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Noncommutative geometry and twisted conformal symmetry
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The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This
allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted
coproduct is reviewed for the Poincaré algebra and the construction is then extended to the full conformal
algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated
that conformal invariance need not be viewed as incompatible with noncommutative geometry; the
noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the
literature in the case of the twisted Poincaré algebra.
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I. INTRODUCTION

Noncommutative geometry is often introduced by pos-
tulating that the coordinates of space (or spacetime) do not
commute, so that

�x�; x�� � i����x�: (1)

In order to formulate Physics in this context [1,2], fields
must be defined on such a background, and of course they
inherit algebraic properties from those of the background
itself. The algebra of fields is used to construct an action
and to express physical principles. One way of performing
calculations is to avoid dealing with the algebra of func-
tions on noncommutative coordinates as defined above,
and instead formulate a theory in terms of the algebra of
functions on a commutative space, but with a deformed
’star product,’ defined such that these two algebras are
isomorphic. The application of such ideas and their appear-
ance in string theory can be found in the well-known paper
by Seiberg and Witten [3] and references therein.

In practice, dealing with an arbitrary noncommutativity
function ��x� is very difficult. Rather than attempt this,
authors have mainly considered constant, linear, and qua-
dratic noncommutativity, referred to, respectively, as the
’canonical structure,’ ’Lie algebra,’ and ’quantum space’
types of noncommutative space, as explained in [4]. In the
present paper, we consider the canonical structure case and
will eventually show the property

�x�; x�� � i���; (2)

where � is a constant matrix, not depending on x. At first
glance, this relation seems to be more than just a statement
of noncommutativity; it appears to break Poincaré1 invari-
ance, and to introduce ’preferred directions’ into the for-
malism at the outset. Given that such preferred directions
address: pwm@imsc.res.in
e pointed out that Eq. (2) only obviously breaks
iance, as it is clearly invariant under x ! x� a.
(naively) true if the coordinate shift a commutes
dinates, which is a nontrivial assumption in itself.
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disappear in the � � 0 case, it is not clear that the simple
limit � ! 0 reproduces the Lorentz symmetry which we
are used to seeing in nature. Furthermore, although the
commutation relation (2) has been used as the basis of
many analyses of physics in the language of quantum
theory on noncommutative space, it does not make sense
to talk of vectors or spin, which depend on representations
of the Lorentz group, when it is not clear that there is a
Lorentz group present.

These problems were pointed out and addressed system-
atically in the interesting paper [5] and in the lecture [6].2 It
is true that the noncommutativity relation (2) is not a
Poincaré-invariant statement, but it is twist-deformed
Poincaré invariant. ’Relativistically invariant’ in the usual
sense means that a theory is Poincaré-invariant, and this
may be consistently modified to mean invariance under
twisted Poincaré transformations in the case of a noncom-
mutative background. This is demonstrated in [5,7] and we
shall briefly review the construction in order that the
present work be somewhat self-contained. We note that
the construction may also be generalized to the supersym-
metric case, as investigated in [8].

The commutator (2) does not look Poincaré-invariant,
but can be understood to be relativistically invariant in the
twisted Poincaré sense. It also does not look conformally
invariant, and the purpose of the present paper is to show
that it is consistent to twist deform the conformal algebra
along the same lines as the Poincaré algebra and therefore
consider conformal symmetry in a noncommutative back-
ground. The relation (2) is twist-conformal invariant.

In Section II we review the construction of the Hopf
algebra and coproduct used by the authors of [5] to define
the twisted Poincaré algebra. In Section III we calculate the
twisted coproduct for the generators of the full conformal
algebra, including for completeness the Poincaré subalge-
bra. Finally, in Section IV we give some explicit examples
of the twisted conformal transformations. As in the treat-
ment in [5], we show that the noncommutativity of Eq. (2)
2We will follow more closely the notations of [5].

-1  2005 The American Physical Society



PETER MATLOCK PHYSICAL REVIEW D 71, 126007 (2005)
is a simple consequence of the deformed algebra, in this
case the twisted conformal algebra. We conclude with
some discussion in Section V.
II. COPRODUCT AND TWIST DEFORMATION

Here we briefly explain the formalism so that we may
apply it to the conformal algebra; for a detailed treatment
of Hopf algebras, the reader may consult the comprehen-
sive reference [9].

To deform the universal enveloping algebra U�A� of a
Lie algebra A, one first constructs a representation of U�A�
in the tensor product U�A� �U�A� by defining a copro-
duct

� : U�A� ! U�A� �U�A�: (3)

Starting with the primitive coproduct �0, defined by

�0�X� 	 X � 1� 1 � X; (4)

a twist element F 2 U�A� �U�A� may be chosen, and a
twisted coproduct �t defined as

�t�X� 	 F�0�X�F
�1: (5)

The twist element must be an invertible element and satisfy
the twist equation F �� � id�F � F �id ���F for the
original coproduct � � �0 [9]. Consequently, the Hopf
algebra retains its properties and remains a Hopf algebra
under the twist. The twisted and untwisted coproducts �t
and �0 of the generators satisfy the same Lie algebra; that
is, the coproduct map is an obvious homomorphism
thereof.

In [5] the algebra A was taken to be the Poincaré algebra
P , with momentum generators P� and Lorentz generators
M��. In that case, the twist element was taken to be a so-
called Abelian (since the P� form an Abelian subalgebra)
twist,

F � e�i=2��
��P��P�; (6)

constructed to reproduce the noncommutativity relation
(2), as we will see below. Our main result will be that
this same twist element can be used to construct the twist-
deformed conformal algebra under which the noncommu-
tativity (2) is invariant. With this in mind, let us recall the
full conformal algebra for d > 2, including the dilatation
generator D, and the special conformal transformation
(SCT) K�,
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�D;P�� � iP�;

�D;K�� � �iK�;

�K�; P�� � 2i����D�M���;

�K�;M��� � i����K� � ���K��;

�P�;M��� � i����P� � ���P��;

�M��;M��� � i����M�� � ���M�� � ���M��

� ���M���:

(7)

The conformal algebra contains the Poincaré algebra and
the Abelian algebra of the P� as subalgebras. The repre-
sentation of the conformal algebra on an algebra A of
functions on spacetime is given by [10]

P̂ � � �i@�; M̂�� � i�x�@� � x�@��;

D̂ � �ix � @; K̂� � 2x�D̂� x2P̂�;
(8)

where Ĝ denotes the representation of G on the algebra of
functions A.

In the primitive case, using the untwisted coproduct �0,
the multiplication in A is given by a map m : A �A !
A defined simply as m�f � g� 	 fg. In the twisted case,
this multiplication map must be modified by composition
with the representation of the inverse twist element, to give
the twisted map mt which is the ‘‘star product‘‘ in A,

f ? g 	 mt�f � g� � m�F̂�1�f � g��: (9)

The algebra A endowed with the new twisted multiplica-
tion mt is then consistent with the twisted conformal
algebra, exhibited explicitly in the following section. By
’consistent’ is meant that statements (i.e. physics) ex-
pressed in terms of the elements and operations of the
twisted algebra of functions are covariant under the twist-
deformed conformal algebra. This includes the relation (2),
as we show in Section IV.
III. TWISTED CONFORMAL ALGEBRA

Using the twisted coproduct �t given in Eq. (5) with the
twist element of Eq. (6), we may calculate the twisted
coproducts of the generators. As mentioned in [7], the
momentum generators do not get twisted due to the com-
mutativity of P�;

�t�P�� � P� � 1� 1 � P� � �0�P��: (10)

For the Lorentz generators, �t�M��� has been calculated in
[6,7], and is given by
-2
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�t�M��� � M�� � 1� 1 �M��

�
1

2
��������P� � ���P�� � P�

� P� � ����P� � ���P���: (11)

For the dilatation generator D we find

�t�D� � D � 1� 1 �D� ���P� � P�; (12)

while for the SCT generator K� a short calculation gives

�t�K���K��1�1�K����������D�M����P�

�P������D�M����

�
1

4
�����������P�����P�����P���P�P�

�P�P������P�����P�����P���: (13)

As a consistency check, it may be shown explicitly that
these objects satisfy the conformal algebra (7), as by
construction they should.
IV. NONCOMMUTATIVITY AND
TRANSFORMATIONS

The noncommutativity relation (2) is a consequence of
the twisted algebra, as shown in [5]. Evaluating the com-
mutator of x� with x� in A, we have

�x�; x��A 	 mt�x� � x�� �mt�x� � x�� � ���: (14)

In particular, ��� is an invariant under twisted Poincaré
transformations. Significantly, ��� is also invariant under
twisted conformal transformations, as we will show at the
end of this section.

Now, let us choose some simple example functions and
demonstrate explicitly that they transform correctly under
the twisted conformal symmetry. Following [5] consider
the second-rank tensor f�� � x�x�. In that paper, the
action of the Lorentz algebra on this object is calculated
to show how the twisted covariance works in practice on a
Lorentz tensor. A similar test can be performed using the
twisted conformal algebra. The actions of the original
(untwisted) dilatation generator D and SCT generator K�

on f�� are given by

Df�� � �2if��; (15)

showing that f�� has conformal dimension two, and

K�f�� � �4ix�x�x� � ix2����x� � ���x��: (16)

In the twisted case, f�� is replaced by the twisted object
ft�� � mt�x� � x��, and the conformal generators are now
applied through the twisted coproduct, so that for a gen-
erator G,

Gtft�� � mt��t�Ĝ��x� � x���: (17)
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Using the twisted coproduct from Eq. (12), we first calcu-
late

�t�D̂�x� � x� � �2ix� � x� � ���1 � 1 (18)

so that, using an expansion for F�1 (which terminates in
this case),

F̂ �1�t�D̂�x� � x� � �2ix� � x�: (19)

We can now read off

Dtft�� � �2ift��; (20)

analogous to the untwisted case, Eq. (15), showing that the
conformal dimension of the twisted tensor ft is two, under
the twisted conformal algebra. Now, considering the action
of the twisted coproduct of K� from Eq. (13) on ft, we
have

�t�K̂��x��x���i�2x�x��x2�����x�

� ix���2x�x��x2����

������x�����x�����x���������

������x�����x�����x������:

(21)

Acting on this with F�1 we find

F̂�1�t�K̂��x� � x� � �i�2x�x� � x2���� � x�

� ix� � �2x�x� � x2����; (22)

and performing the multiplication m we obtain

Kt
�ft�� � �4ix�x�x� � ix2�x���� � x�����: (23)

This equation is in agreement with the untwisted case (16),
reflecting that the full conformal algebra is represented.

Now, returning to the question of invariance of the non-
commutativity matrix ��� under the twisted conformal
group, we may write i��� as the commutator �x�; x�� in
the twisted algebra as we did at the beginning of this
section. This is nothing but the antisymmetric part of the
example tensor ft�� which we have considered above.
Noticing that the right-hand sides of Eqs. (20) and (23)
are symmetric in � and �, we immediately have

Dt��� � 0 and Kt
���� � 0; (24)

showing the expected result that ��� is invariant under
twisted conformal symmetry.

V. FINAL REMARKS

We have constructed the twist-deformed conformal al-
gebra as a Hopf algebra with a twisted coproduct. The twist
element F has been chosen so that the resulting algebra of
functions reproduces the noncommutativity of coordinates
often considered to define noncommutative geometry. The
conclusion is that a theory formulated in the twisted alge-
-3
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bra of functions, by using the star-product in place of the
traditional product in the Lagrangian, will be invariant
under the twist-deformed conformal algebra.

It would be interesting to investigate the full conformal
group and examine global and local transformations. This
could be done along the lines of the twisted diffeomor-
phism invariance constructed in [11]. Using this structure
in field theory it should be possible to construct a well-
defined notion of conformal field theory in a noncommu-
126007
tative background. A natural extension would be to inves-
tigate the two-dimensional case, where the conformal
algebra is infinite-dimensional.
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