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Lepton charge and neutrino mixing in pion decay processes
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We consider neutrino mixing and oscillations in quantum field theory and compute the neutrino lepton
charge in decay processes where neutrinos are generated. We also discuss the proper definitions of flavor
charge and states and clarify the issues of the possibility of different mass parameters in field mixing.
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I. INTRODUCTION

In the context of quantum field theory (QFT) a rich
nonperturbative vacuum structure associated with the mix-
ing of fermion and boson fields has been revealed, [1–15]
and the exact formulas for fermion and boson field oscil-
lations [2,7,10–12] are now established. In particular, in a
full QFT treatment particle mixing exhibits new features
with respect to the usual formulas in quantum mechanics
(QM) [16]. The phenomenological analysis for meson
mixing has shown that, while for most of mixed systems
the nonperturbative structure of the vacuum produces neg-
ligibly small effects, for strongly mixed systems such as
!�� or �� �0 nonperturbative corrections can be as
large as 5%–20% [14]. Moreover the nonperturbative field
theory effects may contribute in a crucial way in other
physical contexts. For example, as shown in [17], the
neutrino mixing may contribute to the value of the cosmo-
logical constant exactly because of the nonperturbative
effects.

There are, however, several aspects which still need to
be fully developed. For example, how to deal, in the
presence of mixing, with those decay processes where
neutrinos are generated.

Since the time of the introduction of the Pontecorvo
mixing transformations [16], it is well known that the
mixed (flavor) neutrinos are not mass eigenstates. This
implies that flavor neutrinos are not representations of
the Poincaré group; one cannot think of them as asymptotic
fields in the frame of the Lehmann-Symanzik-Zimmerman
(LSZ) formalism [18]. The QFT analysis of the mixing
phenomenon has indeed clarified [1] that flavor neutrino
field operators do not have the mathematical characteriza-
tion necessary in order to be defined as asymptotic field
operators acting on the massive neutrino vacuum. The
origin of this is related to the fact that the vacuum for the
massive neutrinos turns out to be unitarily inequivalent to
the vacuum for the mixed neutrino fields.

Previous works were mainly focused on the determina-
tion of the oscillation probability through the analysis of
the expectation value of the flavor charge operator

h���t�jQ�� j���t�i (1)

Q being a function of the flavor annihilation/creation op-
05=72(1)=013003(11)$23.00 013003
erators [19] and �;� � e;�; � flavor indices. In fact,
flavor states are produced in weak interaction processes
and we are left to the question whether Eq. (1) can be
consistently extended to include the neutrino production
vertex and what is the explicit form of

h��t�jQ�� j��t�i; (2)

where j��t�i represents the evolution at time t of the parent
state for the neutrino.

The computation of the matrix element (2) is not a trivial
matter since it simultaneously involves LSZ states and
flavor states, which are not LSZ. This paper is devoted to
the study of such matrix element and of several related
topics. In Sec. II we review the formalism of neutrino
mixing in QFT and discuss the proper definition of flavor
charges and states; in Sec. III we clarify the issues of the
possibility of different mass parameters in field mixing,
which has recently attracted some attention [5,7,9,10,20].
In Sec. IV we perform a careful analysis of (2).
Conclusions are drawn in Sec. V. For the reader’s conve-
nience, we present in Appendix A the proof of orthogo-
nality of the flavor states at different times. The
Appendix B contains the explicit form of some equations
derived in the text.

II. FLAVOR FIELDS AND STATES

Let us start by introducing the general frame for our
discussion, which is also useful to set up our notations. For
a detailed review see [13]. For simplicity we consider only
two Dirac neutrino fields. The Pontecorvo mixing trans-
formations are [16]

�e�x� � �1�x� cos�	 �2�x� sin�;

���x� � ��1�x� sin�	 �2�x� cos�;
(3)

where � is the mixing angle and �1 and �2 are massive
noninteracting, free fields, anticommuting with each other
at any space-time point. The fields �1 and �2 have nonzero
masses m1 � m2 and are explicitly given by

�i�x��
1����
V

p
X
k;r

�urk;i�t��
r
k;i	vr

�k;i�t��
ry
�k;ie

ik�x; i�1;2:

(4)
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with urk;i�t� � e�i!k;iturk;i�0�, vr
k;i�t� � ei!k;itvr

k;i�0� and

!k;i �
������������������
k2 	m2

i

q
. Here and in the following we use t �

x0, when no misunderstanding arises. The vacuum for the
�i and �i operators is denoted by j0i1;2: �r

k;ij0i12 �
�r

k;ij0i12 � 0. The anticommutation relations are the usual
ones (see Ref. [1]). The orthonormality and completeness
relations are

uryk;iu
s
k;i � vry

k;iv
s
k;i � �rs; uryk;iv

s
�k;i � vry

�k;iu
s
k;i � 0;X

r

�urk;iu
ry
k;i 	 vr

�k;iv
ry
�k;i� � 1: (5)

The fields �e and �� are completely determined through
Eq. (3), which can be rewritten in the form (we use ��; i� �
�e; 1�; ��; 2�):

���x� � G�1
� �t��i�x�G��t�

�
1����
V

p
X
k;r

�urk;i�t��
r
k;��

�t� 	 vr
�k;i�t��

ry
�k;��

�t�eik�x;

(6)

with G��t� the generator of the mixing transformations
013003
Eq. (3)

G��t� � exp
�
�
Z

d3x��y
1 �x��2�x� � �y

2 �x��1�x��
�
: (7)

Equation (6) provides an expansion of the flavor fields
�e and �� in the same basis of �1 and �2. The flavor
annihilation operators are then identified with

�r
k;��

�t�

�ry
�k;��

�t�

 !
� G�1

� �t�
�r
k;i

�ry
�k;i

 !
G��t� (8)

The flavor vacuum is defined as j0�t�ie;� � G�1
� �t�j0i1;2

and turns out to be orthogonal to the vacuum for the mass
eigenstates j0i1;2 in the infinite volume limit. Note the time
dependence of j0�t�ie;�: it turns out that flavor vacua taken
at different times are orthogonal in the infinite volume limit
(see Appendix A). In the following for simplicity we will
use the notation j0ie;� � j0�0�ie;� to denote the flavor
vacuum state at the reference time t � 0.

The explicit expression of the flavor annihilation/crea-
tion operators for k � �0; 0; jkj� is
�r
k;�e

�t�
�r
k;��

�t�

�ry
�k;�e

�t�

�ry
�k;��

�t�

0BBBB@
1CCCCA �

c� s�U�
k�t� 0 s�Vk�t�

�s�Uk�t� c� s�Vk�t� 0
0 �s�Vk�t� c� s�U�

k�t�
�s�Vk�t� 0 �s�Uk�t� c�

0BBB@
1CCCA

�r
k;1

�r
k;2

�ry
�k;1

�ry
�k;2

0BBBB@
1CCCCA; (9)
where c� � cos�, s� � sin� and

Uk�t� � uryk;2�t�u
r
k;1�t� � vry

�k;1�t�v
r
�k;2�t� (10)

Vk�t� �  ruryk;1�t�v
r
�k;2�t� � � ruryk;2�t�v

r
�k;1�t�; (11)

with  r � ��1�r. We have

Uk�t� � jUkje
i�!k;2�!k;1�t; Vk�t� � jVkje

i�!k;2	!k;1�t

(12)

jUkj �

�
!k;1 	m1

2!k;1

�
1=2
�
!k;2 	m2

2!k;2

�
1=2

�

�
1	

jkj2

�!k;1 	m1��!k;2 	m2�

�
(13)

jVkj �

�
!k;1 	m1

2!k;1

�
1=2
�
!k;2 	m2

2!k;2

�
1=2

�

�
jkj

�!k;2 	m2�
�

jkj
�!k;1 	m1�

�
; (14)

jUkj
2 	 jVkj

2 � 1: (15)

As discussed in Ref. [3], in the two flavor mixing case
the group structure associated with mixing transformations
is SU�2� and one can define the following charges in the
mass basis:

Qm;j�t� �
1

2

Z
d3x�y

m�x��j�m�x�; j � 1; 2; 3; (16)

where �Tm � ��1; �2� and �j � �j=2 with �j being the
Pauli matrices. The U�1� Noether charges associated with
�1 and �2 can be then expressed as

Q1 �
1

2
Q	Qm;3; Q2 �

1

2
Q�Qm;3: (17)

with Q total (conserved) charge. As usual, we need to
normal order such charge operators:

:Qi: �
Z

d3x:�y
i �x��i�x�:

�
X
r

Z
d3k��ry

k;i�
r
k;i � �ry

�k;i�
r
�k;i�;

i � 1; 2:

(18)

where the :::: denotes normal ordering with respect to the
vacuum j0i1;2.

It is then clear that the neutrino states with definite
masses defined as
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j�rk;ii � �ry
k;ij0i1;2; i � 1; 2; (19)

are eigenstates of the above conserved charges, which can
be identified with the lepton charges in the absence of
mixing.

The situation changes when we turn to the flavor basis
[3]

Qf;j�t��
1

2

Z
d3x�y

f �x��j�f�x�; f�e;�; j�1;2

(20)

where �Tf � ��e; ���. Observe that the diagonal SU�2�

generator Qf;3�t� is time-dependent in the flavor basis.
Thus the flavor charges defined as

Q�e�t� �
1

2
Q	Qf;3�t�; Q���t� �

1

2
Q�Qf;3�t�;

(21)

are now time-dependent and are the lepton charges in
presence of mixing [3]. Indeed their expectation values in
the flavor state (see Eq. (26) below) give the oscillation
formulas [2,7,10–12].

Particular attention has to be paid now to the normal
ordering issue. We define the normal ordered charges
::Q���t�:: with respect to the vacuum j0ie;� as

::Q���t�:: �
Z

d3x::�y
��x����x�::

�
X
r

Z
d3k��ry

k;��
�t��r

k;��
�t� � �ry

�k;��
�t�

� �r
�k;��

�t��;

� � e;�; ; (22)

where the new symbol ::::::: for the normal ordering was
introduced to remember that it refers to the flavor vacuum.
The definition for any operator A, is the following

::A:: � A�e;� h0jAj0ie;� (23)

Note that

::Q���t�:: � G�1
� �t�:Qj:G��t�;

with ��; j� � �e; 1�; ��; 2�;
(24)

and

::Q�e�t�::	 ::Q���t�:: � :Q1:	 :Q2: � :Q:: (25)

We define the flavor states as eigenstates of the flavor
charges Q�� at a reference time t � 0

j�rk;�i � �ry
k;��

�0�j0�0�ie;�; � � e;� (26)

and similar ones for antiparticles. We have

::Q�e�0�::j�
r
k;ei � j�rk;ei; ::Q���0�::j�

r
k;�i � j�rk;�i

(27)
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and ::Q�e�0�::j�
r
k;�i � ::Q���0�::j�

r
k;ei � 0. Moreover

::Q���0�::j0ie;� � 0: (28)

These results are far from being trivial since the usual
Pontecorvo states [16]

j�rk;eiP � cos�j�rk;1i 	 sin�j�rk;2i (29)

j�rk;�iP � � sin�j�rk;1i 	 cos�j�rk;2i; (30)

are not eigenstates of the flavor charges, as can be easily
checked.

It is instructive to consider the expectation values of the
flavor charges onto the Pontecorvo states, in order to better
appreciate how much the lepton charge is violated in the
usual quantum mechanical states. We find

Ph�
r
k;ej::Q�e�0�::j�

r
k;eiP � cos4�	 sin4�

	 2jUkjsin
2�cos2�

	
X
r

Z
d3k; (31)

and

1;2h0j::Q�e�0�::j0i1;2 �
X
r

Z
d3k; (32)

Equations (31) and (32) clearly are both infinite.
One may think that the problem with infinity is due to

the normal ordering with respect to the flavor vacuum and
consider the expectation values of :Q���t�:, i.e. the normal
ordered flavor charges with respect to the mass vacuum
j0i1;2. One has then

Ph�
r
k;ej:Q�e�0�:j�

r
k;eiP � cos4�	 sin4�

	 2jUkjsin
2�cos2� < 1;

8� � 0; m1 � m2; k � 0;

(33)

1;2h0j:Q�e�0�:j0i1;2 � 0; (34)

and

1;2h0j�:Q�e�0�:�
2j0i1;2 � 4sin2�cos2�

Z
d3kjVkj

2; (35)

Ph�
r
k;ej�:Q�e�0�:�

2j�rk;eiP � cos6�	 sin6�	 sin2�cos2�

�

�
2jUkj 	 jUkj

2 	 4

�
Z

d3kjVkj
2

�
; (36)

which are both infinite, thus making the corresponding
quantum fluctuations divergent.

Hence, we conclude that the correct flavor state and
normal ordered operators are those defined in Eqs. (26)
and (23) respectively.
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III. MASS PARAMETERS AND FIELD MIXING

In Eq. (6) urk;i and vr
�k;i are the spinor wavefunctions of

the massive neutrinos �i; i � 1; 2. As already observed in
the previous section, Eq. (6) provides an expansion of the
flavor fields ��; � � e;�, in the same basis of �i; i � 1; 2.
However, it was noticed in Ref. [5] that expanding the
flavor fields in the same basis as the (free) fields with
definite masses is actually a special choice, and that in
principle a more general possibility exists. Indeed, in the
expansion (6) one could use eigenfunctions with arbitrary
masses ��. In other words, the transformation (8) can be
generalized by writing the flavor fields as [5]

���x� �
1����
V

p
X
k;r

�urk;��t�~�
r
k;��

�t� 	 vr
�k;��t� ~�

ry
�k;��

�t�eik�x;

(37)

where u� and v� are the helicity eigenfunctions with mass
�� (the use of such helicity eigenfunctions as a basis
simplifies calculation with respect to the choice of
Ref.[1]). In Eq. (37) the generalized flavor operators are
denoted by a tilde in order to distinguish them from the
ones defined in Eq. (8). The expansion Eq. (37) is more
general than the one in Eq. (6) since the latter corresponds
to the particular choice �e � m1, �� � m2.

Since the issue of the arbitrary mass parameters in the
field mixing formalism has attracted some attention
[5,7,9,10,20], it is worth clarifying some basic facts about
the choice of mass parameters within QFT in general,
independently from the occurrence of the field mixing
phenomenon.

We will refer to fermion fields since in this paper we are
interested in neutrinos, but the conclusions can be also
extended to boson fields.

First of all, it is worth noting that the mass parametri-
zation problem can be revealed also in the free field case.
Indeed, one may still consider the change of mass parame-
trization m ! �, which correspond to choosing ~urk, ~vr

k as
free field amplitudes with the arbitrary mass parameter �.

Consider the set of free (fermion) field operators com-
posed, for simplicity, by only two elements, i.e. assume our
operators are

�r
k;i

�ry
�k;i

 !
; with i � 1; 2: (38)

Let the nonzero masses be m1 and m2, with m1 � m2.
The wave functions ui and vi (we omit the index k when-
ever no confusion arises) satisfy the free Dirac equations

�ik6 	mi�ui � 0; �ik6 �mi�vi � 0; (39)

respectively. Let j0i1;2 be the vacuum state annihilated by
�r
k;i and �r

�k;i.
Since in QFT there exist infinitely many unitarily in-

equivalent representations of the canonical (anti-)
commutation relations [18,21], one could consider another
013003
fermion set of operators, say

~�r
k;i�t�

~�ry
�k;i�t�

 !
; i � 1; 2; (40)

related to Eq. (38) by a Bogoliubov transformation (see
below). The freedom of choosing another set of operators
is, for example, typically exploited in QFT at finite tem-
perature, or more generally when one introduces the irre-
ducible set of ‘‘bare’’ field operators in terms of which the
Lagrangian of the theory is written. In such a case the set of
bare fields is not necessarily composed by the same num-
ber of elements as the one of the set of physical (asymp-
totic) fields satisfying free field equations and in terms of
which observables are expressed. In general, indeed, bound
states of bare fields may also belong to the set of physical
fields. The mapping between the bare fields and the asymp-
totic fields is called the Haag expansion [18,21].

Suppose the wave functions of the field operators in
Eq. (40) also satisfy the free Dirac equations

�ik6 	�i�~ui � 0; �ik6 ��i�~vi � 0; (41)

respectively. The mass parameter �i in Eqs. (41) repre-
sents now the mass of the corresponding arbitrarily chosen
fields in Eq. (40) and therefore it represents an arbitrary
parameter. Our two sets of operators are related by the
transformation

~�r
k;i�t�

~�ry
�k;i�t�

 !
� I�1� �t�

�r
k;i

�ry
�k;i

 !
I��t�; (42)

with

I��t� �
Y
k;r

exp
�
i
X
i

)k
i ��

ry
k;i�

ry
�k;ie

2i!it

	 �r
�k;i�

r
k;ie

�2i!it

�
(43)

where )k
i � �~*i � *i�=2 and cot ~*i � jkj=�i, cot*i �

jkj=mi. Notice that for �1 � m1, �2 � m2 one has
I��t� � 1, as it must be for the identity transformation.

The explicit matrix form of Eq. (42), written for both i
values, is

~�r
k;1�t�

~�r
k;2�t�

~�ry
�k;1�t�

~�ry
�k;2�t�

0BBBBBB@

1CCCCCCA �

�k�
1 �t� 0 i+k

1 �t� 0

0 �k�
2 �t� 0 i+k

2 �t�

i+k�
1 �t� 0 �k

1 �t� 0

0 i+k�
2 �t� 0 �k

2 �t�

0BBBBB@

1CCCCCA

�

�r
k;1

�r
k;2

�ry
�k;1

�ry
�k;2

0BBBBBB@

1CCCCCCA (44)

where
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�k�
i �t��rs � ~uryk;i�t�u

s
k;i�t� � ~vry

�k;i�t�v
s
�k;i�t�

� ei� ~!k;i�!k;i� cos)k
i �rs (45)

i+k�
i �t��rs � ~uryk;i�t�v

s
�k;i�t� � ~vry

�k;i�t�u
s
k;i�t�

� ie�i� ~!k;i	!k;i� sin)k
i �rs (46)

with i � 1; 2 and ~!k;i �
������������������
k2 	�2

i

q
. The vacuum state

annihilated by the (~�r
k;i, ~�

r
�k;i) operators is

j~0�t�i1;2 � I�1� �t�j0i1;2: (47)

We observe that Eq. (42) is indeed nothing but the
Bogoliubov transformation which relates the field opera-
tors (�r

k;i, �
r
�k;i) and (~�r

k;i, ~�
r
�k;i), of masses mi and �i,

respectively. In the infinite volume limit, the Hilbert spaces
where the operators �r

k;i and ~�r
k;i are, respectively, defined

turn out to be unitarily inequivalent spaces. Moreover, the
transformation parameter )k

i acts as a label specifying
Hilbert spaces unitarily inequivalent among themselves
for each (different) value of the �i mass parameter.

We note that the vacuum j~0�t�i1;2 is not annihilated by
�r
k;i and �r

k;i and it is not eigenstate of the number opera-
tors N�i

�
P

r

R
d3k�ry

k;i�
r
k;i and N�i

�
P

r

R
d3k�ry

k;i�
r
k;i.

Similarly j0i1;2 is not annihilated by ~�r
k;i and ~�r

k;i and
it is not eigenstate of the number operators ~N�i

�t��P
r

R
d3k~�ry

k;i�t�~�
r
k;i�t� and ~N�i

�t��
P

r

R
d3k ~�ry

k;i�t� ~�
r
k;i�t�.

One obtains

1;2h
~0�t�jN�i

j~0�t�i1;2 � 1;2h
~0�t�jN�i

j~0�t�i1;2 � sin2)k
i ;

(48)

and

1;2h0j ~N�i
�t�j0i1;2 � 1;2h0j ~N�i

�t�j0i1;2 � sin2)k
i : (49)

In other words, the number operator, say N�i
, is not an

invariant quantity under the Bogoliubov transformation
Eq. (42); it gets a dependence on the mass parameters.
This is, however, not surprising since it is known that the
Bogoliubov transformation Eq. (42) introduces a new set of
canonical operators and a new (i.e. in the infinite volume
limit unitarily, and therefore physically, inequivalent)
Hilbert space. Stated differently, through the Bogoliubov
transformation a new set of asymptotic fields (a new set of
quasiparticles) is introduced, i.e. there are infinitely many
sets of asymptotic fields, each set being associated to its
specific representation. The choice of which one is the set
to be used is then dictated by the physical conditions which
are actually realized. For example, the mass values which
have to be singled out in the renormalization procedure
must be the observed physical masses.

Since the tilde quantities correspond to some new qua-
siparticle objects and the tilde number operator describes a
different type of particles, then, the number operator aver-
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age shall not be expected to remain the same under such
transformations. Indeed, defined the state j~�r

k;ii as
j~�r

k;i�0�i � ~�ry
k;i�0�j

~0i, we have:

h~�r
k;i�0� j ~N�i

�t� j ~�r
k;i�0�i � jf~�r

k;i�t�; ~�
ry
k;i�0�gj

2

� jj�k
i j
2ei� ~!k;i�!k;i�t

	 j+k
i j
2ei� ~!k;i	!k;i�tj2;

i � 1; 2; (50)

which shows that the expectation value of the time-
dependent number operator is not preserved by the trans-
formation (42) applied to both states and operators.
Nevertheless, in the cases of free fields, the charge operator
is still conserved in transformation like Eq. (42):

~Q i � Qi; (51)

moreover the expectation value of the charge at time t on
the state at time t � 0 is also free from mass parameters

h~�r
k;i�0� j ~Qi�t� j ~�

r
k;i�0�i � h�r

k;i�0� j Qi�t� j �
r
k;i�0�i;

(52)

since we have

jf~�r
k;i�t�; ~�

ry
k;i�0�gj

2 	 jf ~�ry
k;i�t�; ~�

ry
k;i�0�gj

2

� jf�r
ki
�t�; �ry

k;i�0�gj
2 	 jf�ry

k;i�t�; �
ry
k;i�0�gj

2: (53)

Similar results are obtained in the two flavor particle
mixing case. Note, however, that in the case of three flavor
mixing and in presence of CP violation, the charge opera-
tor and the flavor states are dependent on the arbitrary mass
parameters and the quantity which is invariant under the
transformation like the Eq. (42) is

h�r
k;��

j::Q���t�::j�
r
k;��

i �e;�;� h0j::Q���t�::j0ie;�;�; (54)

with j�r
k;��

i � �ry
k;��

�0�j0ie;�;� and � � e;�; � as ob-
served in Ref.[10]

Having clarified that the possibility of different mass
parameters is intrinsic to the very same structure of QFT
and is independent of the occurrence or not of the field
mixing, we may affirm that the mass parameters must be
chosen not arbitrarily, but they must be justified on the
ground of physical reasons [4,9,10].

In particular, in the mixing problem, the choice �e �
m1, �� � m2, �� � m3, is motivated by the fact that m1,
m2 and m3 are the masses of the mass eigenfields and
therefore such a choice is the only one physically relevant.

In our computations, instead of using the number opera-
tor, we use the charge operator Q which in the mixing
phenomena describes the relative population densities of
flavor particles in the beam and it is related with the
oscillating observables that are: the lepton charge, in the
case of neutrino mixing, the strange charge in meson
systems like K0 � �K0 and B0s � �B0s , the charmed charge
-5
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in the systems D0 � �D0, and so on. We note that, as shown
in Refs. [12,14], the momentum operator for the mixing of
neutral fields plays an analogous role to the one of the
charge operator for charged fields.
IV. EXPECTATION VALUE OF NEUTRINO
LEPTON CHARGE IN THE ONE PION STATE IN

PION DECAY

In this Section we study the structure of the flavor charge
expectation values in the case the production process of
neutrinos is taken into account. This is done by using the
flavor Hilbert space discussed above. In Ref. [22] a similar
calculation was performed by using the mass Hilbert space,
so neglecting flavor vacuum effects.

The final aim of the authors of Ref. [22] was to derive an
oscillation formula in space, which is relevant for current
experiments. On the other hand, a general oscillation for-
mula with space-time dependence has been obtained in
Ref. [11] in terms of expectation values of the flavor
currents on the flavor neutrino states, exhibiting the cor-
rections due to the flavor vacuum. In the following, we
show in an explicit way how calculations can be performed
with interacting fields on the flavor Hilbert space.

We consider the case where the flavor neutrinos are
produced through the pion decay 1	 ���! �	 	 ��. We
use the phenomenological approach to the pion decay [19]
without referring to the quark structure of the pion. As
initial 1	 state at time x0I , we use j��hki;x; x0I �i �
j1�hki;x; x0I �i � j0�x0I �i� � j0i� with hki the average k
vector (see below). The neutrino vacuum is the flavor
vacuum: j0�x0I �i� � G�1

� �x0I �j0i1;2 (Note the change of no-
tation for j0�x0I �ie;� with respect to the previous sections.)
We calculate the expectation values of neutrino flavor
charge ::Q���x

0�:: with respect to one pion state
j��hki;x; x0�i where x0I < x0

h::Q���x
0�::i� h��hki;x;x0�j::Q���x

0�::j��hki;x;x0�i

� h��hki;x;x0I �jS
�1�x0;x0I �::Q���x

0�::

�S�x0;x0I �j��hki;x;x0I �i (55)

with

j��hki;x; x0�i � S�x0; x0I �j��hki;x; x0I �i (56)

where, in the interaction representation, the normal ordered
neutrino flavor charge ::Q���x

0�:: is

::Q���x
0�:: �

X
r

Z
d3k��ry

k;��
�x0��r

k;��
�x0�

� �ry
�k;��

�x0��r
�k;��

�x0�; (57)
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and S�x0; x0I � is

S�x0;x0I ��
X
m�0

��i�m
Z x0

x0I

d4y1
Z y01

x0I

d4y2 . . .

�
Z y0m�1

x0I

d4ymHint�y1�Hint�y2� . . .Hint�ym�: (58)

The muon neutrino field and the muon field are expanded,
in the interaction representation, as

���x� �
X
r

Z d3q

�21�3=2
�urq;2�x

0��r
q;���x

0�eiq�x

	 vr
q;2�x

0��ry
q;���x

0�e�iq�x; (59)

��x� �
X
s

Z d3p

�21�3=2
�usp;��x0��s

p;�eip�x

	 vs
p;��x

0��sy
p;�e�ip�x; (60)

with �r
q;���x

0� flavor annihilation operator for neutrino. In
Eq. (59), urq;2�x

0� is the spinor wave function for the
massive neutrino field �2�x�.

The Hamiltonian of weak interaction is

Hint�x� � �ig1���x�5
+�1	 55���x�@+1�x� 	 h:c:;

(61)

where 1�x�, ��x�, ���x�, are the fields of pion, muon and
flavor (muon) neutrino, respectively.

In the lowest order (i.e. the second order) of the weak
interaction, we have

h::Q���x
0�::i � h��hki;x; x0I �j

�Z x0

x0I

d4zHint�z�::Q���x
0�::

�
Z x0

x0I

d4yHint�y�
�
j��hki;x; x0I �i (62)

and, in the case of positively charged pion 1	, we have
explicitly

h::Q���x
0�::i �

Z x0

x0I

Z x0

x0I

d4zd4yh1�hki;x; x0I �

� j�ig�1@+1y�z��h0j��z�5+�1	 55�

� �h0�x
0
I �j���z�::Q���x

0�::���y�j0�x
0
I �i�

� 5��1	 55���y�j0i�ig1@�1�y�j

� 1�hki;x; x0I �i: (63)

Expressing the charge operator as in Eq. (57), a straight-
forward calculation gives
-6
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h::Q���x
0�::i � �jg1j

2
Z x0

x0I

Z x0

x0I

d4zd4yh1�hki;x; x0I �j@+1
y�z�@�1�y�j1�hki;x; x0I �i

X
r;t;u;v

Z d3pd3qd3q0d3q00

�21�6

� �ei�p	q��ze�i�p	q0��ye�i�!p	!q;2�z0ei�!p	!q0 ;2�y
0

�vr
p;�5

+�1	 55�u
t
q;2 �u

u
q0;25

��1	 55�v
r
p;��h0�x

0
I �j�

t
q;���z

0�

� ��vy
q00;��

�x0��v
q00;��

�x0� � �vy
q00;��

�x0��v
q00;��

�x0��uy
q0;��

�y0�j0�x0I �i� 	 similar terms; (64)

�������������������q ������������������q

being !p � p2 	m2

� and !q;2 � q2 	m2
2.

The explicit expression of Eq. (64) is given by Eq. (B1)
in Appendix B.

A. Evaluation of the bosonic term

We consider first the bosonic part:
h1�hki;x; x0I �j@+1

y�z�@�1�y�j1�hki;x; x0I �i: The pion
state is defined as:

j1�hki;x; x0I �i �
Z

d3k
A1�k; hki�e�ik�x	i�kx0I���������

2�k

p ayk1j0i1

(65)

with

A1�k; hki� �
1

�
�������
21

p
�21�

3=2
exp

�
�
�k� hki�2

4�21

�
; (66)
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and �k �
�������������������
k2 	m2

1

p
. The pion field in the interaction

picture is:

1�x� �
Z d3k

�21�3=2
1���������
2�k

p �ake
i�k�x��kt� 	 byke

�i�k�x��kt��;

(67)

hence

h1�hki;x; x0I �j@+1
y�z�@�1�y�j1�hki;x; x0I �i

�
Z d3kd3k0

4�21�3�k�k0
A�
1�k; hki�A1�k0; hki�

� k+k0�e�ik�zeik
0�yei�k�z0�x0I �e�i�k0 �y

0�x0I �ei�k�k0��x; (68)

thus Eq. (64) may be expressed as
h::Q���x
0�::i � �jg1j2

Z x0

x0I

Z x0

x0I

d4zd4y
X
r;t;u;v

Z d3kd3k0d3pd3qd3q0d3q00

4�21�9�k�k0
A�
1�k; hki�A1�k0; hki�k+k0�ei�k�k0��xe�i��k��k0 �x

0
I

� e�i�k�p�q��zei�k
0�p�q0��yei��k�!p�!q;2��z0�x0I �e�i��k0�!p�!q0 ;2��y

0�x0I � �vr
p;�5+�1	 55�utq;2 �u

u
q0;25

��1	 55�

� vr
p;��h0�x

0
I �j�

t
q;���z

0���vy
q00;��

�x0��v
q00;��

�x0� � �vy
q00;��

�x0��v
q00;��

�x0��uy
q0;��

�y0�j0�x0I �i� 	 similar terms;

(69)

(see Eq. (B2) in Appendix B) and then

h::Q���x
0�::i ��jg1j2

Z x0

x0I

Z x0

x0I

dz0dy0
X

r;t;u;v

Z d3kd3k0d3pd3q
4�21�3�k�k0

A�
1�k; hki�A1�k0; hki�ei�k�k0��xe�i��k��k0 �x

0
I

� ei��k�!p�!k�p;2��z0�x0I �e�i��k0�!p�!k0�p;2��y
0�x0I � �vr

p;�k+5
+�1	55�u

t
k�p;2 �u

u
k0�p;2k

0
�5

��1	55�

�vr
p;��h0�x

0
I �j�

t
k�p;��

�z0���vy
q;���x

0��v
q;���x

0���vy
q;���x

0��v
q;���x

0��uy
k0�p;��

�y0�j0�x0I �i�	 similar terms;

(70)

(see Eq. (B3) in Appendix B).

B. Evaluation of terms like �h0�x0I�j�
t
k�p;��

�z0���vy
q;��

�x0��v
q;��

�x0� � 
vy
q;��

�x0�
v
q;��

�x0��uy
k0�p;��

�y0�j0�x0I�i�
We have

�h0�x
0
I �j�

t
k�p;��

�z0���vy
q;���x

0��v
q;���x

0� � �vy
q;���x

0��v
q;���x

0��uy
k0�p;��

�y0�j0�x0I �i�

� 1;2h0jG�x
0
I ��

t
k�p;��

�z0�G�1�x0I �G�x
0
I ���

vy
q;���x

0��v
q;���x

0� � �vy
q;���x

0��v
q;���x

0�G�1�x0I �G�x
0
I ��

uy
k0�p;��

�y0�G�1�x0I �j0i1;2

� 1;2h0j�̂
r
k�p;��

�x0I ; z
0���̂vy

q;���x
0
I ; x

0��̂v
q;���x

0
I ; x

0� � �̂vy
q;���x

0
I ; x

0��̂v
q;���x

0
I ; x

0��̂uy
k0�p;��

�x0I ; y
0�j0i1;2; (71)
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Where the flavor annihilation operators are �r
q;���t; �� � G�1

� �t��r
q;iG��t�:

�r
q;�e�t; �� � cos��r

q;1 	 sin�
X
s

�uryq;1�t�u
s
q;2�t��

s
q;2 	 uryq;1�t�v

s
�q;2�t��

sy
�q;2;

�r
q;���t; �� � cos��r

q;2 � sin�
X
s

�uryq;2�t�u
s
q;1�t��

s
q;1 	 uryq;2�t�v

s
�q;1�t��

sy
�q;1;

�r
�q;�e�t; �� � cos��r

�q;1 	 sin�
X
s

�vsy
�q;2�t�v

r
�q;1�t��

s
�q;2 	 usyq;2�t�v

r
�q;1�t��

sy
q;2;

�r
�q;���t; �� � cos��r

�q;2 � sin�
X
s

�vsy
�q;1�t�v

r
�q;2�t��

s
�q;1 	 usyq;1�t�v

r
�q;2�t��

sy
q;1:

(72)

By using �̂r
q;���t

0; t� � G��t0��r
q;���t; ��G

�1
� �t0�, and G�1

� �t� � G���t�, we have

�̂ r
q;�e�t

0; t� � cos��r
q;�e�t

0;��� 	 sin�
X
s

�uryq;1�t�u
s
q;2�t��

s
q;���t

0;��� 	 uryq;1�t�v
s
�q;2�t��

sy
�q;���t

0;���;

�̂r
q;���t

0; t� � cos��r
q;���t

0;��� � sin�
X
s

�uryq;2�t�u
s
q;1�t��

s
q;�e�t

0;��� 	 uryq;2�t�v
s
�q;1�t��

sy
�q;�e�t

0;���;

�̂r
�q;�e�t

0; t� � cos��r
�q;�e�t

0;��� 	 sin�
X
s

�vsy
�q;2�t�v

r
�q;1�t��

s
�q;���t

0;��� 	 usyq;2�t�v
r
�q;1�t��

sy
q;���t

0;���;

�̂r
�q;���t

0; t� � cos��r
�q;���t

0;��� � sin�
X
s

�vsy
�q;1�t�v

r
�q;2�t��

s
�q;�e�t

0;��� 	 usyq;1�t�v
r
�q;2�t��

sy
q;�e�t

0;���:

(73)
By using Eqs. (72) in Eqs. (73) the last equality in Eqs. (71)
can be finally expressed in terms of the massive neutrino
operators �r

q;i, �
r;y
q;i , �

r
�q;i, �

r;y
�q;i which act on the massive

neutrino vacuum j0i1;2. Thus our computation allows the
expression of the matrix element h��t�jQ�� j��t�i as a
function of states that have the proper mathematical char-
acterization of the LSZ formalism.

We observe that the formula (69) is consistent with
Eq. (14) of Ref. [22]: indeed, when the pion state is
represented by a plane wave (as done in Ref. [22]), the
two equations acquire the same form, except for the neu-
trino charge expectation value, which in our case includes
the flavor vacuum contributions. If we neglect such flavor
vacuum effect, we precisely recover Eq. (14) of Ref. [22].

Furthermore, when we consider the effect of finite life-
time of the pion and we take the neutrino oscillation time
x0 � x0I much bigger than 1=�1, then �ry

k;��
�y0�j0�x0I �i� ’

j�rk;��x
0
I �i and we obtain a form which is similar (once

integrated in time) to the one considered in Ref. [11] giving
the space dependent oscillation formula, except for the fact
that the pion state rather than the neutrino state is repre-
sented by a wave packet. The final expression ensuing the
formula (70) is too lengthy to be discussed at this stage.
Further analysis will be done elsewhere.

V. CONCLUSION

In this paper we have studied neutrino mixing and
oscillations in quantum field theory and we discussed the
determination of the oscillation probability including the
neutrino production vertex. A crucial point in our analysis
is the disclosure of the fact that in order to describe the
neutrino oscillations we have to use the flavor states de-
013003
fined as j�rk;�i � �ry
k;��

�0�j0�0�i�, with � � e;�; � and the
flavor charge operators ::Q�� :: normal ordered with respect
to the flavor vacuum. Indeed, we have shown that the usual
Pontecorvo states are not eigenstates of the flavor charges
:Q�� : and ::Q�� ::.

We showed that the possibility of different mass parame-
ters is intrinsic to the very same structure of QFT and is
independent of the occurrence or not of the field mixing;
hence, as noted in [4,9,10], the mass parameters must be
chosen not arbitrarily, but on the ground of physical rea-
sons: �e � m1, �� � m2, �� � m3.

Moreover, we have computed the neutrino lepton charge
in decay processes where neutrinos are generated, proving
that the corresponding lepton charge expectation value can
be uniquely expressed in terms of LSZ states and in par-
ticular of the massive neutrino annihilation/creation opera-
tors acting on the massive neutrino vacuum.
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APPENDIX A: ORTHOGONALITY OF FLAVOR
STATES AT DIFFERENT TIMES

The product of two vacuum states at different times t �

t0 (we put for simplicity t0 � 0) is

�h0j0�t�i� �
Y
k

C2k�t� � e
2
P
k

lnCk�t�
(A1)

with
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Ck�t� � �1� sin2�jVkj
2�2

	 2sin2�cos2�jVkj
2e�i�!k;2	!k;1�t

	 sin4�jVkj
2jUkj

2�e�2i!k;1t 	 e�2i!k;2t�

	 sin4�jVkj
4e�2i�!k;2	!k;1�t: (A2)

In the infinite volume limit we obtain (note that jCk�t�j � 1
for any value of k, t, and of the parameters �, m1, m2 ):

lim
V!1�

h0j0�t�i� � lim
V!1

exp
�
2V

�21�3
Z

d3k�lnjCk�t�j

	 i�k�t��
�
� 0 (A3)

with jCk�t�j2 � Re�Ck�t�2 	 Im�Ck�t�2 and �k�t� �
tan�1�Im�Ck�t�=Re�Ck�t��.

Thus we have orthogonality of the vacua at different
times1.

One can easily check that flavor neutrino states are also
orthogonal at different times. Consider the electron neu-
trino state at time t with momentum k:

j�rk;e�t�i � �ry
k;�e

�t�j0�t�i�: (A4)

The flavor vacuum is explicitly given by

j0�t�i� �
Y
p
G�1

p;��t�j0i1;2; (A5)

where, to be precise, the mass vacuum is to be understood
as j0i1;2 � j0ik11;2

N
j0ik21;2

N
j0ik31;2:::.is:

LEPTON CHARGE AND NEUTRINO MIXING IN PION . . .
1Note that it may be that for some values of the continuous index
values of k for which this happens is a zero-measure set in the abov
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Then, we have

h�rk;e�0�j�
r
k;e�t�i��

h0j�r
k;�e

�0��ry
k;�e

�t�j0�t�i� (A6)

�

�Y
p 1;2

h0jGp;��0�
�
�r
k;�e

�0��ry
k;�e

�t�
�Y

q
G�1

q;��t�j0i1;2

�
;

(A7)

and, since for p � q the mixing generators commute
among themselves and with �r

k;�e
for k � p;q, it is

h�rk;e�0�j�
r
k;e�t�i /� h0kj�r

k;�e
�0��ry

k;�e
�t�j0k�t�i�

�
Y
p�k1;2

h0jGp;��0�G
�1
p;��t�j0i1;2 (A8)

� �h0
kj�r

k;�e
�0��ry

k;�e
�t�j0k�t�i��h0j0�t�i�: (A9)

By using Eq. (A3), we obtain the orthogonality of flavor
states at different times in the infinite volume limit, pro-
vided �h0

kj�r
k;�e

�0��ry
k;�e

�t�j0k�t�i� is finite or zero, as it is
indeed.
APPENDIX B: EXPLICIT EXPRESSIONS OF
EQS. (64), (69), AND (70)

The complete Eq. (64)
h::Q���x
0�::i � �jg1j2

Z x0

x0I

Z x0

x0I

d4zd4yh1�hki;x; x0I �j@+1
y�z�@�1�y�j1�hki;x; x0I �i

X
r;t;u;v

Z d3pd3qd3q0d3q00

�21�6

� �ei�p	q��ze�i�p	q0��ye�i�!p	!q;2�z0ei�!p	!q0 ;2�y
0

�vr
p;�5+�1	 55�utq;2 �u

u
q0;25

��1	 55�vr
p;��h0�x

0
I �j�

t
q;���z

0�

� ��vy
q00;��

�x0��v
q00;��

�x0� � �vy
q00;��

�x0��v
q00;��

�x0��uy
q0;��

�y0�j0�x0I �i�

	 ei�p�q��ze�i�p�q0��ye�i�!p�!q;2�z0ei�!p�!q0 ;2�y
0

�vr
p;�5

+�1	 55�v
t
q;2 �v

u
q0;25

��1	 55�v
r
p;��h0�x

0
I �j�

ty
q;���z

0�

� ��vy
q00;��

�x0��v
q00;��

�x0� � �vy
q00;��

�x0��v
q00;��

�x0��u
q0;��

�y0�j0�x0I �i�

	 ei�p	q��ze�i�p�q0��ye�i�!p	!q;2�z0ei�!p�!q0 ;2�y
0

�vr
p;�5+�1	 55�utq;2 �v

u
q0;25

��1	 55�vr
p;��h0�x0I �j�

t
q;���z

0�

� ��vy
q00;��

�x0��v
q00;��

�x0� � �vy
q00;��

�x0��v
q00;��

�x0��u
q0;��

�y0�j0�x0I �i�

	 ei�p�q��ze�i�p	q0��ye�i�!p�!q;2�z0ei�!p	!q0 ;2�y
0

�vr
p;�5+�1	 55�vt

q;2 �u
u
q0;25

��1	 55�vr
p;��h0�x

0
I �j�

ty
q;���z

0�

� ��vy
q00;��

�x0��v
q00;��

�x0� � �vy
q00;��
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The complete Eq. (69) is:
k, the Ck�t� are periodic functions of time. However, the set of
e integration Eq. (A3).
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The complete Eq. (70) is:
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