatment of
radiative corrections. A general study of two- (and multi)-
photon exchange contributions to the elastic electron-
proton scattering observables was given in [7]. In that
work, it was noted that the interference of the two-photon
exchange amplitude with the one-photon exchange ampli-
tude could be comparable in size to the �GpE�

2 term in the
unpolarized cross section at large Q2. In contrast, the two-
photon exchange effects do not impact the polarization
transfer extraction of GE=GM in an equally significant
way. Thus a missing and unfactorizable part of the two-
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.013008


1This suppression of the cat’s ears diagrams at forward angles
could be due to the momentum mismatches which occur when
photons couple to different quarks. Another possible explanation
is that, in some kinematic regions, the cat’s ears and handbag
amplitudes have the same magnitude (or nearly so) except for the
charge factors. In these regions, the Compton amplitude would
be proportional to the total charge squared �2eu � ed�

2 of the
target proton. This is precisely the case in the low-energy limit,
where the Compton amplitude is indeed proportional to �2eu �
ed�

2 � 1 for a proton. The result is reproduced by the handbag
diagrams alone since, coincidentally, 2e2u � e2d � 1. In this sce-
nario, the handbag approximation will fail for Compton scatter-
ing on a neutron or deuteron target. At higher energies,
discussion of this scenario pertains to large angle Compton
scattering, since in the forward direction the handbag diagrams
are known to dominate.
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photon exchange amplitude at the level of a few percent
may well explain the discrepancy between the two
methods.

Realistic calculations of elastic electron-nucleon scat-
tering beyond the Born approximation are required in order
to demonstrate in a quantitative way that two-photon ex-
change effects are indeed able to resolve this discrepancy.
In particular, one wants to study quantitatively the ‘‘hard’’
corrections which will arise when both exchanged photons
are far off shell or the intermediate nucleon state suffers
inelastic excitations. Calculations of these corrections re-
quire a knowledge of the internal structure of the nucleon
and thus could not be included in the classic [8,9] and were
not included in the more recent [10,11] calculations of
radiative corrections to eN elastic scattering.

A first step was performed recently in [12], where the
contribution to the two-photon exchange amplitude was
calculated for the elastic nucleon intermediate state. In that
calculation it was found that the two-photon exchange
correction with an intermediate nucleon has the proper
sign and magnitude to partially resolve the discrepancy
between the two experimental techniques.

In an earlier short note [13], we reported the first calcu-
lation of the hard two-photon elastic electron-nucleon
scattering amplitude at large momentum transfers by relat-
ing the required virtual Compton process on the nucleon to
generalized parton distributions (GPD’s) which also enter
in other wide-angle scattering processes. This approach
effectively sums all possible excitations of inelastic nu-
cleon intermediate states. We found that the two-photon
corrections to the Rosenbluth process indeed can substan-
tially reconcile the two ways of measuring GE=GM. Our
goal in this paper is to give a detailed account of our work,
and to present numerical results for a number of quantities
not included in the shorter report.

Perturbative QCD (PQCD) factorization methods for
hard exclusive processes provide a systematic method for
computing the scaling and angular dependence of real and
virtual Compton scattering at large t. For example, PQCD
predicts that the leading-twist amplitude for Compton
scattering �p! �p can be factorized as a product of
hard-scattering amplitudes TH��qqq ! �qqq�; where
the quarks in each proton are collinear, convoluted with
the initial and final proton distribution amplitudes ��xi; Q�
[14]. All of the hard-scattering diagrams fall at the same
rate at large momentum transfer whether or not the photons
interact on the same line. Although the predictions for the
power-law falloff and angular dependence of Compton
scattering are consistent with experiment, the leading-twist
PQCD calculations of the wide-angle Compton amplitudes
appear to substantially underpredict the magnitude of the
observed Compton cross sections [15].

Since an exact QCD analysis of virtual Compton scat-
tering does not appear practical, we have modeled the hard
two-photon exchange amplitude using the ‘‘handbag ap-
013008
proximation’’ [16], in which both photons interact with the
same quark. The struck quark is treated as quasi-on-shell.
In particular, we have neglected the amplitudes where the
two hard protons connect to different quarks, the ‘‘cat’s
ears’’ diagrams, as well as the diagrams in which gluons
interact on the fermion line between the two currents. The
handbag diagrams contain the ‘‘J � 0’’ fixed pole, the
essential energy-independent contribution to the real part
of Compton amplitude which arises due to the local struc-
ture of the quark current [17,18]. The handbag approxima-
tion has proven phenomenologically successful in
describing wide-angle Compton scattering at moderate
energies and momentum transfers. As we shall show, the
handbag approximation allows the two-photon exchange
amplitude to be linked to the GPD’s [19–21], thus provid-
ing considerable phenomenological guidance.

Brooks and Dixon and Vanderhaeghen et al. [15] have
shown that PQCD diagrams where the photons attach to the
same quark dominate the Compton amplitude on the pro-
ton, except at backward center-of-mass angles.1. The
dominance of the handbag diagrams in the PQCD analysis
provides some justification for the use of the handbag
approximation. However, it should be noted that Gunion
and Blankenbecler [22] have shown that electron-deuteron
scattering is dominated by the cat’s ears diagrams at large
momentum transfer provided that the deuteron wave func-
tion has Gaussian falloff. The dominance of the handbag
diagrams thus depends on the nature of the QCD wave
functions, and the precise situation in the present case
remains a subject for future study.

Recently, a new category of Rosenbluth data has become
available where the recoiling proton is detected [23]. The
new data appear to confirm the older data, where the
scattered electron was detected. The two-photon exchange
contributions are the same whatever particle is detected.
However, the bremsstrahlung corrections, which are added
to obtain an infrared finite result, are different. We shall
defer detailed discussion of the proton-detected data until
we can reevaluate the original proton-observed electron-
proton bremsstrahlung interference calculations [9,24] as
-2
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well as examine the radiative corrections which have been
applied to the new data [23,25].

The plan of this paper is as follows.
The next section is devoted to kinematics, including the

definitions of the invariants which define the scattering
amplitudes and the formulas for the cross sections and
polarizations in terms of those invariants. There are choices
in the definitions of the invariants. We have presented the
bulk of the paper with one choice; a sometimes useful
alternative choice is summarized with cross section and
polarization formulas in Appendix A. Section III gives
analytic results for the two-photon exchange scattering
amplitudes at the electron-quark level, the hard-scattering
amplitudes required for the partonic calculation of two-
photon exchange in electron-nucleon scattering. We have
generally treated the quarks as massless. A quantitative
discussion of modifications following from finite quark
mass appears in Appendix B. Section IV details the em-
bedding of the partonic amplitude within the nucleon
scattering amplitude, using dominance of handbag ampli-
tudes and GPD’s. This section also discusses the particular
GPD’s which we have used in our numerical calculations.
Section V shows numerical results, given graphically, for
cross sections, single-spin asymmetries, polarization trans-
fers, and positron-proton vs electron-proton comparisons.
Section V also includes commentary about the possibility
of extending the calculations to backward scattering (small
values of juj), and an assessment of how well two-photon
physics reconciles the Rosenbluth and polarization transfer
measurements of GE=GM. Section VI summarizes our
conclusions.

II. ELASTIC ELECTRON-NUCLEON SCATTERING
OBSERVABLES

In order to describe elastic electron-nucleon scattering,

l�k; h� � N�p; �N� ! l�k0; h0� � N�p0; �0N�; (5)

where h, h0, �N, and �0N are helicities, we adopt the
definitions

P �
p� p0

2
; K �

k� k0

2
;

q � k� k0 � p0 � p;
(6)

define the Mandelstam variables

s � �p� k�2; t � q2 � �Q2; u � �p� k0�2;

(7)

let ! � K � P, and let M be the nucleon mass.
The T-matrix helicity amplitudes are given by

Th
0;h
�0N;�N

� hk0; h0;p0; �0NjTjk; h;p; �Ni: (8)

Parity invariance reduces the number of independent he-
licity amplitudes from 16 to 8. Time-reversal invariance
further reduces the number to 6 [26]. Further still, in a
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gauge theory lepton helicity is conserved to all orders in
perturbation theory when the lepton mass is zero. We shall
neglect the lepton mass. This finally reduces the number of
independent helicity amplitudes to 3, which one may, for
example, choose as

T�;�
�;� ; T�;�

�;� ; T�;�
�;� � T�;�

�;� : (9)

(The phase in the last equality is for particle momenta in
the xz plane, and is valid whether we are in the center-of-
mass frame, the Breit frame, or the symmetric frame to be
defined below.)

Alternatively, one can expand in terms of a set of three
independent Lorentz structures, multiplied by three gener-
alized form factors. Only vector or axial-vector lepton
currents can appear in order to ensure lepton helicity
conservation. A possible T-matrix expansion is (removing
an overall energy-momentum conserving #-function)

Th;�0N�N �
e2

Q2

�
�u�k0; h��$u�k; h� � �u�p0; �0N�

�

�
�$G0

M �
P$

M
F0
2

�
u�p; �N�

� �u�k0; h��$�5u�k; h�

� �u�p; �0N��
$�5G0

Au�p; �N�
�
: (10)

This expansion is general. The overall factors and the
notations G0

M and F0
2 have been chosen to have a straight-

forward connection to the standard form factors in the one-
photon exchange limit.

There is no lowest order axial-vector vertex in QED: the
effective axial vertex in the expansion arises from multiple
photon exchanges and vanishes in the one-photon ex-
change limit. One may eliminate the axial-like term using
the identity

�u�k0�� � Pu�k� � �u�p0�� � Ku�p�

�
s� u
4

�u�k0��$u�k� � �u�p0��$u�p�

�
t
4
�u�k0��$�5u�k� � �u�p0��$�5u�p�; (11)

which is valid for massless leptons and any nucleon mass.
Hence, an equivalent T-matrix expansion is

Th;�0N�N �
e2

Q2
�u�k0;h��$u�k;h�� �u�p0;�0N�

�

�
~GM�

$� ~F2
P$

M
� ~F3

� �KP$

M2

�
u�p;�N�: (12)

Knowing both expansions of the scattering amplitude is
useful, particularly when making comparison to other
work. Our analysis will primarily use the second expan-
sion, with the invariants denoted with tildes. A selection of
expressions using the primed invariants is given in
Appendix A.
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The scalar quantities ~GM, ~F2, and ~F3 are complex
functions of two variables, say ! and Q2. We will also use

~GE � ~GM � �1� 
� ~F2: (13)

In order to easily identify the one- and two-photon
exchange contributions, we introduce the notation ~GM �

GM � # ~GM, and ~GE � GE � # ~GE, where GM and GE are
the usual proton magnetic and electric form factors, which
are functions of Q2 only and are defined from matrix
elements of the electromagnetic current. The amplitudes
~F3 � # ~F3, # ~GM, and # ~GE originate from processes in-
volving the exchange of at least two photons, and are of
order e2 [relative to the factor e2 in Eq. (12)].

The cross section without polarization is

d�
d�Lab

�

�R

(�1� 
�
d�NS
d�Lab

; (14)

where 
 � Q2=�4M2�, " is

" �

�
1� 2�1� 
�tan2

�
2

�
�1

�
�s� u�2 � t�4M2 � t�

�s� u�2 � t�4M2 � t�
;

(15)

� is the electron Lab scattering angle, the ‘‘no structure’’
cross section is

d�NS
d�Lab

�
4)2cos2 �2
Q4

E03

E
; (16)

and E and E0 are the incoming and outgoing electron Lab
energies. For one-photon exchange, " is the polarization
parameter of the virtual photon. The reduced cross section
including the two-photon exchange correction is given by
[7]

�R � G2M �
"


G2E � 2GMR

�
# ~GM � "

!

M2
~F3

�

� 2
"


GER

�
# ~GE �

!

M2
~F3

�
�O�e4�; (17)

where R stands for the real part. Comparison to results
elsewhere is often facilitated by the expression

!

M2 �
s� u

4M2 �

�������������������������������

�1� 
�

1� "
1� "

s
: (18)

The general expressions for the double polarization ob-
servables for an electron beam of positive helicity (h �
�1=2) and for a recoil proton polarization along its mo-
mentum (Pl) or perpendicular, but in the scattering plane,
to its momentum (Ps) can be derived as (for me � 0) [7]
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Ps � As

� �

���������������������
2"�1� "�




s
1

�R

�
GEGM �GER�# ~GM�

�GMR
�
# ~GE �

!

M2
~F3

�
�O�e4�

�
;

Pl � �Al

�
��������������
1� "2

p 1

�R

�
G2M � 2GMR

�
# ~GM �

"
1� "

!

M2
~F3

�

�O�e4�
�
:

(19)
The polarizations are related to the analyzing powers As or
Al by time-reversal invariance, as indicated above. Note
that Pl is precisely unity in the backward direction, " � 0.
This follows generally from lepton helicity conservation
and angular momentum conservation.

An observable which is directly proportional to the two-
(or multi-)photon exchange is a single-spin observable
which is given by the elastic scattering of an unpolarized
electron on a proton target polarized normal to the scatter-
ing plane (or the recoil polarization Pn normal to the
scattering plane, which is exactly the same assuming
time-reversal invariance). The corresponding single-spin
asymmetry, which we refer to as the target (or recoil)
normal spin asymmetry (An), is related to the absorptive
part of the elastic eN scattering amplitude [27]. Since the
one-photon exchange amplitude is purely real, the leading
contribution to An is of order O�e2�, and is due to an
interference between one- and two-photon exchange am-
plitudes. The general expression for An in terms of the
invariants for electron-nucleon elastic scattering is given
by (in the limit me � 0)
Pn � An

�

���������������������
2"�1� "�




s
1

�R

�
�GMI

�
# ~GE �

!

M2
~F3

�

�GEI
�
# ~GM �

�
2"
1� "

�
!

M2
~F3

��
; (20)
where I denotes the imaginary part.
Another single-spin observable is the normal beam

asymmetry, which is discussed elsewhere [28] and which
is also zero in the one-photon exchange approximation. It
is proportional to the electron mass, and the asymmetry is
of O�10�6� for GeV electrons. It is possibly observable in
low-energy elastic muon-proton scattering. It was mea-
sured in experiments at MIT/Bates and MAMI [29] at
electron beam energies below 1 GeV. It is possibly also
observable in low-energy elastic muon-proton scattering.
-4
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FIG. 2. Direct and crossed box diagrams to describe the two-
photon exchange contribution to the lepton-quark scattering
process, corresponding with the blob denoted by H in Fig. 1.
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III. THE TWO-PHOTON EXCHANGE
CONTRIBUTION TO ELASTIC ELECTRON-

QUARK SCATTERING

In order to estimate the two-photon exchange contribu-
tion to ~GM, ~F2, and ~F3 at large momentum transfers, we
will consider a partonic calculation illustrated in Fig. 1. To
begin, we calculate the subprocess on a quark, denoted by
the scattering amplitude H in Fig. 1. Subsequently, we
shall embed the quarks in the proton as described through
the nucleon’s GPD’s.

Elastic lepton-quark scattering,

l�k� � q�pq� ! l�k0� � q�p0
q�; (21)

is described by two independent kinematical invariants,
ŝ � �k� pq�2 and Q2 � �t � ��k� k0�2. We also intro-
duce the crossing variable û � �k� p0

q�
2, which satisfies

ŝ� û � Q2. The T-matrix for the two-photon part of the
electron-quark scattering can be written as

Hh;� �
�eeq�

2

Q2
�u�k0; h��$u�k; h�

� �u�p0
q; ���~f1�

$ � ~f3� � KP$q �u�pq; ��; (22)

with Pq � �pq � p0
q�=2, where eq is the fractional quark

charge (for a flavor q), and where u�pq; �� and u�p0
q; �� are

the quark spinors with quark helicity � � �1=2, which is
conserved in the scattering process for massless quarks.
Quark helicity conservation leads to the absence of any
analog of ~F2 in the general expansion of Eq. (12).

In order to calculate the partonic scattering helicity
amplitudes Hh;� of Eq. (22) at order O�e4�, we consider
the two-photon exchange direct and crossed box diagrams
of Fig. 2. The two-photon exchange contribution to the
elastic electron-scattering off spin 1=2 Dirac particles was
first calculated in Ref. [30], which we verified explicitly.
l l

N N

H
p

q
p´

q

FIG. 1 (color online). Handbag approximation for the elastic
lepton-nucleon scattering at large momentum transfers. In the
partonic scattering process (indicated by H), the lepton scatters
from quarks in the nucleon, with momenta pq and p0

q. The lower
blob represents the GPD’s of the nucleon.
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For further use, we separate the amplitude ~f1 for the
scattering of massless electrons off massless quarks into
a soft and hard part, i.e. ~f1 � ~fsoft1 � ~fhard1 . The soft part
corresponds with the situation where one of the photons in
Fig. 2 carries zero four-momentum, and is obtained by
replacing the other photon’s four-momentum by q in
both numerator and denominator of the loop integral
[31]. This yields

R �~fsoft1 � �
e2

4.2

�
ln
�
�2�����������
�ŝ û

p

�
ln









ŝû








�.

2

2

�
; (23)
R �~fhard1 � �
e2

4.2

�
1

2
ln









ŝû








�Q

2

4

�
1

û
ln2









 ŝ

Q2

�









� 1

ŝ
ln2









 û

Q2









�
1

ŝ
.2

��
; (24)

where ~fsoft1 , which contains a term proportional to ln�2 (�
is an infinitesimal photon mass), is IR divergent. The
amplitude ~f3 resulting from the diagrams of Fig. 2 is IR
finite, and its real part is

R �~f3� �
e2

4.2
1

ŝ û

�
ŝ ln









 ŝ

Q2









�û ln








 û

Q2









� ŝ� û
2

�

�
ŝ
û
ln2









 ŝ

Q2









�
û
ŝ
ln2









 û

Q2









� ûŝ .2
��
:

(25)

The correction to the electron-quark elastic cross section
can be obtained from Eq. (17),

d� � d�1�

�
1� 2R�~f1�2� � "

ŝ� û
4

2R�~f3�2�

�
;

� d�1��1� #2��;
(26)

where d�1� is the cross section in the one-photon ex-
change approximation and " � �2ŝ û =�ŝ2 � û2� in the
massless limit. Using Eqs. (23)–(25), we obtain (for eq �
�1)
-5
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#2� �
e2

4.2

�
2 ln

�
�2

Q2

�
ln









ŝû








� �ŝ� û�Q2

2�ŝ2 � û2�

�
ln2









 ŝ

Q2










� ln2









 û

Q2









�.2
�
�

Q4

ŝ2 � û2

�
û

Q2 ln









 ŝ

Q2










�
ŝ

Q2 ln









 û

Q2










��
; (27)

which is in agreement with the corresponding expression
for electron-muon scattering obtained in Ref. [32]. The
expressions of ~f1 and ~f3 can also be obtained through
crossing from the corresponding expressions of the box
diagrams for the process e�e� ! $�$� as calculated in
Ref. [33].

We will need the expressions for the imaginary parts of
~f1 and ~f3 in order to calculate the normal spin asymmetry
An. These imaginary parts originate solely from the direct
two-photon exchange box diagram of Fig. 2 and are given
by

I �~fsoft1 � � �
e2

4.
ln
�
�2

ŝ

�
; (28)

I �~fhard1 � � �
e2

4.

�
Q2

2û
ln
�
ŝ

Q2

�
�
1

2

�
; (29)

I �~f3� � �
e2

4.
1

û

�
ŝ� û
û

ln
�
ŝ

Q2

�
� 1

�
: (30)

Notice that the IR divergent part in Eq. (28) does not
contribute when calculating the normal spin asymmetry
An of Eq. (20). Indeed, at the quark level, one may com-
plete the calculation for quark mass mq nonzero and find
that An is given by

An �
eqe2

4.

mq
2Q

���������������������
2"�1� "�

p
1� 4"m2

q=Q
2

Q2�Q2 � 4m2
q�

ŝ�ŝ� û�
(31)

an IR finite quantity (cf. [34]).

IV. THE HANDBAG CALCULATION OF THE
TWO-PHOTON EXCHANGE CONTRIBUTION TO
ELASTIC ELECTRON-NUCLEON SCATTERING

Having calculated the partonic subprocess, we next dis-
cuss how to embed the quarks in the nucleon. We begin by
discussing the soft contributions. The handbag diagrams
discussed so far have both photons coupled to the same
quark. There are also contributions from processes where
the photons interact with different quarks. One can show
that the IR contributions from these processes, which are
proportional to the products of the charges of the interact-
ing quarks, added to the soft contributions from the hand-
bag diagrams give the same result as the soft contributions
calculated with just a nucleon intermediate state [35]. Thus
the low-energy theorem for Compton scattering is satisfied.
As discussed in the introduction, the hard parts which
013008
appear when the photons couple to different quarks, the
so-called cat’s ears diagrams, are neglected in the handbag
approximation.

For the real parts, the IR divergence arising from the
direct and crossed box diagrams, at the nucleon level, is
canceled when adding the bremsstrahlung contribution
from the interference of diagrams where a soft photon is
emitted from the electron and from the proton. This pro-
vides a radiative correction term from the soft part of the
boxes plus electron-proton bremsstrahlung which added to
the lowest order term may be written as

�soft � �1��1� #2�;soft � #epbrems�; (32)

where �1� is the one-photon exchange cross section. In
Eq. (32), the soft-photon contribution due to the nucleon
box diagram is given by

#2�;soft�
e2

2.2

�
ln
�

�2������������������������������������
�s�M2�ju�M2j

p �
ln









s�M
2

u�M2










�L

�
s�M2

s

�
�
1

2
ln2

�
s�M2

s

�

�R

�
L
�
u�M2

u

��
�
1

2
ln2

�
u�M2

u

�
�
.2

2

�
; (33)

where L is the Spence function defined by

L�z� � �
Z z

0
dt
ln�1� t�

t
: (34)

The bremsstrahlung contribution where a soft photon is
emitted from an electron and proton line [i.e., by cutting
one of the (soft) photon lines in Fig. 2] was calculated in
Ref. [10], which we verified explicitly, and is for the case
that the outgoing electron is detected,

#epbrems �
e2

2.2

�
ln
�
4��E�2�s�M2�2

�2y�u�M2�2

�
ln
�
s�M2

M2� u

�

�L
�
1�

1

y
s�M2

M2� u

�
�L

�
1�

1

y
M2� u

s�M2

��
; (35)

where �E � E0el
e � E0

e is the difference of the measured
outgoing electron lab energy (E0

e) from its elastic value
(E0el
e ), and y � �

���



p
�

������������
1� 


p
�2. One indeed verifies that

the sum of Eqs. (33) and (35) is IR finite. When comparing
with elastic ep cross section data, which are usually radi-
atively corrected using the procedure of Mo and Tsai,
Ref. [8], we have to consider only the difference of our
#2�;soft � #epbrems relative to the O�Z2� part, in their notation,
of the radiative correction in [8]. Except for the .2=2 term
in Eq. (33), this difference was found to be below 10�3 for
all kinematics considered in Fig. 3.

Having discussed the two-photon exchange contribution
on the nucleon when one of the two photons is soft, we next
discuss the contribution which arises from the hard part
(that is, neither photons soft) of the partonic amplitude
coming from the box diagrams. To ensure that the contri-
-6
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FIG. 3 (color online). Rosenbluth plots for elastic ep scattering: �R divided by �$pGD�
2, with GD � �1�Q2=0:71��2. Dotted

curves: Born approximation using GEp=GMp from polarization data [1,2]. Solid curves: full calculation using the modified Regge
GPD, for the kinematical range �u >M2. Dashed curves: same as solid curves but using the Gaussian GPD. The data are from
Ref. [6].
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butions are short range and perturbative, this part of the
amplitude is only calculated for the kinematical regime
where s, �u, and Q2 are large compared to a hadronic
scale (s;�u;Q2 � M2), and where it can be expressed as a
convolution of the hard-scattering electron-quark ampli-
tude with a soft matrix element of the nucleon. Resonance
contributions are not important in this regime. It is conve-
nient to choose a frame where q� � 0, as in [36], where we
introduce light-cone variables a� / �a0 � a3� and choose
the z-axis along the direction of P3 (so that P has a large �
component). We use the symmetric frame, as in [19],
where the external momenta and q are

k �
�
3P�;

1

P�

Q2

43
;
1

2
~q?

�
;

k0 �
�
3P�;

1

P�

Q2

43
;�

1

2
~q?

�
;

q � �0; 0; ~q?�;

p �

�
P�;

1

P�

�
M2 �

Q2

4

�
;�

1

2
~q?

�
;

p0 �

�
P�;

1

P�

�
M2 �

Q2

4

�
;
1

2
~q?

�
:

(36)
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Then,

s �
�1� 3�2

43
Q2 � �1� 3�M2;

u � �
�1� 3�2

43
Q2 � �1� 3�M2;

(37)

one may check that s� u � 2M2 �Q2 and also solve for
the lepton light-front momentum fractions, 3 � k�=P� �
k0�=P�, as

3 �
1

Q2 � 4M2 �s� u� 2
�������������������
M4 � su

p
�: (38)

For comparison, forward scattering in the center-of-mass
(CM), �CM � 0�, matches to 3 � 0 and backward scatter-
ing, �CM � 180�, matches to 3 � �s�M2�=s.

In the q� � 0 frame, the parton light-front momentum
fractions are defined as x � p�

q =P� � p0�
q =P�. The active

partons, on which the hard scattering takes place, are
approximately on shell. In the symmetric frame, we take
the spectator partons to have transverse momenta that are
small (relative to P) and can be neglected when evaluating
the hard-scattering amplitude H in Fig. 1. The Mandelstam
-7
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variables for the process (21) on the quark, which enter in
the evaluation of the hard-scattering amplitude, are then
given by

ŝ �
�x� 3�2

4x3
Q2; û � �

�x� 3�2

4x3
Q2: (39)

Note that in the limit x ’ 1, where ŝ ’ s and û ’ u, the
quark momenta are collinear with their parent hadron
momenta, i.e., pq ’ p and p0

q ’ p0. This is the simplest
situation for the handbag approximation, in which it was
shown possible to factorize the wide-angle real Compton
scattering amplitude in terms of a hard-scattering process
and a soft overlap of hadronic light-cone wave functions,
which in turn can be expressed as moments of GPD’s
[19,20]. In the following we will extend the handbag
[19,37] formalism to calculate the two-photon exchange
amplitude to elastic electron-nucleon scattering at moder-
ately large momentum transfers, and derive the amplitude
within a more general unfactorized framework by keeping
the x dependence in the hard-scattering amplitude (i.e., by
not taking the x! 1 limit from the outset).

For the process (5) in the kinematical regime
s;�u;Q2 � M2, the (unfactorized) handbag approxima-
tion implies that the T-matrix can be written as2

Thardh;�0N�N
�

Z 1

�1

dx
x

X
q

1

2
�Hhard

h;�1
2
�Hhard

h;�1
2
�

�
1

2

�
Hq�x; 0; q2� �u�p0; �0N�� � nu�p; �N�

� Eq�x; 0; q2� �u�p0; �0N�
i�$!n$q!

2M
u�p; �N�

�

�
Z 1

�1

dx
x

X
q

1

2
�Hhard

h;��1=2� �Hhard
h;��1=2��

�
1

2
sgm�x� ~Hq�x; 0; q2� �u�p0; �0N�� � n�5u�p; �N�;

(40)

where the hard-scattering amplitude Hhard is evaluated
using the hard part of ~f1 and ~f3, with kinematics ŝ and û
according to Eq. (39), and where n$ is a Sudakov four-
vector (n2 � 0), which can be expressed as

n$ �
2�������������������

M4 � su
p f�3P$ � K$g: (41)
2The corresponding equation in Ref. [13] contains typographi-
cal errors regarding factors of �1=2�. The remaining equations in
that paper are written correctly. The expression is unfactorized in
x, but the hard-scattering amplitude is evaluated at the average
k? for the incoming and outgoing quarks. This simplified mean
value approximation is sufficient for the purposes of our paper,
but it could be improved using more detailed models for the
momentum dependence of the generalized parton distributions.
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Furthermore in Eq. (40), Hq; Eq; ~Hq are the GPD’s for a
quark q in the nucleon (for a review see, e.g., Ref. [38]).

From Eqs. (12), (22), and (40) the hard 2� exchange
contributions to # ~GM, # ~GE, and ~F3 are obtained (after
some algebra) as

# ~GhardM � C; (42)

# ~GhardE � �

�
1� "
2"

�
�A� C� �

������������
1� "
2"

s
B; (43)

~F 3 �
M2

!

�
1� "
2"

�
�A� C�; (44)

with

A �
Z 1

�1

dx
x

��ŝ� û�~fhard1 � ŝ û ~f3�
�s� u�

X
q

e2q�H
q � Eq�;

B �
Z 1

�1

dx
x

��ŝ� û�~fhard1 � ŝ û ~f3�
�s� u�

X
q

e2q�H
q � 
Eq�;

C �
Z 1

�1

dx
x
~fhard1 sgm�x�

X
q

e2q ~H
q; (45)

where note that, in Eqs. (42)–(44), the partonic amplitude
~f1 has its soft IR divergent part removed as discussed
before.

Equations (42)–(44) reduce to the partonic amplitudes
in the limit M ! 0 by considering a quark target for which
the GPD’s are given by

Hq ! #�1� x�; Eq ! 0; ~Hq ! #�1� x�: (46)

In this limit, and using the identity

�
ŝ û
ŝ� û

�
ŝ� û
4

2"
1� "

; (47)

we find that

# ~GhardM !
X
q

e2q ~f
hard
1 ;

# ~F2
M

! 0;
# ~F3
M2 !

X
q

e2q ~f3:

(48)

From the integrals A, B, and C, and the usual form
factors, we can directly construct the observables. The
cross section is

�R � �R;soft � �R;hard; (49)

where

�R;hard � �1� "�GMR�A� �
���������������������
2"�1� "�

p 1



GER�B�

� �1� "�GMR�C�: (50)

From Eqs. (32) to (35) and the discussion surrounding
them, we learned that to a good approximation the result
for the soft part can be written as
-8
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�R;soft � �R;1��1� .)� #MT�; (51)

where #MT is the Mo-Tsai correction given in Ref. [8].
Since the data is very commonly corrected using [8], let us
define �MT corrR � �R=�1� #MT�. Then an accurate rela-
tionship between the data with Mo-Tsai corrections al-
ready included and the form factors is

�MT corrR �

�
G2M �

"


G2E

�
�1� .)� � �R;hard; (52)

where the extra terms on the right-hand side come from
two-photon exchange and O�e4� terms are not included.
The reader may marginally improve the expression by
including with the �1� .)� factor the circa 0.1% differ-
ence between our actual soft results and those of [8]; from
our side the relevant formulas are the aforementioned (32)
to (35). Since the Mo-Tsai corrections are so commonly
made in experimental papers before reporting the data, the
‘‘MT corr’’ superscript will be understood rather than
explicit when we show cross section plots below. Finally,
before discussing polarization, the fact that a .2=2 term, or
�.)� term after multiplying in the overall factors, sits in
the soft corrections has to do with the specific criterion we
used, that of Ref. [31], to separate the soft from hard parts.
The term cannot be eliminated; with a different criterion,
however, that term can move into the hard part.

The double polarization observables of Eqs. (53) and
(54) are given by

Ps � �

���������������������
2"�1� "�




s
1

�R

8<
:GEGM �GER�C�

�GM

������������
1� "
2"

s
R�B� �O�e4�

9=;; (53)

Pl �
��������������
1� "2

p 1

�R
fG2M �GMR�A� C� �O�e4�g; (54)

and the target normal spin asymmetry of Eq. (20) is

An�

��������������������
2"�1�"�




s
1

�R

8<:GEI�A��
�����������
1�"
2"

s
GMI�B�

9=;; (55)

One sees from Eq. (55) that An does not depend on the
GPD ~H.

We will need to specify a model for the GPD’s in order
to estimate the crucial integrals Eqs. (45) for the two-
photon exchange amplitudes. We will present results
from two different GPD models: a Gaussian model and a
modified Regge model.

First, following Ref. [20], we use a Gaussian valence
model which is unfactorized in x and Q2 for the GPD’s H
and ~H,

Hq�x; 0; q2� � qv�x� exp
�
�

�1� x�Q2

4x�

�
; (56)
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~H q�x; 0; q2� � �qv�x� exp
�
�
�1� x�Q2

4x�

�
; (57)

where qv�x� is the valence quark distribution and �qv�x�
the polarized valence quark distribution. In the following
estimates we take the unpolarized parton distributions at
input scale Q2

0 � 1 GeV2 from the MRST2002 global
next-to-next-to-leading-order fit [39] as

uv � 0:262x�0:69�1� x�3:50�1� 3:83x0:5 � 37:65x�;

dv � 0:061x�0:65�1� x�4:03�1� 49:05x0:5 � 8:65x�:

For the polarized parton distributions, we adopt the recent
next-to-leading-order analysis of Ref. [40], which at input
scale Q2

0 � 1 GeV2 yields

�uv�0:505x�0:33�1�x�3:428�1�2:179x0:5�14:57x�;

�dv��0:0185x�0:73�1�x�3:864�1�35:47x0:5�28:97x�:

For the GPD E, whose forward limit is unknown, we adopt
a valence parametrization multiplied with �1� x�2 to be
consistent with the x! 1 limit [41]. This gives

Eq�x; 0; q2� �
:q

Nq
�1� x�2qv�x� exp

�
�

�1� x�Q2

4x�

�
; (58)

where the normalization factors Nu � 1:377 and Nd �
0:7554 are chosen in such a way that the first moments
of Eu and Ed at Q2 � 0 yield the anomalous magnetic
moments :u � 2:p � :n � 1:673 and :d � :p � 2:n �
�2:033 respectively. Furthermore, the parameter � in
Eqs. (56)–(58) is related to the average transverse momen-
tum of the quarks inside the nucleon by � � 5hk2?i. Its
value has been estimated in Ref. [19] as � ’ 0:8 GeV2,
which we will adopt in the following calculations.

The GPD’s just described were used in our shorter note
[13]. Recently, GPD’s whose first moments give a better
account of the nucleon form factors have become available
[42]. These GPD’s we refer to as a modified Regge model
[42], and entail

Hq�x; 0; q2� � qv�x�x
a01�1�x�Q

2
;

Eq�x; 0; q2� �
:q

Nq
�1� x�3qqv�x�x

a02�1�x�Q
2
;

~Hq�x; 0; q2� � �qv�x�x
~a01�1�x�Q

2
:

(59)

We still use the same qv and the same �qv as given above.
The five parameters are

)0
1 � 1:098 GeV�2; )0

2 � 1:158 GeV�2;

~)0
1 � 1:000 GeV�2; 3u � 1:52; 3d � 0:31;

(60)

and the normalization factors here becomeNu � 1:519 and
Nd � 0:9447. The modified Regge GPD’s formally do
not give convergence at low Q2 for integrands with nega-
tive powers of x, such as we have here (or as one finds in
-9
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[19]). The integrals could be defined by analytically con-
tinuing in the Regge intercept [17,18]. We will use them
only for Q2 � 2 GeV2, and all the integrals converge
straightforwardly.

We shall investigate in forthcoming plots the sensitivity
of the results to the two GPD’s.
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FIG. 4 (color online). A Rosenbluth plot for elastic en scat-
tering. The curves with the two-photon corrections are plotted
only for �u >M2. For GnM and GnE we used fits from [44,45],
respectively. There is little slope change for the neutron case, for
reasons noted in the text.
V. RESULTS

A. Cross section

In Fig. 3, we display the effect of 2� exchange on the
reduced cross section �R, as given in Eq. (17), for electron-
proton scattering. For the form factor ratio, we always use
GpE=G

p
M as extracted from the polarization transfer experi-

ments [2].
We should remind the reader that GpM is also obtained

from the reduced cross section data: the normalization
gives GpM and the slope gives GpE=G

p
M. As a starting point

we adopt the parametrization for GpM, of Ref. [43]. The
straight dotted curves of Fig. 3 show that the values of
GpE=G

p
M extracted from the polarization experiments are

inconsistent with the one-photon exchange analysis of the
Rosenbluth data, corrected with just the classic Mo and
Tsai radiative corrections [8], in the Q2 range where data
from both methods exist. We then include the 2� exchange
correction, using the GPD based calculation described in
this paper. The plots show the results from both the GPD’s
used in our shorter note [13] and recorded in the previous
section, as well as from the alternative GPD’s also de-
scribed in the previous section. The results are rather
similar.

It is also important to note the nonlinearity in the
Rosenbluth plot, particularly at the largest " values. One
sees that, over most of the " range, the overall slope has
become steeper, in agreement with the experimental data.
This change in slope is crucial: we see that including the
2� exchange allows one to reconcile the polarization trans-
fer and Rosenbluth data.

It is clearly worthwhile to do a global reanalysis of all
large Q2 elastic data including the 2� exchange correction
in order to redetermine the values of GpE and GpM. For
example, in order to best fit the data when including the
2� exchange correction, one should slightly change the
value of GpM of Ref. [43]. A full analysis is beyond the
scope of this paper,

In Fig. 4, we show a similar plot for electron-neutron
elastic scattering. Because of a partial cancellation be-
tween contributions proportional to GnE and GnM, there is
little " dependence in the corrections, and the slope is not
appreciably modified. We took GnM from the fit of [44]; for
GnE we used the fit given in [45].

B. Single-spin asymmetry

The single-spin asymmetry An or Pn is a direct measure
of the imaginary part of the 2� exchange amplitudes. Our
013008
GPD estimate for An for the proton is shown in the left-
hand plot of Fig. 5 as a function of the CM scattering angle
for fixed incoming electron lab energy, taken here as
6 GeV. Also shown is a calculation of An including the
elastic intermediate state only [27]. The result, which is
nearly the same for either of the two GPD’s that we use, is
of order 1%.

Figure 5 on the right also shows a similar plot of the
single-spin asymmetry for a neutron target. The predicted
asymmetry is of opposite sign, reflecting that the numeri-
cally largest term is the one proportional toGM. The results
are again of order 1% in magnitude, though somewhat
larger for the neutron than for the proton.

A precision measurement of An is planned at JLab [46]
on a polarized 3He target; it will provide access to the
elastic electron-neutron single-spin asymmetry from two-
photon exchange.

C. Polarization transfers

The polarization transfer method for measuring the ratio
GE=GM depends on measuring outgoing nucleon polar-
izations Pl and Ps for polarized incoming electrons.
Their ratio is

Ps
Pl

� �

������������������
2(


�1� (�

s
GE
GM

; (61)

in the one-photon exchange calculation. This also is sub-
ject to additional corrections from two-photon exchange.
However, the impact of the corrections upon GE is not in
any way enhanced, and so one expects and finds that the
corrections to GE measured this way are smaller than the
corrections to GE coming from the cross section
experiments.
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FIG. 5 (color online). Nucleon analyzing power, which is equal to normal recoil polarization. The elastic contribution (nucleon
intermediate state in the two-photon exchange box diagram) is shown by the dotted curve [27]. The GPD calculation for the inelastic
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Figure 6 shows in the upper two panels the calculated Pl
and Ps for ep scattering with and without the two-photon
exchange terms, for 100% right-handed electron polariza-
tion and with fixed momentum transferQ2 � 5 GeV2. The
two GPD’s were presented in the previous section, and we
use again the polarization GE=GM from [2] and GM from
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FIG. 6 (color online). Recoil proton polarization components Ps a
panels) for elastic ep scattering at Q2 � 5 GeV2. The dotted curves
results. The solid curves include the 2� exchange correction using th
M2.
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[43]. The corrections to the longitudinal polarization are
quite small, as is seen again in the lower left panel, where
the ratio of the full calculation divided by the one-photon
exchange calculation is shown. The lower right panel
shows the corrections to the Ps=Pl ratio, given as a ratio
again of the full calculation to the one-photon calculation.
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An experiment to measure the "-dependence of Ps=Pl is
planned at JLab [47]. This will allow a test of the two-
photon corrections.

Figure 7 shows the corresponding plots for the neutron,
at a momentum transfer squared of 4:3 GeV2. If one needs
to choose between the GPD’s, the modified Regge model
should be chosen as it gives the better account of the
existing data on the form factors, the neutron form factors
in particular [42].

D. Positron-proton vs electron-proton

Positron-proton and electron-proton scattering have the
opposite sign for the two-photon corrections relative to the
one-photon terms. Hence, one expects e�p and e�p elastic
scattering to differ by a few percent. Figure 8 shows our
results for three different Q2 values. These curves are
obtained by adding our two-photon box calculation, minus
the corresponding part of the soft only calculation in [8], to
the one-photon calculations; hence, they are meant to be
compared to data where the corrections given in [8] have
already been made. Each curve is based on the Gaussian
GPD and is cut off at low " when �u � M2. Early data
from SLAC are available [48]; more precise data are
anticipated from JLab [49]. (Reference [48] used the
Meister-Yennie [9] soft corrections rather than those of
Mo and Tsai. We have checked that for these kinematics
013008
the difference between them is smaller than 0:1%, which is
negligible compared to the size of the error bars.)

E. Possibilities at lower juj

In numerical calculations, we used a conservative
requirement that the values of the Mandelstam variable
-12
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juj>M2 in order to apply the partonic description. In a
‘‘handbag‘‘ mechanism of wide-angle Compton scattering
on a proton, such a requirement is needed to enforce high
virtuality of the quark line between the two currents, mak-
ing sure that short light-cone distances dominate. However,
our case of electron-quark scattering via two-photon ex-
change involves four-dimensional loop integration, and
small values of juj do not necessarily mean that the struck
quark has small virtuality. Analyzing the two-photon-
exchange loop integral in terms of Sudakov variables one
may show that for the backward (u! 0) electron-quark
scattering, high virtuality of the quark dominates the loop
integral, thereby justifying extension of our approach to the
region of small u, as long as s and �t remain large. Such an
analysis may be found in the literature for the backward-
angle electron-muon scattering in QED [50], and we found
our formalism consistent with these early calculations.

F. Rosenbluth determinations of GE=GM including
two-photon corrections

Previous Rosenbluth determinations of GE=GM were
made using data which had been radiatively corrected
using the Mo-Tsai [8] or comparable [9] prescription.
Given the work in this paper, we would now say that these
corrections are just a part of the total radiative correction.
One should also include the hard two-photon corrections.

We present here new Rosenbluth determinations of
GpE=G

p
M using known data but including the two-photon

corrections. We used cross section data from Andivahis et
al. [6], and made a ;2 fit to the data at each of the five Q2

selected using our full calculation and allowing both GpM
and GpE=G

p
M to vary. We included the lowest " points in the

data by making a linear extrapolation of our calculations
from higher ". (For the record, and for the "’s in question
and to the precision we need, the result is numerically the
same as doing our GPD calculation at these "’s, even
though juj is below M2.)

The results are shown in Fig. 9. The figure also shows the
results of the polarization transfer measurements, and
Rosenbluth results taken from [51], which do not include
the hard two-photon corrections. The polarization results
also have radiative corrections, but the size of them is, as
one has learned from Fig. 6, smaller than the dots of the
data points. The solid squares in Fig. 9 show the GE=GM
ratios we have extracted with Ref. [6] data and the two-
photon corrections with the Gaussian GPD. The results
with the modified Regge GPD are omitted to reduce clutter
on the graph; they are about the same as for the Gaussian
for Q2 of 2–3 GeV2, and a bit larger at the higher Q2.

For Q2 in the 2–3 GeV2 range, the GE=GM extracted
using the Rosenbluth method including the two-photon
corrections agree well with the polarization transfer results.
At higherQ2, there is at least partial reconciliation between
the two methods.
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One may comment on the growth of the error bars at
higher Q2. The calculation with the two-photon contribu-
tions includes a lowest order term quadratic in GpE and a
correction linear in GpE with opposite sign. The partial
cancellation explains the reduced sensitivity to changes
in GpE.
VI. CONCLUSIONS

We have studied the effects of two-photon physics
for lepton-nucleon elastic scattering. Our main result is a
calculation of the two-photon exchange contributions in-
cluding contributions coming when intermediate particles
which are far off shell. The main impediment to perform-
ing this calculation is the lack of knowledge of nucleon
structure. Here we have used a partonic ‘‘handbag’’ model
to express the contributions when both photons are hard in
terms of the GPD’s of the nucleon. The GPD’s also enter
calculations of deeply virtual Compton scattering, wide-
angle Compton scattering, and exclusive meson photopro-
duction, which are consistent with models for the GPD’s.
The calculations which we have presented are valid when
s, �u, and Q2 are large, although we have argued in
Sec. V E and Ref. [50] that the requirement on �u is not
compulsory for eN elastic scattering). We have presented
our results requiring that the magnitude of each of the
invariants is above M2.

We have found that, in Rosenbluth plots of the differen-
tial cross section vs ", that the two-photon exchange
corrections gives an additional slope which is sufficient
-13



ANDREI V. AFANASEV et al. PHYSICAL REVIEW D 72, 013008 (2005)
to reconcile qualitatively the difference between the
Rosenbluth and polarization data. The change in the
effective slope in the Rosenbluth plots comes only from
corrections where both photons are hard. The reconcili-
ation thus implies only a minor change in the GE=GM
ratio as obtained from the polarization data, since those
data receive smaller two-photon corrections to GE=GM.

Two-photon exchange has additional consequences
which could be experimentally observed. For polarizations
Ps and Pl, there are two-photon corrections which are
small but measurable. For the normal direction, the polar-
ization or analyzing power is zero in the one-photon ex-
change limit, but the presence of the two-photon exchange
amplitude leads to a nonzero effect of O�1%�. We also
predict a O(few %) positron-proton/electron-proton asym-
metry. The predicted Rosenbluth plot is no longer precisely
linear; it acquires a measurable curvature, particularly at
high ".

Thus, in summary, we have shown that the hard two-
photon exchange mechanism substantially reconciles the
Rosenbluth and polarization transfer measurements of the
proton electromagnetic elastic form factors. We have also
emphasized that there are important experimentally test-
able consequences of the two-photon amplitude.
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APPENDIX A: CROSS SECTION AND
POLARIZATION RESULTS IN THE

AXIAL-VECTOR REPRESENTATION

This appendix records the cross section and polarization
results using the expansion of the scattering amplitude in
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the axial-vector representation given by Eq. (10):

Th;�0N�N �
e2

Q2

�
�u�k0; h��$u�k; h� � �u�p0; �0N�

�

�
�$G0

M �
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M
F0
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�
u�p; �N�

� �u�k0; h��$�5u�k; h�

� �u�p; �0N��
$�5G0

Au�p; �N�
�
: (A1)
1. Form factors and observables

The scalar invariants or form factors are in general
complex and functions of two variables. We also define

G0
E � G0

M � �1� 
�F0
2: (A2)

The relations between the present scalar invariants and the
ones used in most of the text follow from Eq. (11) and are

G0
M � ~GM �

s� u

4M2
~F3 F0

2 �
~F2

G0
A � �
 ~F3 G0

E � ~GE �
s� u

4M2
~F3:

(A3)

The invariants may be separated into parts coming from
one-photon exchange and parts from two- or more-photon
exchange,

G0
M�GM�#G0

M; G0
E�GE�#G

0
E; G0

A�#G
0
A; (A4)

where GM�Q2� and GE�Q2� are the usual magnetic and
electric form factors, defined from matrix elements of the
electromagnetic current and real for spacelike Q2. The
quantities #G0

M, #G0
E, and G0

A are O�e2� relative to GM
or GE.

The reduced cross section in Eq. (14) is
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The polarizations of the outgoing nucleons or analyzing
powers of the target nucleons are
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(A6)

The only single-spin asymmetry is Pn or An. Further, Pn or An is zero if there is only one-photon exchange, so observation
of a nonzero value is definitive evidence for multiple photon exchange. Polarizations Ps or Pl are double polarizations. The
expressions for them are proportional to the electron longitudinal polarization Pe (with, e.g., Pe � 1 if h � �1=2).
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2. Electron-quark elastic scattering amplitudes

The two-photon part of electron-quark elastic scattering
is given by

Hh;��
�eeq�2

Q2 fgM �u�k0;h��$u�k;h� � �u�p0
q;���$u�pq;��

�g�2��A �u�k0;h��$�5u�k;h� � �u�p
0
q;���

$�5u�pq;��g

�
�eeq�

2

Q2 f�ŝ� û��2h��2��t�gM

���2h��2���ŝ� û�� t�g�2��A g; (A7)
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when the electrons and quarks are both massless. The
theorem of Eq. (11) relates
gM � ~f1 �
ŝ� û
4

~f3; g�2��A �
t
4
~f3: (A8)
We split the two-photon part of gM into a hard and soft
part, g�2��M � gsoftM � ghardM , using the prescription of
Grammer and Yennie [31], and have
R �gsoftM � �
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ŝ
�t

�
�
û
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û

ln
�
ŝ
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3. Embedding

The nucleon form factors are given in terms of the
quark-level amplitudes and generalized parton distribu-
tions by
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M �
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1� "
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(A10)

Quantities A, B, and C are the same as in the text, but now
written as
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Z 1
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�ŝ� û�ghardM � tg�2��A

s� u

X
q

e2q�Hq � Eq�;

B �
Z 1

�1

dx
x
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X
q
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q;

(A11)

and it is understood in Eq. (A10) that the partonic ampli-
tude gM has its soft part removed.
APPENDIX B: QUARK MASS SENSITIVITY

1. Kinematics, and imaginary parts of the hard
amplitudes

We have until now set the quark mass to zero.
To investigate how severe this approximation is, we will

examine the effect of restoring the quark mass for the
analyzing power calculations, though still keeping only
the quark chirality conserving amplitudes. There are three
modifications. The expressions for ŝ and û become

ŝ �
�x� 3�2

4x3
Q2 �

x� 3
x

m2
q;

û � �
�x� 3�2

4x3
Q2 �

x� 3
x

m2
q;

(B1)

wheremq is the effective quark mass. The general electron-
quark scattering amplitude, Eq. (22), should have another
term with a scalar function that we may call ~f2 in analogy
with the expansion of the electron-nucleon amplitude given
in Eq. (12). However, this term flips quark helicities, and
presently the formalism for embedding quark amplitudes
into the nucleon using GPD’s involves only the nonchir-
ality flip GPD’s. There is neither theoretical development
nor experimental information regarding chirality flip
GPD’s, and so we shall ignore ~f2 as well as helicity flip
parts of other amplitudes. Including the quark mass leads
to a modification of the hard-scattering amplitudes so that
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ŝ�m2
q
Q2

�

� ~fhard1 ��m4
q� ŝ û�~f3

�
; (B2)

within the quantities A and B (C is not needed for the
analyzing power), and

I�~fhard1 � � �
e2

4.

� 1
2 ŝQ

2
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The results for the analyzing power An when including
quark masses in the quark helicity conserving amplitudes
are shown in Fig. 10 for quark masses 300 and 450 MeV.
The effects are clearly not large.

2. Real parts of hard two-photon exchange amplitudes
with finite quark mass

When the quark mass is not zero, we have
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�m4
q � ŝ û�
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q�
2

�m4
q � ŝ û�
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û�m2
q

Q2










��
; (B5)

analyzing power or normal polarization, for fixed electron in-
coming lab energies of 3 and 6 GeV.
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FIG. 11 (color online). Quark mass correction plot for the
reduced cross section. The curves are as labeled. In this plot,

times the Brash et al. value [43].
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where ŝ and û were given in Eq. (B1), and

; �
���������������������������
1� 4m2

q=Q
2

q
: (B6)

The effect of the quark mass corrections upon the re-
duced cross section is shown in Fig. 11 for Q2 � 4 GeV2.
One sees from Fig. 11 that the quark mass effects mainly
influence our result at small values of ", where juj becomes
small. They show the theoretical error on our calculation in
this region. A full calculation also requires quantifying the
effect of the cat’s ears diagrams. A study of such correc-
tions is clearly worthwhile for a future work, both for two-
photon exchange amplitudes and for wide-angle Compton
scattering.
 all curves have GM set to 0.99
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