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Light-front zero-mode contribution to the good current in weak transitions
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We examine the light-front zero-mode contribution to the good ( � ) current matrix elements between
pseudoscalar and vector mesons. In particular, we discuss the transition form factor f�q2� which has been
suspected to have the light-front zero-mode contribution. While the zero-mode contribution in principle
depends on the form of the vector meson vertex �� � �� � �PV � 2k��=D, the form factor f�q2� is
found to be free from the zero-mode contribution if the denominator D contains the term proportional to
the light-front energy �k��n with the power n > 0. The lack of zero-mode contribution benefits the light-
front quark model phenomenology. We present our numerical calculations for the B! 
 transition.
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I. INTRODUCTION

For its simplicity and predictive power, the light-front
constituent quark model (LFQM) appears to be a useful
phenomenological tool to study various electroweak prop-
erties of mesons [1–11]. The simplicity of the light-front
(LF) quantization [12] is essentially attributed to the sup-
pression of the vacuum fluctuations with the decoupling of
complicated zero modes and the conversion of the dynami-
cal problem from boost to rotation. The suppression of
vacuum fluctuations is due to the rational energy-
momentum dispersion relation which correlates the signs
of the LF energy k� � k0 � k3 and the LF momentum
k� � k0 � k3.

However, the zero-mode (k� � 0) complication in the
matrix element has been noticed for the electroweak form
factors involving a spin-1 particle [13–17]. A growing
concern [13–18] is to pin down which form factors get
the zero-mode contributions. The zero-mode contributions
can be interpreted as residues of virtual pair creation
processes in the q��� q0 � q3� ! 0 limit [19]. Thus, we
call the nonzero contribution from the nonvalence part in
the q� � 0 frame the zero mode, although strictly speak-
ing the zero mode refers to components of the elementary
fields with vanishing longitudinal momentum (see
Ref. [20]). It is well known that due to the peculiar kine-
matics on the light front, for some loop integrals where q�

appears as the upper limit of integration, one has to be extra
careful in that one cannot set q� to zero before evaluating
the integral (see, e.g., Ref. [21]). Depending upon the
matrix element considered, those components may con-
spire and cause an end point singularity that produces a
finite contribution even in the case q� � 0. A detailed
discussion of some examples of such end point singular-
ities can be found in Ref. [16].

In the case where the zero-mode contributions are sig-
nificant, the phenomenological LFQM is certainly more
challenged than the case otherwise because the infinite sum
of the nonvalence Fock-state contributions should be con-
sidered as we have discussed in timelike exclusive pro-
cesses [22]. Even in the cases where the zero-mode
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contributions are absent, the correctness of restriction to
the lowest Fock sector cannot be guaranteed. Nevertheless,
in the absence of zero-mode contributions, the hadron form
factors can be obtained rather straightforwardly by just
taking into account only the valence contributions (or the
diagonal matrix elements in the LF Fock-state expansion).
Moreover, the Lorentz covariance of the result can be
assured in the absence of zero-mode contributions. Thus,
it is quite significant to resolve the issue related to the zero-
mode contribution to the hadron form factors.

In an effort to clarify this issue, Jaus [13,14] and we [15–
17] independently investigated the spin-1 electroweak
form factors in the past few years. Jaus [13,14] proposed
a covariant LF approach involving the lightlike four-vector
!��!2 � 0� as a variable and developed a way of finding
the zero-mode contribution to remove the spurious ampli-
tudes proportional to !�. Our formulation, however, is
intrinsically distinguished from this !-dependent formu-
lation since it involves neither !� nor any unphysical form
factors. Our method of finding the zero-mode contribution
is a direct power counting of the longitudinal momentum
fraction in q� ! 0 limit for the off-diagonal elements in
the Fock-state expansion of the current matrix [15–17].
Since the longitudinal momentum fraction is one of the
integration variables in the LF matrix elements (i.e. helicity
amplitudes), our power-counting method is straightfor-
ward as far as we know the behaviors of the longitudinal
momentum fraction in the integrand. When the manifestly
covariant model for the vector meson vertex �� is avail-
able, we have confirmed that the results found our way
coincide with the ones from the manifestly covariant
calculation.

For a rather simple (manifestly covariant) vertex �� �
��, both Jaus and we agree on the absence of zero-mode
contributions to the spin-1 electroweak form factors.
However, Jaus and we do not agree when �� is extended
to the more phenomenologically accessible ones given by

�� � �� �
�k� k0��

D
; (1)

where k and k0 are the relative four-momenta for the
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FIG. 1. Diagramatic representation of the vector meson cou-
pling V � q 	q.
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constituent quark 1 and antiquark 2 as shown in Fig. 1.
Although Jaus’s calculation and our calculation used the
same denominator D in Eq. (1), they led to the different
conclusions in the analysis of the zero-mode contribution.
Even if D is chosen in such a way to get the manifestly
covariant ��, the difference in the conclusions does not go
away.

For the spin-1 elastic form factor calculations, Jaus’s
conclusion [13,14] is that the matrix elements hh0 �
0jJ�jh � 1i and hh0 � 0jJ�jh � 0i both get the zero-
mode contributions so that one cannot avoid the zero-
mode contributions to the form factor F2�q2� for the vector
meson. However, we recently [17] found that only the
matrix element hh0 � 0jJ�jh � 0i gets the zero-mode con-
tribution so that we can avoid the zero-mode contribution
to F2�q2� without using the matrix element hh0 �
0jJ�jh � 0i. While this calls for a clarification whether
the !-dependent formulation adds the more complication
in the effect of zero modes, our finding of zero-mode
contribution only in hh0 � 0jJ�jh � 0i is quite significant
in the LFQM phenomenology. It opens up a possibility to
make reliable predictions on the spin-1 elastic form factors
as we presented in the example of the 
 meson [17].

Similarly, for the weak transition form factors between
the pseudoscalar (P) and vector (V) mesons, Jaus [13,14]
concluded that the form factor A1�q2� [or f�q2�] receives
the zero-mode contribution.1 Our aim of this work is to
examine the zero mode issue of this form factor f�q2� using
our method. As we show in this work, we again do not
agree with his result but find that f�q2� is free from the
zero-mode contribution if the denominator D in Eq. (1)
contains the term proportional to the LF energy �k��n with
the power n > 0. The phenomenologically accessible
LFQM satisfies this condition n > 0.

In this work, we shall compute the weak transition form
factors between pseudoscalar and vector mesons in three
typical cases of the vector meson vertex, i.e.
The transition form factors defined in Eq. (2) are often given
(1) D
1We
zero-m
pected.
( � ) c

by the following convention [23],

� Dcov�MV� � MV �mq �m 	q, where MV is the

physical vector meson mass;
2 2 2 f�q2�
(2) D

V�q � � �MP �MV�g�q �; A1�q � �

MP �MV
;

2 2
� Dcov�k � P� � 
2k � P�MV�mq �m 	q� � i��=
MV , where P is four-momentum of the vector meson
[11];
are not concerned with the form factor a��q2� since the
ode contribution to the bad ( � ) current is not unex-
Here, we discuss the zero-mode contribution to the good

urrent matrix elements only.
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(3) D
A2�

A0�

where
meson

-2
� DLF�M0� � M0 �mq �m 	q [5], where
mq�m 	q� is the mass for the consituent quark (anti-
quark) and M0 is the invariant mass of the vector
meson.
For the manifestly covariant cases (1) and (2), we shall
analyze two different LF frames (q� � 0 and q� � 0) and
confirm the frame-independence of the physical observ-
ables. In the case (3), however, DLF�M0� does not yield a
manifestly covariant �� and thus we cannot compute the
nonvalence contribution involving the nonwave function
vertex beyond the two-body Fock state. The nonwave
function vertex which satisfies the requirement that the
physical observables must be Lorentz invariant has not
yet been realized in the case (3). Nevertheless, the lessons
from the manifestly covariant cases [e.g. (1) and (2)]
provide a significant constraint on the nonwave function
vertex, namely, the power n of the LF energy �k��n should
be common both in the valence and nonvalence contribu-
tions. We do not see any reason why this constraint cannot
be applied to the case (3). The continuity of the power n
between the valence and nonvalence contributions is suffi-
cient for us to show the absence of the zero-mode contri-
bution using the power counting of the longitudinal
momentum fraction in q� ! 0 limit. The absence of
zero-mode contribution assures that our valence result in
q� � 0 frame is the full result in the case (3).

The paper is organized as follows: In Sec. II, we present
the Lorentz-invariant weak form factors between pseudo-
scalar and vector mesons and the kinematics for the refer-
ence frames used in our analysis. We also briefly discuss
Jaus’s approach. In Sec. III, we present our LF calculation
of the weak transtion form factors and discuss the criterion
for the existence/nonexistence of the zero mode. In Sec. IV,
we present our numerical results for the weak transition
form factors in the above three cases; (1) Dcov�MV��n �
0�, (2) Dcov�k � P��n � 1�, (3) DLF�M0��n � 1=2�. We
compare them with the results obtained from Jaus’s
method. Conclusions follow in Sec. V. In the appendix,
the trace term to compute the nonvalence contribution is
summarized.

II. MODEL DESCRIPTION

The Lorentz-invariant transition form factors2 g, f, a�,
and a� between a pseudoscalar meson with four-
q � � ��MP �MV�a��q �;

q2� �
1

2MV

f�q2� � �M2

P �M2
V�a��q

2� � q2a��q
2��;

MP and MV are the physical pseudoscalar and vector
masses, respectively.
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momentum P1 and a vector meson with four-momentum
P2 and helicity h are defined [24] by the matrix elements of
the electroweak current J�V�A � V� � A� from the initial
state jP1; 00i to the final state jP2; 1hi:

hP2; 1hjJ
�
V�AjP1; 00i � ig�q2�"�������P�q� � f�q2����

� a��q2���� � P�P�

� a��q2���� � P�q�; (2)

where the sum of P�1 and P�2 is denoted by P�, the
momentum transfer q� is given by q� � P�1 � P�2 , and
the polarization vector �� � ���P2; h� of the final state
vector meson satisfies the Lorentz condition ���P2; h� �
P2 � 0. While the form factor g�q2� is associated with
the vector current V�, the rest of the form factors f�q2�,
a��q2�, and a��q2� are coming from the axial-vector cur-
rent A�. The polarization vectors used in this analysis are
given by

����1� � 
��; ��; �?� �
�
0;
2

P�
2

�?��� � P2?; �?��1�
�
;

�?��1� � �
�1;�i����

2
p ;

���0� �
1

M2

�
P�
2 ;

P22? �M2
2

P�
2

;P2?

�
:

(3)

The covariant diagram in Fig. 2(a) for the transition form
factors between pseudoscalar and vector mesons is in
general equivalent to the sum of LF valence diagram (b)
and the nonvalence diagram (c), where � � P�

2 =P
�
1 �

1� q�=P�
1 . From the covariant diagram of Fig. 2(a), the

matrix element hJ�V�Aih � hP2; 1hjJ
�
V�AjP1; 00i is given

by

hJ�V�Aih � ig1g2
Z d4k

�2 �4
S�1�P1 � k�S�h S�2�P2 � k�

Sm1SmSm2
;

(4)

where g1 and g2 are the normalization factors which can be
fixed by requiring charge form factors of pseudoscalar and
vector mesons to be unity at q2 � 0, respectively.
Following the previous work [25], we replaced the point
gauge-boson vertex ���1� �5� by a nonlocal (smeared)
= +

(a) (b) (c)

P

P−k

k

P−k

P1 2

1 2
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αα

α α

α1− 1−

FIG. 2 (color online). The covariant diagram (a) corresponds
to the sum of the LF valence diagram (b) and the nonvalence
diagram (c). The large white and black blobs at the meson-quark
vertices in (b) and (c) represent the ordinary LF wave function
and the nonwave function vertex, respectively.
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gauge-boson vertex S�1�P1 � k����1� �5�S�2�P2 � k�
to regularize the covariant fermion triangle loop in (3�
1) dimensions, where S�i�Pi� � �2i =�P

2
i ��2i � i"� and

�i plays the role of momentum cutoff similar to the Pauli-
Villars regularization. The rest of the denominators in
Eq. (4) coming from the intermediate fermion propagators
in the triangle loop diagram are given by

Sm1 � p21 �m21 � i"; Sm � k2 �m2 � i";

Sm2 � p22 �m22 � i";
(5)

where m1, m, and m2 are the masses of the constituents
carrying the intermediate four-momenta p1 � P1 � k, k,
and p2 � P2 � k, respectively.

The trace term in Eq. (4), S�h , is given by

S�h � Tr
�6p2 �m2����1� �5��6p1 �m1�

� �5��6k�m��� � ��; (6)

where the final-state vector-meson vertex operator �� is
given by

�� � �� �
�P2 � 2k��

D
: (7)

We shall analyze the three different cases of D term, i.e.

�1�Dcov�MV� � MV �m2 �m;

�2�Dcov�k � P2� �

2k � P2 �MV�m2 �m� � i��

MV
;

�3�DLF�M
0
0� � M0

0 �m2 �m;

(8)

where the prime denotes the final state.
In our trace term calculation, we separate Eq. (6) into the

on-mass-shell propagating part S�on and the off-mass-shell
part S�off , i.e.

S�h � �S�h �on � �S�h �off ; (9)

via

6p�m � �6pon �m� �
1

2
���p� � p�

on�: (10)

While the on-mass-shell part �S�h �on indicates that all three
quarks are on their respective mass shell, i.e. k� � k�on and
p�
i � p�

ion�i � 1; 2�, the off-mass-shell part �S�h �off in-
cludes the term proportional to �k� � k�on� [16]. The trace
terms �S�h �V and �S�h �A in Eq. (6) for the vector and axial-
vector currents are given by
-3
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�S�h �V � 4i"����
�

m1�p2on���kon�� �m2�p1on���kon�� �m�p1on���p2on������ �

�p2 � k� � ���h�
D

�p1on���p2on���kon��

�
;

�S�h �A � 4m1
�kon � ���p�
2on � �p2on � ���k�on � �p2on � kon����� � 4m2
�kon � ���p�

1on � �p1on � ���k�on � �p1on � kon�����

� 4m
�p2on � ���p�
1on � �p1on � ���p�

2on � �p1on � p2on����� � 4m1m2m��� � 4�k� � k�on�m2p�
1on�

��

� 4
�p2 � k� � ���h�

D

�p2on � kon �m2m�p�

1 � �p1on � kon �m1m�p�
2 � �p1on � p2on �m1m2�k�

� �k� � k�on�p�
1onp

�
2on�: (11)
A different approach calculating Eq. (6) can be found in
Refs. [13,14] where Jaus used the four-vector and tensor
decompositions of the internal four-momentum p1 includ-
ing the lightlike four-vector ! in the trace terms, e.g. four-
vector decomposition of p1 is given by p1� � A�1�

1 P� �

A�1�
2 q� � C�1�

1 !�, where C-type functions are! dependent
while A-type functions are ! independent. His main idea
for the calculation of the trace term is to separate the term
proportional to N2 � k2 �m2 from the rest of the terms in
the trace. The !-dependent C type (and also B type arising
from the tensor decomposition of p1�p1�) functions in-

clude this N2 term, e.g. C�1�
1 � �N2 � Z2�x;k?�.

Although this N2 term vanishes for the spectator quark
with the momentum k being on-mass-shell (k� � k�on), it
may give nonvanishing contribution if the spectator quark
is off-mass-shell, i.e. k� � p�

1on. If this happens, then the
nonvanishing N2-term contribution related to the zero-
mode contribution should be included to obtain the
Lorentz-invariant form factor. Jaus discussed that the in-
clusion of the zero mode (without involving higher Fock
states or the nonvalence contributions) can be made by the
replacement N2 ! Z2, i.e. C�1� �

:
0. However, his C�1� �

:
0

prescription is valid only at the particular choice of the
vector meson vertex operator �� in Eq. (7), e.g. C�1� �

:
0 is

valid only for the Dcov�MV� in Eq. (8) but not for Dcov�k �
P2� and DLF�M0

0� as we shall show in the following sec-
tions. For the comparison with Jaus’s N2-term prescription
later on, we note that his N2 term corresponds to our �k� �
k�on� term via N2 � k2 �m2 � k��k� � k�on� � k2on �
m2 � k��k� � k�on�.

III. LIGHT-FRONT CALCULATION OF THE
WEAK FORM FACTORS

In the LF calculation of the weak form factors, we use
P1? � 0 frame with the (timelike) momentum transfer
q2 � �P1 � P2�

2 given by

q2 � q�q� � q2? � �1� ��
�
M2
1 �

M2
2

�

�
�

q2?
�
: (12)

We shall use only the plus component of the V � A current
for the calculations of LF valence [Fig. 2(b)] and non-
valence [Fig. 2(c)] diagrams.
013004
A. Matrix elements of the weak current

In the valence region 0< k� <P�
2 , the pole k� �

k�on � �m2 � k2? � i"�=k� (i.e., the spectator quark) is
located in the lower half of the complex k� plane.

Thus, the Cauchy formula for the k� integration in
Eq. (4) gives

hJ�V�Ai
h
val �

g1g2�
2
1�

2
2

2�2 �3
Z �

0

dx
x

Z
d2k? i�x;k?�

� �S�h �on f�x
0;k0

?�; (13)

where

 i�x;k?� �
1

�1� x�2�M2
1 �M2

0��M
2
1 �M2

�1
�
;

 f�x0;k0
?� �

1

�1� x0�2�M2
2 �M02

0 ��M
2
2 �M02

�2
�
;

(14)

and

M2
0 �

k2? �m21
1� x

�
k2? �m2

x
;

M02
0 �

k02
? �m22
1� x0

�
k02

? �m2

x0
;

M2
�1

� M2
0�m1 ! �1�;

M02
�2

� M02
0 �m2 ! �2�:

(15)

The final state momentum variables are given by k0
? �

k? � x0q? and x0 � x=�. Note that the trace term in
Eq. (13) includes only the on-mass-shell propagating part
since the pole structure k� � k�on (or equivalently N2 � 0)
leads to the vanishing off-mass-shell contributions.

In the nonvalence region P�
2 < k� <P�

1 , the poles at
k� � k�m1 � P�

1 � 
m21 � �k? � P1?�2 � i"�=�k� � P�
1 �

(from the struck quark propagator) and k� � k��1 � P�
1 �


�21 � �k? � P1?�2 � i"�=�k� � P�
1 � (from the smeared

quark-photon vertex) are located in the upper half of the
complex k� plane.

Thus, the Cauchy integration over k� in Eq. (4) gives
-4
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hJ�V�Ai
h
nv �

g1g2�
2
1�

2
2

2�2 �3��21 �m21�

Z 1

�

dx
xx00�1� x00��x� ��

Z
d2k?

� S�h �k
�
�1
�

�M2
1 �M2

�1
��q2 �M2

�1�2
��q2 �M2

�1m2
�

�
S�h �k

�
m1�

�M2
1 �M2

0��q
2 �M2

m1�2
��q2 �M2

m1m2��

�
; (16)
where

M2
�1�2

�
k002

? ��21
x00

�
k002

? ��22
1� x00

;

M2
�1m2

�
k002

? ��21
x00

�
k002

? �m22
1� x00

;

M2
m1m2 �

k002
? �m21
x00

�
k002

? �m22
1� x00

;

M2
m1�2

�
k002

? �m21
x00

�
k002

? ��22
1� x00

;

(17)

and

x00 �
1� x
1� �

; k00
? � k? � x00q?: (18)

The explicit forms of the trace terms S�h �k
�
m1� and S�h �k

�
�1
�

are given in the appendix. In general, the trace terms in the
nonvalence diagram include the off-mass-shell contribu-
tions (or equivalently N2 � 0), e.g. S�h �k

�
m1� � �S�h �on �

�S�h �off�k
�
m1�.

B. Extraction of weak form factors

From Eqs. (2), (3), and (12), one obtains the relations
between the current matrix elements and the weak form
factors as follows

hJ�V i
h�1 � �

P�
1���
2

p "��xyqLg�q2�; hJ�V i
h�0 � 0; (19)

for the vector current and

hJ�A i
h�1 �

P�
1 q

L

�
���
2

p 
�1� ��a��q
2� � �1� ��a��q

2��;

hJ�A i
h�0 �

�P�
1

M2
f�q2� �

�P�
1

2M2

�
M2
1 �

M2
2

�2
�

q2?
�2

�
� 
�1� ��a��q2� � �1� ��a��q2��;

(20)

for the axial-vector current. Here, qL � qx � iqy.
The extraction of weak form factors can be made in

various ways. Among them, there are two popular ways of
extracting the form factors, e.g. one can obtain the form
factors (1) in the spacelike region using the q� � 0 frame
and then analytically continue to the timelike region by
changing q? to iq? in the form factor, or (2) in a direct
timelike region using a q� > 0 frame.

In this work, we shall use both the q� � 0 frame (q2 �
�q2?) and the purely longitudinal momentum frame (q� >
0 and q? � 0) where
013004
q2 � q�q� � �1� ��
�
M2
1 �

M2
2

�

�
: (21)

For this particular choice of the purely longitudinal mo-
mentum frame, there are two solutions of � for a given q2,
i.e.

�� �
M2

M1

"
M2
1 �M2

2 � q2

2M1M2
�

������������������������������������������������
M2
1 �M2

2 � q2

2M1M2

�
2
� 1

s #
;

(22)

where the ���� sign in Eq. (22) corresponds to the daugh-
ter meson recoiling in the positive (negative) z direction
relative to the parent meson. At the zero recoil (q2 � q2max)
and the maximum recoil (q2 � 0), �� are, respectively,
given by

���q2max� � ���q2max� �
M2

M1
; ���0� � 1;

���0� �
�
M2

M1

�
2
:

(23)

The form factors should in principle be independent of the
recoil directions (��) if the nonvalence contributions are
added to the valence ones.

While the form factor g�q2� in the q� > 0 frame can be
obtained directly from Eq. (19), the form factor f�q2� can
be obtained only after a��q2� are calculated. To illustrate
this, we define

hJ�A i
h�1j����

�
P�
1 q

L���
2

p I�A ����: (24)

Then we obtain from Eq. (20)

a��q
2� �

���1� ���I�A ���� � ���1� ���I�A ����

2��� � ���
;

a��q
2� � �

���1� ���I�A ���� � ���1� ���I�A ����

2��� � ���
;

(25)

and

f�q2� �
M2

�P�
1

hJ�A i
h�0 �

1

2

�
M2
1 �

M2
2

�2

��
�1� ��a��q

2�

� �1� ��a��q
2�

�
: (26)

As can be seen from Eqs. (19) and (20), one should be
careful in setting q? � 0 to get the correct results in the
-5
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purely longitudinal frame. One cannot simply set q? � 0
from the start, but should set it to zero only after the form
factors are extracted.

In the q� > 0 frame where q? � 0, the valence contri-
bution to g�q2� is given by

gval�q2� �
N

8 3
Z �

0

dx
x

Z
d2k? i f

�
Ap �

k? � q?

q2?
� 
��m1 �m� � �m�m2��

�
2

D

�
k2? �

�k? � q?�
2

q2?

��
; (27)

where N � g1g2�
2
1�

2
2 and Ap � xm1 � �1� x�m. The

form factor gDY�q2� in q� � 0 [or Drell-Yan (DY)] frame
is given by

gDY�q2� � lim
�!1

gval�q2�: (28)

Our result for gDY�q2� is the same as the one obtained by
Jaus (see Eq. (4.13) in [13]). Note that one needs to replace
x by �1� x� and q? by �q? between the two formulations
to compare each other directly. The form factor g�q2� is
found to be free from the zero-mode contribution. The
nonvalence contribution to g�q2� in q� > 0 frame can be
obtained from Eq. (16) with the trace term given by
Eq. (A1).

The valence contribution to the matrix elements I�A ���
for a���� in Eq. (25) is given by

�I�A �val��� �
2N

8 3
Z �

0

dx
x

Z
d2k? i f

�
�1� 2x0�Ap

�
k? � q?

q2?

��� 2x��m1 �m� � �m2 �m��

�
2

x0D

�
x0 �

k? � q?

q2?

�

� �k? � k0
? �Ap
�1� x0�m� x0m2��

�
:

(29)
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The form factor aDY� �q2� in q� � 0 frame is given by

aDY� �q2� � lim
�!1

�I�A �val���
2

: (30)

Our result of aDY� �q2� is the same as the one obtained by
Jaus (see Eq. (4.14) in [13]). The form factor a��q2� also is
found to be free from the zero-mode contribution. The
nonvalence contribution to a��q

2� in q� > 0 frame can
be obtained from Eq. (16) with the trace term given by
Eq. (A2).

To obtain the form factor f�q2� in Eq. (26), we need to
compute the matrix element involving the helicity zero, i.e.
hJ�A i

h�0. The explicit form of the valence contribution to
hJ�A i

h�0 is given by

hJ�A i
h�0
val ��

2N

8 3
P�
1

M2

Z �

0

dx
xx0

Z
d2k? i f

�

�
Ap
x0�1�x0�M2

2�m2m�x02q2?�

�k2?�xm1�m2�xm��x
0k? �q?
2x�m1�m�

�m2�m��
�x02M2

2�k02
?�m2�

D

�

�
k? �k0

?�Ap
�1�x
0�m�x0m2�

��
: (31)

The form factor fDY�q2� in q� � 0 frame obtained from
Eq. (20), i.e.

fDY�q2� � ��M2
1 �M2

2 � q2?�a
DY
� �q2� �

M2

P�
1

lim
�!1

hJ�A i
h�0
val ;

(32)

is explicitly given by
fDY�q2� � �
N

8 3
Z 1

0

dx

x2
Z
d2k? i f

�
2k2?�xm1 �m2 � xm� � 2xk? � q?
2x�m1 �m� �m2 �m�

�Ap
x�1� 2x�M2
1 � xM2

2 � 2m2m� xq2?� � x
q � P� q2?�
�1� 2x��m1 �m� �m2 �m�
k? � q?

q2?

�
2

xD
�k? � k0

? �Ap
�1� x�m� xm2��
�
x
q � P� q2?�

�
x�

k? � q?

q2?

�
� x2M2

2 � k02
? �m2

��
; (33)
where q � P � M2
1 �M2

2. We should note that our result
for lim�!1hJ

�
A i

h�0
val [i.e. fDY�q2�] is different from the result

obtained by the LF formalism discussed in Appendix C of
Ref. [14] [see,e.g. Eq. (C2) in [14]). That formalism [14]
requires all quarks to be on their respective mass shells and
replaces the physical vector meson mass M2 in Eq. (3) by
the invariant meson mass M0

0. However, our result is ob-
tained by requiring only the struck quark (m2) to be on-
mass-shell and using the physical vector meson massM2 in
Eq. (3). The nonvalence contribution to hJ�A i

h�0 in q� > 0
frame can be obtained from Eq. (16) with the trace term
given by Eq. (A3) in our appendix.

We now determine whether f�q2�, i.e. fDY�q2�, is free
from the zero mode. The zero-mode contribution to hJ�A i

h

-6
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is defined as

hJ�A i
h
zm � lim

�!1
hJ�A i

h
nv: (34)

To check if the zero mode exists or not, we use the counting
rule for the factors of the longitudinal momentum fraction
in Eq. (16), e.g. in the q� ! 0 limit, the first term in
Eq. (16) becomes

hJ�A i
h
zm � lim

�!1

Z 1

�
dx
x�1� x�
x00�1� x00��2

xx00�1� x00��x� ��
S�h �k

�
�1
�
� � ��

� lim
�!1

Z 1

�
dx

�1� x�2

�1� ��2
S�h �k

�
�1
�
� � ��

� lim
�!1

Z 1

0
dz�1� ���1� z�2S�h �k

�
�1
�
� � ��; (35)

where the variable change x � �� �1� ��z was made
and the terms in 
� � �� are regular in the �! 1 (or equiv-
alently x! 1) limit. The second term in Eq. (16) with
S�h �k

�
m1� has the same power counting of the longitudinal

momentum fraction as the first term in Eq. (35).
From Eq. (35), one can determine the existence/non-

existence of the zero-mode contribution to fDY�q2� by
counting the factors of the longitudinal momentum frac-
tion, specifically �1� x� factors, in the trace terms
S�h�0�k

�
�1
� and S�h�0�k

�
m1�. Note that both k��1 �

k�m1 � p�
1on � 1=�1� x�. Thus, from �S�h�0�A in Eq. (11),

the terms such as �k� � k�on�p�
1on are regular for the factor

�1� x�. All other on-mass-shell terms also are regular for
the same factor �1� x�. Thus, the only zero-mode sus-
pected term is �p2 � k� � ���h � 0�=D� 1=�1� x�D.

The power counting of �1� x� in �S�h�0��k
�
�1
� depends

on the vector meson vertices [see Eq. (9)]. We find that
�S�h�0��k

�
�1
� is proportional to (1) �1� x��1 � 
�1� ���

�1� z���1 for Dcov�MV�, (2) �1� x�0 for Dcov�k � P2�, and
(3) �1� x��1=2 � 
�1� ���1� z���1=2 for DLF�M0

0�, re-
spectively. These power-counting results show that the
form factor fDY�q2� receives the zero-mode contribution
only for the Dcov�MV� case but not for others. In fact, our
power-counting also should hold in Jaus’s case, i.e. N2=D
for the zero-mode limit goes to (1) Z2=D forDcov�MV�, (2)
�1� x�N2 �

:
0 for Dcov�k � P2�, and (3)

���������������
�1� x�

p
N2 �

:
0

for DLF�M0
0�, respectively. On the other hand, Jaus [13,14]

used N2=D �
:
Z2=D regardless of the D terms and re-

moved C-type functions as well as B-type functions. This
explains how he reached the conclusion that the form
factor f�q2� receives the zero-mode contribution regardless
of the vertices used in the model calculation. We have
shown that his conclusion is correct for the case (1) [or
Dcov�MV�] but not for the cases (2) [orDcov�k � P2�] and (3)
[or DLF�M0

0�]. We now confirm our derivation through the
numerical calculation in the next section.
013004
IV. NUMERICAL RESULTS

In this section, we present the numerical results for the
B! 
 transition form factors (g�q2�; a��q2�; f�q2�) in the
three different cases of meson vertex discussed above. We
perform our LF calculation in the two different reference
frames, i.e. q� � 0 and purely longitudinal q� > 0
frames. We also compare our results with those obtained
by Jaus [13,14]. We do not aim at finding the best-fit
parameters to describe the experimental data in this
work. However, the essential findings from the generic
structure of our model calculations are expected to apply
also for the more realistic models, although the quantitative
results would depend on the details of the model. The
model parameters for B and 
 mesons are taken same as
in Ref. [16]: MB � 5:28 GeV, M
 � 0:771 GeV, mb �

4:9 GeV, �b � 10 GeV, and gB � 5:20, as well as mu �
md � 0:43 GeV, �u�d� � 1:5 GeV, and g
 � 5:13.

In Fig. 3, we present the weak form factors g�q2�; a��q2�
and f�q2� for B! 
 transition obtained in the case of
Dcov�MV� � MV �m2 �m, i.e. the case (1). The white
circle represents the result in the q� � 0 frame obtained by
the analytic continuation from spacelike to timelike q2

region. We denote these form factors as gCJ�q2�, aCJ� �q2�,
and fCJ�q2�. The superscript CJ of these form factors
follows the initials of the present authors. For the case of
g form factor, we can present separately �� and �� results
for the valence contribution since the valence calculation in
the purely longitudinal frame can be done either by �� or
by �� independently. However, this is not the case for a�
form factor as shown in Eq. (25). Thus, we do not separate
the �� result from �� result for the form factor a��q2�.
For the form factor g�q2�, the dotted and dotted-dashed
lines represent the valence results obtained in the purely
longitudinal q� > 0 frame with �� and ��, respectively.
The solid line represents the full ( � valence�
nonvalence) result obtained from the purely longitudinal
q� > 0 frame. As expected, the full result in q� > 0 frame
is �� and �� independent. For the form factor a��q2�, the
valence and full results are shown by the dotted and solid
lines, respectively. In Fig. 3, we have also compared our
results with the ones obtained from Jaus’s Eqs. (4.13),
(4.14), and (4.16) in Ref. [13] for the form factors g�q2�,
a��q

2�, and f�q2�, respectively. For the form factors g�q2�
and a��q2�, our results from q� � 0 frame, i.e. gCJ�q2� and
aCJ� �q2�, are equivalent to Jaus’s results of gJaus�q2� and
aJaus� �q2� since they do not include B- and C-type functions
in the LF integral. Our results from q� � 0 frame are also
in exact agreement with the full (valence� nonvalence)
solutions obtained in the purely longitudinal q� > 0 frame.
This shows that our full results of g�q2� and a��q2� are not
only Lorentz invariant but also immune to the zero-mode
contribution. For the form factor f�q2�, however, our result
fCJ�q2� in q� � 0 frame shows the existence of the zero
mode as explained by the counting rule in Sec. III. The
zero-mode contribution to fCJ�q2�, i.e. the difference be-
-7
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tween the full solution (solid line) in q� > 0 frame and
fCJ�q2� in q� � 0 frame, is as large as 19% in the case (1).
The zero-mode contribution to fDY�q2� in q� � 0 frame is
distinguished from that which appears in the purely longi-
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tudinal q2 � q�q� frame. In the purely longitudinal
frame, the zero-mode contribution is a single point at q2 �
0 as q� ! 0 (or equivalently �� ! 1), which can be
quantified by the difference between ffull � fval���� �
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fnv���� (solid line) and fval���� (dotted line) at q2 � 0,
i.e. fzm�0� � lim��!1fnv����. We thus distinguish the
zero-mode contribution at q� � 0 from the usual nonva-
lence one at q� � 0 [or equivalently ���0�] [26].
Interestingly, however, Jaus’s result (diamond) is exactly
the same as ours in q� > 0 frame. This indicates that his
method of including the zero-mode contribution to f�q2� is
valid in the case (1) [or Dcov�MV�] as we have discussed in
the previous section using our power-counting method.

In Fig. 4, we present the form factor f�q2� for B! 

transition in the cases (2) [orDcov�k � P2� (left)] and (3) [or
DLF�M

0
0� (right)]. For the manifestly covariant case (2), our

result fCJ�q2� (circle) obtained in the q� � 0 frame is in an
exact agreement with the full result (solid line) in the
purely longitudinal q� > 0 frame. This shows that there
is no zero-mode contribution to fCJ�q2� for the vertex with
Dcov�k � P2�. The difference between the full result and
fval���� (dotted line) or fval���� (dotted-dashed line) is
not the zero-mode contribution but the nonvalence contri-
bution as described in Fig. 3. Comparing Jaus’s result with
ours, we find that fCJ�q2� and fJaus�q2� coincide each other
at q2 � 0 but differ about 4% at q � qmax. This difference
between Jaus’s and ours is caused by the different treat-
ment of N2=D term as we have illustrated in the previous
section (Sec. III). Now, in the case (3) with DLF�M0

0�, we
compared the result fCJ�q2� (circle) in the q� � 0 frame
with the valence results obtained in the purely longitudinal
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q
2
[GeV

2
]

0

1

2

3

4

5

fB
ρ (q

2 )

f
DY

=f
CJ

=f
full

f
val

(α+)
f
val

(α−)

f
Jaus

 Eq.(4.16) [13]

D’
cov

(k.P
2
)-Prescription

FIG. 4. Weak form factor f�q2� for B! 
 transition in the cases
(right).

013004
q� > 0 frame with �� (dotted line) and �� (dotted-dashed
line), respectively. As we discussed in the previous section
using the power-counting rule, the result fCJ�q2� without
the zero-mode contribution must be identical to the full
result. Thus, the differences between fCJ�q2� and the va-
lence results (dotted line and dotted-dashed line) in the
q� > 0 frame exhibit the nonvalence contributions with
�� and ��, respectively. Also, the comparison between
our full result (fCJ) and Jaus’s result (diamond) indicate the
more substantial (even at q2 � 0) difference due to the
different treatment of N2=D term in the case (3) than in the
manifestly covariant case (2). For both cases of DLF�M0

0�
and Dcov�k � P2�, we have confirmed that the two results
(Jaus and CJ) exactly coincide if and only if we set
N2=D �

:
0 in Jaus’s formulation.
V. CONCLUSION

In this work, we have analyzed the zero-mode contribu-
tion to the weak transition form factors, in particular f�q2�,
between pseudoscalar and vector mesons. For the phenom-
enologically accessible vector meson vertex �� � �� �
�P2 � 2k��=D, we discussed the three typical cases of the
D term which also may be classified by the differences in
the power counting of the LF energy k�, i.e.: (1)
Dcov�MV� � MV �m2 �m� �k��0, (2) Dcov�k � P2� �

2k � P2 � �m2 �m�MV � i��=MV � �k��1, and (3)
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DLF�M
0
0� � M0

0 �m2 �m� �k��1=2. Our main idea to
obtain the weak transition form factors is first to find if
the zero-mode contribution exists or not for the given form
factor using the power-counting method. If it exists, then
the separation of the on-mass-shell propagating part from
the off-mass-shell part is useful since the off-mass-shell
part is responsible for the zero-mode contribution. We
found that the form factors g�q2� and a��q2� are immune
to the zero-mode contribution in all three cases. However,
the existence/nonexistence of the zero mode in the form
factor f�q2� depends on the cases. While the zero-mode
contribution exists in the case (1) with Dcov�MV�, the other
two cases (2) and (3) with Dcov�k � P2� and DLF�M

0
0�,

respectively, are immune to the zero-mode contribution.
This contrasts to Jaus’s approach [13,14]. Although Jaus

and we both agree on the vanishing zero-mode contribution
to the form factors g�q2� and a��q2�, the two approaches
led to different conclusions on the form factor f�q2�. While
Jaus concluded that f�q2� receives the zero-mode contri-
bution for any D term, we showed that the validity of his
prescription on N2=D term is limited to the case (1) with
Dcov�MV�. This is supported also by our confirmation that
the two approaches coincide if and only if N2=D �

:
0 (not

by his prescriptionN2=D �
:
Z2=D) for the cases (2) and (3)

with D � Dcov�k � P2� and DLF�M0
0�, respectively.

All of these findings stem from the fact that the zero-
mode contribution to the form factor f�q2� is absent if the
denominator D of the vector-meson vertex �� �
�� � �PV � 2k��=D contains the term proportional to
the LF energy �k��n with the power n > 0. Since the
phenomenologically accessible LFQM satisfies this condi-
tion n > 0, only the valence contribution obtained in the
q� � 0 frame is sufficient to provide the full results of the
LFQM. Although the absence of zero-mode contributions
cannot guarantee the correctness of restriction to the lowest
013004
Fock sector, the Lorentz covariance of the result can be
assured in the LFQM. This certainly benefits the hadron
phenomenology.
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APPENDIX: TRACE TERMS IN EQ. (16)

To obtain the nonvalence contribution to each form
factor in q� > 0 frame, we used the trace terms in
Eq. (16) which are summarized explicitly here.

For gnv�q2�, we need the transverse polarization with the
vector current. Thus, the trace term �S�h���nv�k

�
�1
� for the

vector current in Eq. (16) is given by


�S�h���nv�k
�
�1
��V � �

2P�
1���
2

p "��xyfqLAp � kL
�m�m2�

� ��m1 �m��

�
2

D

k2?q

L � �k? � q?�kL�g: (A1)

The trace term 
�S�h���nv�k
�
m1��V has the same form as the

one in Eq. (A1).
For a��q2�nv, we need the transverse polarization with

the axial current. Thus, the trace term �S�h���nv�k
�
�1
� for the

axial current in Eq. (16), is given by

�S�h���nv�k
�
�1
��A �

4P�
1���
2

p

�
�1� 2x0�qLAp � kL
��� 2x��m1 �m� � �m2 �m��

�
2�x0qL � kL�

x0D
�k? � k0

? � 
�1� x0�m� x0m2�Ap � x�1� x��1� x0��M2
1 �M2

�1
��

�
: (A2)

The trace term 
�S�h���nv�k
�
m1��A can be obtained by the replacement �1 ! m1 in Eq. (A2).

For f�q2�nv, we need the longitudinal polarization with the axial current. Thus, the trace term �S�h�0�nv�k
�
�1
� for the axial

current in Eq. (16) is given by


�S�h�0�nv�k
�
�1
��A � �

4P�
1

x0MV

�
Ap
x

0�1� x0�M2
V �m2m� x02q2?� � k2?�xm1 �m2 � xm� � x0k? � q?
2x�m1 �m�

�m2 �m� � x�1� x�m2�M2
P �M2

�1
� �

1

�1� x�D
��1� x��x0M2

V � �M2
P� � ���21 � k2?�

� x0�1� x�q2? � 2�1� x�k? � q?��k? � k0
? � 
�1� x0�m� x0m2�Ap

� x�1� x��1� x0��M2
P �M2

�1
��

�
; (A3)

whereMP � M1 andMV � M2. The trace term 
�S�h�0�nv�k
�
m1��A can be obtained by the replacement�1 ! m1 in Eq. (A3).
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