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First order deconfinement transition in large N Yang-Mills theory on a small S3
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We give an analytic demonstration that the 3� 1-dimensional large N SU�N� pure Yang-Mills theory,
compactified on a small S3 so that the coupling constant at the compactification scale is very small, has a
first order deconfinement transition as a function of temperature. We do this by explicitly computing the
relevant terms in the canonical partition function up to three-loop order; this is necessary because the
leading (one-loop) result for the phase transition is precisely on the border line between a first order and a
second order transition. Since numerical work strongly suggests that the infinite-volume large N theory
also has a first order deconfinement transition, we conjecture that the phase structure is independent of the
size of the S3. To deal with divergences in our calculations, we are led to introduce a novel method of
regularization useful for non-Abelian gauge theory on S3.
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2As discussed in [5], the 	 � 0 theory must still obey a Gauss
I. INTRODUCTION

It is widely believed that 3� 1-dimensional SU�N�
Yang-Mills theory on R3 confines at low temperatures,
but is deconfined at high temperatures. Compelling nu-
merical evidence indicates that in the absence of quarks,
when all fields are in the adjoint representation, there is a
sharp phase transition separating the confined and the
deconfined phases, which occurs at a temperature T �
�QCD. Since the Yang-Mills theory is strongly coupled at
the transition temperature, the deconfinement phase tran-
sition is rather poorly understood. In particular, using the
currently available analytic techniques it is not possible to
determine even the order of the transition for N � 3; lattice
simulations suggest that the transition is of second order
for N � 2 and of first order for N � 3 (see [1,2] for the
latest results for N > 3).

The intractability of the thermal behavior of Yang-Mills
theory on R3 is related to the absence of a dimensionless
coupling constant. It is thus interesting to note that Yang-
Mills theory compactified on an S3 of radius R has an
effective dimensionless coupling constant, R�QCD.
Indeed, when R�QCD � 1, the Yang-Mills coupling con-
stant is weak even at the lowest energy scale in the theory,
E� 1=R. As a consequence, at small values of �QCDR, the
thermal behavior of this system is completely tractable.1

Unfortunately, the most interesting feature of infinite-
volume thermodynamics—the sharp deconfinement phase
transition—is smoothed out into crossover behavior at any
finite R, assuming that N is also finite.
sely, it is tractable for temperatures smaller than an
that scales to infinity in the limit �QCDR! 0, see
ould not be true if the gauge field had zero modes
ct space, which is why we chose a sphere rather
rus.
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However, in the ‘‘thermodynamic’’ N ! 1 ’t Hooft
limit (with fixed 	 
 g2

YMN [3]), this deconfinement phase
transition remains sharp even at finite R. In this limit it is
possible to study the dynamics of the deconfinement tran-
sition as a function of the effective coupling constant
R�QCD. When R�QCD � 1, this system approaches the
theory on R3. On the other hand, in the opposite limit
R�QCD ! 0 the theory is weakly coupled, and may be
solved exactly [4,5]; quite remarkably it turns out that
this ‘‘free’’ gauge theory undergoes a confinement-
deconfinement phase transition at a temperature of order
1=R.2

At strictly zero coupling, the transition is first order, but
lies precisely at the border between first and second order
behavior, as reviewed below. Consequently, to understand
the nature of the transition at weak nonzero coupling, the
leading effects of interaction terms must be taken into
account via a perturbative calculation. This calculation is
the goal of the present paper.

Before describing the calculation and our result, we
recall the essential details of the story in the 	 � 0 limit.
It was demonstrated in [4,5] that in the limit R�QCD ! 0 in
which the theory becomes free, the thermal partition func-
tion of Yang-Mills theory on a 3-sphere of radius R reduces
(up to an overall constant) to an integral over a single
unitary SU�N� matrix3
law constraint which requires physical states to be gauge-
invariant. This constraint leads to nontrivial thermodynamics
even at zero coupling.

3We will generally ignore the distinction between SU�N� and
U�N� groups in this paper; the only difference between their
partition functions is an overall coupling-independent factor
coming from the free U�1� photons.
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Z��� �
Z
�dU exp��Seff�U�; (1.1)

where

Seff�U� � �
X1
n�1

zV�e�n�=R�

n
Tr�Un�Tr�U�n�;

zV�x� �
6x2 � 2x3

�1� x�3
;

(1.2)

and � 
 1=T. The matrix U is the holonomy of the gauge
field around the thermal circle (more precisely, U � ei��

with � the zero mode of A0 on S3 � S1 [5]). All other
modes of the theory are massive, and the effective action is
obtained by integrating them out.

As usual, in the large N limit, it is convenient to replace
the integral over the unitary matrix U by an integral over
the eigenvalue distribution ���� 
 1

N

P
i���� �i� (where

ei�i , for i � 1; � � � ; N, are the eigenvalues of U). Let un
denote the nth Fourier mode of the eigenvalue distribution,
un 


R
ein�����d� � Tr�Un�=N. In the large N limit, (1.1)

may be rewritten as [5]

Z��� �
Z

dund �un exp

"
�N2

X1
n�1

�1� zV�e
�n�=R��

n
junj

2

#
;

(1.3)

with a complicated integration boundary for the un’s com-
ing from the non-negativity of ����. Equation (1.3) may be
evaluated in the saddle point approximation in the large N
limit. This system has one obvious saddle point located at
un � 0 (for all n � 1). This saddle point is stable and
dominates (1.3) whenever �1� zV�e�n�=R�� is positive
for all n, which is the case for T < Tc � 1=R ln�2�

���
3
p
� �

0:759 326
R .
At T � Tc, zV�e

��=R� � 1 and the potential for u1 in
(1.3) is exactly flat (all other un remain massive). For T >
Tc, the variable u1 becomes tachyonic about the saddle
point described above. At these temperatures, the system is
dominated by a new saddle point, one in which u1 has an
expectation value of order unity (see [5]). Thus, free Yang-
Mills theory on S3 undergoes a phase transition at T � Tc;
the order parameter for this transition is the expectation
value of the Polyakov loop u1 (more precisely, since u1 has
an arbitrary phase, the order parameter is actually ju1j

2

[5]). Since the saddle point changes discontinuously at T �
Tc, this phase transition is of first order. However, this
phase transition is extremely finely tuned,4 in a sense we
will now explain.

As described above, the exact Wilsonian effective action
for the order parameter u1, expanded about the low tem-
4As one indication, the order parameter u1 is massless at the
phase transition point, a feature usually associated with second
order transitions.
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perature saddle point in the limit of zero gauge coupling, is
Seff � N2�1� zV�e��=R��ju1j

2. This effective action is
corrected at nonzero gauge coupling; it was argued in [5]
that at nonzero coupling it takes the form5

Seff

N2 � ��1� zV�e
��=R�� �O�	�ju1j

2

� 	2b���ju1j
4 �O�	4�; (1.4)

where 	 
 g2
YMN is the ’t Hooft coupling evaluated at the

energy scale 1=R, and b��� is a perturbatively computable
function of the temperature.

The action (1.4) describes a system that undergoes a
phase transition at T � Tc �O�	�. The nature of this
phase transition depends crucially on the sign of b �
b��c�, where �c � 1=Tc. If b is negative, the phase tran-
sition is of first order, as in the free theory. However, unlike
in the free theory, this transition occurs at a lower tempera-
ture than the temperature at which u1 in (1.4) becomes
massless (the latter temperature was identified in [4,5] with
the Hagedorn temperature of the large N Yang-Mills
theory).

On the other hand, if b is positive, the phase transition
continues to occur precisely at the temperature at which u1

becomes massless; however, it is now of second order and
is followed, at a slightly higher temperature, by another
phase transition of third order, similar to that of [6] (see
Sec. 6 of [5] for more details).

The leading perturbative contribution to the value of b at
the phase transition temperature is determined by a set of
two-loop and three-loop vacuum diagrams in the Yang-
Mills theory on a sphere [5]. In this paper we evaluate b by
computing the relevant Feynman diagrams.

Our main result is that b��c� ’ �5:7� 10�4. Note, in
particular, that b is negative; consequently, the deconfine-
ment transition for large N SU�N� Yang-Mills theory on a
3-sphere with small but nonzero R�QCD is of first order. As
noted above, lattice simulations suggest that the large N
deconfinement phase transition is also of first order in the
opposite infinite-volume limit R�QCD ! 1. Thus, it is
tempting to conjecture that the phase diagram for the large
N SU�N� Yang-Mills theory on S3 takes the form shown in
Fig. 1.

The solid line in Fig. 1 denotes the phase transition. The
dotted line describes the boundary of stability (the locus at
which the coefficient of ju1j

2 is zero) of the low tempera-
ture phase, which would be interpreted by a low tempera-
ture observer as a limiting or Hagedorn temperature.

Of course, the conjectured phase diagram in Fig. 1
merely represents the simplest phase diagram consistent
with our knowledge of the behavior of all order parameters
at weak and strong coupling. It is possible that the true
5To obtain the explicit effective action, we first integrate out
all massive modes on the sphere, and subsequently all of the
other un modes for n > 1.
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FIG. 1. The simplest possible phase diagram for large N Yang-
Mills theory on S3.
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phase diagram is more complicated; for instance, the con-
fined phase at small R�QCD could be separated from the
confined phase at large R�QCD by a phase transition.

This paper is organized as follows. In Sec. II, we set up
our calculation, and describe, in general terms, the proce-
dure we employ to compute b. We then proceed in Sec. III
to enumerate and evaluate all diagrams that contribute to b.

The lengthy calculation we present is straightforward in
principle but involves some subtleties. First, it is necessary
to deal with UV divergences which show up in the pertur-
bative computation. Because of technical difficulties asso-
ciated with implementing dimensional regularization on
S3, we have found it convenient to regularize the Feynman
diagrams in a rather unusual fashion: we use a (non-gauge-
invariant) momentum cutoff, and simultaneously add in a
set of compensating non-gauge-invariant counterterms,
such that the full theory is gauge-invariant when the cutoff
is removed. This regularization procedure is described
briefly in Sec. II D, with a more detailed discussion, in-
cluding checks, examples, and the explicit evaluation of
the counterterms needed for our calculation presented in
Sec. IV and in Appendix A.

In Sec. V, we discuss potential problems related to the
infrared divergences associated with finite-temperature
field theory. Naively there should be no trouble at finite
volume, where all modes are massive. However, it turns out
that there is still a breakdown of perturbation theory at
sufficiently high temperatures, when the dynamically gen-
erated mass scales exceed the Kaluza-Klein scale 1=R.
Fortunately, as we argue in Sec. V, these effects are not
important at the transition temperature and do not affect
our determination of b.

In Sec. VI, we present some conclusions and discussion.
Finally, in order to compute sums over S3 spherical

harmonics, which replace the loop integrals of the flat-
space theory, we needed to derive various spherical har-
monic identities. These identities, together with some basic
125018
properties of the spherical harmonics for S3 are collected in
Appendix B.
II. THE SETUP FOR THE PERTURBATIVE
CALCULATION

As we have described, the order of the deconfinement
phase transition for pure Yang-Mills theory at small vol-
ume is determined by the sign of the quartic coefficient b in
the effective action (1.4) at the 	 � 0 transition tempera-
ture. In this section, we set up the calculation of this
coefficient, which may be determined from leading order
perturbative corrections to the matrix model action (1.2)
for the SU�N� pure Yang-Mills theory on S3. For simplic-
ity, we will generally take the radius of the S3 to be one; it
can always be reinstated by dimensional analysis. The
actual computation is presented in the next section.

A. Basic objective

The basic setup for the computation was described in
Sec. 6 of [5]. We consider pure SU�N� Yang-Mills theory
on S3, at finite temperature. The thermal partition function
may be computed by evaluating the Euclidean path integral
with Euclidean time compactified on a circle of radius � �
1=T. The Euclidean action is given as usual by

L �
1

4

Z �

0
dt
Z

d3x tr�F"#F
"#�: (2.1)

For calculations on S3, it is convenient to work in the gauge

@iAi � 0; (2.2)

where i � 1; 2; 3 runs over the sphere coordinates, and @i
are (space-time) covariant derivatives. Equation (2.2) fixes
the gauge only partially; it leaves spatially independent
(but time dependent) gauge transformations unfixed. We
fix this residual gauge invariance by setting the constant
mode of A0 to be constant in time,

@t

Z
S3

A0 � 0: (2.3)

It will be convenient to give this (time independent) zero
mode a name; we define

� �
gYM

!3

Z
S3

A0; (2.4)

where !3 is the volume of the 3-sphere. � will play a
special role in what follows, because it turns out that it is
the only zero mode (mode whose action vanishes at qua-
dratic order) in the decomposition of Yang-Mills theory
into Kaluza-Klein modes on S3 � S1.

As � is a zero mode, it cannot be integrated out in
perturbation theory (roughly speaking, � fluctuations are
always strongly coupled in the bare action). In order to
perturbatively evaluate the free energy we will therefore
adopt a two step procedure. In the first step we integrate out
-3
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all nonzero modes and generate an effective action for �.
As described in [5], this action will be nontrivial even at
zero coupling, and it is corrected in perturbation theory in
	. In the second step, we analyze the remaining integral
over �.

On general grounds described in [5], the finite-
temperature effective action for � can be written com-
pletely in terms of the unitary matrix U 
 ei�� in the form:

Seff �
X
m

Cm;�m�x�tr�Um�tr�U�m�

� 	�
X
m;n

Cm;n;�m�n�x�tr�U
m�tr�Un�tr�U�m�n�=N

� 	2�
X

m;n;p

Cm;n;p;�m�n�p�x�tr�U
m�tr�Un�

� tr�Up�tr�U�m�n�p�=N2 � � � � ; (2.5)

where x 
 e��. Here, the coefficients obey appropriate
constraints such that the action is real, and in general are
corrected at higher orders in 	 and 1=N. As described in
[5], the free energy F of the Yang-Mills theory is then
given by the matrix integral

e��F �
Z
�dUe�Seff �U�; (2.6)

where the Fadeev-Popov determinant corresponding to the
gauge-fixing (2.3) transforms the integral over � into an
integral over the gauge group with Haar measure �dU.

At large N, the unitary integral may be evaluated using
saddle point techniques. Defining un � tr�Un�=N, we write
the effective action in the form

Z �
Z
�duie

�N2S0eff �un�; (2.7)

where S0eff includes contributions both from Seff and from
the Vandermonde determinant obtained in changing to the
variables un. The order N2 contribution to the free energy
is then given by the minimum value of S0eff�un�, and the
deconfinement phase transition occurs where this mini-
mum is no longer at junj � 0.

As described in detail in Sec. 6 of [5], in order to
compute the order of this phase transition, we have to
look at S0eff�un� near the phase transition point xc � 2����
3
p

where (as shown in [4,5] and reviewed in the introduc-
tion) the mass term of u1 changes sign, and compute the
leading corrections to the potential for u1. The relevant
terms in the action, to leading order in 	 and in x� xc, take
the form

S0eff�un� � "1�xc � x�ju1j
2 �"2ju2j

2 � . . .

� 	��C1;1;�2�u
2
1 �u2 � �u2

1u2� � � � �

� 	2��C1;1;�1;�1ju1j
4 � � � �: (2.8)

At large N, the effective action (1.4) for u1 is obtained from
this by classically minimizing over un for fixed u1. In
125018
particular, the variable u2 may now be integrated out in
(2.8) by setting it to its classical value

u2 � �	
�cC1;1;�2

"2
u2
1 �O�	2�: (2.9)

This yields the following effective action for u1:

S0eff�u1� � "1�xc � x�ju1j
2 � b	2ju1j

4 � � � � ; (2.10)

where

b � �cC1;1;�1;�1 �
�2

cC2
1;1;�2

"2
: (2.11)

Our goal will be to compute the coefficients appearing here
at the leading order in 	, and thus determine the sign of b,
and the order of the transition, at weak coupling. Since an
n-loop diagram has at most n� 1 index lines, a term in Seff

with m traces gets its lowest order contributions at m� 1
loops. Thus, the term "2 arises at one-loop order, C1;1;�2

requires a two-loop computation, while C1;1;�1;�1 requires
a three-loop calculation.

B. Gauge-fixed action

We now set up the perturbative computation that will
determine Seff�U�, the effective action for U (which we
treat as a background field). The Fadeev-Popov determi-
nant corresponding to the gauge-fixing condition (2.2) is

det@iDi �
Z

DcD �ce�tr� �c@iDic�; (2.12)

where Di denotes a gauge covariant derivative

Dic � @ic� igYM�Ai; c; (2.13)

and c and �c are complex ghosts in the adjoint representa-
tion of the gauge group. The quadratic terms in the gauge-
fixed Yang-Mills action (2.1) take the form

�
Z

d4x tr
�
1

2
Ai�D

2
* � @2�Ai �

1

2
A0@

2A0 � �c@2c
	
;

(2.14)

where @2 is the Laplacian on the sphere and

D*X 
 @0X� i��; X: (2.15)

The interaction terms in (2.1) are given by

Z
d4x tr�igYMD*Ai�Ai; A0 � igYM�Ai; A0@iA0

� igYM@iAj�Ai; Aj �
g2
YM

4
�Ai; Aj�Aj; Ai

�
g2
YM

2
�A0; Ai�A

0; Ai � igYM@i �c�Ai; c�: (2.16)
-4
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C. The spherical harmonic expansion

On S3, integrals over spatial momenta are replaced by
sums over the quantum numbers of SO�4� angular mo-
menta. It will thus be useful to expand the fields explicitly
in terms of an orthonormal basis of functions on S3 which
are angular momentum eigenstates, and write the action
explicitly in terms of a standard set of integrals over these
spherical harmonic functions. We denote the scalar and
vector spherical harmonics on S3 by S���� and V�

i ���,
where � � �j�; m�; m0�� and � � �j�; m�; m0�; .�� are the
angular momentum (and parity for the vector field) quan-
tum numbers for the various modes. The properties of these
functions are reviewed in Appendix B.

We expand the modes of the fields in terms of these
spherical harmonics as follows:

A0�t; �� �
X
�

a��t�S����;

Ai�t; �� �
X
�

A��t�V�
i ���;

c�t; �� �
X
�

c��t�S����:

(2.17)

Note that general vector functions also include modes
proportional to rS�, but these are eliminated by our gauge
choice. Below, it will be useful to denote the complex

conjugates of S� and V�
i by S �� and V

��
i .

In terms of these spherical harmonics, we define

C��0 �
Z

S3
S� ~V� � ~rS0;

D��0 �
Z

S3

~V� � ~V�S0;

E��0 �
Z

S3

~V� � � ~V� � ~V0�;

(2.18)

where explicit expressions for C, D and E may be found in
[7] and are collected in Appendix B. Note that C is anti-
symmetric in � and 0, D is symmetric in � and �, and E is
totally antisymmetric.

Using the spherical harmonic expansions, we may now
write the action for gauge-fixed pure Yang-Mills theory on
S3 explicitly in terms of modes. The quadratic action
becomes

S2 �
Z

dt tr
�
1

2
A ����D2

* � �j� � 1�2�A�

�
1

2
a ��j��j� � 2�a� � �c ��j��j� � 2�c�

	
: (2.19)

In addition, we have cubic interactions

S3 � gYM

Z
dt tr�i �c ���A0; c�C ��0� � 2ia�A0a�C�0�

� i�A�; D*A
�a0D��0 � iA�A�A0.��j� � 1�E��0�;

(2.20)
125018
and quartic interactions

S4 � g2
YM

Z
dt tr

�
�
1

2
�a�; A��a0; A�

�

�
D� �	�D�	0 �

1

j	�j	 � 2�
C�� �	C0�	

	

�
1

2
A�A�A0A��D�0 �	D��	 �D�� �	D�0	�

	
: (2.21)

The propagators of the various fields follow from (2.19)
and are given by

h �c ��
ab�t�c

�
cd�t

0�i �
1

j��j� � 2�
�����t� t0��ad�cb; (2.22)

ha�
ab�t�a

�
cd�t

0�i �
1

j��j� � 2�
�� ����t� t0��ad�cb; (2.23)

hA�
ab�t�A

�
cd�t

0�i � �� ���ad;cb
j�

�t� t0�: (2.24)

Here, � is defined to be a periodic function of time
satisfying

��D2
* � �j� 1�2��j�t� � ��t� (2.25)

where we have suppressed matrix indices. For 0 � t � �,
the explicit solution is given by

�j�t� 

ei�t

2�j� 1�

�
e��j�1�t

1� ei��e��j�1��
�

e�j�1�t

1� ei��e�j�1��

	
(2.26)

with the value for other values of t defined by the period-
icity. Here, � is shorthand for � � 1� 1 � �, and a term
�n � �m in the expansion of � should be understood to
carry indices ��n�ad��m�cb in (2.24).

For our calculations, the following correlators are also
useful:

hD*A
�
ab�t�A

�
cd�t

0�i � �hA�
ab�t�D*A

�
cd�t

0�i

� �� ��D*�
ad;cb
j�

�t� t0�; (2.27)

hD*A�
ab�t�D*A

�
cd�t

0�i � �� ����t� t0��ad�cb

� �� ���j� � 1�2�ad;cb
j�

�t� t0�:

(2.28)
D. Regularization and counterterms

As usual with four-dimensional gauge theories, certain
perturbative calculations lead naively to ultraviolet diver-
gences. In our calculation of the coefficient b in (1.4), we
will find that all divergences cancel, but only after sum-
ming a collection of logarithmically divergent diagrams. It
is therefore necessary to introduce a regularization scheme,
and in order to obtain the correct finite result, this must
respect gauge invariance.
-5
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In principle, there is no obstacle in taking the usual
approach of applying dimensional regularization. In our
case, this amounts to considering gauge theory on
S3 � S1 � Rd�4.6 While it is straightforward to write
down the appropriate expressions for Feynman diagrams
in this dimensionally regulated theory, we have found it
difficult to evaluate them because of the combination of
momentum sums and integrals that appear. Thus, we have
found it helpful to apply a more unusual approach, which
nevertheless gives precisely the answers that would have
been obtained through dimensional regularization.

In practice, we apply a sharp momentum cutoff to the
total angular momentum quantum number for modes on
the sphere. This does not respect gauge invariance. How-
ever, as explained originally by ’t Hooft [8] in his series of
classic papers on the renormalizability of Yang-Mills the-
ory, a non-gauge-invariant regularization yields gauge-
invariant results when employed with a bare Yang-Mills
action that includes an appropriate set of non-gauge-
invariant counterterms. As we describe in Sec. IV, these
counterterms may be determined by demanding that simple
Green’s functions evaluated using the cutoff and counter-
terms agree with the same Green’s functions evaluated
using dimensional regularization. Apart from curvature-
dependent counterterms (which do not contribute to our
calculation), this comparison may be carried out in flat
space, since all counterterms must be local.

In Sec. IV, we present the calculation to determine the
precise coefficients for all counterterms necessary in our
calculation, together with a more complete discussion of
the regularization scheme and a variety of consistency
checks. In the end, we should expect nonzero coefficients
for all counterterms with dimension less than or equal to
four which respect SO�3� invariance.
III. THE PERTURBATIVE COMPUTATION

In this section, we proceed to calculate the coefficients
in (2.8) necessary to determine the order of the deconfine-
ment transition at weak coupling. We have

e�Seff �U� �
Z
�da�dA�dce�S��;a;A;c�

� e�Sone-loop
eff he�S3�S4i; (3.1)

where the expectation value in the last line is evaluated in
the free theory with propagators given in Sec. II. The
required leading order contributions to "2, C1;1;�2, and
C1;1;�1;�1 appear at one, two, and three loops, respectively.
6As we describe in Sec. IV, in order that all momentum sums/
integrals are rendered finite when employing dimensional regu-
larization in Coulomb gauge, it is necessary to analytically
continue both the number of dimensions which participate in
the Coulomb gauge condition, and the number of dimensions
which do not, a procedure referred to as split dimensional
regularization.
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A. Simplifying the action by integrating out A0 and c

Since the action is quadratic in a and c, these may be
integrated out explicitly to yield additional interaction
vertices for the A’s. The first contribution arises from loops
of a or c. For the calculation up to three loops that we are
interested in here, the relevant vertices in the resulting
effective action (combining a and c loops) are a quadratic
vertex

A2 � g2
YMN��0�

D01��D02 �� ��

j��j� � 2�
tr�A01A02�; (3.2)

a cubic vertex

A3 � �2ig3
YMN��0�

C ��01
��D02��D03

���

j��j� � 2�j��j� � 2�
tr�A01A02A03�;

(3.3)

and a quartic vertex

A4 � �g4
YMN��0�

�
3

C�01
��C�02 ��D03	�D04

�	 ��

j��j� � 2�j��j� � 2�j��j� � 2�

�
1

2

D01	�D02
�	�D03� ��D04 �� ��

j��j� � 2�j��j� � 2�

	

�

�
tr�A01A02A03A04� �

1

N
tr�A01A02�tr�A03A04�

�
1

N
tr�A01A03�tr�A02A04�

�
1

N
tr�A01A04�tr�A02A03�

	
: (3.4)

We have included here only terms that can contribute to
planar diagrams. Note that all of these are proportional to a
divergent factor ��0�, and so any diagrams containing these
vertices must eventually cancel.7 Note also that since these
vertices arise from loops, they have additional factors of
g2
YMN compared to (2.20) and (2.21). Therefore, inserting

any one of these vertices into a diagram counts as an
additional loop.

In addition to these, we have vertices arising from open
strings of a’s containing two vertices linear in a and some
number of vertices quadratic in a. These start at quartic
order, and for our three-loop calculation, we will need the
quartic, quintic, and sextic vertices. These are
7The divergence associated with ��0� terms may be regulated
using a momentum cutoff in the S1 direction. We have checked
that in the properly regulated theory, the naive cancellations of
��0� terms described below persist without introducing any new
finite contributions.
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8Recall that in diagram 2c, we ignore the part proportional to
��0�.
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B4 �
g2
YM

2

D�1�10D�2�2 �0

j0�j0 � 2�
tr��A�1 ; D*A

�1�A�2 ; D*A
�2�;

B5 � �ig3
YM

D�1�1	C �	0 �3D�2�23

j	�j	 � 2�j3�j3 � 2�
tr��A�1 ; D*A�1

� �A0; �A�2 ; D*A�2�;

B6 �
g4
YM

2

�
3

D�1�13C �301*C �*02	D�2�2
�	

j	�j	 � 2�j3�j3 � 2�j*�j* � 2�

�
D�1�13D01	 �3D02

�	 �*D�2�2*

j3�j3 � 2�j*�j* � 2�

	
� tr���A�1 ; D*A�1; A01��A�2 ; D*A�2; A02�: (3.5)

Using these effective vertices, it is straightforward to check
that all divergent contributions proportional to ��0� cancel.
Any diagram with a vertex A2 will cancel the ��0� part of a
similar diagram with A2 replaced with a B4 having its two
covariant derivative legs contracted. Similarly, any dia-
gram with a vertex A3 will cancel the ��0� part of a similar
diagram with A3 replaced with a B5 having its two cova-
riant derivative legs contracted. Finally, any diagram con-
taining A4 will cancel against a combination of two
diagrams: one with A4 replaced by B6 with its two cova-
riant derivative legs contracted, and one with A4 replaced
by two B4’s with the four covariant derivative legs con-
tracted into a loop.

Thus, all ��0� terms coming from the An vertices cancel
out, and it is easy to check that there are no additional ��0�
terms coming from diagrams with Bn vertices apart from
those needed to cancel the An vertex diagrams. As a result,
we may proceed with the calculation by keeping only the
transverse photons A�, and evaluating all diagrams built
from the original cubic and quartic vertices in the trans-
verse photons plus the additional vertices B4, B5, and B6,
ignoring any terms proportional to ��0�.

The diagrams contributing to the free energy at one-,
two- and three-loop orders, after having integrated out A0

and c, are shown in Fig. 2. The B-type vertices are denoted
by circles.

B. One loop

The one-loop computation of the path integral was
described in [5]. The result (writing only the leading terms
in the large N limit) is

Seff�U� �
11�N2

120
�
X1
n�1

zV�x
n�

n
tr�Un�tr�U�n�; (3.6)

where zV�x� is the single-particle partition function for a
free vector field on S3, given by

zV�x� �
6x2 � 2x3

�1� x�3
: (3.7)

Changing variables to un � tr�Un�=N and including the
additional Vandermonde determinant from the measure,
125018
we have

S0eff�un� �
11�
120

�
X1
n�1

1

n
�1� zV�x

n��junj
2; (3.8)

and thus

"2�xc� �
1
2�1� zV�x

2
c�� � 0:481 125: (3.9)
C. Two loops

In this section we compute the coefficient C1;1;�2 in (2.8)
by evaluating the three two-loop diagrams of Fig. 2. Note
that since the propagators depend only on the relative time
between vertices, it is always possible to change variables
so that the integrand is independent of one of the time
variables. The integral over this variable then gives an
overall factor of � so it is convenient to define F�U� �
Seff�U�=�. In terms of the propagators and spherical har-
monic integrals defined above, we find that the three two-
loop contributions to F are8 (with summation over the
spherical harmonic indices �, � and 0 implied)

F2a � �
g2
YM

2
�D��0D �� �� �0 �D� ��0D� �� �0�

� �j�
�0; �ab��j�

�0; �ac�;

F2b � �
g2
YM

6
.��j� � 1�Ê��0Ê �� �� �0

�
Z

dt�j�
�t; �ab��j�

�t; �bc��j0
�t; �ca�;

F2c � g2
YM

D��0D �� �� �0

j0�j0 � 2�
�D*�j�

�0; �ac�D*�j�
�0; �ab�

� �j� � 1�2�j�
�0; �bc��j�

�0; �ab��; (3.10)

where we have defined

Ê ��0 
 E��0�.��j� � 1� � .��j� � 1� � .0�j0 � 1��:

(3.11)

In the expressions above, each of the propagators contrib-
utes factors of � to two of the three index loops, which we
label by a, b, and c. The notation �ab indicates that for the
tensor products �� � 1� 1 � �� appearing in the propa-
gator, the first and second elements of the tensor product
appear in the traces associated with index loops a and b,
respectively.

The expressions (3.10) involve sums over products of
spherical harmonic integrals. In all cases here and below,
the sums over quantum numbers m, m0 and . may be
carried out explicitly using the formulas in Appendix B.
To express the results, it is useful, following [7], to define
some functions which appear in integrals of products of
-7



One loop:

Two loops

Three loops

2a 2b 2c

3a

3b 3c

3d

3e 3f

3g

3h

3i
3j

3k

3l

3m
3n

1a

FIG. 2. The diagrams contributing to the free energy up to three-loop order. In this figure we present a particular planar form for each
diagram, but in some cases the same diagram may also be drawn in the plane in different ways. There is also an additional counterterm
diagram that will be discussed later.
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spherical harmonics
R2�x; y; z� �
��1�3

0

5



�x� 1��z� 1��30 � x��30 � y��30 � z��30 � 1�

�y� 1�

�
1=2

; (3.12)

R3.x.z
�x; y; z� �

��1�3��.x�.z�=2

5

�
�y� 1�

32�x� 1��z� 1�

	
1=2
��.x�x� 1� � .z�z� 1� � y� 2��.x�x� 1� � .z�z� 1� � y�

� �.x�x� 1� � .z�z� 1� � y��.x�x� 1� � .z�z� 1� � y� 2��1=2;

R4.x.y.z
�x; y; z� �

��1�3
0�1

5
sgn�.x � .y � .z�

�
�30 � 1��30 � x��30 � y��30 � z�

4�x� 1��y� 1��z� 1�

	
1=2

� ��.x�x� 1� � .y�y� 1� � .z�z� 1� � 2��.x�x� 1� � .y�y� 1� � .z�z� 1� � 2��1=2;

R̂4.x.y.z
�x; y; z� � R4.x.y.z

�x; y; z��.x�x� 1� � .y�y� 1� � .z�z� 1��; (3.13)

where the right-hand sides of the equations are defined to be nonzero only if the triangle inequality jx� zj � y � x� z
holds, and if 3 
 �x� y� z�=2 (in R3) and 30 
 �x� y� z� 1�=2 (in R2 and R4) are integers. We also define R3� 

R3�� � R3��, R3� 
 R3�� � R3��, R4� 
 R4��� and R4� 
 R4���.

With these definitions, we find after performing the sums over m, m0 and ., that
125018-8
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F2a �
2g2

YM

352 j��j� � 2�j��j� � 2��j�
�0; �ab��j�

�0; �ac�;

F2b � �g2
YM

�
1

3
�j� � j� � j0 � 3�2R2

4��j�; j�; j0� � �j� � j� � j0 � 1�2R2
4��j�; j�; j0�

	

�
Z

dt�j�
�t; �ab��j�

�t; �bc��j0
�t; �ca�;

F2c �
2g2

YM

j0�j0 � 2�
�R2

3��j�; j0; j�� � R2
3��j�; j0; j����D*�j�

�0; �ab�D*�j�
�0; �ac� � �j� � 1�2�j�

�0; �bc��j�
�0; �ab��:

(3.14)

These expressions are all to be summed over the j’s, with the sums unconstrained in F2a, and constrained in F2b and F2c by
the rules given above.

As described above, in order to analyze the phase transition we need to compute the specific term in F2a � F2b � F2c of
the form

C1;1;�2g2
YM�tr�U�tr�U�tr��U

y�2� � tr�U2�tr�Uy�tr�Uy��; (3.15)

and to determine the coefficient C1;1;�2 at the deconfinement temperature of the free Yang-Mills theory, xc � 2�
���
3
p

. For
each diagram, we therefore expand the product of propagators in powers of U, and sum the coefficients of all terms of the
form (3.15).

For F2a, all sums may be done explicitly, and we find

F2a �
g2
YM

2452

X
n;m�0

~F�xn� ~F�xm��tr�Um�tr�Un�tr�U�n�m� � fm! �mg � fn! �ng � fm; n! �m;�ng�

�
g2
YM

352

�X j�j� 2�

�j� 1�

	X
n

~F�xn�N tr�Un�tr�U�n� �
g2
YM

652

�X j�j� 2�

�j� 1�

	
2
N3; (3.16)
where we have left the divergent sums (which will not be
relevant for the computation we are doing in this paper)
explicit. The function ~F is related to the single-particle
partition function zV by

~F�e��� �
Z 1

�
dazV�e�a�; (3.17)

or explicitly

~F�x� � 2 ln�1� x� �
2x

�1� x�2
: (3.18)

Thus, the contribution to C1;1;�2 from F2a is

C2a �
1

2452 �
~F�x� ~F�x� � 2 ~F�x� ~F�x2��: (3.19)

For the other two cases we could not compute the sums
explicitly, but it is not difficult to numerically evaluate the
desired coefficient at the transition temperature xc � 2�
125018
���
3
p

. We find that the contributions of the three diagrams to
C1;1;�2 are given by

C2a � 6:53536� 10�4;

C2b � �22:87088� 10�4;

C2c � 9:16396� 10�4;

(3.20)

so that the total coefficient is

C1;1;�2 � �7:1716� 10�4: (3.21)
D. Three loops

The leading contribution to the coefficient C1;1;�1;�1 in
(2.8) comes from the 14 three-loop diagrams of Fig. 2. We
first give the expressions for each diagram in terms of
propagators and spherical harmonic integrals. For
diagram 3a, we find
F3a � �
g4
YM

2
�D�0	D ��� �	D� ��*D �� �0 �* � 2D� ��	D0� �	D� �0*D �� �� �* �D� ��	D0� �	D� ��*D �0 �� �*�

�
Z

dt�j�
�0; �ab��j0

�t; �ca��j�
�t; �ac���j�

�0; �ad� ��j�
�0; �dc��: (3.22)
-9
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For diagram 3b, we find
F3b � g4
YM�D

�0	D ��� �	 �D� ��	D0� �	�
D �0��D �� �� ��

j��j� � 2�

�
�j�
�0; �ab��D*�j�

�0; �ad� �D*�j�
�0; �dc��

�
Z

dt�D*�j0
�t; �ac��j�

�t; �ca� � �j0
�t; �ac�D*�j�

�t; �ca�� � �j�
�0; �ab���j�

�0; �ad� ��j�
�0; �dc��

�
Z

dt��j� � 1�2�j0
�t; �ac��j�

�t; �ca� �D*�j0
�t; �ac�D*�j�

�t; �ca��


: (3.23)
For diagram 3c, the result is
F3c � �
g4
YM

2

D�0	D ��� �	D �0��D �� �� ��

j	�j	 � 2�j��j� � 2�


Z
dt��j�

�0; �ad� � �j�
�0; �dc��f��j� � 1�2�j� � 1�2 � �j0 � 1�2�j� � 1�2�

� �j�
�0; �ab��j�

�t; �ac��j0
�t; �ca� � �j� � 1�2D*�j0

�t; �ca��4D*�j�
�0; �ab��j�

�t; �ac�

� 2�j�
�0; �ab�D*�j�

�t; �ac�� � 2�j� � 1�2�j�
�0; �ab��j�

�0; �ac�g

�
Z

dt�D*�j�
�0; �ad� �D*�j�

�0; �dc��f�j0 � 1�2�j0
�t; �ca��4D*�j�

�t; �ac��j�
�0; �ab�

� 2�j�
�t; �ac�D*�j�

�0; �ab�� � 2D*�j�
�0; �ab�D*�j�

�t; �ac�D*�j0
�t; �ca�

� 2�D*�j�
�0; �ab��j�

�0; �ac� � 2�j�
�0; �ab�D*�j�

�0; �ac��g

�
: (3.24)
For diagram 3d, we find
F3d � �
g4
YM

4
D�0	D�� �	D �� �0 �D �� �� ��

Z
dt�j�

�t; �ab��j�
�t; �bc��2�j0

�t; �cd��j�
�t; �da� � �j�

�t; �cd��j0
�t; �da��

�
g4
YM

4
D��	D0� �	D �0 ���D �� �� ��

Z
dt�j�

�t; �ab��j�
�t; �bc���j0

�t; �cd��j�
�t; �da� � 4�j�

�t; �cd��j0
�t; �da��:

(3.25)
Evaluating diagram 3e, we obtain
F3e � g4
YM�2D

��	D�0 �	 �D��	D0� �	 �D�0	D�� �	�
D �0 �� �D �� �� ��

j��j� � 2�

Z
dtfD*�j�

�t; �ba��j�
�t; �ad��j0

�t; �cb�D*�j�
�t; �dc�

��j�
�t; �ba�D*�j�

�t; �ad��j0
�t; �cb�D*�j�

�t; �dc�g:

(3.26)
Diagram 3f gives
125018-10
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F3f � �
g4
YM

2

D�0	D�� �	D �� �0 �D �� �� ��

j	�j	 � 2�j��j� � 2�



4�j�

�0; �ab�D*�j�
�0; �cd�D*�j�

�0; �da� � 2��j� � 1�2 � �j� � 1�2��j�
�0; �ab�

� �j�
�0; �cd��j�

�0; �da� �
Z

dtf�j�
�t; �ab��j0

�t; �bc��j�
�t; �cd��j�

�t; �da��j0 � 1�2��j� � 1�2 � �j� � 1�2�

� 2D*�j�
�t; �ab�D*�j0

�t; �bc�D*�j�
�t; �cd�D*�j�

�t; �da� � 4�j0 � 1�2�j�
�t; �ab��j0

�t; �bc�D*�j�
�t; �cd�

�D*�j�
�t; �da�g

�
�

g4
YM

2

D��	D0� �	D �� �0 �D �� �� ��

j	�j	 � 2�j��j� � 2�



4D*�j�

�0; �ab�D*�j0
�0; �bc��j�

�0; �da�

� 2�j� � 1�2�j�
�0; �ab��j0

�0; �bc��j�
�0; �da� � 2�j�

�0; �ab�D*�j0
�0; �bc�D*�j�

�0; �da�

�
Z

dtfD*�j�
�t; �ab�D*�j0

�t; �bc�D*�j�
�t; �cd�D*�j�

�t; �da� � �j� � 1�2�j� � 1�2�j�
�t; �ab��j0

�t; �bc�

� �j�
�t; �cd��j�

�t; �da� � 2�j� � 1�2�j�
�t; �ab�D*�j0

�t; �bc��j�
�t; �cd�D*�j�

�t; �da�

� 4�j� � 1�2D*�j�
�t; �ab�D*�j0

�t; �bc��j�
�t; �cd��j�

�t; �da�g

�
: (3.27)

For diagram 3g, we find

F3g � g4
YMÊ���Ê0� ��

�
D �� �0 	D �� �� �	 �

1

2
D �� ��	D �0 �� �	 �

1

2
D �� �� 	D �� �0 �	

	

�
Z

dtdt0�j�
�t0; �da��j0

�t0; �cd��j�
�t; �bc��j�

�t; �ab��j�
�t0 � t; �ac�; (3.28)

where Ê was defined in the previous subsection. Diagram 3h evaluates to

F3h � g4
YM

1

j	�j	 � 2�
D�0	D�� �	Ê �� �0 �Ê

�� �� ��
Z

dt1dt2D*�j�
�t1; �ab��j0

�t1; �bc��j�
�t1 � t2; �ca�

� ��j�
�t2; �cd�D*�j�

�t2; �da� �D*�j�
�t2; �cd��j�

�t2; �da��

� g4
YM

1

j	�j	 � 2�
D��	D0� �	Ê �� �0 �Ê

�� �� ��
Z

dt1dt2D*�j�
�t1; �ab��j�

�t2; �da��j�
�t1 � t2; �ca�

� ��j�
�t2; �cd�D*�j0

�t1; �bc� �D*�j�
�t2; �cd��j0

�t1; �bc��: (3.29)

Diagram 3i gives

F3i � �
g4
YM

4
Ê���Ê ��3 ��Ê �3�0Ê

�� �� �0
Z

dt1dt2dt3�j�
�t1 � t2; �ab��j�

�t1 � t2; �bc��j0
�t3; �cd��j�

�t3; �da�

��j�
�t1 � t3; �ca��j3

�t2; �ac�: (3.30)

For diagram 3j, we find

F3j � g4
YM�D

��	D� �� �	 �D� ��	D�� �	�Ê ��*3Ê
�� �3 �*

Z
dtdt0�j�

�0; �ab��j�
�t� t0; �ac��j3

�t0; �ad��j�
�t; �ca��j*

�t0; �dc�:

(3.31)

Diagram 3k yields

F3k � g4
YM

1

j	�j	 � 2�
D��	D ��0 �	Ê

���3Ê �0 �3 ��
Z

dt1dt2�j�
�t1 � t2; �cd��j3

�t1 � t2; �da�

� f2D*�j�
�0; �ab��j�

�t1; �ac�D*�j0
�t2; �ca� � �j�

�0; �ab�D*�j�
�t1; �ac�D*�j0

�t2; �ca�

� �j� � 1�2�j�
�0; �ab��j�

�t1; �ac��j0
�t2; �ca�g: (3.32)

For diagram 3l, we obtain
125018-11
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F3l � �
g4
YM

12
Ê��*Ê

��0�Ê �0 �� 3Ê �� �3 �*
Z

dt1dt2dt3�j�
�t2 � t3; �ab��j�

�t3 � t1; �ac��j0
�t1 � t2; �ad��j�

�t1; �dc�

� �j3
�t2; �bd��j*

�t3; �cb�: (3.33)

For diagram 3m, we find

F3m � 4g4
YM

D��	C �	 ���D0� ��Ê
�� �0 ��

j	�j	� 2�j��j�� 2�

Z
dt�D*�j�

�0;�ab��j�
�t;�ca���j�

�0;�ab�D*�j�
�t;�ca����j0

�t;�dc�D*�j�
�t;�ad�

�D*�j0
�t;�dc��j�

�t;�ad��� 2g4
YM

D��	C �	��D0 �� ��Ê �� �0 ��

j	�j	� 2�j��j�� 2�

Z
dtfD*�j�

�t;�ab��j�
�t;�bd�D*�j0

�t;�da��j�
�0;�ca�

� 2D*�j�
�t;�ab��j�

�t;�bd��j0
�t;�da�D*�j�

�0;�ca�� �j�� 1�2�j�
�t;�ab��j�

�t;�bd��j0
�t;�da��j�

�0;�ca�g:

(3.34)

Finally, diagram 3n gives the result

F3n � g4
YM

D�0�D� �03

j��j� � 2�j3�j3 � 2�

�
3

C �� �� 	C �	 �� �3

j	�j	 � 2�
� 3

C �� ��	C �	 �� �3

j	�j	 � 2�
�D �� �	 ��D ��	 �3 �D �� �	 �3D ��	 ��

	
� fD*�j�

�0; �cb��j0
�0; �ac�D*�j�

�0; �ad� � 2D*�j�
�0; �cb�D*�j0

�0; �ac��j�
�0; �ad�

� �j0 � 1�2�j�
�0; �cb��j0

�0; �ac��j�
�0; �ad�g � g4

YM

D�0�D� �03

j��j� � 2�j3�j3 � 2�

�
3

C �� �� 	C �	 �� �3

j	�j	 � 2�
�D �� �	 ��D ��	 �3

	
� fD*�j�

�0; �ab��j0
�0; �ac�D*�j�

�0; �ad� � 2D*�j�
�0; �ab�D*�j0

�0; �ac��j�
�0; �ad�

� �j0 � 1�2�j�
�0; �ab��j0

�0; �ac��j�
�0; �ad�g � g4

YM

D�0�D �� �0 3

j��j� � 2�j3�j3 � 2�

�
3

C ���	C �	 �� �3

j	�	� 2�
�D	� ��D �	 �� �3

	
� f2D*�j�

�0; �ab�D*�j0
�0; �ad��j�

�0; �bc� � ��j� � 1�2 � �j0 � 1�2��j�
�0; �ab��j0

�0; �ad��j�
�0; �bc�g: (3.35)
E. Evaluation of three-loop diagrams

We now evaluate the coefficient C1;1;�1;�1 of
�g4

YMjtr�U�j
4 in (2.5) arising from the three-loop diagrams

computed above. The expressions for the diagrams are of
the general form:

F �
X
j;m;.

S0�j; m; .�I0�j�; (3.36)

where S0 is the term containing all spherical harmonic
factors �C;D; E� and I0 is the term involving the propaga-
tors and the integrals over t. S0 depends on the j’s, m’s and
.’s of the spherical harmonics but I0 only on the j’s. Using
the identities of Appendix B we can perform the sum over
the m’s and .’s analytically and find S�j� �P

m;.S
0�j; m; .�. Then, the diagram can be written as a

sum over j’s

F �
X
j

S�j�I0�j�: (3.37)

We then expand I0�j� in powers of tr�Un� and determine
I�j�, the coefficient of jtr�U�j4 in this expansion. The
125018
contribution to b from this diagram may then be written
in the form

C1;1;�1;�1 �
X
j

S�j�I�j�: (3.38)

We can find S for any diagram by using the identities given
in Appendix B, and the corresponding integral I can be
found in the MATHEMATICA file [9]. The sum (3.38) over j’s
is the only part of the calculation that we have generally
had to perform numerically.

Diagram 3a is the simplest and we can actually calculate
it analytically. The expression (3.22) above may be sim-
plified using the angular momentum sums of Appendix B.
We find

C3a
1;1;�1;�1 � �

1

1854

X
a;b;c

a�a� 2�b�b� 2�c�c� 2�

�a� 1��b� 1��c� 1�3

� xa�b�2f�xc�1 � 1��xc�1 � 2�

� �c� 1� ln�x��2x2c�2 � 3xc�1�g: (3.39)

Note that this sum contains a logarithmic divergence in the
sum over c when taking the x-independent term (equal to
2) in the curly brackets.
-12



FIG. 3. Counterterm contribution to the free energy at
order 	2.
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Such logarithmic divergences appear in the contribution
to C1;1;�1;�1 from most of our three-loop diagrams, since
there are terms where only two of the three unconstrained
sums over loop momenta have exponential damping fac-
tors. These divergences arise from nonplanar one-loop
subdiagrams, as we explain in the next section when we
discuss the corresponding counterterms.

In practice, when doing the computation we will place a
cutoff J on the angular momentum sums. We can then
write the result with a cutoff in the form

C1;1;�1;�1�J� � �
XJ
c�1

1

c� 1
� Cfinite

1;1;�1;�1 �O�1=J�;

(3.40)

where � is the coefficient of the logarithmic divergence,
which we can define by

� � lim
J!1
�J� 1��C1;1;�1;�1�J� � C1;1;�1;�1�J� 1��;

(3.41)

and9

Cfinite
1;1;�1;�1 
 lim

J!1

 
C1;1;�1;�1�J� � �

XJ
c�1

1

c� 1

!
: (3.42)

In particular, from the expression above for the 3a sum
(3.39) we find

�3a � �
1

954

�
x

�1� x�2
� log�1� x�

	
2

� �4:0356� 10�5;

C3a;finite
1;1;�1;�1 � �3:666� 10�7;

(3.43)

where we have evaluated �3a and C3a;finite
1;1;�1;�1 at the transi-

tion point xc � 2�
���
3
p

[5].
For the 13 remaining diagrams, we were unable to

evaluate the sum over j in (3.38) analytically. However,
we have performed the sum numerically (at the phase
transition temperature), and we will present the results in
Sec. III G.

F. Counterterm diagrams

We have seen that the contributions to C1;1;�1;�1 arising
from individual three-loop diagrams contain logarithmic
divergences. It turns out that all of these must cancel in the
sum over diagrams. To see this, note first that no single-
trace counterterm can contribute to the coefficient of
jtr�U�j4, since such a contribution requires four index
loops, while planar counterterm diagrams at order 	2 are
two-loop diagrams with only three index loops. In fact, the
9To improve numerical convergence we use Aitken’s method:
if limn!1an � r then limn!1��anan�2 � a2

n�1�=�an � an�2 �
2an�1� � r, but the convergence of the second sequence is
faster.
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only possible counterterm contribution comes from
double-trace counterterms10 of the form tr�AA�tr�AA�,
which give rise to diagrams of the form shown in Fig. 3.
But no such counterterm is gauge-invariant, so in any
gauge-invariant regularization scheme (such as dimen-
sional regularization), there are no counterterm contribu-
tions at all, and all divergences must cancel in the sum over
diagrams. Our regularization scheme does not respect
gauge invariance, but the coefficients of logarithmic diver-
gences are insensitive to the regularization scheme, so we
must still find that all divergences cancel.11

The preceding argument does not mean that we can
ignore counterterms altogether. Indeed, the finite contribu-
tion resulting from the sum over diagrams does depend on
the regularization scheme, and it is crucial to include the
contributions of finite counterterms in order to obtain the
correct result. The counterterms that can contribute take
the form
LCT �

�
	
N

	
2 1

52 �c1 tr�AiAi�tr�AjAj�

� 2c2 tr�AiAj�tr�AiAj��; (3.44)
where c1 and c2 will be finite numerical coefficients chosen
so that the results of calculations in our scheme match with
results using dimensional regularization.

At order 	2, this vertex contributes to the free energy via
counterterm graphs of the form depicted in Fig. 3.
Following the same procedure as in the previous subsec-
tions, it is not difficult to isolate the coefficient Cc of
g4
YMjtr�U�

4j in the contribution of this diagram to the free
energy:
See, for instance, [10,11] for recent discussions of how
double-trace terms can contribute at leading order in the large
N limit.

11In comparing with dimensional regularization, the coefficient
of 1=. poles will be proportional to the coefficient of the
logarithmic divergence in a cutoff scheme.

-13
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Cc �
1

52

X
�;0;=

�c1D� ��=D0 �0 �= � 2c2D�0=D �� �0 �=�

�
1

j� � 1

1

j0 � 1
xj��j0�2: (3.45)

Using spherical harmonic identities from Appendix B and
performing the sum we find:

Cc �
2

54

�
c1 �

2

3
c2

	

x

�1� x�2
� ln�1� x�

�
2
; (3.46)

which may be conveniently written as

Cc � ��18c1 � 12c2��3�; (3.47)

where �3� is as in (3.43).
In order to determine the counterterm coefficients c1 and

c2, it is enough to look at the simplest correlator to which
the counterterms (3.44) contribute, namely, the nonplanar
one-loop four-point function on R4 with two external legs
attached to each of the index loops. As we describe in
detail in Sec. IV D and Appendix A 5 below, the coeffi-
cients are determined by demanding that the combination
of logarithmically divergent one-loop diagrams (shown in
Fig. 6) with the counterterm diagrams reproduces the result
for the same correlator evaluated in dimensional regulari-
zation. For our regularization scheme with a sharp cutoff,
we find

c1 � c2 �
1
60 ; (3.48)

so that

Cc � �
1
2�3a: (3.49)

This net contribution from the counterterm diagrams is
all we need to complete our calculation. However, it turns
out that a very useful check of our three-loop results arises
from splitting up the counterterm contribution into pieces
associated with the individual one-loop diagrams of Fig. 6.
Note that each of these is logarithmically divergent, and
appears as a nonplanar subdiagram in exactly one of the
three-loop vacuum diagrams of Fig. 2 (obtained by joining
up the four free vector lines of the one-loop diagram in
pairs in such a way that we obtain a planar three-loop
diagram, and replacing any a or c lines with the corre-
sponding effective vertex). Thus, the logarithmic divergen-
ces in the contribution to b from three-loop vacuum
diagrams are directly related to logarithmic divergences
in a specific set of nonplanar one-loop four-point
diagrams.12 If we denote by LX

CT the counterterm
12The coefficient of jtr�U�j4 has no additional divergences from
planar one-loop subdiagrams of the three-loop diagrams, since
we have seen that there are no single-trace counterterms that
could cancel them (or remove the regulator dependence of the
finite results if any such divergences cancelled upon summing
diagrams).
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Lagrangian density necessary to make this particular set of
one-loop diagrams agree with dimensional regularization,
then the combination of the three-loop diagram X and the
counterterm diagrams associated with LX

CT should be finite,
providing a check on the divergent part of each individual
three-loop diagram.

In addition to the overall result (3.49) we therefore
define partial contributions CX

c arising from the counter-
term diagrams associated with a given three-loop diagram
X. These will generally have both a logarithmically diver-
gent piece, and a finite piece, and take the form13

CX
c � �X

c ln
�

J
R"

	
� CX finite

c : (3.50)

The values of �c and Cfinite
c for each diagram are tabulated

in the next section together with our results for the three-
loop diagrams.

G. Results

In this section, we tabulate our numerical results for the
contributions to C1;1;�1;�1. For each three-loop diagram,
we give the coefficient � of the logarithmic divergence and
the remaining finite piece, as defined in (3.41) and (3.42).
We also give the coefficients �c and Cfinite

c for the loga-
rithmically divergent and finite parts of the associated
counterterm diagrams, as defined in (3.50). We find:
Diagram
13The con
all evaluate
function (es
cutoff M is

-14
�=�3�
stants A1
to the s

sentially a
simply J=
Cfinite
1;1;�1;�1
;A2;A3;A4 app
ame value with th

step function) use
R.
�c=�3�
earing in A
e choice o
d here, wh
Cfinite
c =�3�
3a
 1
 �3:666� 10�7
 �1
 �107=120

3b
 �1
 �4:805� 10�5
 1
 13=60

3c
 �3=4
 2:224� 10�5
 3=4
 1=20

3d
 5=4
 2:21� 10�5
 �5=4
 �47=60

3e
 1=2
 �5:85� 10�5
 �1=2
 �7=30

3f
 �9=4
 �2:69� 10�4
 9=4
 3=5

3g
 �3
 1:15� 10�4
 3
 1=5

3h
 0
 1:91� 10�4
 0
 �1=10

3i
 5=2
 �6:6� 10�4
 �5=2
 1=12

3j
 �3
 2:414� 10�4
 3
 11=10

3k
 1=2
 1:42� 10�4
 �1=2
 7=60

3l
 5=4
 �1:0� 10�4
 �5=4
 1=24

3m
 2
 4:6� 10�5
 �2
 1=15

3n
 1
 �9:2� 10�5
 �1
 �29=30
Sum
 0
 �4:5� 10�4
 0
 �1=2
The numerical results in the middle column of the table are all
accurate at least within the number of digits appearing in the
table. We estimate the maximal total numerical error of our
result for the sum to be less than 3� 10�5. This accuracy
could be improved with additional computer time, but we
found no reason to do this since we are only interested in the
ppendix A
f damping
ile the UV
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sign of b. Note that the sum of all divergent contributions
vanishes (without including counterterms).

Note that, in the table above, �X � �X
c � 0 for every

diagram X; that is, the sum of any three-loop vacuum graph
and its associated counterterm graphs is finite. This sum
depends on the renormalization scale " [see (3.42) and
(3.50)] but should be independent of the regulating func-
tion R�q�.14 This " dependence vanishes upon summing all
diagrams,15 leaving us with the scheme-independent an-
swer

C1;1;�1;�1 � �4:5� 10�4 � �3a=2 � �4:3� 10�4:

(3.51)
H. Effective potential

We can now put together our results for the terms of
interest in our effective potential (2.8) for the eigenvalues,
evaluated at the deconfinement temperature:

"2 � 4:8112� 10�1;

�cC1;1;�2 � �9:4447� 10�4;

�cC1;1;�1;�1 � �5:7� 10�4:

(3.52)

From (2.11) we find that the coefficient b in the effective
potential (2.10) for u1 is

b � �cC1;1;�1;�1 �
�2

cC
2
1;1;�2

"2

’ �5:7� 10�4 � 1:854� 10�6 � �5:7� 10�4:

(3.53)

Note that b is the sum of two terms, one of which is
manifestly negative. In (3.53), however, the dominant con-
tribution came from the first term which, in principle, could
have been either positive or negative. This suggests that
14In order to verify this independence—and as a check on the
logic of our regularization scheme and our numerics—we have
recomputed �=�3a, Cfinite

1;1;�1;�1, �c=�3a and Cfinite
c =�3a for

diagrams 3a, 3b, 3c, 3g and 3n with a different regulating
function [we took R�q=M� to be a double step function, R�x� �
1 for x < 1, R�x� � 1

2 for 1 < x < 2 and R�x� � 0 for x > 2]. We
evaluated these quantities analytically for diagram 3a and nu-
merically for all the other diagrams. As expected, in every case
the coefficient of the logarithmic divergence �=�3a and �c=�3a
was unchanged in this new regulating scheme. Also, as expected,
while finite parts of each diagram and its associated counterterm
yielded different values in this new regulating scheme, the sum
of every diagram with its associated counterterm graphs was
unmodified.

15This follows because
P
fdiagrams Xg�

X �
P
fdiagrams Xg�

X
c � 0.
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there could exist also theories for which b > 0; we will
discuss this further in the final section.

Since we have, after a laborious calculation, determined
that b < 0, we may conclude that the large N deconfine-
ment transition of pure Yang-Mills theory on a small S3 is
of first order.
IV. A GAUGE-INVARIANT REGULARIZATION
SCHEME ON S3

In the previous section we have computed a set of two-
and three-loop Feynman diagrams to determine a particular
term [b in Eq. (1.4)] in the Wilsonian effective action for
finite-temperature Yang-Mills theory on S3. We found that
while b is finite, individual diagrams that contribute to b
diverge logarithmically. In order to obtain the finite physi-
cal value of b we needed to sum contributions from the
various diagrams, at which point the logarithmic diver-
gence cancels and we are left with the finite result of
interest. The process of isolating a finite piece from the
difference of divergent subpieces is delicate, and will yield
the correct answer only if the regularization procedure
respects gauge invariance. In this section we will expand
on the discussion of Sec. II D to describe in more detail
the regularization procedure that we employ in our
computation.

As described above, computations of Yang-Mills theory
on S3 are most simply performed in the Coulomb gauge
@iA

i � 0, where the index i runs over the three spatial
indices of the S3. Further, we found it most convenient to
regularize all diagrams by truncating the spherical har-
monic sums at spherical harmonic number n [in flat space
this corresponds to imposing a hard momentum cutoff at
momentum E�n�=R where E�n� � n is the energy of the
nth spherical harmonic mode]. This regularization scheme
is not gauge-invariant, but should yield gauge-invariant
results when employed with a bare Yang-Mills action
that includes an appropriate set of non-gauge-invariant
counterterms. The appropriate counterterms may, in prin-
ciple, be uniquely determined (up to the usual ambiguity in
the definition of the Yang-Mills coupling constant) by
demanding that correlation functions computed by this
theory obey the Ward identities that follow from gauge
invariance, together with local Lorentz invariance.

In this section we will explicitly determine some of the
counterterms that will render our non-gauge-invariant
regularization scheme effectively gauge-invariant. These
counterterms fall into two classes: counterterms that would
be needed even in flat space, and counterterms that are
proportional to the space-time curvature. It will turn out
that no counterterm of the second type (those proportional
to space-time curvature) contributes to the computation of
b, so we will content ourselves with determining only those
counterterms that appear even in flat space. These counter-
terms may be determined rather simply by choosing them
to ensure that certain Green’s functions [following ’t Hooft
-15
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we use the A"�p�A#��p� two-point function, as well
as a four-point function of gauge fields] agree with the
same Green’s functions evaluated using dimensional
regularization.16

In Sec. IVA we explain our regularization method in
detail and give a simple example of how it works.
Sections IV B and IV C are devoted to tests of the validity
of our regularization scheme. In Sec. IV B we determine all
quadratic counterterms of the first type (those that appear
in flat space) to order 	. Even though these counterterms
do not actually contribute to our main computation in this
paper, we use them to test the validity of our regularization
procedure. First, we verify in Sec. IV C that our results are
consistent with the Slavnov-Taylor identity and with
Lorentz invariance. As another test, in Appendix A 3 we
verify that our results lead to the correct free energy at
infinite volume to order 	. Finally, in Sec. IV D we proceed
to use the same methods to compute the counterterms that
we actually need for the computation of b; these are a set of
double-trace counterterms at order 	2.

A. General discussion and a simple example

The regularization we will analyze in this section is a
slightly more general regularization scheme than the sharp
cutoff which was used in the computation of the previous

section. We include damping functions R�
�����
q2

p
=M� and

~R�q0=�� for the momentum of each internal Ai line of a

given diagram, and damping functions �R�
�����
q2

p
= �M� and

�~R�q0= ��� (q2 
 qiqi, i � 1; 2; 3, and we take ��� �,
�M � M, �� M and ��� �M for convenience) for the

momentum of each internal A0 or ghost line. These func-
tions are chosen so that R�0� � �R�0� � ~R�0� � �~R�0� � 1,
R0�0� � �R0�0� � ~R0�0� � �~R0�0� � 0, and R�x! 1� �
�R�x! 1� � ~R�x! 1� � �~R�x! 1� � 0. We choose to

treat A0 and ghost lines differently from Ai lines because,
in our calculation of b, it was convenient to integrate out A0

and the ghosts directly in the action. This can be done with
no regularization subtleties in diagrams with both
A0=ghost lines and Ai lines, provided that we take the scale
�M � M and ��� �. We will sometimes be lazy with our

notation and write R�
�����
q2

p
=M� [ �R�

�����
q2

p
= �M�] as R�q=M�

[ �R�q= �M�].
16More precisely, we compare with a form of dimensional
regularization that is tailored to deal with Yang-Mills theory in
the Coulomb gauge. This so-called split dimensional regulari-
zation scheme [12–15] separately extends the number of dimen-
sions participating in the Coulomb gauge condition (from 3 to
3� .) and the number of other dimensions (from 1 to 1� .0).
One may worry that this regularization procedure is not Lorentz-
invariant (since integrals over temporal and spatial momenta end
up being regulated differently), however the breaking of Lorentz
invariance really comes from our choice of gauge rather than the
regularization scheme. In practice, we will apply split dimen-
sional regularization in the limit where .0 ! 0.
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In perturbation theory, correlation functions are obtained
by evaluating all contributing Feynman diagrams, each of
which may be written as an integral over internal momenta.
In general these integrals diverge and must be regulated; in
this section we will explain how one may convert the
simple minded regularization scheme described in the
previous paragraph into dimensional regularization by an
appropriate choice of non-gauge-invariant counterterms. In
the rest of this subsection we will demonstrate our method
on a ‘‘toy’’ regularized integral17

I �
Z d3qdq0

�25�4
R� qM�R�

p�q
M �

q2 � q2
0

; (4.1)

and its counterpart in split dimensional regularization
(SDR)

I �
Z
SDR

d3qdq0

�25�4
1

q2 � q2
0

: (4.2)

The q0 integral in (4.1) and (4.2) is finite [which is why we
ignored the ~R regulators in (4.1)] and may easily be done to
yield (from now on we suppress explicit reference to the
regulator in intermediate steps)

I �
1

1653

Z d3q
q

: (4.3)

In split dimensional regularization (4.3) evaluates to zero,
whereas in the damping function regularization scheme
(4.1) evaluates to18

��p� � M2C2 �
p2

6
F2 �

p2

2452 ; (4.4)

where we have defined

C2 �
1

452

Z 1

0
dqqR�q�2;

F2 �
1

452

Z 1

0
dqqR�q�R00�q�:

(4.5)

Thus, in order that our damping scheme agrees with di-
mensional regularization, we should introduce a counter-
term that contributes ���p�.

Not every integral we encounter will be simple enough
to explicitly evaluate in split dimensional regularization [as
I of (4.1) was]. However, it will always be possible to
decompose the integrals of interest into the sum of a
complicated but convergent integral and an easily eval-
uated divergent integral; this will be sufficient to determine
the corresponding counterterms. As an illustration, we
17This integral is slightly different in form from those that will
appear in our actual expressions below; in particular, the inte-
grand contains a single propagator but two copies of the regu-
lator function. Thus, it should merely be thought of as a simple
divergent integral that illustrates all the complications that arise
in the actual process of regularization.

18The finite piece arises because
R
1
0 dqR�q�R0�q� � � 1

2 .
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reevaluate the counterterm corresponding to the integral I
in a perversely convoluted manner. Under the change of
variables q! p� q (an allowed variable change in both
regularization schemes), I becomes

I �
Z d4q

�25�4
1

�p� q�2 � �p0 � q0�
2 : (4.6)

Performing the q0 integration as above yields

1

1653

Z d3q������������������
�p� q�2

p �
1

1653

Z d3q
q

�
1�

q � p

q2 �
p2

2q2

�
3�q � p�2

2q4 � . . .
	
: (4.7)

We may now rewrite (4.6) as a sum over a manifestly
convergent piece and an easily evaluated divergent piece
as19

I �
1

1653

Z d3q������������������
�p� q�2

p
�

1

1653

Z
d3q

�
1������������������

�p� q�2
p �

1�����
q2

p 

1�

q � p

q2

�
p2

2�q2 � a2�
�

3�q � p�2

2q2�q2 � a2�

�	

�
1

1653

Z d3q�����
q2

p �
1�

q � p

q2 �
p2

2�q2 � a2�

�
3�q � p�2

2q2�q2 � a2�

	
: (4.8)

In (split) dimensional regularization with d � 3� ., the
second line evaluates to

1

3253

Z d3q�����
q2

p
�q2 � a2�



3�q � p�2

q2 � p2

�

� lim
d!3

p2

3253

�
3

d
� 1

	Z ddq�����
q2

p
�q2 � a2�

� lim
.!0

p2

3253

�
.

3� .

	�
45
.
�O�.0�

	
�

p2

2452 : (4.9)

On the other hand, in the cutoff scheme it evaluates to

M2C2 �
p2

6
F2; (4.10)

and (4.10) is equal to (4.9) upon the addition of the counter-
term ���p�.

In this particular example, the convergent part of (4.8) is
easy to evaluate (it is equal to �p2=2452), but this is not
19We introduce a parameter a in order to avoid artificially
introducing IR singularities.
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true in more complicated examples, and was not needed in
order to evaluate the counterterm.

Of course, the separation of (4.8) into a divergent and a
convergent part is ambiguous. In our work ahead we will
find it convenient to fix this ambiguity by demanding that
the divergent piece (which we call the regulator-dependent
piece below) should evaluate to zero in split dimensional
regularization.20 With this convention, the counterterm
associated with any diagram is simply minus the
regulator-dependent integral evaluated in the cutoff regu-
lator scheme.

B. Single-trace quadratic flat-space counterterms at
order �

As an explicit example, we can now proceed to compute
the regulator-dependent piece of the gauge boson self-
energy *"# � �

1
2 hA"A#i. To set our conventions, we

write the Yang-Mills action as

S �
1

4

Z
d4x tr�F"#F

"#�: (4.11)

The momentum space Coulomb gauge (@iAi � 0) propa-
gators take the form

hAab
i Acd

j i � �ad�bc
�q2gij � qiqj

q2�q2 � q2
0�

	
;

hAab
0 Acd

0 i � �ad�bc
�
1

q2

	
:

(4.12)

In addition, the gauge-fixing procedure introduces a set of
complex adjoint ghosts c; �c with Lagrangian

L ghost � �tr� �c@iDic�; (4.13)

where Di � @i � igYM�Ai; � is the gauge covariant de-
rivative. The propagator for the ghosts is identical to that of
the A0 fields,

h �cabccdi � �ad�bc
�
1

q2

	
: (4.14)

In the computations of this section we do not explicitly
integrate out A0 and c as we did in the previous section; of
course this does not affect the results.

In Appendix A 1 we define several regulator-dependent
constants and functions of external momentum that arise in
our calculation. In Appendix A 2 we depict the diagrams
contributing to the gauge boson self-energy, and list our
results for their regulator-dependent contributions (defined
above). Adding these together yields the following result
for the regulator-dependent contribution to the gauge bo-
son self-energy (see Appendix A 1 for notation):
20With this convention, the regulator-dependent piece in the
example of the previous paragraphs is the second term in (4.8)
minus p2=2452.
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1

	
*�RD�

ik �
1

852 ln
�
M
"

	
�pipk � �p

2 � p2
0�gik �

1

15
�p2gik � 4pipk�F2 �

1

652 �pipk � p2gik� �
p2
0

2452 gik

�M2gik

�
2C1 �

2

3
C2

	
�

1

2452 p2
0gik ln

�
A2

A4
1

	
�

1

4052 p2gik ln
�
A4

1

A9
2

	
�

1

12052 pipk ln
�
A31

2

A16
1

	
� 2 �� �M �B1

�C1gik ��MB1��
m
i �n

k � gmngik�H1�mn �
�� �M �B2� �H2�ik; (4.15)

1

	
*�RD�

i0 �
7

2452 p0pi ln
�
M
"

	
�

5

7252 p0pi �
1

2452 p0pi ln
�
A8

1

A2

	
; (4.16)

1

	
*�RD�

00 � �
11

2452 p2 ln
�
M
"

	
�

p2

3
F2 �

1

7252 p2 � 2M2�C1 � C2� �
1

2452 p2 ln
�
A5

2

A16
1

	
: (4.17)
From the discussion above, the required quadratic coun-
terterm Lagrangian must be chosen to precisely cancel
these regulator-dependent contributions, in order to give
agreement with dimensional regularization. Thus, we must
have

L ct � �tr�A"A#�*�RD�
"# : (4.18)

In the next subsection, we perform two consistency checks
on these results.

C. The Slavnov-Taylor identity and SO�4� invariance

In this subsection, we first use the fact that our result for
the self-energy must be consistent with gauge invariance
and SO�4� symmetry at short distances to demonstrate the
consistency of our results for the logarithmic divergences
in (4.15), (4.16), and (4.17). In particular, since the loga-
rithmically divergent and finite contributions must satisfy
various Slavnov-Taylor identities for these symmetries
independently, we can determine the structure of the for-
mer without any knowledge of the latter.

We begin by considering the Slavnov-Taylor identity
relevant for the gauge symmetry in Coulomb gauge. As
usual, we start with the Euclidean gauge-fixed action

S �
Z

d4x
�
LYM �

1

2.
�riA

i�2 � �criDic


(4.19)

and take .! 0 to get the Coulomb gauge. The Becchi-
Rouet-Stora-Tyutin (BRST) charge Q satisfies

�Q; A" � D"c; fQ; cg � ic2; fQ; �cg �
1

.
riAi:

(4.20)

To obtain the Slavnov-Taylor identity, we study the parti-
tion function with sources added for the operators gener-
ated by the BRST transformation

Z�J"; B; K"; L �
Z

exp
�
�S�

Z
d4x�J"A" � �Bc

� �cB� K"�Q; A" � LfQ; cg�

: (4.21)
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Performing the change of variables A! A� � �.Q; A, c!
c� � �.Q; c, �c! �c� � �.Q; �c in the path integral, we even-
tually obtain the standard identity

�-̂
�A"

�-̂
�K"

�
�-̂
�c

�-̂
�L
� 0; (4.22)

where -̂ is the one-particle-irreducible effective action less
the gauge-fixing term. From this, we may easily derive a
one-loop Slavnov-Taylor identity relating the self-energy,
*"#, and the coefficient ." of the K"c term of -̂:

@"*"# � ��@2g"# � @"@#�." � 0: (4.23)

An analogous relation arising from SO�4� invariance is
difficult to obtain since we are working in a noncovariant
gauge. Fortunately, a simple restriction that arises by re-
quiring SO�4� invariance of the S matrix will be enough for
our purposes. The specific condition that we will impose is
the existence of a double pole in the full propagator at zero
momentum. This requirement, combined with the weaker
Slavnov-Taylor identity @"@#*"# � 0, restricts the local
part of *"# to be of the form

*ij � C��p2 � p2
0gij � pipj�

*i0 � Dpip0

*00 � ��C� 2D�p2

(4.24)

where C and D are dimensionless constants. It is easy to
demonstrate, using the definition of .", that the full
Slavnov-Taylor identity (4.23) fixes C�D, leaving 1 de-
gree of freedom that is in principle determined by a wave
function renormalization condition. The logarithmic diver-
gences must have this structure independent of the finite
contribution to the local part of *"#. That our result (4.15),
(4.16), and (4.17) is consistent with these conditions is easy
to verify.

As a second, and less formal consistency check, we have
used our regularization scheme, together with the counter-
-18
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terms (4.18), to compute a physical quantity: the two-loop
free energy of Yang-Mills theory at infinite volume.21 The
counterterms computed in the previous subsection play a
crucial role in our calculation, which we present in detail in
Appendix A 3. Our final answer, Ftwo-loop � V	T4=72,
agrees with the previously computed result (using dimen-
sional regularization in Feynman gauge) [16]. We regard
this as a rather nontrivial check of our regularization
scheme.

D. The tr�AiAj�tr�AkAl� counterterms

We have seen in Sec. III F that the counterterms required
to evaluate b take the form of double-trace terms quartic in
the spatial components of the gauge field. We will now
follow the method of the previous subsection [requiring the
order 	2=N2 contribution to the four-point function
hAiAjAkAli to agree with the result obtained by (split)
dimensional regularization] to evaluate the coefficients of
the two possible counterterms of this form, given in (3.44).

The one-loop diagrams contributing to the nonplanar
part of the four-point correlator are depicted in Fig. 6 in
Appendix A 5. It follows from power counting that the
leading divergence in each of these diagrams is logarith-
mic. As a consequence, the regulator-dependent part of
each of these diagrams may be evaluated with all external
momenta set to zero and has a divergent part proportional
to the single integral

Z d3q

45
�����
q2

p
�q2 � a2�

: (4.25)

In Appendix A 5 we list the coefficient of this divergent
integral computed for each of the diagrams with a particu-
lar index structure.22 To obtain the full expression, we must
also sum over distinct permutations of indices. We list the
results R���ijkl [for the coefficient of the integral (4.25)], as
well as the corresponding contribution to the counterterm,
diagram by diagram in Appendix A 5.

Summing over the expressions in Appendix A 5 we find
that the sum of the diagrams depicted in Appendix A
evaluates to

d� 3

252



1�

4d� 1

d�d� 2�

�Z d3q

45
�����
q2

p
�q2 � a2�

� finite:

(4.26)

Notice that the first term in (4.26) is simply zero in the
cutoff regulator scheme (on setting d � 3). However, in
21As far as we are aware, this is the first time that this
computation has been done in Coulomb gauge using any regu-
lating scheme.

22We keep the number of spatial dimensions, d, explicit (as
opposed to setting d � 3), in order to determine the finite
counterterm needed to bring our result into agreement with
that of (split) dimensional regularization.
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dimensional regularization this term evaluates to�
�

2.

1552 �O�.2�

	
1

.
� �

2

1552 : (4.27)

It follows that perturbative computations in the damping
function scheme must be accompanied by the counterterm

L CT �

�
	2

N2

	�
1

12052 ln
�
A4

1A
3
2A

15
4

A22
3

	
�

1

6052

	
��tr�AiAi�tr�AjAj� � 2 tr�AiAj�tr�AiAj�; (4.28)

where the As are regulator-dependent constants defined in
Appendix A 1. For the sharp cutoff used in Sec. III, all A’s
give the same result, so the term involving A’s evaluates
to zero.

V. VALIDITY OF PERTURBATION THEORY

In this section we will determine the precise regime of
validity of perturbation theory for pure Yang-Mills theory
on a sphere of radius R, in order to make sure that the
computation we described above is valid. Naively, pertur-
bation theory is good whenever �QCDR� 1, since the
running coupling constant is then small at all scales above
the scale 1=R of the classical mass gap. In thermal Yang-
Mills theory it turns out that this expectation is modified by
IR divergences; as we explain below, perturbation theory is
valid at small �QCDR only for TR� 1

	�T� , where 	�T� is
the running ’t Hooft coupling at the energy scale T. It
follows, in particular, that for �QCDR� 1 perturbation
theory is good at TR� 1, which is the regime of interest
for this paper.

A. Review of IR divergences in flat space

In this subsection we review the well known effects of IR
divergences on thermal Yang-Mills theory in flat space; see
[17] and references therein for more details.

Perturbative computations in Yang-Mills theory on
R3 � S1 (where the S1 is a thermal circle) are beset by
IR divergences, as is easily seen from power counting. IR
divergences arise from the ! � 0 sector (! is the
Euclidean energy) of the theory. Consider a Feynman
diagram made up entirely of ! � 0 modes. Let q be the
scale of spatial momenta in such a diagram. Each addi-
tional loop is accompanied by a factor of 	T=q4 (from
vertices and propagators) times q3 (from phase space),
giving a net factor of 	T=q. Consequently, higher loop
graphs are increasingly infrared divergent.

These infrared divergences are cured by the fact that the
gauge field A is effectively massive. Working in Feynman
gauge, the one-loop self-energy of the A0 field at zero
energy and momentum, *00�0; ~0�, is nonzero and of order
	T2. As a consequence, A0 is effectively massive with

mass of order mel �
�������������������
*00�0; ~0�

q
�

����
	
p

T. Consequently,
infrared divergences in loops involving A0 are cut off at
-19



23Once naive perturbation theory breaks down, the effects of
dynamical mass generation are important. In this regime the
correct way to proceed is to mimic the flat-space analysis, and to
shift the bare quadratic action by A"*"#�0; 0�A#, where the first
index of * refers to the energy and the second to the spherical
harmonic number on S3. At low enough temperatures this
effective mass is of order 1=R, while at higher temperatures
the effective mass crosses over to its flat-space value. For
instance, the effective Ai mass is of order 1=R for 	TR� 1,
but is given by mmag for 	TR� 1. Consequently, for T �
1=	R, the flat-space analysis of the previous subsection applies,
and perturbation theory breaks down. Were we to ignore the
dynamically generated contribution to the masses, we would be
faced with a paradox. The free energy would receive contribu-
tions proportional to increasingly high powers of R, in conflict
with extensivity.
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this mass; thus, the effective loop counting parameter for
A0 loops with ! � 0 is 	T=mel �

����
	
p

. So, A0 IR diver-
gences change the perturbative expansion parameter from
	 to

����
	
p

. The first fractional power of 	 that appears in the
expansion of the free energy is 	3=2 (from a one-loop graph
using a mass corrected propagator for A0). The next frac-
tional power, 	5=2, follows from the electric mass regulari-
zation of a three-loop IR divergence.

IR divergences involving the spatial gauge field Ai are
more serious. It turns out that the Ai self-energy at zero
momentum vanishes at one loop, but is nonvanishing at
two loops. As a consequence, the effective mass for Ai is of
order mmag �

�����������
	2T2
p

� T	. IR divergences involving spa-
tial Ai fields are cut off by this mass; as a consequence the
effective loop counting parameter for loops involving spa-
tial Ai is of order one. Graphs of low enough order do not
suffer from spatial IR divergences; however, a detailed
investigation reveals that an infinite number of graphs
contribute to the free energy at order 	3 and higher. In
summary, the free energy may be expanded up to order
	5=2; all coefficients in the expansion of the free energy to
this order are perturbatively computable, and have been
computed (see [18] and references therein). Higher order
terms are, in principle, inaccessible to perturbative
analysis.

The generation of an electric mass simply reflects the
fact that the high temperature dynamics of Yang-Mills
theory deconfines. Indeed, space is filled with a plasma
of charged particles of density �T3. As each of these
particles carries a charge

����
	
p

, the screening length of this
plasma is 1=

����
	
p

T, explaining the magnitude of mel de-
scribed above.

The generation of a magnetic mass may be explained
from the observation that Yang-Mills theory on R3 � S1

reduces, at high temperatures, to a (Euclidean) 3-
dimensional Yang-Mills theory with an effective Yang-
Mills coupling constant 	T, coupled to an adjoint scalar
field of much larger mass

����
	
p

T. The low energy dynamics
of this theory is simply that of pure 3-dimensional Yang-
Mills theory, which nonperturbatively develops a mass gap
of order 	T.

B. IR behavior on S3

We now turn to a study of the IR behavior of Yang-Mills
theory on S3. Yang-Mills theory on S3 has a mass gap 1=R
even classically. As a consequence, even ignoring the
dynamical mass generation, the power counting arguments
of the previous subsection indicate that (assuming TR�
1) loops of low energy A0 and Ai fields are both weighted
by the effective coupling

	eff � 	TR ’ mmagR: (5.1)

Perturbation theory is valid when this effective coupling is
125018
small. When mmagR� 1 this effective coupling is of order
one, and perturbation theory breaks down.23

In summary, finite-temperature Yang-Mills perturbation
theory on S3 is useful provided both that �QCDR� 1 and
that temperatures are low enough so that 	�T�TR� 1.
VI. CONCLUSIONS

In this paper we have computed the leading perturbative
correction to the thermal partition function of pure SU�N�
Yang-Mills theory on S3 around the phase transition point,
and found that it leads to a first order deconfinement phase
transition. The analysis, requiring diagrams with up to
three loops, is quite complicated, and the interesting result
is a single number (3.53) which governs the order of the
phase transition. As described above, we have subjected
our formalism to various consistency checks, including the
cancellation of all divergent contributions, but we do not
have any way to independently verify the correctness of
our final result (3.53). It would be useful to have an
independent computation of (3.53) as a check of our
results.

In the pure Yang-Mills theory on S3 we found that b is
negative; a similar result was found in the corresponding
analysis of various quantum mechanical systems [19,20]. It
would be interesting to compute the sign of b in other 3�
1-dimensional (or lower dimensional) field theories, and
to see how it depends on the matter content and on the
various coupling constants of the theory. In particular, we
are planning to compute the value of b in the 3�
1-dimensional N � 4 supersymmetric Yang-Mills theory
on S3, to see if the order of the deconfinement phase
transition at weak coupling is the same as the first order
behavior found at strong coupling [21,22].

Since b is negative in all examples that have been
analyzed so far, one might conjecture that for some reason
it always has to be negative. However, it is easy to see that
this is not the case, at least when one adds additional scalar
fields with arbitrary couplings. For example, let us consider
a 0� 1- or 1� 1-dimensional gauge theory with a massive
adjoint scalar field ., with a potential of the form
-20
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V�.� � tr�m2.2 � c4g2
YM.

4 � c6g4
YM.

6 � c8g
6
YM.

8�;

(6.1)

where the ci are kept fixed in the ’t Hooft large N limit. By
analyzing the vacuum diagrams up to three-loop order, it is
easy to see that c6 contributes linearly to b at order 	2

(through a diagram similar to 3n of Fig. 2), while c8 only
contributes to b at higher orders. Thus, for given values of
m2 and c4, we can achieve any sign for the leading pertur-
bative contribution to b just by varying c6. We may need to
choose c6 to be negative for this, but we can always choose
c8 to be large enough so that . � 0 is still the unique
minimum of (6.1). In higher dimensions we have not yet
been able to find a similar example involving purely single-
trace interactions, but a potential term of the form
cg2

YM tr�.2�2=N may be shown by similar arguments to
lead to arbitrary values for b (already at order 	). Thus,
large N weakly coupled deconfinement phase transitions
may generally be of either first order or second order.
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APPENDIX A: DETAILS RELATED TO
REGULARIZATION

In this appendix, we provide many of the details behind
calculations discussed in Secs. III and IV.

1. Definitions of useful regulator-dependent constants
and functions

We start by presenting definitions for the various con-
stants which encode the dependence of the results in
Sec. IV on the regularization functions R, ~R, �R and ~�R.
We also define three functions of external momentum
that will arise in the expressions for individual diagrams
presented later in this appendix.

ln
�
AnM

"

	
�
Z 1

0
dq

�����
q2

p
Rn�q�

q2 � "2

M2

(A1)

B1 �
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25
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�1
dq0
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dq0

~�R�q0�

�B2 �
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dq0
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Z 1
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dqqR�q�
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Z 1

0
dqq �R�q�
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452

Z 1
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452
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dqqR�q�R00�q�
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�H1�ij�p� �
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�25�3
qiqj

q2�pM� q�2
R�q�
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Z d3q

�25�3
qiqj

q2�p�M� q�2
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�����
q2

q
� �R
� ����������������������

p
�M
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2

s 	

� �J2�i�p� �
Z d3q

�25�3
qi

q2�p�M� q�2
�R�

�����
q2

q
� �R
� ����������������������

p
�M
� q

	
2

s 	
:

(A3)

Note the parameter " appearing in the definition of the
constants Ai. This parameter is needed when splitting
logarithmically divergent integrals in order to avoid intro-
ducing artificial IR divergences into the ‘‘regularized’’
pieces. Moreover, " is identified with the scale associated
to (split) dimensional regularization when comparing re-
sults obtained in that scheme with those obtained in ours.
-21
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2. Diagram by diagram contribution to the regulator-dependent piece of ���

We now list the regulator-dependent contribution, *�RD�
� , of each diagram in Fig. 4 to the self-energy *"# � �

1
2 hA"A#i

at momentum p:
1

	
�*�RD�

SE1a�ij � �
2

3
M2C2gij �

�
1

2452 p2
0gij �

9

4052 p2gij �
31

12052 pipj

	
ln
�
A2M

"

	

�
1

15
�p2gij � 4pipj�F2 �

43

45052 pipj �
19

30052 p2gij �
1

7252 p2
0gij; (A4)
SE1f

SE1a SE1b SE1c

SE2a SE2b

SE3a SE3b
SE3c

SE1e
SE1d

FIG. 4. Diagrams contributing to the gauge boson self-energy at one loop. Solid lines denote Ai propagators, dashed lines denote A0

propagators, and arrowed lines denote ghost propagators.
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1
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FIG. 5. Diagrams contributing to the two-loop free energy.
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SE3c�00 � 2M2C1: (A14)

3. A check: The two-loop free energy

We now proceed to compute a physical quantity, the free
energy of Yang-Mills theory at order 	, using our regulari-
zation scheme. We will find a result that agrees with the
standard result obtained by traditional methods (utilizing
dimensional regularization in Feynman gauge). We view
this agreement as a significant check on the consistency of
our regularization scheme.

The two-loop free energy of Yang-Mills theory, at order
	, receives contributions from six graphs depicted in Fig. 5.
A set of one-loop counterterm graphs also contribute to the
same order. We will find it useful to group each two-loop
graph with a set of one-loop counterterm graphs, in the
manner (and for the reasons) that we now explain.

Consider the counterterm contributions to the free en-
ergy at order 	. For the purpose of this discussion, it will be
24Furthermore, it is easy to convince oneself that only the counte
contribution to the free energy.

25It may also seem natural to guess that this sum will equal the corr
but this is not precisely the case, as we explain in detail in the next

125018
useful to regard counterterms that cancel different one-
loop contributions to the self-energy (see above) as dis-
tinct.24 Any one-loop contribution to the free energy with a
counterterm insertion may uniquely be associated with one
of the two-loop free energy graphs by ‘‘blowing up’’ the
counterterm into its parent self-energy diagram. It is plau-
sible (and true) that the sum of any particular two-loop free
energy graph with all its associated one-loop counterterm
graphs, is finite25 and independent of the damping function
R�q��. This fact suggests a natural grouping of graphs that
we will use.

Next, we list the results related to the diagrams, depicted
in Fig. 5, that contribute to the two-loop free energy. For
each such diagram, we list the result of evaluating it in our
damping function scheme, F�, the contribution arising
from its associated one-loop self-energy diagram (see
Sec. IV and the previous subsection), F�CT�� , and the result
obtained by direct evaluation in (split) dimensional regu-
larization, F�DR�� (all divided by 	V, where V is the volume
of space):
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rterm with external vector lines yields a temperature-dependent

esponding diagram evaluated in split dimensional regularization,
subsection.
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Summing the contributions of the individual diagrams,
we find that the two-loop free energy is

Ftwo-loop
V

�
	
72

T4; (A21)

in agreement with results previously computed using di-
mensional regularization in Feynman gauge [16].26,27

We may explicitly verify the diagram by diagram can-
cellation of divergences discussed above. In addition, we
note that adding the contributions from a free energy
diagram in our damping function scheme and its associated
self-energy diagram does not lead to full diagram by
diagram agreement with the result of (split) dimensional
regularization. We discuss this in greater detail in the next
subsection.
26The result often seen in the literature is 	
144T4, which differs

from this by a factor of 2. The reason for this apparent difference
arises from a choice of convention. Our definition of the propa-
gators in (4.12) corresponds to a normalization of the basis
matrices �tA�ab such that �tA�ab�tA�cd � �ad�bc, which is equiva-
lent to taking the quadratic Casimir of the fundamental repre-
sentation as C�N� � 1. The convention most prevalent in the
literature is C�N� � 1

2 . This difference amounts to an effective
difference in the definition of 	 which, when properly accounted
for, gives an extra factor of 2.

27We also find the same result for the free energy evaluated
directly in Coulomb gauge using split dimensional
regularization.

125018
4. Diagram by diagram comparison with split
dimensional regularization

In this subsection, we will explain in detail how the sum
of any particular two-loop self-energy graph plus all its
associated one-loop counterterm graphs differs from the
same graph evaluated in dimensional regularization.

If we consider summing a free energy diagram com-
puted in our scheme with its corresponding counterterm,
this yields a result equivalent to evaluating the integral over
the internal loop momentum from which the divergence
arises before contracting the legs of this loop with the Ai
propagator. After the evaluation, we perform this contrac-
tion but, at that point, the number of spatial dimensions is
fixed at d � 3. On the other hand, when we compute the
free energy diagram in pure (split) dimensional regulari-
zation, contraction of the divergent momentum integral
with the final propagator is done at unspecified d, leading
to additional dependence on . � 3� d and changing the
finite result.

As a check on our calculations, we now compute the
difference between the finite parts of diagrams evaluated
with our scheme and with (split) dimensional regulariza-
tion. Any factors of d that arise only affect the evaluation of
the logarithmic divergences and thus we restrict attention
to these. We write a generic logarithmically divergent
integral that arises in the asymptotic expansion of a given
self-energy diagram as

�f�p2; .�gij � g�p2; .�pipj
Z d3q

�25�3
1�����

q2
p
�q2 � a2�

:

(A22)

Contracting this with an Ai propagator at momentum p,
and evaluating the integral in dimensional regularization,
we obtain

�2� .�f�p2; .�
Z d3q

�25�3
1�����

q2
p
�q2 � a2�

� �2� .��f�p2; 0� �O�.�


1

.
� ln

�
a
"

	�
: (A23)

We see that the new finite contribution that arises due to
the . in the �2� .� factor is precisely � 1

2 times the
coefficient of ln" in the final result. This implies that, to
get the (split) dimensional regularization result for diagram
FE1a (FE1b), we should add 2

225T4 (� 2
225T4). It is easy to

check that this is consistent with Eqs. (A15) and (A16).
Moreover, we see why this diagram by diagram discrep-
ancy did not ruin agreement in the final result for the free
energy; the difference between our scheme and (split)
dimensional regularization is proportional to the logarith-
mic divergence of a given diagram and all logarithmic
divergences cancel when the diagrams are summed.
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5. Coefficients of divergences in nonplanar one-loop
four-point graphs

In this subsection, we consider details related to the
computation of the tr�AiAj�tr�AkAl� counterterm that is
relevant for the computation of b in Sec. III. The relevant
diagrams are depicted in Fig. 6. The seemingly chaotic
ordering and labeling of diagrams was chosen for easy
a
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FIG. 6. The diagrams contributing to htr�AiAj�tr�AkAl�i at order
calculation of b.

125018
identification with three-loop free energy diagrams via
the correspondence discussed in the main text.

We compute the counterterm by computing four-point
functions of gauge fields, with the color index structure
htr�AiAj�tr�AkAl�i which arises from one-loop nonplanar
diagrams. These diagrams generally have a logarithmic
divergence proportional to
3m2

a b3c

d c
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	2=N2, whose corresponding counterterms are relevant to the
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We begin by listing the coefficient, M�
abcd, of this logarithmically divergent integral for each diagram in Fig. 6 with the

indices fixed as in the figure, computed in dimensional regularization with d � 3� .:
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We now sum over the appropriate permutations of indices to obtain the coefficient, R���ijkl, of the logarithmic divergence
(A24) due to diagrams of each type. We list these coefficients, as well as the contribution to the tr�AiAj�tr�AkAl�

counterterm R���CT:
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R�3n3�ijkl � R�3n2�ijkl R�3n3�CT � R�3n2�CT (A48)

R�3n4�ijkl �
2

52

�
d� 1

d

	
gijgkl �



4

352 �
2.

952 �O�.2�

�
gijgkl R�3n4�CT �



1

652 ln
�
A1M

"

	
�

1

3652

�
tr�AiAi�tr�AjAj�

(A49)
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�
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Summing these yields the following result for the order
	2=N2 double-trace counterterm which is needed in
Eq. (3.48):

L CT �

�
	2

N2

	�
1

12052 ln
�
A4

1A
3
2A

15
4

A22
3

	
�

1

6052

	
��tr�AiAi�tr�AjAj� � 2 tr�AiAj�tr�AiAj�: (A51)
APPENDIX B: USEFUL SPHERICAL HARMONIC
IDENTITIES

In this appendix, we collect various properties of the S3

spherical harmonics required to study field theory on S3.
Many of the basic results were derived in [7].
125018
1. Basic properties of spherical harmonics

Scalar functions on the sphere may be expanded in a
complete set of spherical harmonics Sm m0

j transforming in
the �j=2; j=2� representation of SU�2� � SU�2� 
 SO�4�,
where j is any nonnegative integer, and �j=2 � m; m0 �
j=2. It is convenient to denote the full set of indices
�j; m; m0� by �. These obey an orthonormality condition
(we take the radius of the S3 to be one)Z

S3
S�S� � �� ��; (B1)

where S �� denotes the complex conjugate of S�,

�Sm m0
j �� � ��1�m�m0S�m �m0

j : (B2)

The spherical harmonics are eigenfunctions of the Laplace
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operator on the sphere,
r2S� � �j��j� � 2�S�; (B3)
and under a parity operation transform with eigenvalue
��1�j� .

A general vector field on the sphere may be expanded as
a combination of gradients of the scalar spherical harmon-
ics plus a set of vector spherical harmonics ~Vm m0

j� . These
transform in the �j�1

2 ; j 1
2 � representation of SO�4�, where j

is a positive integer. Again, it is convenient to denote the
full set of indices �j;m; m0; .� by a single index �. These
obey orthonormality relations
Z
S3

V� � V� � �� ��;
Z

S3
V� � rS� � 0: (B4)
Again V �� indicates the complex conjugate of V�, given by
�Vm m0
j� �� � ��1�m�m0�1V�m �m0

j� : (B5)
The vector spherical harmonics are eigenfunctions of par-
ity with eigenvalue ��1�j�1, and satisfy
r2V� � ��j� � 1�2V�; r� V� � �.��j� � 1�V�;

r � V� � 0: (B6)
Explicit expressions for the scalar and vector spherical
harmonics may be found in [7].

2. Spherical harmonic integrals

In expanding the action in modes, we require the inte-
grals over the sphere of products of various numbers of
spherical harmonics. For two spherical harmonics, the
integrals are given by the orthonormality relations. For
products of three spherical harmonics, we require the set
of integrals given in (2.18). These were calculated in [7],
and the results may be expressed in terms of the functions
(3.12) and (3.13) as28
28The expression for C below differs by a factor of 2 from the
expression in [7], but we believe that this expression is correct.

125018
C��0 �
j�
2

j��.�

2
j0

2
m� m� m0

 !

�
j�
2

j��.�

2
j0

2
m0� m0� m00

 !
R2�j�; j�; j0�;

D��0 �
j��.�

2
j��.�

2
j0

2
m� m� m0

 !

�
j��.�

2
j��.�

2
j0

2
m0� m0� m00

 !
R3.�.�

�j�; j�; j0�;

E��0 �
j��.�

2
j��.�

2
j0�.0

2
m� m� m0

 !

�
j��.�

2
j��.�

2
j0�.0

2
m0� m0� m00

 !
R4.�.�.0

�j�; j�; j0�:

(B7)

To evaluate integrals appearing in quartic terms, we do not
require any additional information, since any product of
two spherical harmonics may be expressed as a sum of
single spherical harmonics using the completeness prop-
erty and the integrals above. For example, we find

V� � V� � D�� �0S0: (B8)
3. Identities involving 3j symbols

The expressions for two- and three-loop vacuum dia-
grams involve products of the integrals in the previous
subsection, with indices contracted and summed over in
various ways. Since the m and m0 indices appear only in 3j
symbols, we can always evaluate the sums over these using
standard 3j-symbol identities.

For basic manipulations, we require the identities

j1 j2 j3
m1 m2 m3

� 	
�

j3 j1 j2
m3 m1 m2

� 	
(B9)

j1 j2 j3
m1 m2 m3

� 	
� ��1��j1�j2�j3�

j1 j2 j3
�m1 �m2 �m3

� 	
(B10)

j1 j2 j3
m1 m2 m3

� 	
� ��1��j1�j2�j3�

j2 j1 j3
m2 m1 m3

� 	
:

(B11)

To evaluate two-loop sums, we require

X
m1

X
m2

j1 j2 j3
m1 m2 m3

� 	
j1 j2 j4
m1 m2 m4

� 	
�

�j3j4�m3m4

2j3 � 1
:

(B12)

Finally, in three-loop computations we require
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X
m0s

��1�m1�m2�m3�m4�m5�m6
j1 j1 j3
m1 �m1 m3

� 	
j3 j4 j5
�m3 m4 m5

� 	
j5 j4 j6
�m5 �m4 m6

� 	
j6 j2 j2
�m6 m2 �m2

� 	

� ��1�j1�j2
��������������������������������������
�2j1 � 1��2j2 � 1�

q
�j3;0�j6;0�j4;j5 (B13)

X
m0s

��1�m1�m2�m3�m4�m5�m6
j1 j1 j2
m1 �m2 m2

� 	
j2 j3 j4
�m2 m3 m4

� 	
j3 j5 j6
�m3 m5 m6

� 	
j4 j6 j5
�m4 �m6 �m5

� 	

� ��1�j1�j3

����������������
2j1 � 1

2j3 � 1

s
�j3;j4�j2;0��j4; j5; j6� (B14)

X
m0s

��1�m1�m2�m3�m4�m5�m6
j1 j2 j3
m1 m2 m3

� 	
j3 j2 j4
�m3 �m2 m4

� 	
j4 j5 j6
�m4 m5 m6

� 	
j6 j5 j1
�m6 �m5 �m1

� 	

�
1

2j1 � 1
�j1;j4��j1; j2; j3���j1; j5; j6� (B15)

X
m0s

��1�m1�m2�m3�m4�m5�m6
j1 j2 j3
m1 m2 �m3

� 	
j3 j4 j5
m3 m4 �m5

� 	
j5 j6 j1
m5 m6 �m1

� 	
j2 j6 j4
�m2 �m6 �m4

� 	

� ��1�j1�j2�j3�j4�j5�j6

� j1 j2 j3
j4 j5 j6


: (B16)
In Eqs. (B14) and (B15), the delta function with three
arguments is either 1 or 0, depending on whether or not
the triangle relation is satisfied. In Eq. (B16),�

j1 j2 j3
j4 j5 j6


is the 6j symbol.

4. Identities for sums of spherical harmonics

Using the 3j identities, it is straightforward to derive
expressions for sums over m, m0, and . in various products
of the spherical harmonic integrals. For the two-loop dia-
grams, we require:X

m0s

D� ��0D� �� �0 �
1

252 j��j� � 2�j��j� � 2��0;0;

X
m0s;.0s;j0

D� ��0D� �� �0 �
2

52 j��j� � 2�j��j� � 2�;

X
m0s;.0s

D��0D �� �� �0 � 2R2
3��j�; j0; j�� � 2R2

3��j�; j0; j��;

X
m0s;.0s;j0

D��0D �� �� �0 �
2

352 j��j� � 2�j��j� � 2�;

X
m0s

E��0E �� �� �0 � R2
4.�.�.0

�j�; j�; j0�: (B17)

For the three-loop diagrams it is useful first to note the
basic relations (related to those above):
125018
X
m0s;.

D� ��	 �

���
2
p

5
�	;0j��j� � 2�;

X
m0s;.0s

D��0D �� ��* � 2�0 �*
1

�j0 � 1�2
�R2

3��j�; j0; j��

� R2
3��j�; j0; j���;X

m0s;.0s

D�0*D� �0 �* � �� ��
1

j��j� � 2�
�R2

3��j�; j*; j0�

� R2
3��j�; j*; j0��;X

m0s;.0s

C��0C �0 �� � � �2�� ��
1

�j� � 1�2
R2
2�j�; j�; j0�;

X
m0s

E�0�E �� �0 � � ��� ��
1

j��j� � 2�
R2
4.�.0.�

�j�; j0; j��;

X
m0s

D0*�E �* �0 � � 0;

X
m0s

C�0*D �0� �* � 0: (B18)
In each of these, we are summing over m, m0, and . for
each of the contracted indices only.

Using these basic relations and the results of the pre-
vious subsection, we find the following results for the
nonvanishing spherical harmonic sums that appear in the
three-loop calculations:
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Finally, in certain cases, we may simplify expressions further by using the relations

X
c

R2
3��a; c; b� �

X
c

R2
3��a; c; b� �

1

652 a�a� 2�b�b� 2�;
X
c

�R2�a; b; c��2 �
1

352 b�b� 2�a�a� 2��a� 1�2:

(B22)
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