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Electron-positron capture rates and a steady state equilibrium condition for an electron-positron
plasma with nucleons
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The reaction rates of the beta processes for all particles at arbitrary degeneracy are derived, and an
analytic steady state equilibrium condition �n � �p � 2�e which results from the equality of electron
and positron capture rates in the hot electron-positron plasma with nucleons is also found, if the matter is
transparent to neutrinos. This simple analytic formula is valid only if electrons are nondegenerate or
mildly degenerate, which is generally satisfied in the hot electron-positron plasma. Therefore, it can be
used to efficiently determine the steady state of the hot matter with plenty of positrons. Based on this
analytic condition, given the baryon number density and the temperature, if the nucleons are non-
degenerate, only one algebraic equation for determining the electron fraction is obtained, which shows the
great advantage of the analytic equilibrium condition.
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I. INTRODUCTION

Gamma Ray Bursts (GRBs) [1] and core collapse super-
novae (SNe) [2] are two of the most violent events in our
Universe. Ironically, their explosion mechanisms are still
mysterious. Recently, the central engine of GRBs is be-
lieved to be related to the hyperaccretion of a stellar-mass
black hole at extremely high rates from �0:01 to
10 M�s

�1 [3–5]. In such an accretion disk, matter is so
dense that photons are trapped. The possible channel for
energy release is either neutrino emission which is mainly
from the electron-positron (e�) capture on nucleons and
e� annihilation, or outflows from the disk. Whatever a
successful central engine is, it ejects a hot fireball which
consists of the radiation field (e�/photons) and baryons.
The ratio of neutrons to protons, or equivalently, the elec-
tron fraction, is crucial to the observed radiation from
GRBs [6,7], its dynamic evolution [5,8], and the nucleo-
synthesis in the disk or fireball [4,5,9]. For instance, the
inelastic collisions between neutrons and protons produce
observable multi-GeV neutrino emission [1,10]. In addi-
tion, the two-component fluid of neutrons and protons
significantly changes the fireball interaction with an exter-
nal medium which is supposed to produce the observed
electromagnetic radiation from GRBs and their afterglows
[11]; and the electron fraction Ye strongly affects the
equation of state of the hyperaccretion disk and the neu-
trino emissions from it.

Roughly speaking, SNe are powered by the iron core
collapse of their progenitors. Most numerical simulations
have shown not only the failure of the prompt shock, but
the failure of its revival by the delayed neutrino emission
from the protoneutron star (PNS). The result (explosion or
not) sensitively depends on the input microphysics, such as
the electron capture, the neutrino emission, neutrino-
matter interactions, the equation of state, rotation, mag-
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netic field, general relativity effects, and so on (see
Ref. [2], and references therein). Without a doubt, weak
interactions, especially e� captures and neutron decay,
play a key role in both GRBs and SNe. During the accre-
tion or collapse, these processes exhaust electrons, and thus
decrease the degenerate pressure of electrons. Meanwhile,
they produce neutrinos which carry the binding energy
away to power the explosions. Therefore, electron capture
is crucial to the formation of the bounce shock of SNe, and
the resulting neutrino spectra strongly influence the
neutrino-matter interactions which are energy dependent
and are essential for collapsing simulations [12].

The existence of a hot state with nucleons is the common
characteristic of both GRBs and SNe, as well as the PNS,
the bounce shock, and the early Universe [13]. In these
systems, the beta reactions are the most important physical
processes [14]. If the system is transparent to neutrinos, the
steady state is achieved via the following beta reactions
[15],

e� � p ! n� 	e; (1)

e� � n ! p� �	e; (2)

n ! p� e� � �	e: (3)

These beta reaction rates are calculated in the previous
studies, usually under one of three approximations: the
nondegenerate approximation [14], the degenerate ap-
proximation [16,17], and the elastic approximation in
which there is no energy transfer to nucleons [18]. In this
paper, applying the structure function formalism developed
by Reddy et al. [19] (see also [20]), I derive the reaction
rates of the beta processes in the dense subnuclear matter
for all particles at arbitrary degeneracy. In addition, I find
an analytic expression for determining the kinetic equilib-
rium between electron capture and positron capture, which
is efficient to determine the steady state of the hot matter
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with plenty of positrons. If the neutrinos are partially
trapped, neutrino transport should be considered carefully,
which is out of the scope of this work [21].

II. REACTION RATES

The lowest order Feynman diagrams for reactions (1)–
(3) are shown in Fig. 1. Because in our consideration the
energies of leptons are less than a few hundred MeV which
is greatly less than the rest mass of W� mesons, the
interaction Lagrangian from Weinberg-Salam theory is
reduced to the original Fermi’s current-current interaction
form. From Fermi’s golden rule, the reaction rates of the
processes (1)–(3) read (we set @ � c � kB � 1)

� � 2
Z Y4

i�1

�
d3 ~pi

�2�	3

�
�2�	4��4	�Pi � Pf	jMj2F ; (4)

where Pi � �Ei; ~pi	 denotes the four-momentum of parti-
cle i (i � 	e= �	e; e�=e�; n; p), pi � j ~pij, andPi andPf are
the total initial and final momentum, respectively. F de-
notes the final states blocking factor. In reaction (1)–(3),
F � fefp�1 � fn	, F � fe�fn�1 � fp	, F �

fn�1 � fp	�1 � fe	, respectively, where fi is the Fermi-
Dirac function of particle i. In this paper, we just consider
the case that the emitted neutrinos can escape freely from
the system. jMj2 in the above equation is the averaged
transition rate which depends on the initial and final states
FIG. 1. The lowest order Feynman diagrams for ! processes. (
conservation requires Ee � q0 � E	. (b) Positron capture by neutr
q0 � E �	. (c) Neutron decay: n ! p� e� � �	e, the energy conserva
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of all participating particles. Screening corrections to the
electron capture rates in dense astrophysical environments
have been investigated by many authors [22]. In the hot
and dense npe� gas, the Debye radius rD is about
3 fm�T=1010K	1=2�nB=0:01 fm�3	�1=2�Ye=0:5	�1=2, where
nB � nn��n; T	 � np��p; T	 is the baryon number den-
sity. Thus in our calculations, Coulomb waves are approxi-
mately replaced with plane waves for charged particles. As
argued in Reddy et al. [19], for nonrelativistic noninteract-
ing baryons (nB < 5nnuc), where nnuc � 0:16 fm�3 is
the empirical nuclear equilibrium density, the transition
rate averaged over the initial spins becomes a constant,
i.e. jMj2 � G2

Fcos2�C�1 � 3g2
A	, here GF ’ 1:436 �

10�49 erg cm3 is the Fermi weak interaction constant, �C

�sin�C � 0:231	 is the Cabibbo angle, and gA � 1:26 is the
axial-vector coupling constant. For the case of relativistic
interacting baryons, the transition rate is expressed in terms
of the target particle retarded polarization tensor in the
relativistic mean field theory for interacting baryons, the
resulting expression is so complicated (for more detail, see
[19,23]). In this paper, the beta reactions at subnuclear
density are considered, therefore, taking jMj2 to be con-
stant is a good approximation.

Using the structure function formalism developed by
Reddy et al. [19], the above integrations can be simplified
into only three dimensional ones, therefore, the rate of the
e�-captures �e�p, �e�n, and the rate of neutron decay �n
are given by
�e�p �
1

8�4 jMj2
Z 1

0
dE	

Z 1

me�E	

dq0

Z jpe�p	j

jpe�p	j
dqE	EefeSp!n�q0; q	q; (5)

�e�n �
1

8�4 jMj2
Z 1

0
dE �	

Z 1

me�E �	

dq0

Z jpe��p �	j

jpe��p �	j
dqE �	Ee�fe�Sn!p�q0; q	q; (6)
a) Electron capture by proton: e� � p ! n� 	e, the energy
on: e� � n ! p� �	e, the energy conservation requires Ee� �
tion requires Ee � �q0 � E �	.
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�n �
1

8�4 jMj2
Z 1

0
dE �	

Z ��me�E �		

�1
dq0

Z jpe�p �	j

jpe�p �	j
dqE �	Ee�1 � fe	Sn!p�q0; q	q; (7)
FIG. 2 (color online). Electron capture rates on protons in the
dense subnuclear matter out of the chemical equilibrium as a
function of the baryon number density nB at different tempera-
tures. The electron fraction Ye is taken to be 0.3. The solid curves
show the results from Eq. (5), the dashed curves are the elastic
results from Eq. (18), the dot-dashed curves are the nondegen-
erate results from Eq. (12).
where Si!j�q0; q	 is the so-called dynamic form factor or
structure function which characterizes the isospin response
of the system [19], and q0 � Ef � Ei, q � j ~qj � j ~pf �
~pij denote the momentum and energy transfer.

The expression Si!j�q0; q	 is given by

Si!j�q0; q	 �
mimfT

�q
z� $�

1 � exp��z	
; (8)

where

z �
q0 ��i ��j

T
; (9)

$� � ln
�

1 � exp��Ei
� ��i	=T	

1 � exp�Ei
� � q0 ��j	

�
; (10)

Ei
� � mi �

m2
j �q0 �mi �mj � q2=2mj	

2

2miq2 ; (11)

where �i and mi are the chemical potential and the mass of
baryons. In Eqs. (5)–(7), Ee � q0 � E	, Ee� � q0 � E �	,
and Ee � �q0 � E �	 (see Fig. 1). Equations (5)–(7) are
valid for nonrelativistic and noninteracting baryons [19].
Below the nuclear density, this is a good approximation. It
should be emphasized that Eqs. (8)–(11) differ from the
corresponding equations in Reddy et al. [19] in which the
mass difference between nucleons is neglected. However,
in order to investigate the rate of neutron decay, it is
necessary to keep the mass difference in Eqs. (8)–(11).

Analogous to the analysis in Reddy et al. [19], it is easy
to obtain the previous results in the nondegenerate and
degenerate limits of baryons. For instance, the results in
the nondegenerate limit corresponding to Eqs. (5)–(7) are
shown below,

�e�p ’
1

2�3 jMj2np
Z 1

Q
dEeEepe�Ee �Q	2fe; (12)

�e�n ’
1

2�3 jMj2nn
Z 1

me

dEeEepe�Ee �Q	2fe� ; (13)

�n ’
1

2�3 jMj2nn
Z Q

me

dEeEepe�Q� Ee	
2�1 � fe	; (14)

where Q � mn �mp is the mass difference between neu-
tron and proton, ni � 2�miT=2�	3=2 exp�&i	 is the number
density of neutrons and protons in the nondegenerate limit,
and &i � ��i �mi	=T is the reduced chemical potential.
The above approximate rates are frequently cited in the
literature to discuss the kinetic equilibrium for the
!-processes and the emissivity of neutrino emission,
even though its validity should be checked carefully
[4,5,15].
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At me;�e;Q < T, the above reaction rates can be sim-
plified further into

�e�p ’ 2�1:5��4:5jMj2m1:5
p T6:5 exp�&p ��e=T �Q=T	

� �I�4	 � 2I�3	Q=T�; (15)

�e�n ’ 2�1:5��4:5jMj2m1:5
n T6:5 exp�&n ��e=T	

� �I�4	 � 2I�3	Q=T�; (16)

�n ’ 1:63 � 2�1:5��4:5jMj2m1:5
n T1:5m5

e; (17)

here I�3	 � 7�4=120, and I�4	 � 45(�5	=2, (�5	 � 1:037
is the Riemann (-function. The definition of I�n	 is I�n	 �R
1
0 �e

x � 1	�1xndx. This integral can be found in
Gradshteyn and Ryzhik [24].

In the elastic limit, np in Eq. (12) is replaced by

&pn � �np � nn	=�1 � e�&n�&p	=T	: (18)

It is generally believed that electron capture rate under the
elastic approximation in some sense introduces the effects
of the degeneracy of baryons, so it should be more accurate
than that under the nondegenerate approximation. Suppose
that the nuclei are dissolved completely into nucleons at
high temperature. Figure 2 shows the differences between
our electron capture rate in the dense subnuclear matter out
of the chemical equilibrium and the previous approximate
results. The electron fraction Ye � �ne� � ne�	=nB is as-
sumed to be 0.3. The number density of particles at any
-3
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degeneracy is expressed in terms of the Fermi-Dirac func-
tions [25]. The multidimensional integrations and the
Fermi-Dirac functions are calculated using the mixture of
Gauss-Legendre and Gauss-Laguerre quadratures [25].
From Fig. 2, it is evident that there are great differences
between the elastic results and the general results (Eq. (5))
when baryons become degenerate. As shown in Eq. (18),
the capture rates under the elastic approximation always
decrease exponentially when nucleons become degenerate,
which is qualitatively correct in the dense nuclear matter
near the !-equilibrium. However, this conclusion is not
correct obviously in the dense subnuclear matter out of the
chemical equilibrium. The elastic approximation is also
good when �p ’ �n because the favored energy transfer is
zero. In short, the elastic approximation underestimates the
electron capture rate, when baryons become degenerate.
III. CONDITIONS FOR KINETIC EQUILIBRIUM

A. Chemical equilibrium condition for neutrino
trapping

If neutrinos are trapped in a system, as what happens in
the interior of a PNS, the inverse reactions corresponding
to beta processes (1)–(3) by absorption of neutrinos can
take place:

e� � p � n� 	e; (19)

e� � n � p� �	e; (20)

n � p� e� � �	e; (21)

and their rates are equal to these of the corresponding beta
reactions when the system reaches the chemical equilib-
rium. Because both the photons and neutrinos are trapped,
the chemical equilibriums *� * � e� � e� � 	e � �	e
give (�* � 0),

�e� � ��e� ; (22)

� �	e � ��	e: (23)

Based on the standard arguments in the theory of thermo-
dynamics, the chemical equilibrium of any one of the
above reversible reactions (19)–(21) gives the same chemi-
cal equilibrium condition for both cold npe� and hot npe�

gases,

�n ��	e � �p ��e: (24)

If the chemical potential of the trapped neutrinos is zero,
the above equation reduces to

�n � �p ��e; (25)

and the corresponding number density of the trapped neu-
trinos is written as
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n	e � n �	e �
T3

2�2

Z 1

0

x2dx
ex � 1

�
3T3

4�2 (�3	; (26)

where (�3	 ’ 1:202. It is clearly shown in Eq. (26) that the
number density of the trapped neutrino is not zero at all
when their chemical potential is zero. Only when T ! 0,
n	e � n �	e ! 0. Therefore, Eq. (25) can also be understood
as the chemical equilibrium condition for cold npe� gas
under !-equilibrium when neutrinos can escape freely
from the system.

B. Kinetic equilibrium condition for neutrino escaping

In principle, if the matter is transparent to neutrinos
which carry energy away, the equilibrium of the reactions
(1)–(3) cannot be treated as a chemical equilibrium
problem [17]. Suppose that the dynamic time scale of
the system under consideration is greater than that of the
reactions (1)–(3), the general condition for the
!-equilibrium is given by

�e�p��n;�p;�e; T	 � �e�n��n;�p;�e; T	

� �n��n;�p;�e; T	: (27)

Given nB and T, there are two additional trivial conditions.
One is the conservation of the baryon number,

nn��n; T	 � np��p; T	 � nB; (28)

the other is the charge neutrality,

ne���e; T	 � ne���e; T	 � np��p; T	: (29)

Consequently, the chemical potentials of neutron, proton,
and electron (�n, �p, �e) can be determined by a set of
closed equations, i.e., Eqs. (27)–(29).
IV. ANALYTIC �-EQUILIBRIUM CONDITIONS
FOR NEUTRINO ESCAPING

A. �-equilibrium condition for cold npe� gas

For ideal, cold npe� gas, we can set the chemical
potential of the neutrinos in Eq. (24) to zero because their
number density is zero at T � 0 (see Eq. (26)), therefore,
the chemical equilibrium conditions for the ideal, cold
npe� gas is Eq. (25), i.e., �n � �p ��e [17].

In the following, we will rederive the chemical equilib-
rium condition for the cold npe� gas Eq. (25) from the
viewpoint of the equality of the reaction rates of the beta
processes. In the interior of an old neutron star, the elec-
trons are degenerate (Ee � T), thus the number density of
positrons are exponentially depressed. As the typical en-
ergy of emitted neutrinos is of order the temperature, the
energy and the momentum of the emitted neutrinos can be
neglected comparing to the Fermi energy of particles, i.e.,
Ep � Ee � En, and ~pp � ~pe � ~pn. So the kinetic equilib-
rium requires �e�p � �n, therefore,
-4
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0 � �e�p � �n

’ 2
Z Y4

i�1

�
d3 ~pi

�2�	3

�
�2�	4jMj2��4	�Pe � Pp � Pn	

� �fp�1 � fn	fe � �1 � fp	fn�1 � fe	�

’ 2
Z Y4

i�1

�
d3 ~pi

�2�	3

�
�2�	4jMj2��4	�Pe � Pp � Pn	

� fp�1 � fn	�1 � fe	e�Ee�e�e=T � e��n��p	=T�: (30)

In the above derivations, we use the even property of
the Dirac-delta function, i.e., ��4	�Pe � Pp � Pn	 �

��4	�Pn � Pe � Pp	. It is evident that Eq. (30) eventually
results in the well-known chemical equilibrium condition
Eq. (25) which is generally used to determine the equation
of state of the dense matter in the interior of an old neutron
star.

B. Analytic steady state equilibrium condition for hot
npe� gas

It is well known that in a system with plenty of positrons,
the e� pair must not be degenerate (T > Ee), if not, the
number density of positrons will decrease exponentially,
therefore, exp��Ee ��e	=T	 � 1. Before we derive the

ELECTRON-POSITRON CAPTURE RATES AND A . . .
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analytic dynamical equilibrium condition for such system
from which the emitted neutrinos can escape freely, we
first explain why the condition is not the well-known result
of Eq. (25). Suppose that Eq. (25) is satisfied, for the reason
described in III A, the chemical potential of the trapped
neutrinos is zero, thus the ratio of the number density of the
trapped neutrinos to that of the electrons is about T3=E3

e >
1, if the electrons are not degenerate. This conclusion is
obviously contradictory to the precondition that the system
is transparent to neutrinos.

In such system, comparing to the rate of positron capture
by neutrons, the rate of neutron decay could be neglected
before reaching the degenerate limit. Thus the
!-equilibrium condition for hot npe� gas is [4,5]

�e�p � �e�n; (31)

if the hot electron-positron plasma with nucleon is trans-
parent to neutrinos. Another good approximation is the
elastic approximation, that is, the energy of the emitted
neutrinos is of order that of the captured e�, i.e., E	 ’ Ee,
E �	 ’ Ee� , and thus En ’ Ep.

Under these approximations, the kinetic equilibrium
condition Eq. (31) gives
0 � �e�p � �e�n ’ 2
Z Y4

i�1

�
d3 ~pi

�2�	3

�
�2�	4jMj2��4	�Pe � Pp � Pn � P	e	�fpfe�1 � fn	 � �1 � fp	fe�fn�

’ 2
Z Y4

i�1

�
d3 ~pi

�2�	3

�
�2�	4jMj2��4	�Pe � Pp � Pn � P	e	fp�1 � fn	fe�

�
e�Ee��e	=T � 1

e�Ee��e	=T � 1
� e��Ep�En	���p��n		=T

�

’ 2
Z Y4

i�1

�
d3 ~pi

�2�	3

�
�2�	4jMj2��4	�Pe � Pp � Pn � P	e	fp�1 � fn	fe��e

2�e=T � e��n��p	=T�: (32)
Therefore, from Eq. (32) we obtain the beta-equilibrium
condition for the e� plasma with nucleons

�n � �p � 2�e: (33)

It should be emphasized that during the above derivation, it
is not assumed whether the baryons are degenerate or not.
On the other hand, Eq. (33) is still valid under the degen-
eracy of baryons, which is neglected completely in the
approximate reaction rates at the beginning. However, it
should be pointed out that wherever baryons are degenerate
in astrophysics, neutrinos are generally trapped and likely
thermalized. In these post-neutrino trapping environments,
the analytic steady state equilibrium condition we derived
here is not valid, because the effects of neutrino trapping
are not included in our consideration. It is not a surprise to
notice that the analytic equilibrium condition Eq. (33) can
also be drawn in the completely nondegenerate limit.
Setting the equality of Eq. (15) and Eq. (16), the equilib-
rium condition is also obtained. In the following, we have
another heuristic but not very strict derivation. If all parti-
cles are nondegenerate, we have [17,18]

�e�p / ne�np / exp�&p � &e	; (34)

�e�n / ne�nn / exp�&n � &e	: (35)

Setting the equality of Eq. (34) and Eq. (35), the analytic
condition Eq. (33) is obtained again.

The advantage of having the analytic equilibrium con-
dition at hand is obvious. For instance, we can derive some
useful formula in the nondegenerate limit of baryons. In
such limit, using the Saha equation gives the ratio of
neutron-baryon number density to that of proton (e.g. [26])

nn
np

� 1 �
1

Ye
� e��n��p�Q	=T � e�2�e�Q	=T: (36)

At the last step, the analytic equilibrium condition Eq. (33)
is applied. On the other hand, for the relativistic e�, there
exits an exact expression for the electric charge density in
-5



FIG. 3 (color online). Upper panel: Electron fraction Ye under
!-equilibrium versus the baryon number density nB at different
temperatures. The solid curves show the results from Eqs. (5)–
(7), the dotted curves are from the analytic !-equilibrium
condition Eq. (33), and the dot-dashed curves are from the
nondegenerate approximation of baryons. Lower panel: The
reduced chemical potentials of electrons, neutrons, and protons
&i as a function of the baryon number density at different
temperatures. From top to bottom, the lines correspond to the
results of T � 6 � 109, 1010, 5 � 1010, 1011 K.

FIG. 4 (color online). The neutrino emissivity ,	 versus the
baryon number density at different temperatures. The lines are
the same as those of the upper panel in Fig. 3.
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terms of the chemical potential of electrons (e.g. [27]),

ne� � ne� � nBYe �
T3

3�2

��
�e

T

�
3
� �2

�
�e

T

��
: (37)

Substituting Eq. (36) into Eq. (37), we have only one
simple equation to determine the electron chemical poten-
tial �e,

T3

3�2

��
�e

T

�
3
� �2

�
�e

T

��
�

nB

1 � e�2�e�Q	=T
� 0: (38)

After that, the electron fraction Ye can be directly calcu-
lated from Eq. (37).

At �e=T < 1 and �2�e �Q	=T < 1, Eq. (38) can be
simplified further,

Ye �
1

2

�1 � 0:5Q=T	

�1 � 1:5nB=T3	
: (39)

Equating the rates of e� and e� captures in the region of
mild degeneracy, Beloborodov [5] obtained a similar result
to Eq. (39) (see Eq. (11) in his paper). In a word, using the
well-known results and our new result Eq. (33), we reder-
ive a similar previous result in a different way. From this
consistence, it turns out that Eq. (33) is correct and the
approximate formula Eq. (38) is more accurate than the
previous result.

In the following, we check the validity of Eq. (33) by
numerical calculations. As before, suppose that the nuclei
are dissolved completely into nucleons at high tempera-
ture. Given nB and T, the electron fraction Ye can be
determined by two different sets of the equilibrium con-
ditions. One set consists of Eqs. (27)–(29). In Eq. (27), the
! reaction rates are calculated based on the reaction rates
Eqs. (5)–(7), or the approximate rates Eqs. (12)–(14),
respectively. The other set consists of our analytic equation
(33), and Eqs. (28) and (29). Figure 3 shows Ye and the
reduced chemical potentials &i (i � n; p; e) versus the
baryon number density at different temperatures. In the
upper panel of Fig. 3, the solid lines show the results from
Eqs. (27)–(29) and Eqs. (5)–(7) for the ! reaction rates.
The dot-dashed curves are from Eqs. (27)–(29), but the
approximate reaction rates in the nondegenerate limit
Eqs. (12)–(14) are used. The dotted lines represent the
results from Eq. (33) and Eqs. (28) and (29). It is evident
that the results from the analytic condition are almost
consistent with the general numerical results. As expected,
the difference occurs only in the regime where electrons
become degenerate, beyond which, the condition for the
analytic formula Eq. (33) is not satisfied any longer and the
contribution from the neutron decay cannot be neglected.
As shown in the lower panel of Fig. 3, neutrons become
degenerate as electrons do. The particles become degener-
ate if their reduced chemical potential exceeds the tem-
perature. For electrons and nucleons, their degenerate
number densities are estimated to be
013007
ndeg
e � p3

e=3�2 ’ T3=3�2 ’ 9:0 � 10�6

�
T

1011K

�
3

fm�3;

(40)

ndeg
n;p � p3

n;p=3�2 ’ �2mn;pT	3=2=3�2

’ 2:8 � 10�3

�
T

1011K

�
3=2

fm�3: (41)

In the same regime, there are great differences (of several
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orders) between our results and the previous results in
which the degeneracy of nucleons is completely neglected.
In any case, Fig. 3 evidently shows that the results from the
analytic condition are much more accurate than those from
the approximate rates in all the parameter regions.

The total neutrino emissivity under !-equilibrium is
shown in Fig. 4. Compared with the general numerical
results, both approximate methods overestimate the rate
of the neutrino emission because neglect of the degeneracy
of particles increases the phase space for the relevant
reactions. It is clearly shown in Fig. 4 that the effect of
the neutron degeneracy is much more important than that
of electrons, if such conditions are satisfied.
V. CONCLUSIONS AND DISCUSSIONS

In this work, using the structure function formalism
developed by Reddy et al. [19], we derive the rates of the
! processes, which including e� captures and neutron
decay in the dense subnuclear matter for all participating
particles, are at arbitrary degeneracy. For this purpose, the
difference between the mass of neutron and proton is kept
in the structure function (see Eq. (11)), which is neglected
originally in Reddy et al. [19]. Comparing to our reaction
rates, the previous approximations have been checked.
Especially, the electron capture rate under the elastic ap-
proximation which is put forward to include the effects of
the degeneracy of baryons differs dramatically from our
results when baryons become degenerate and before the
dense matter reaches the !-equilibrium. Generally speak-
ing, the elastic approximation underestimates the electron
capture rate when baryons become degenerate.

Most of interest, we find an analytic steady state equi-
librium condition for e� plasma with nucleons, if the
system is transparent to the emitted neutrinos. This result
013007
is valid when electrons are nondegenerate or mildly degen-
erate, but it has nothing to do with the degeneracy of
baryons. Basically, it is a good result for e� plasma with
nucleons, because when an electron becomes degenerate,
the number density of positron decreases exponentially,
then the system cannot be called as e� plasma. If the
nucleons are nondegenerate, we further obtain only one
simple equation for determining the electron chemical
potential and electron fraction, which shows the great
advantage of our analytic equilibrium condition.

So far, there are four analytic !-equilibrium or steady
state equilibrium conditions for npe� gas in different
astrophysical circumstances. They are summarized as fol-
lows: (1) If the neutrinos are completely trapped in a
system, such as in the interior of a PNS, �n ��	e �

�p ��e, (2) In the cold npe� gas under !-equilibrium,
�n � �p ��e, (3) If the neutrinos are partially trapped,
and the chemical potential of the trapped neutrinos is zero
(�	e � 0), �n � �p ��e, (4) If the neutrinos can escape
freely from the system with plenty of e� pairs, �n � �p �

2�e, which is the main result of this work.
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