
PHYSICAL REVIEW D 71, 125016 (2005)
Massless and massive three-dimensional super Yang-Mills theory and mini-twistor string theory
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We propose various ways of adding mass terms to three-dimensional twistor string theory. We begin
with a review of mini-twistor space—the reduction of D � 4 twistor space to D � 3. We adapt the two
proposals for twistor string theory, Witten’s and Berkovits’s, to D � 3 super Yang-Mills theory. In
Berkovits’s model, we identify the enhanced R symmetry. We then construct B-model topological string
theories that, we propose, correspond to D � 3 Yang-Mills theory with massive spinors and massive and
massless scalars in the adjoint representation of the gauge group. We also analyze the counterparts of these
constructions in Berkovits’s model. Some of our constructions can be lifted to D � 4, where infinitesimal
mass terms correspond to vacuum expectation values of certain superconformal gravity fields.
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I. INTRODUCTION

Over the last 20 years following the work of Parke and
Taylor [1] (among others, see also [2]) it has become clear
that the scattering amplitudes of Yang-Mills theory in four
dimensions are much simpler than one would guess. This
simplicity was known to persist not only for tree-level
results, but also at the one-loop level (for a nice review,
see [3]). Witten has recently shown [4] that these ampli-
tudes are most succinctly expressed not in terms of the
polarization and momenta of the incoming and outgoing
photons, but rather in terms of Penrose’s twistor variables
[5] (which of course encode information about the polar-
ization and momenta of the particles). By applying the so-
called twistor transform to the amplitudes expressed in
terms of spinor variables, Witten showed that the results
collapse to simple algebraic curves in twistor space. The
use of twistors to study the classical Yang-Mills theory had
been discovered much earlier, see e.g. [6].

Twistor theory uncovers holomorphic structure under-
lying massless free field equations of motion. The ‘‘twistor
transform’’ converts harmonic functions on a manifold M
to meromorphic functions on its ‘‘twistor space’’ TM. The
twistor transform can be used to convert scattering ampli-
tudes of n massless gluons in perturbative Yang-Mills
theory to a meromorphic function (i.e., a section of a
certain line bundle) of n points on T�R4�. It was conjec-
tured in [4] that the l-loop contribution to the transformed
amplitude is nonvanishing only if the n points on twistor
space that correspond to the n gluons lie on a holomorphic
curve whose degree and genus are determined by the
helicity of the particles and by l. This led Witten to con-
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jecture that there exists a dual string theory and that it is a
topological B model [4]. For related follow-up work, see
for instance [7]. The target space of this string theory is the
twistor space of R4, and Witten showed how the
D instantons of this string theory can compute the scatter-
ing amplitudes of the perturbative gauge theory. (The issue
of whether one should consider connected or disconnected
instantons in order to reproduce the gauge theory ampli-
tudes was rather nicely resolved in [8].) This surprising
duality is a ‘‘weak-weak’’ duality in the sense that a weakly
coupled string theory is dual to a weakly coupled gauge
theory, unlike the ‘‘strong-weak’’ duality [9–11] where a
strongly coupled string theory was dual to a weakly
coupled gauge theory.

We wish to extend these results to three dimensions and
to understand the string dual of weakly coupled super
Yang-Mills theory in D � 3. The target space of this string
theory is the twistor space of R3. This turns out to be the
space of oriented lines in R3 (we mostly follow [12] and
the nice review article [13], see also [14]). It is called
‘‘mini-twistor’’ space [12], and is related to the twistor
space of R3;1 by dimensional reduction. This well-known
elegant relation [12] will guide us in developing an algo-
rithm to obtain gauge theory scattering amplitudes in D �
3 from the corresponding ones in D � 4. We shall see that
the D � 3 amplitudes are still supported on holomorphic
curves. The twistor equations in D � 6 have been studied
in [15].

Recall that the twistor space of Minkowski space R3;1 is
T�R3;1� ’ CP3 n CP1 (i.e., CP3 with a rational curve ex-
cised1); the twistor space of R3 is TCP1 (the tangent space
of CP1) [12,13].2 The mini-twistor space does not possess
1We use the operator n to denote the set-theory ‘‘minus’’ and it
is not to be confused with division.

2This space has also been discussed in footnote 13 of [4], and
in [16] it was derived by dimensional reduction with constraints,
from 2-Time physics.
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the full D � 3 superconformal symmetry SO�3; 2�, but
only its Poincaré subgroup SO�3� 32 R3. It can be obtained
by dimensional reduction as follows [12]. The 3(complex)-
dimensional D � 4 twistor space CP3 n CP1 can be writ-
ten as a fiber bundle with the 2(complex)-dimensionalD �
3 mini-twistor space TCP1 as the base, and the fiber is C.
The structure group is the additive translation group �C

(as opposed to the multiplicative group C	). However, the
fibration is not canonical; it depends on a choice of direc-
tion in the physical space R4. This is the direction of the
dimensional reduction. For a given choice of this direction
(which we will refer to as the ‘‘4th direction’’) there is a
natural projection from the D � 4 twistor space CP3 n
CP1 onto the D � 3 mini-twistor space TCP1. We will
use this fibration to calculate mini-twistor amplitudes of
D � 3 Yang-Mills theory by taking the D � 4 amplitudes
and integrating them over the C fibers of the above fibra-
tion. In the world-sheet theory of the D � 4 twistor string
theory—the B model with target space CP3j4—we realize
dimensional reduction by gauging one of the four trans-
lation symmetries. It is an element of the B-model sym-
metry group PSL�4 j 4�. The resulting string theory is the
B model with target space TCP1 and four additional local
fermionic coordinates that transform as sections of the
pullback of the O�1� line bundle over CP1.

One aspect that is not so obvious in this construction is
the enhanced R symmetry. The R-symmetry group of D �
3 super Yang-Mills with N � 8 supersymmetry (SUSY) is
Spin(7), but we will find that only an SU�4� subgroup is
manifest in the B-model string theory. There is, however,
another version of twistor string theory due to Berkovits
[17]. This is an open string theory. There is a prescription
due to Berkovits and Witten [18] which allows one to go
from one picture to the other, and we will use this some-
what extensively. We will implement dimensional reduc-
tion from D � 4 to D � 3 in Berkovits’s model as well,
and we will derive the D � 3 version of this string theory.
In this string theory we will be able to construct the full R-
symmetry current.

We will also describe a twistor string theory dual of a
certain massive D � 3 super Yang-Mills theory, and this is
one of our main new results. The target space of this string
theory is also TCP1 with four additional local fermionic
coordinates, but the way in which they are fibered over
TCP1 is modified from the massless case. It corresponds to
a Yang-Mills theory with massive scalars and fermions. We
will systematically study what adding small mass terms to
the fermions means for the string theory. We will study this
question both in the context of the B model and Berkovits’s
open string theory. In the dimensionally reduced D � 3
gauge theory, mass terms have two different origins. They
either come from mass terms in the original D � 4 theory,
or they come by coupling the R-symmetry current to a
constant background gauge field (i.e., an R-symmetry
twist).
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In the B model, the effect of a mass term for the space-
time fermions can be achieved by deforming the (super-
)complex structure of the target space. Such a deformation
corresponds to a closed string vertex operator. We will
identify the vertex operators which give rise to the mass
terms. Then, using the prescription of Berkovits and
Witten, we convert these operators to open string operators
which deform the boundary of the world sheet. In making
this transformation, we encounter a surprise: The operators
that one gets using this dictionary do not lie in an irreduc-
ible representation of the R-symmetry group Spin(7), as
they should. Some of the operators have to be modified to
fit into the required irreducible representation.

We also propose that an infinitesimal mass term in D �
4 can be achieved by a certain marginal deformation of the
world-sheet theory. In physical space, this corresponds to a
small vacuum expectation value (VEV) for a B-model
closed string field, which according to [4,18] is part of a
conformal supergravity multiplet. We identify this field.

The paper is organized as follows. In Sec. II we review
the construction of mini-twistor space and its geometrical
interpretation as the space of oriented lines, following
[12,13]. We review the relation between harmonic func-
tions on R3 and meromorphic forms on mini-twistor space,
and we apply it to the scalar propagator. In Sec. III we
review the connection [12] between the D � 3 and D � 4
twistor spaces, and we discuss the supersymmetric exten-
sions. We derive the tree-level amplitudes of D � 3 super
Yang-Mills theory by dimensional reduction, and we find
that they have support on holomorphic curves, like their
D � 4 counterparts. We comment on a possible physical
interpretation of this result. In Sec. IV we augment the
theory with mass terms, and we relate the infinitesimal
mass terms to world-sheet operators in the B model and in
Berkovits’s model. We conclude in Sec. V. (For conve-
nience we list in Tables IV and V the various symbols that
are used throughout the text.)
II. THE (MINI-)TWISTOR SPACE OF R3

The twistor space of R3 is TCP1—the tangent bundle of
CP1, and harmonic functions on R3 can be converted into
meromorphic functions on TCP1. The space TCP1 is
called mini-twistor space [12,19]. We will now explain
these statements in detail and apply them to convert the
propagator of massless fields on R3 to a meromorphic
function of two points in mini-twistor space. Our initial
discussion is based mostly on the nice review paper by
Baird [13].

Our discussion in this section is limited to scalar fields.
This is not too much of a restriction, since in D � 3
massless gauge fields can be converted by duality to mass-
less scalars, as we will review in Sec. III A. Massless
spinors in D � 3 also have just one helicity state, and
solutions to the massless Dirac equation can be readily
-2
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converted to mini-twistor space. We refer the reader to [13]
for further details.

A. Harmonic functions on R3

Pick coordinates x1, x2, x3 on R3. For any fixed 0 � � �
2�, the linear expression x1 � ix2 sin�� ix3 cos� is a
harmonic function, and so is any analytic function of this
expression. We can construct a more complicated har-
monic function on R3 by taking linear combinations of
analytic functions of x1 � ix3 cos�� ix2 sin� for various
values of �. Whittaker’s formula states that a complex-
valued harmonic function � on R3 can be given by an
integral

��x1; x2; x3� �
Z 2�

0
d�f�x1 � ix2 sin�� ix3 cos�; ��;

(2.1)

where f�z; �� is analytic in the first variable. To prove this
formula, note that the right-hand side of (2.1) is obviously
harmonic. In order to write a Whittaker formula for an
arbitrary harmonic function �, pick polar coordinates
�r; u; v� such that

x1 � r cosu; x2 � r sinu sinv; x3 � r sinu cosv:

Then, for l 
 0, and jmj � l, the spherical harmonics can
be written as

rlYlm�u; v� �

���������������������������������������������������
�2l� 1��l�m�!�l�m�!

p
4�3=2i3ml!

�
Z 2�

0
d�eim��x1 � ix2 sin�� ix3 cos��

l;

(2.2)

and later we will also need the identity

1

rl�1
Yl;m�u; v� � �

i3ml!

4�3=2

�����������������������������������
2l� 1

�l�m�!�l�m�!

s

�
Z 2�

0

d�eim�

�x1 � ix2 sin�� ix3 cos��l�1
;

(2.3)

where the sign on the right-hand side of (2.3) is the same as
that of x1. The formula (2.2) is a standard integral repre-
sentation of spherical harmonics, while (2.3) can be de-
rived by starting from [20]

Pml �cosu� �
��1�m

�
l!

�l�m�!
em�i=2

�
Z �

0

cosm�d�

�cosu� i sinu cos��l�1
�cosu > 0�:

Any harmonic function that is regular at the origin can
be expanded as a linear combination of spherical harmon-
ics

��x1; x2; x3� �
X1
l�0

Xl
m��l

ClmrlYlm�u; v�:
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This allows us to express� as a Whittaker integral (2.1). A
possible choice for the analytic function to be used on the
right-hand side of (2.1) is

f��; �� �
X1
l�0

Xl
m��l

Clm

���������������������������������������������������
�2l� 1��l�m�!�l�m�!

p
4�3=2i3ml!

eim��l:

B. Identification of mini-twistor space with TCP1

As explained in [12,13,21], the twistor space of R3 can
be identified with the space of oriented lines in R3. This
space is isomorphic to the 2-complex dimensional space
TCP1. We will now review how this works.

First we rewrite Whittaker’s formula (2.1) by introduc-
ing complex coordinates

w � 2ei��x1 � ix2 sin�� ix3 cos��; z � ei�:

Given the analytic function f on the right-hand side of
(2.1), it is convenient to define a related analytic function ’
by

’�ei�; w� :� e�i�f�12e
�i�w; ��:

We assume that we can extend ’ to an analytic function
’�z; w� defined in a neighborhood of the circle jzj � 1.
Formula (2.1) can now be rewritten as

�� ~x� �
1

2�i

I
’�z;��x2 � ix3� � 2zx1

� z2�x2 � ix3��dz: (2.4)

We take z andw as local coordinates on mini-twistor space,
which will be identified with TCP1 soon. Under favorable
conditions, ’�z; w� can be analytically continued to a
meromorphic function for all z 2 C and w 2 C. For sim-
plicity of the discussion we will assume that this is the case.
(Although, in the more general case we can assume that ’
can be analytically continued to a neighborhood around
jzj � 1. We defer the discussion of this case till the end of
this subsection, since we will need to use sheaf cohomol-
ogy.) We would actually like to view z as a coordinate on a
CP1 by identifying CP1 ’ C [ f1g (say, by stereographic
projection), so that z � 1 will be an allowed value. Then,
for every ~x 2 R3, the equation

w � ��x2 � ix3� � 2x1z� �x2 � ix3�z2

�incidence relation�;
(2.5)

which is analytic in z, defines an algebraic curve in �z; w�
space. We get the integrand of (2.4) from ’�z; w� by setting
(2.5). The right-hand side of (2.5) has a double pole at z �
1. We define

z0 �
1

z
; w0 � �

w

z2
(2.6)

to be regular local coordinates on mini-twistor space near
z � 1, instead of �z; w�. Equation (2.5) then becomes

w0 � ��x2 � ix3� � 2x1z0 � �x2 � ix3�z02;
-3
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FIG. 1. Mini-twistor space can be identified with the space of
oriented lines ‘ 2 R3. The direction of ‘ is ~n, and the displace-
ment vector is ~A.
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which has no pole at z � 1. The two coordinate systems
�z; w� [z � 1] and �z0; w0� [z0 � 1], with the transition
rules (2.6), describe the holomorphic line bundle O�2� over
CP1, w being the local coordinate on the fiber and z being
the coordinate on the base. O�2� can be identified with the
tangent bundle TCP1, since from (2.6) it is obvious that w
transforms like a vector on CP1. Thus we identify the
mini-twistor space T�R3� with TCP1.

The relation (2.5) describes a holomorphic section of the
line bundle TCP1, and it varies with the point ~x 2 R3. It is
called the incidence relation [13]. In Sec. II C, following
[13], we will give the mini-twistor space and the incidence
relation a more geometric interpretation.

From (2.4) we see that it is natural to think of ’ as a
holomorphic 1-form ’�z; w�dz. This 1-form is defined in
the neighborhood of jzj � 1. A 1-form on CP1, by defini-
tion, takes values in the holomorphic sheaf �1 ’ O��2�
over CP1. We can think of ’dz as taking values in the
pullback ~�1 of �1 to the tangent bundle TCP1. Also, the
integral (2.4) is unchanged if we replace ’ with
’�z; w�dz� g0�z; w�dz� g1�z; w�dz, for any pair of local
holomorphic 1-forms g0 and g1 (taking values in the sheaf
~�1, by definition) such that g0 has no poles for all jzj � 1
and g1 has no poles for all jzj 
 1 (including z � 1). This
defines an equivalence class of 1-forms ’� ’� g0 � g1,
which defines the sheaf cohomology H1�TCP1; ~�1� [22].
This notion will be useful in Sec. III D when we derive
mini-twistor tree-level amplitudes of D � 3 super Yang-
Mills theory by dimensional reduction of D � 4
amplitudes.

C. Geometric picture of mini-twistor space

As explained in [12,13], the mini-twistor space TCP1,
whose construction was reviewed above, can be identified
with the space of oriented lines in R3, and the incidence
relation (2.5) is the condition that the line that corresponds
to the mini-twistor �z; w� passes through ~x 2 R3. We will
now review how this works.

To describe an oriented line ‘ in R3, we need its direc-
tion, which is a unit vector ~n, and its displacement vector
~A, which is the vector from the origin of R3 to a point on ‘
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closest to the origin (see Fig. 1). Therefore, ~A is perpen-
dicular to ~n. The space of unit vectors ~n in R3 is the sphere
S2, which we identify with CP1 by the stereographic
projection:

k ~nk � 1) z �
n2 � in3

1� n1
2 CP1 ’ C [ f1g: (2.7)

Given ~n, the space of vectors ~A that satisfy ~n � ~A � 0 is the
tangent plane to ~n on S2. With the identification S2 ’ CP1

we find that the space of � ~n; ~A� is TCP1. The holomorphic
coordinate w on the fiber of TCP1 can be defined as

w � �Ak
@z

@nk
�
��1� n1��A2 � iA3� � �n2 � in3�A1

�1� n1�2
;

where Ai and ni (i � 1; 2; 3) are the components of ~A and ~n
respectively. Given z, we can recover ~n by

~n �
�
1� jzj2

1� jzj2
;
z� z

1� jzj2
;
i�z� z�

1� jzj2

�
; (2.8)

and, noting that ~n � ~A � 0, we can recover ~A from �z; w�:
~A �
�
2
wz� wz

�1� jzj2�2
;�

w�1� z2� � w�1� z2�

�1� jzj2�2
;�i

w�1� z2� � w�1� z2�

�1� jzj2�2

�
: (2.9)
One can check [13] that the oriented line given by ~x �
�x1; x2; x3� � ~A� c ~n is the solution set to the incidence
relation (2.5).

D. The Poincaré group

It will be useful for us to express the generators of the
symmetry group of TCP1 in mini-twistor variables. This
will allow us to easily check symmetry properties of vari-
ous expressions that are given in terms of z and w. The
Poincaré group in three dimensions has generators ~P
(translations) and ~J (rotations). It acts on ~n and ~A as
follows:

�Pi; nj� � 0; �Pi; Aj� � i+ij � ininj;

�Ji; nj� � i,ijknk; �Ji; Aj� � i,ijkAk:
-4
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From this and (2.8) and (2.9) it is easy to find the expres-
sions in terms of z and w. We get

P1 � iz
@
@w
� iz

@
@w

;

P� :� P2 � iP3 � �i
@
@w
� iz2

@
@w

;

P� :� P2 � iP3 � iz2
@
@w
� i

@
@w

;

(2.10)

and

J1 � �z
@
@z
� z

@
@z
� w

@
@w
� w

@
@w

;

J� :� J2 � iJ3 �
@
@z
� z2

@
@z
� 2zw

@
@w

;

J� :� J2 � iJ3 � �z2
@
@z
�
@
@z
� 2zw

@
@w

:

(2.11)
3Twistor methods are actually often used to compute the
propagators in nontrivial geometries, see e.g. [23].
E. Extension to superspace

We can easily extend the discussion to accommodate
supersymmetry. For D � 3, N � 2 supersymmetry, the
generators are Q� and their Hermitian conjugates are
Qy� � Q�. The SUSY algebra is

�Pi;Q�� � 0; �Pi;Q�� � 0;

�J1; Q�� � �
1
2Q�; �J1; Q�� � �

1
2Q�;

�J�; Q�� � Q�; �J�; Q�� � �Q�;

�J�; Q�� � 0; �J�; Q�� � 0;

and

fQ�; Q�g � fQ�; Q�g � fQ�; Q�g � fQ�; Q�g � 0;

and

fQ�; Q�g � P�; fQ�; Q�g � �P1:

We add a superspace coordinate � and its complex con-
jugate �. We can now express Q� and Q� in terms of
�z; w; �� and their conjugates �z; w; ��:

Q� �
@
@�
� i� z

@
@w

; Q� � z
@

@�
� i�

@
@w

;

Q� � z
@
@�
� i�

@
@w

; Q� �
@

@�
� i�z

@
@w

:
(2.12)

The angular momentum operators change slightly with the
fermionic contributions:

J1 � �z
@
@z
� z

@
@z
� w

@
@w
� w

@
@w
�
1

2
�
@
@�
�
1

2
�
@

@ ��
;

J� � J2 � iJ3 �
@
@z
� z2

@
@z
� 2zw

@
@w
� z �

@

@�
;

J� � J2 � iJ3 � �z2
@
@z
�
@
@z
� 2zw

@
@w
� z�

@
@�
:

(2.13)
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Note that z and w have a J1 eigenvalue of �1, � and Q�,
Q� have a J1 eigenvalue �12, � and Q�, Q� have a
J1 eigenvalue �12, and z, w have a J1 eigenvalue �1. For
N � 8 supersymmetry, we take four copies of the fermi-
onic coordinates �A; �A (A � 1; . . . ; 4). We will denote this
super mini-twistor space by T3. It is TCP1 with the four
fermionic coordinates �A fibered over it.

F. The scalar propagator

For a fixed point ~x0 2 R3 the Green’s function for
Laplace’s equation on R3,

G� ~x; ~x0� �
1

k ~x� ~x0k
;

is harmonic away from ~x � ~x0, and therefore it should be
possible to express it as in Whittaker’s formula (2.4).3 In
fact, it is not hard to check that

1

k ~x� ~x0k
sgn�x01 � x1� �

1

2�i

I
’�z;��x2 � ix3� � 2zx1

� z2�x2 � ix3�; ~x0�dz; (2.14)

where

’�z; w; ~x0� �
2

�x02 � ix03�z
2 � 2x01z� �x

0
2 � ix03� � w

:

(2.15)

Note that ’ has a simple pole whenever the mini-twistor
�z; w� and the point ~x0 satisfy the incidence relation (2.5).
Thus, the integral (2.4) diverges when ~x � ~x0, as it should.
The extra sign sgn�x01 � x1� on the left-hand side is re-
quired if we take the contour of integration in (2.4) to be the
unit circle jzj � 1.

The left-hand side of (2.14) is translationally invariant.
Likewise, the mini-twistor transform ’�z; w; ~x0� is also
translationally invariant in the sense that it satisfies

0 �
�
@
@w
�
1

2

@
@x02
�
i
2

@
@x03

�
’�z; w; ~x0�;

0 �
�
z
@
@w
�
1

2

@
@x01

�
’�z; w; ~x0�;

0 �
�
�z2

@
@w
�
1

2

@
@x02
�
i
2

@
@x03

�
’�z; w; ~x0�:

(2.16)

Here we have used (2.10) to write the translation generators
in terms of z; w. The translational invariance of ’�z; w; ~x0�
is not a completely trivial statement, because the integral
on the right-hand side of (2.14) would have been transla-
tionally invariant even if, say, the left-hand sides of (2.16)
were not zero but were holomorphic functions of z; w.
-5
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Can we go one step further and mini-twistor transform
’�z; w; ~x0�with respect to ~x0 to get a meromorphic function
of two mini-twistors �z; w� and �z0; w0�? Using the familiar
expansion

1

k ~x� ~x0k
� 4�

X1
l�0

Xl
m��l

1

2l� 1

�
k ~xkl

k ~x0kl�1
Ylm

�
~x
k ~xk

�
Y	lm

�
~x0

k ~x0k

�
�for k ~xk< k ~x0k�

(2.17)

and the mini-twistor transforms (2.2) and (2.3), we arrive at
the mini-twistor transform of the scalar propagator

~G�t; t0� � ~G�z; w; z0; w0� �
2�w0z� wz0�

�w� w0��wz02 � w0z2�
;

(2.18)

where t � �z; w� and t0 � �z0; w0� are shorthand for our
twistor variables.

It can be explicitly checked that if k ~xk< k ~x0k, then

1

k ~x� ~x0k
� sgn�x01�

I
jzj�1

dz
2�i

I
jz0j�1

dz0

2�i

� ~G�z;��x2 � ix3� � 2x1z� �x2 � ix3�z2;

z0;��x02 � ix03� � 2x
0
1z
0 � �x02 � ix03�z

02� (2.19)

holds, unless all of the inequalities

jx01j � k ~xk � k ~x
0k and 4x21 � x22 � x23 and

4x021 � x022 � x023 (2.20)

are satisfied. If condition (2.20) holds, there are poles along
the integration path which need a special treatment.
Identity (2.19) does not necessarily hold for values of ~x
and ~x0 that do not satisfy (2.20). This is because when we
derive (2.18) from (2.2), (2.3), and (2.17), we have to
change the order of integration and summation, and for
an infinite series that does not necessarily converge.

If, on the other hand, k ~xk> k ~x0k, then (2.19) still holds,
except that sgn�x01� needs to be replaced by sgn�x1�. The
analog of the condition (2.20) is now

jx1j � k ~x
0k � k ~xk and 4x21 � x22 � x23 and

4x021 � x022 � x023 : (2.21)

The mini-twistor transform G�t; t0� is not uniquely de-
fined, because we can, for example, add an arbitrary mer-
omorphic function that has no poles in the region jzj � 1,
and we can also add an arbitrary meromorphic function
with no poles in the region jzj 
 1 (including z � 1). We
can also add functions with similar properties for z0. Note
also that the propagator (2.18) is not invariant under trans-
lations. The total translation generators can be read off
from (2.10). When acting on holomorphic functions, they
reduce to
125016
P� � �i
@
@w
� i

@
@w0

; P1 � iz
@
@w
� iz0

@
@w0

;

P� � iz2
@
@w
� iz02

@
@w0

:

It can be checked that P� ~G and P1 ~G do not vanish.
It is interesting that the off-shell propagator can be recast

in terms of mini-twistors, in some region of parameter
space. This seems to be the D � 3 analog of the off-shell
twistor propagator of [24]. It is possible that these formulas
could be used to convert Feynman diagram rules, which are
usually expressed in terms of momenta or coordinates, to
diagrams in terms of mini-twistor variables. We were un-
successful in putting such rules to practical use. This is
partly because (2.19) only holds under the assumption
(2.20), and partly because individual Feynman diagrams
of gauge theories are not gauge invariant.

G. Minkowski space R2;1

We can also define mini-twistor space for Minkowski
signature. Pick a Majorana representation of the Clifford
algebra, say,

�0 �
0 1
�1 0

� �
; �1 �

�1 0
0 1

� �
;

�2 �
0 1
1 0

� �
:

(2.22)

For a 3-momentum ~k � �k0; k1; k2�; set

k0�
0 �

�k1 k2 � k0
k2 � k0 k1

� �
�

�k1 k2 � k0

k2 � k0 k1

� �
) k1

2 � k0��
0�1

2:

For a lightlike ~k we get

0 � det�k0�0� ) k12 � 31 ~3
2;

and if ~k is real, 3 and ~3 are also real.
We get mini-twistor space by Fourier transforming with

respect to ~3:

ei ~k� ~x !
1

�2��2
Z
d2 ~3eix

1
231

~32ei~3
202

� +�2��x1231 �02�;

where

x12 �
�x1 x2 � x0

x2 � x0 x1

� �
:

The condition

02 � x1231 � 0

is related to the incidence relation (2.5) as follows.
Expanding the components we get
-6
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�01 � x1131 � x2132 � �x
131 � �x

2 � x0�32;

�02 � x1231 � x2232 � �x
2 � x0�31 � x132:

(2.23)

Now set

z �
31
32
; w �

0132 �0231
�32�2

: (2.24)

Then we find from (2.23) that

w � 2zx1 � �x2 � x0� � �x2 � x0�z2: (2.25)

Renaming x0 ! ix3, the Minkowski incidence relation
(2.25) becomes the Euclidean version (2.5). For
Minkowski space, z andw are real. z takes values in RP1 ’
S1 and w takes values in its tangent space, so together they
parametrize the tangent bundle TS1 ’ R� S1.
III. DIMENSIONAL REDUCTION

We can calculate amplitudes ofD � 3 super Yang-Mills
theory by dimensional reduction of D � 4 amplitudes. For
this purpose, we need to understand the connection [12]
between the twistor space CP3 n CP1 of R4 and the mini-
twistor space TCP1 of R3. We will review this connection
in Sec. III B, after a brief review of dimensional reduction
for super Yang-Mills theory. For a recent comprehensive
review of various aspects of D � 3 Yang-Mills theory see
[25].

A. Field theory

Euclidean D � 4 Yang-Mills theory with N � 4 super-
symmetry has an SU�4� R-symmetry group and SU�2�L �
SU�2�R is the (double cover of) rotation group. We will
now review the SU�2�L � SU�2�R � SU�4� representa-
tions of the fields, and at the same time introduce our
notation. The field content is given by the following: a
bosonic gauge field Ai (i � 1; . . . ; 4) in �2; 2; 1�, bosonic
scalars �I (I � 1; . . . ; 6) in �1; 1; 6�, fermionic left spinors
 A1 (A � 1; . . . ; 4 and 1 � 1; 2) in �2; 1; 4�, and fermionic
right spinors  _1A ( _1 � _1; _2) in �1; 2; 4�.

Dimensional reduction to D � 3 proceeds by taking all
the fields to be independent of x4 and defining �7 :� A4.
The (double cover of the) rotation group in (Euclidean)
D � 3 is SU�2� and the distinction between dotted and
undotted spinors disappears. The D � 3 R-symmetry
group is Spin(7). We will now review the SU�2� �
Spin�7� representations of the D � 3 fields. The fermions
 A1 and  _1A combine to form fields in the �2; 8�, the gauge
field components A1; . . . ; A3 form a gauge field in the �3; 1�
(that is dual to a scalar in D � 3), and the scalars �I (I �
1; . . . ; 7) are in the �1; 7� representation.

We will denote the D � 3 fermions by 7a1 with a �
1; . . . ; 8 being the index of the spinor representation of
so�7� and 1 � 1; 2 the D � 3 space-time spinor index.
The D � 3 Lagrangian is given by
125016
g23L � tr

 
1

4
FijF

ij �
1

2

X7
i�1

Di�
IDi�I �

1

4

X
I;J

��I;�J�2

�
X8
a�1

7a1<
i12@i7

a
2 �

X
a;b;I

,12�Iab�
I7a17

b
2

!
; (3.1)

where g3 is the D � 3 coupling constant, ,12 is the
standard antisymmetric lowering and raising matrix for
2-component spinors, <i12 are Pauli matrices, and �Iab
are so�7� Dirac matrices.

Helicity in D � 3 is defined as follows. We Wick rotate
to Minkowski metric R2;1 and let k0 (0 � 0; . . . ; 2) be a 3-
momentum of a massless particle. Choose a reference
frame and let ~k � k ~n 2 R2 be the spatial component of
k0, with ~n a unit vector. Then, in the temporal gauge A0 �
0, a ��� helicity photon has a wave function ~A (the two-
component spatial part of Ai) satisfying ~n� ~A � �i�7.
This can be described more conveniently as follows. In
D � 3 a photon is equivalent to a scalar�8, by duality. The
field strength is then given by

Fij � ,ijl@l�8:

A ��� helicity photon then satisfies�7 � �i�8. Note that
the condition for a particular helicity breaks the Spin�7�
R symmetry to Spin�6� ’ SU�4�. We will see later in
Sec. III C that, indeed, our super-mini-twistor space only
has a manifest SU�4� symmetry and not Spin(7).

B. Dimensional reduction of D � 4 twistor space

What is the relation between the twistor space CP3 n
CP1 of C4 (regarded here as complexified R2;2) and the
mini-twistor space TCP1 of R3? The answer is that CP3 n
CP1 is a fibration over TCP1 [12]. To see this, consider an
arbitrary lightlike 4-momentum k0 in C4. It can be written
as

k1 _1 � 31 ~3 _1:

In accordance with the Clifford algebra in (2.22), we
choose the Majorana-Weyl spinor representation of R2;2 as

<01 _1 �
0 �1
1 0

� �
; <11 _1 �

1 0
0 �1

� �
;

<21 _1 �
0 �1
�1 0

� �
; <31 _1 �

�1 0
0 �1

� �
;

(3.2)

where we are working in signature �� ����. Now sup-
pose that we set k3 � 0, so that k0 will lie in C3 (com-
plexified R2;1). This implies the constraint

k1 _1<31 _1 � 0) 31 ~3 _1 � 32 ~3 _2 � 0: (3.3)

In general, we will refer to the direction on which we
dimensionally reduce as the 4th direction. We can now
see how a choice of direction for dimensional reduction
naturally defines a fibration structure of CP3 n CP1. For
-7
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example, the choice of 4th direction in (3.3) defines the
fibration by the condition that two twistors �3;0� and
�30; 00� in CP3 n CP1 belong to the same fiber if

301 � 31; 00_1 � 0 _1 � t31; 00_2 � 0 _2 � t32;

(3.4)

for some t 2 C. The equivalence relation (3.4) arises natu-
rally from (3.3) if we recall that the twistor transform of
R2;2 is the Fourier transform from ~3 to 0. In general, had
we chosen another direction n0 on which to dimensionally
reduce [instead of a unit vector �0; 0; 0; 1�], we would have
gotten the condition

301 � 31; 00 _1 � 0 _1 � tn0<
0
1 _13

1:

To see that (3.4) gives TCP1 as the base of the fibration,
consider the two patches of CP3 n CP1, defined by the
conditions 31 � 0 and 32 � 0, respectively. If 32 � 0 we
can set z � 31=32; , and rescale by 32 to get

�31; 32; 0
_1; 0 _2� ! �z; 1; 0 _1=32; 0

_2=32�:

After raising and lowering indices, the equivalence relation
(3.4) can be written as

301 � 31; 0 _01 � 0 _1 � t31; 0 _02 � 0 _2 � t32:

(3.5)

Therefore, it has a unique representative given by 0 _2 � 0.
We get to that representative by picking t � �0 _2=32 in
(3.5), and using 00 instead of 0. Thus, the twistor�

z; 1;
0 _1

32
� tz;

0 _2

32
� t

�
�

�
z; 1;

0 _132 � 310
_2

�32�
2 ; 0

�

represents the equivalence class (3.4). We set

w :�
0 _132 � 310

_2

�32�2
: (3.6)

Now consider the other patch 31 � 0. By similar argu-
ments �

1;
1

z
; 0;

0 _231 � 320
_1

�31�2

�

represents (3.4). In this patch we choose the coordinates

z0 �
32
31
�
1

z
; w0 �

0 _231 � 320
_1

�31�2
� �

w

z2
:

A given space-time point x 2 R2;2 corresponds to a
holomorphic section on T�R2;2� through the incidence
relation [4]:

0 _1 � x1 _13
1 � 0:

In particular, if x 2 R2;1 (x0
0
� 0), the incidence relation

gives
125016
0 _1 � x1 _131 � x2 _132 � x131 � �x
2 � x0�32;

0 _2 � x1 _231 � x2 _232 � ��x
2 � x0�31 � x132;

where we used the conventions (3.2). This together with
(3.6) leads to the same three-dimensional incidence rela-
tion as (2.25), except that z and w are now complex
numbers. Again, (2.25) becomes (2.5) by taking x0 !
ix3. Therefore, �z; w� and �z0; w0� parametrize the mini-
twistor space TCP1 of R3 exactly as described in Sec. II B.

Thus, the twistor space CP3 n CP1 of C4 is a fibration
over the mini-twistor space TCP1 of R3. The fiber isF ’ C
and the structure group is the group C of translations of C.
To see this, note that on the patch of TCP1 where z is a
good coordinate, u :� 0 _2=32 is a good coordinate on F,
and on the other patch where z0 is a good coordinate, u0 :�
0 _1=31 is a good coordinate on F. On the intersection of the
two patches, where both z and z0 are good coordinates,

u0 �
0 _1

31
� u�

w
z
:

We will see in Sec. III D that tree-level D � 3 amplitudes
in mini-twistor space TCP1 can be obtained from tree-
level D � 4 amplitudes in twistor space CP3 n CP1 by
integration over the fiber F.

To understand the fibration structure more geometri-
cally, note that 0 � 0 defines a rational curve (which is
homeomorphic to CP1) in CP3 n CP1. The normal bundle
to the curve 0 � 0 is isomorphic to the direct sum O�1� �
O�1� of line bundles. [Embedded in CP3 n CP1, the nor-
mal bundle to 0 � 0 can be parametrized as
�31; 32; d0

_1; d0 _2� � �z; 1; ?1; ?2� for z � 31=32 � 1

and �31; 32; d0
_1; d0 _2� � �1; z0; ?01; ?

0
2� � �1; 1=z; ?1=z;

?2=z� for z � 1=z0 � 0. Thus, the normal bundle is O�1� �
O�1�. See also [26–29] for a related discussion and further
details.] This holomorphic vector bundle has nowhere-
vanishing holomorphic sections. For example, we define
a section s of O�1� �O�1� as follows. Set s�z; 1� �
�z; 1; z; 1� for z � 1 and s�1; z0� � �1; z0; 1; z0� for z0 �
1=z � 1. Obviously, the section values agree on the inter-
section of the two patches because �z; 1; z; 1� �
�31; 32; 31; 32� � �1; z0; 1; z0�; and s is nowhere zero.

Based on the section s, we can define the sub-bundle of
O�1� �O�1� as cs (c 2 C), which is a trivial line bundle
over0 � 0, since c is a good global coordinate for the line
fibers. Modding out O�1� �O�1� by this trivial line bundle,
we get a quotient space. This means that we impose the
equivalence relation on O�1� �O�1� by cs:

�?1; ?2� � c�z; 1� � �?1; ?2�; z � 1;

�?01; ?
0
2� � c0�1; z0� � �?01; ?

0
2�; z0 � 1:

(3.7)

We get the representatives �@; 0� � �?1 � ?2z; 0� and
�0; @0� � �0; ?02 � ?01z

0� by choosing c � �?2 and c0 �
�?01. It can be easily shown that @0 � �@=z2 and there-
fore the quotient space is a line bundle O�2�.
-8
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The resulting O�2� line bundle can be identified with the
mini-twistor space TCP1. The0 � 0 rational curve is then
identified with the base of TCP1. We denote the projection
by

�: CP3 n CP1 ! TCP1: (3.8)

These observations can be readily modified to space-time
R2;2 with signature �� ����, for which the twistor space
is RP3 n RP1. All the equations above still apply, but z; w
and 3;0 should be real. In particular, if we choose a
timelike 4th direction (00) for dimensional reduction we
get D � 3Minkowski space R2;1. The choice of 4th direc-
tion defines a fibration structure on twistor space RP3 n
RP1, with the projection

�0: RP3 n RP1 ! TRP1: (3.9)

The base of this fibration is the mini-twistor space of D �
3Minkowski space TRP1. The incidence relation is (2.25),
as discussed in Sec. II G.

C. Dimensional reduction of D � 4 supertwistor space

The dimensional reduction of supertwistor space CP3j4

proceeds in a similar fashion. We take homogeneous var-
iables

�31; 32; 0
_1; 0 _2; �1; �2; �3; �4�

on CP3j4 and begin with the patch 32 � 0. At the end of
Sec, III B we identified the three-dimensional mini-twistor
space TCP1 with a quotient of the normal bundle to the
0 � 0 rational curve, where we modded out by a trivial
sub-bundle. We can repeat the same procedure for CP3j4.
Pick the rational curve given by 0 � 0 and � � 0. The
normal superspace is a sum of O�1� �O�1� corresponding
to the0 directions, and four copies of anticommuting O�1�
spaces, corresponding to the � directions. As before, a
choice of 4th direction on which to dimensionally reduce
defines, as in (3.4), a trivial sub-bundle of the commuting
O�1� �O�1� vector bundle. Modding out by this subspace
leaves

O �2 j 0� �O�0 j 1�4;

where the first factor is commuting and the last four are
anticommuting. This is the D � 3 super-mini-twistor
space. It can be covered with two patches U1 and U2. On
the first patchU1 the local coordinates are �z; w; �1; . . . ; �4�
(where z; w are commuting), and on the second patch U2
the local coordinates are �z0; w0; �01; . . . ; �

0
4�, with transition

functions

z0 �
1

z
; w0 � �

w

z2
; �0i �

1

z
�i �i � 1; . . . ; 4�;

(3.10)

generalizing (2.6). Note that this super-mini-twistor space
is a noncompact Calabi-Yau supermanifold [30]. Defining
125016
x to be the generator of the cohomology groupH2�CP1;Z�,
we find that the first Chern class of CP1 is 2x, the O�2 j 0�
factor contributes another 2x, and the four O�0 j 1� anti-
commuting factors contribute �x each, to a total of 0.

D. Tree-level amplitudes

For simplicity, we will start with D � 4 with signature
R2;2 and dimensionally reduce by picking a timelike 4th
direction to obtain D � 3 Minkowski space R2;1. We have
seen in Sec. III B that the twistor space RP3 n RP1 is a
fibration over TRP1. We will now argue that the tree-level
D � 3 amplitudes are obtained by integrating the D � 4
tree-level amplitudes over the fiber.

In [4], the twistor space RP3 n RP1 is obtained as the
parameter space of the Fourier transforms of functions of
k01 _1 � 31 ~3 _1 with respect to ~3. Alternatively, if we have a
function ~F�3;0� on the twistor space, we can get back a
function F�3; ~3� by Fourier transforming with respect to0.

To dimensionally reduce a given amplitude of theD � 4
theory in its twistor space RP3 n RP1, we need to enforce
the condition (3.3). Let us integrate ~F�3;0� over the fiber
of the fibration (3.9). We get

1

2�

Z
dt ~F�31; 32; 0 _1 � t31; 0 _2 � t32�

�
1

2�

Z
dtd2 ~3ei~3

_1�0 _1�t3
1��i~3 _2�0 _2�t3

2�F�31; 32; ~3
_1; ~3 _2�

�
Z
d2 ~3ei~3

_10 _1+�31 ~3 _1 � 32 ~3 _2�F�31; 32; ~3
_1; ~3 _2�:

(3.11)

Thus, integrating over the fiber is equivalent to inserting a
delta function +�31 ~3 _1 � 32 ~3 _2� � +�k3�. To transform an
n-particle D � 4 tree-level amplitude A4�3�1�;
0�1�; � � � ;3�n�; 0�n�� on RP3 n RP1 to TRP1, all we need
then is to integrate A4 over the fibers of n twistors:

A3�3�1�; 0�1�; � � � ;3�n�; 0�n�� �
Z Yn

j�1

dtjA4�3�1�;

0�1� � t13
�1�; � � � ;3�n�;

0�n� � tn3�n��: (3.12)

In momentum space, each dtj integration inserts a +�k3j �, as
in (3.11). Because of total 4-momentum conservation, this
is one +�k3j � too many,

+

 Xn
j�1

k3j

!Yn
j�1

+�k3j � � +�0�
Yn
j�1

+�k3j �:

The infinite factor +�0� can be regularized if we take a
compact 4th dimension. The singular +�0� can then be
interpreted as the spatial size (� 2�R) in the 4th direction,
which is absorbed in the D � 3 coupling constant g3 �
g4=2�R. (Here g4 is the D � 4 coupling constant.) The
-9
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resulting amplitude A3 is invariant under the equivalence
relation (3.4) for each particle separately. It can therefore
be written as a function of only tj :� �0�3�j�; 0�j�� (for j �
1; . . . ; n) [where the projection �0 was defined in (3.9)].

We are now ready to show that tree-level amplitudes
have support on algebraic curves, as in D � 4 [4]. Let
A3�t1; . . . ; tn� be a tree-level n-point D � 3 amplitude as
a function of n mini-twistors in TRP1. As argued above,
this amplitude can be obtained from a D � 4 amplitude
A4�~t1; . . . ;~tn� where ~ti is a twistor in RP3 n RP1 that
projects to ti in the fibration above. That is, A3�t1; . . . ; tn�
is obtained from A4�~t1; . . . ;~tn� by integrating with respect
to ~t1; . . . ;~tn over the fibers above t1; . . . ; tn: In the notation
of (3.9) we have �0�~ti� � ti. According to [4], A4 is non-
zero only if its arguments ~t1; . . . ;~tn lie on an algebraic
curve of degree d � q� 1, where q is the number of
negative-helicity gluons. Since this curve is given by alge-
braic equations in the homogeneous coordinates of RP3, it
can be analytically continued to CP3. Let this analytically
continued curve be ~�  CP3. According to [4], this curve
must be of genus 0, otherwise the amplitude vanishes. We
denote its projection by � � ��~��  TCP1, where we
used � from (3.8). The genus of a projection of a sphere
cannot be >0, so � is also of genus 0. In the local
coordinates �z; w� on TCP1, � can be expressed as a
polynomial equation

0 �
X
r;s

Cr;szrws; (3.13)

with some coefficients Cr;s 2 C. In order to reduce
Witten’s conjectures [4] to D � 3, we need to define the
degree of �. We can do that by identifying TCP1 with an
open subset of weighted projective space WCP1;1;2 as
follows. Let ?1; ?2; ?3 be projective coordinates on
WCP1;1;2 defined with the equivalence relation

�?1; ?2; ?3� � ��?1; �?2; �
2?3�; 0 � � 2 C: (3.14)

If we take the singular point ?1 � ?2 � 0 out of WCP1;1;2,
we get the mini-twistor space TCP1 as follows:

z �
?2
?1
; w �

?3
?21
:

Equation (3.13) for � becomes

0 �
X
r;s

Cr;s?
�r�2s
1 ?r2?

s
3: (3.15)

We define the degree of � by

~d��� :� max
r;s
�r� 2s�: (3.16)

Multiplying (3.15) by ?
~d���
1 we see that � can be repre-

sented by an homogeneous polynomial of degree ~d��� in
weighted projective space WCP1;1;2.
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We will see below that the dimensional reduction of a
D � 4 twistor amplitude that corresponds to twistors lying
on a holomorphic curve of degree d in CP3 reduces to a
mini-twistor amplitude with the mini-twistors restricted to
lie on a curve of the form (3.13) and of degree ~d��� � 2d.
Thus, it follows immediately from the observations in [4]
that the D � 3 tree-level mini-twistor amplitude with q
negative-helicity gluons and n� q positive-helicity gluons
is nonzero only if the nmini-twistors lie on a genus 0 curve
� of degree ~d��� � 2�q� 1� in TCP1. The Minkowski
tree-level amplitude is nonzero if the nmini-twistors lie on
an algebraic curve in TRP1 ’ R1 � S1 with the same
degree and genus as above.

Suppose that the D � 4 tree-level amplitude is sup-
ported on a ‘‘complete intersection,’’ which is defined as
the zero set of two homogeneous polynomials f1�31;0 _1�
and f2�31;0 _1�, of degrees d1 and d2, respectively. Then
the degree of such a curve is d � d1d2. The D � 4 ampli-
tude can be schematically written as

A4�~t1; . . . ;~tn� �
Z
M
�df1��df2�

Yn
i�1

+�f1�3
�i�
1 ;0�i� _1��

� +�f2�3
�i�
1 ;0�i� _1��A�3�i�1 ;0�i� _1�;

where the integration is performed over the moduli space
M of genus 0, degree d curves in CP3 of this particular
complete intersection form [or equivalently, over the space
of polynomials f1�31;0 _1� and f2�31;0 _1� with specified
degrees, after some appropriate identifications]. According
to our previous discussion, the D � 3 amplitude can then
be obtained by integrating the D � 4 amplitude over the
fibers of the twistors ~ti:

A3�t1; . . . ; tn� �
Z
M
�df1��df2�

Z Yn
i�1

dti

� +�f1�3
�i�
1 ;0�i� _1 � ti3

�i�
1 ��

� +�f2�3
�i�
1 ;0�i� _1 � ti3

�i�
1 ��

�A�3�i�1 ;0�i� _1 � ti3
�i�
1 �:

Therefore, our D � 3 amplitude will not vanish provided
there exist two polynomials f1�31;0 _1� and f2�31;0

_1�

and some value ti for each i so that both f1�3
�i�
1 ;0�i� _1 �

ti3
�i�
1 � and f2�3

�i�
1 ;0�i� _1 � ti3

�i�
1 � are nonzero for each i.

Now, for two fixed polynomials f1�31;0 _1� and
f2�31;0 _1�, what is the condition for such values ti to
exist? To answer this question, let us expand the two
polynomials f1�3

�i�
1 ;0�i� _1 � ti3

�i�
1 � and f2�3

�i�
1 ;0�i� _1 �

ti3
�i�
1 � and group the terms in decreasing order in ti. As

these polynomials are homogeneous of degrees d1 and d2,
we will get two polynomial equations,

a0t
d1
i � a1t

d1�1
i � � � � � ad1 � 0;

b0t
d2
i � b1t

d2�1
i � � � � � bd2 � 0;

(3.17)
-10
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where the coefficients a0; . . . ; ad1 and b0; . . . ; bd2 are of

degrees d1 and d2, respectively, in 3�i�1 and 0�i� _1. But the
condition for the existence of a simultaneous solution ti for
the above two polynomial equations is that the resultant of
the polynomials be zero. By explicitly writing down the
resultant, one can easily check that each term of the
resultant is of degree d2 in a0; . . . ; ad1 and of degree d1
in b0; . . . ; bd2 . Hence the condition for the D � 3 ampli-
tude to be nonzero is that the twistors ~ti � �3�i�; 0�i��
satisfy a certain polynomial equation of degree

~d � d1d2 � d2d1 � 2d1d2 � 2d:

As z is linear and w is quadratic in 31 and 0 _1 after setting
32 � 1 in (3.6), the degree of the resulting polynomial
when expressed in terms of z and w becomes ~d � 2d,
according to our definition in (3.16).

We will end this subsection with an analysis of dimen-
sional reduction for Euclidean signature. We have seen at
the end of Sec. II B that a harmonic scalar function on R3 is
mini-twistor transformed to an element of the sheaf coho-
mology H1�TCP1; ~�1�, where ~� was the pullback of the
sheaf O��2� over CP1. By the arguments of [4], for each
external particle the scattering amplitude must be an ele-
ment of the dual space, which in our case also happens to
be H1�TCP1; ~�1�. As explained in Sec. 2.5 of [4], for each
external particle of helicity h the D � 4 amplitude is an
element of the sheaf cohomology H1�CP3 n CP1;O�h�
2��. We have seen in Sec. III B that CP3 n CP1 is a fibra-
tion over TCP1 with C fibers.

Given a D � 3 harmonic function, we can lift it to a
D � 4 harmonic function that is invariant under transla-
tions in the 4th direction. What is the corresponding state-
ment for the twistor transforms? The pullback of an
element of H1�TCP1; ~�1�, with respect to the projection
(3.8), is an element of H1�CP3 n CP1;O��2�� that is
invariant under translations along the fiber.

E. Explicit examples of amplitudes

We will now give a few examples of dimensionally
reduced tree-level amplitudes.

The tree-level maximally helicity-violating (MHV)
twistor amplitude with 2 gluons of negative helicity and
�n� 2� gluons of positive helicity is given by formula (3.3)
of [4],4

A�3�i�; 0�i�� � ign�24

Z
d4x

Yn
i�1

+2�0�i�_1 � x1 _13
�i�1�

�
h3�r�; 3�s�i4Qn
i�1h3

�i�; 3�i�1�i
; (3.18)
4In [31], a nice prescription was given for computing tree-level
non-MHV amplitudes from these MHV amplitudes.

125016
where we use the standard notation

h3�i�; 3�j�i :� 3�i�1 3�j�1; 3�n�1� :� 3�1�:

Here, the rth and sth gluons are of negative helicity. To get
theD � 3 twistor amplitude, we have to replace theD � 4
coupling constant g4 by the D � 3 coupling constant g3,
replace d4x by d3x, and integrate over the fibers:

ign�23

Z
d3x

Yn
i�1

dti+�0
�i�
_1
� t3�i�1 � x1 _13

�i�1�

� +�0�i�_2 � t3�i�2 � x1 _23
�i�1�

h3�r�; 3�s�i4Qn
i�1h3

�i�; 3�i�1�i
:

Note that if we first perform the fiber integrations over dti
and leave the d3x integral for last, the integrand will be
independent of the 4th component of x. This is because
momentum conservation in the 4th direction is already
enforced, since the dti integrations make sure that the 4th
component of momentum is zero.

We calculate

Z
dt+�0 _1 � t31 � x1 _13

1�+�0 _2 � t32 � x1 _23
1�

�
1

�32�
2 +�w� �x

2 � ix3� � 2x1z� �x2 � ix3�z2�;

where we used (3.6) and z � 31=32. The argument of the
+ function enforces the incidence relation (2.5), which is a
polynomial of degree 2. Note also that

h3�i�; 3�i�1�i � �zi�1 � zi��3
�i�
2 3

�i�1�
2 �:

The D � 3 MHV amplitude is therefore

ign�23

Z
d3x

Yn
i�1

+�wi � �x
2 � ix3� � 2x1zi

� �x2 � ix3�z2i �
�zr � zs�

4Qn
i�1�zi�1 � zi�

:

Here, we used the fact that on the patch where 32 � 0 we
can scale the factor 32 to 1. If, instead, we had included all
the 32 factors, we would have needed an extra factor of
�3�r�2 �

4�3�s�2 �
4=
Qn
i�1�3

�i�
2 �
4. This factor indicates that the

MHV amplitude in D � 3 is homogeneous of degree �4
and 4 for each negative- and positive-helicity particle,
respectively. On the patch 31 � 0 we define the twistor
amplitude as
-11
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A3�w
0
i; z
0
i� � ign�23

Z
d3x

Yn
i�1

+�w0i � �x2 � ix3� � 2x1z
0
i

� �x2 � ix3�z02i �
�z0r � z0s�

4Qn
i�1�z

0
i�1 � z0i�

: (3.19)

The + functions enforce the incidence relations. In the
geometrical language of Sec. II C, the amplitude is nonzero
only if all n mini-twistors, which are oriented lines in R3,
intersect at a common point.

Our next example is the ‘‘googly’’ description of the
tree-level amplitudes with helicities �����. It was
shown in [4] that these are supported on genus 0, degree 2
curves in the D � 4 twistor space RP3. It was also shown
there that this condition is equivalent to saying that the
amplitude is nonzero only if (i) the five points ~ti �
�3�i�; 0�i�� lie on a common RP2  RP3, and (ii) the five
points lie on a common conic section contained in that
RP2. But once the first condition is satisfied, the second
one is automatic, because a generic set of five points in
RP2 is contained in a unique conic section. Therefore we
can schematically write the D � 4 amplitude as5

A4�~t1; . . . ;~t5� �
Z
M
�da��db�

Y5
i�1

+

 X4
I�1

aIZIi

!

� +

 X4
I;J�1

bIJZIiZ
J
i

!
A�ZI1; . . . ; Z

I
5�;

(3.20)
where

�Z1i ; Z
2
i ; Z

3
i ; Z

4
i � � �3

�i�
1 ;0�i� _1�

are the coordinates of the five twistors ~ti, and the integra-
tion is to be performed over the moduli space of genus 0,
degree 2 algebraic curves in RP3. (This space is parame-
trized by the coefficients aI and bIJ, with appropriate
identification.)

As before, dimensional reduction in twistor space is
achieved by replacing 0�i� _1 with 0�i� _1 � ti3

�i�
1 and inte-

grating over ti for each i. So in the D � 3 amplitude, the
first delta function for each i in the above expression
becomes

+�a13
�i�
1 � a23

�i�
2 � a3�0

�i� _1 � ti3
�i�
1 � � a4�0

�i� _2 � ti3
�i�
2 ��:

Integration over ti then amounts to solving the equation

a13
�i�
1 �a23

�i�
2 �a3�0

�i� _1� ti3
�i�
1 ��a4�0

�i� _2� ti3
�i�
2 � � 0

for ti and plugging it into the ti in the argument of the
second delta function. Therefore, we end up with a product
of delta functions whose arguments look like
5A precise formula for the googly amplitude was derived from
the B-model calculation in [32]. For our purposes, this schematic
form is enough.
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b11�3
�i�
1 �
2 � b123

�i�
1 3

�i�
2 � b133

�i�
1 �0

�i� _1 � ti3
�i�
1 �

� b143
�i�
1 �0

�i� _2 � ti3
�i�
2 � � � � � � b44�0

�i� _2 � ti3
�i�
2 �
2;

where ti are to be replaced with the solution of the above
equation. After clearing the denominators, these arguments
become homogeneous polynomials of degree 4 in 3�i�1 and
0�i� _1. Then from (3.6), we see that when expressed in terms
of zi and wi, they will become a polynomial of degree 4 in
TRP1 according to our definition of degree in (3.16). We
conclude that dimensionally reduced tree-level ����
� amplitudes are nonvanishing only if the five twistors ti
lie on a common curve of degree 4 in D � 3 twistor space.
This result agrees with our claim in Sec. III D.

But this condition is actually trivial, because a generic
set of five points in TRP1 always lies on a common curve
of degree 4. To see this, it suffices to simply write down the
most general form of degree 4 curves in TRP1:

f�z; w� � w2 � c1z
2w� c2z

4 � c3z
3 � c4zw� c5z

2

� c6w� c7z� c8

� 0:

We have eight parameters c1; . . . ; c8 at our disposal but
have to satisfy only five constraints f�zi; wi� � 0, so ge-
nerically such curves exist.

In summary, we have seen that (a) for MHV amplitudes,
the D � 3 twistor amplitudes after dimensional reduction
are nonvanishing only if the twistors lie on a common
algebraic curve with genus 0 and degree 2 in TRP1, while
(b) for the googly description of ����� amplitudes,
there does not exist such nontrivial criterion. The differ-
ence between these two cases is easy to understand in
geometrical terms. In the MHV case, the D � 4 amplitude
in (3.18) contains two + functions for each i. We can think
of the first set of + functions as enforcing the n points
�3�i�; 0�i� � ti3�i�� to lie on a common RP2. Then the
second set of + functions further demands that the n points
lie on a common line contained in that RP2. We can always
pick ti for each i so that the n points lie on a common RP2,
but after fixing ti, these points will in general not lie on a
common line if n > 2. Therefore, we still have a nontrivial
criterion for nonvanishing amplitudes after dimensional
reduction.

In contrast, for ����� amplitudes, the first set of
+ functions in (3.20) requires that the five twistor points lie
on a common RP2. Again, this can always be achieved by
a judicious choice of ti. But then the second set of
+ functions demands that the five points lie on a common
conic section, which is satisfied automatically. So there is
no nontrivial criterion for nonvanishing amplitudes.

F. Physical interpretation of the holomorphic curves

In this subsection we will present a geometrical and
physical interpretation of the holomorphic curves in
-12



2,1
x 0 (Σ)

FIG. 2. The outgoing waves of the scattering process can be
described as a physical disturbance that is emanating from the
‘‘focal curve’’ F ���.
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mini-twistor space. There is an interesting connection be-
tween holomorphic curves in mini-twistor space TCP1 and
(real) surfaces of minimal area in the physical space R3. A
minimal area surface is constructed from a holomorphic
curve�  TCP1 as follows [12]. Given a point �z0; w0� on
�, we can write the equation for � near �z0; w0� as

w � w0 � a1�z� z0� � a2�z� z0�2 �O�z� z0�3

� �w0 � a1z0 � a2z20� � �a1 � 2a2z0�z

� a2z2 �O�z� z0�3: (3.21)

Dropping the O�z� z0�
3 terms, we can approximate the

curve by a quadratic equation and find a vector ~x 2 C3

such that this quadratic equation will look like the inci-
dence relation (2.5). Given the coefficients of 1, z, z2 in
(3.21), we therefore define ~x � �x1; x2; x3� 2 C3 as the
unique solution to the linear equations

��x2 � ix3� � �w0 � a1z0 � a2z20�;

2x1 � �a1 � 2a2z0�; x2 � ix3 � a2:
(3.22)

Thus, each point on � defines a point ~x 2 C3 and the
collection of these points defines a holomorphic curve in
C3. The projection of this curve to R3, i.e., the collection of
points Re ~x � �Rex1;Rex2;Rex3�, is a minimal area (real)
surface in R3. Furthermore, there is a one-to-one map from
minimal area surfaces in R3 to holomorphic curves in
TCP1. For more details, we refer the reader to the appen-
dix of [12].

We saw in Sec. III D that a physical amplitude defines a
holomorphic curve in TCP1. From the above discussion it
follows that a physical amplitude defines a minimal area
surface in R3. What is its significance?

We will address the Minkowski variant of this question.
We have seen in Sec. II G that the mini-twistor space of
R2;1 is TRP1. For R2;1 the coordinates z andw are real, and
so are the coefficients a1; a2; in (3.21). We define ~x 2 R3

by comparison with the Minkowski incidence relation
(2.25),

��x2 � x0� � w0 � a1z0 � a2z20; 2x1 � a1 � 2a2z0;

x2 � x0 � a2: (3.23)

The solution to (3.23) defines a unique point in R2;1 for
every point on the real curve � 2 TRP1. The collection of
these points form a curve F ��� in R2;1. What is the
physical significance of F ���?

Take a particular amplitude with n mini-twistors
t1; . . . ; tn; and let us consider a particular scattering ex-
periment to which this amplitude would contribute. Thus,
we pick m< n twistors t1; . . . ; tm to describe incoming
particles, and assume that tm�1; . . . ; tn describe outgoing
particles. We also assume that the number of negative
helicities q is fixed and that m and t1; . . . ; tm are chosen
so that there is a unique holomorphic curve, of the corre-
sponding degree 2�q� 1�, that passes through all the mini-
125016
twistors t1; . . . ; tm. The amplitude will then be nonzero
only if tm�1; . . . ; tn lie on that curve.

A mini-twistor t � �z; w� describes an incoming planar
shock wave of the form

�t� ~x� � +�w� 2zx1 � �x2 � x0� � �x2 � x0�z2�; (3.24)

that travels at the speed of light. The scattering process is
therefore a collision of m incoming shock waves. What
comes out?

For fixed mini-twistors tm�2; . . . ; tn; the outgoing wave
function of the �m� 1�st particle is a linear combination of
shock waves of the form (3.24), and in general all mini-
twistors t that lie on� can contribute. Suppose a particular
t � tm�1 � �z0; w0� contributes to the outgoing wave
function. Then nearby mini-twistors t� +t � �z0 �
+z;w0 � +w� will also contribute provided that they lie
on �. But near �z0; w0� the curve � looks like the parabola
(3.21). This implies that up to second order in +t, all shock
waves �t�+t are nonzero at the point ~x defined by (3.23).
Thus, the outgoing wave function of the �m� 1�st particle
is a linear combination of shock waves, all of which pass
through the ‘‘focal curve’’ F ���. The outgoing wave
function is therefore a disturbance emanating from F ���
(See Fig. 2.)

As an example, take the curve � given by

w � 2z3:

Then from (3.21) and (3.23) we get the parametric equation
for F ��� in the form

~x � �x0; x1; x2� � �z3 � 3z;�3z2; 3z� z3�:
-13



TABLE I. The fields of the world-sheet B model. Note that the
index z on some of the fields refers to the target space coordinate,
and should not be confused with the world-sheet coordinate that
is implicit.

Field Variable World sheet SU�4� representation

~Z; ~W; ~Z; ~W Commuting Scalars 1
@z; @w; Anticommuting Scalars 1
#z; #w Anticommuting Scalars 1
Gz; Gw Anticommuting 1-forms 1
%A Anticommuting Scalars 4
%A Anticommuting Scalars 4
@A Commuting Scalars 4
#A Commuting Scalars 4
GA Commuting 1-forms 4

CHIOU et al. PHYSICAL REVIEW D 71, 125016 (2005)
Note that the tangent to this curve is null in R2;1. It is easy
to see that this is true for a generic curve �. In the special
case of MHV amplitudes, the focal curve F ��� degener-
ates to a point.

G. Dimensional reduction in B-model
twistor string theory

In [4], Witten proposed a reformulation of D � 4 super
Yang-Mills theory as a B model on supertwistor space
CP3j4. An alternative approach was presented in [17,33].
In this section we will make a few observations about the
twistor string theory of D � 3 super Yang-Mills theory.

The twistor string theory that describes D � 3 super
Yang-Mills with N � 8 supersymmetry is the topological
B model on the D � 3 supertwistor space from Sec. II E. It
can be obtained from the D � 4 twistor space CP3j4 by
dimensional reduction. For the B model, dimensional re-
duction is implemented by gauging one generator of
SL�4 j 4�6 that corresponds to translations in the 4th direc-
tion. (This is somewhat reminiscent of the construction of
topological < models in [34].) Let

Z1 � 31; Z2 � 32; Z3 � 0 _1;

Z4 � 0 _2; �1; . . . ; �4
(3.25)

be projective coordinates on CP3j4 with the equivalence
relation

�Z1; . . . ; Z4; �1; . . . ; �4� � ��Z1; . . . ; �Z4; ��1; . . . ; ��4�:

(3.26)

We choose the basis so that the translation generator P4 in
the 4th direction acts as

P4: +Z1 � +Z2 � 0; +Z3 � ,Z1;

+Z4 � �,Z2; +�1 � � � � � +�4 � 0:
(3.27)

The transformation (3.27) is a symmetry of the B model,
since it preserves the complex structure of CP3j4 and the
holomorphic measure.

The resulting topological B model on the D � 3 mini-
twistor space can also be viewed as a limit of a discrete
orbifold of the B model on CP3j4. To construct this orbi-
fold, pick a constant parameter r > 0 and define the group
�r ’ Z generated by Er � exp�2�irP4�: It acts on CP3j4

as

Er � e2�irP4 : Z1 � Z1; Z2 � Z2;

Z3 � Z3 � 2�rZ1; Z4 � Z4 � 2�rZ2;

�A � �A �A � 1; . . . ; 4�:

(3.28)

This map is compatible with the equivalence relation
(3.26), and it also preserves the holomorphic superform
6We are now considering the 4D space to have signature �� �
��� and will reduce along one of the timelike directions.
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,IJKLZIdZJ ^ dZK ^ dZL ^ d�
1 ^ � � � ^ d�4. The orbi-

fold CP3j4=�r is therefore a Calabi-Yau superspace. The
fixed-point set of �r is the subset Z1 � Z2 � 0which is the
CP1j4 that is excised. The physical interpretation of the
B model on the �r orbifold is, of course, the twistor string
world-sheet theory for D � 4 super Yang-Mills theory
compactified on a circle of radius r. In the limit r! 0
we recover the D � 3 mini-twistor space. The resulting
world-sheet fields of the B model on mini-twistor space are
listed in Table I. The Becchi-Rouet-Stora-Tyutin transfor-
mation laws are

+ ~Z � @z; + ~W � @w; +%A � @A;

+Gz � d~Z; +Gw � d ~W; +GA � d%A:
(3.29)

The transformation laws of the remaining fields are zero.

H. Dimensional reduction in Berkovits’s
twistor string theory

Dimensional reduction can be performed similarly in
Berkovits’s model of the twistor string theory [17]. In
this model there are separate left- and right-moving
world-sheet fields. The SL�4 j 4�7 charged fields are ZiL,
ZiR, YiL, YiR (i � 1; . . . ; 4) and %A

L, %A
R, &AL, &AR (A �

1; . . . ; 4), where L (R) denotes a left-moving (right-
moving) field. There is an additional GL�1� gauge field A
under which Zi;%A have �1 charge and Yi;&A have �1
charge. Also, there are left-moving and right-moving
chiral-current algebras that give rise to the space-time
SU�N� quantum numbers. The action is [17]

S �
Z
d2z�YLirzZ

i
L �&LArz%

A
L � YiRrzZ

i
R

�&ARrz%
A
R� � SC; (3.30)

where rz � @z � Az and rz � @z � Az are the covariant
7We are still working in signature �� ����.
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TABLE II. The left-moving world-sheet fields of mini-twistor
string theory à la Berkovits.

Field Statistics World sheet GL�1� charge

Z1; Z2 Commuting Scalars 1
W Commuting Scalar 2
~Y1; ~Y2 Commuting Vectors �1
U Commuting Vector �2
%A Anticommuting Scalars 1
&A Anticommuting Vectors �1
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derivatives, and SC is the action of the chiral-current
algebras.

It is important to recall that even though (3.30) has cubic
gauge interactions it is a conformally invariant theory. In
fact, the equations of motion are

rzZ
i
L � 0; rzYLi � 0; rzZiR � 0;

rzYRi � 0; i � 1; . . . ; 4; rz%
A
L � 0;

rz&LA � 0; rz%
A
R � 0; rz&RA � 0;

A � 1; . . . ; 4;

(3.31)

and

0 �
X
i

ZiLYLi �
X
A

&LA%
A
L;

0 �
X
i

ZiRYRi �
X
A

&RA%
A
R;

(3.32)

and the gauge fields can be solved in terms of the other
fields. For Z1L � 0 we can set

Az � @zZ
1
L=Z

1
L:

Eliminating Az from all the equations of motion (3.31), we
find that all left-moving gauge invariant combinations (for
example Z2L=Z

1
L) are holomorphic, and all right-moving

gauge invariant combinations are antiholomorphic. This
holomorphicity condition, together with the analytic con-
straints (3.32), completely captures all the equations of
motion. The theory is therefore conformally invariant,
since the gauge invariant fields are holomorphic.

As was explained in [33], the path integral splits into
sectors that are labeled by an ‘‘instanton number’’ d. This
number represents the total U�1�  GL�1� flux. Following
[33], we gauge fix the Weyl transformations on the world
sheet and the GL�1� gauge field by setting the world-sheet
metric in such a way that a field of GL�1� charge q and
conformal dimension h will be equivalent to a gauge
neutral holomorphic field of conformal dimension h�
�d=2�q. This is a particularly convenient gauge fixing,
because as explained in [33], all the left-moving fields
are holomorphic and all the right-moving fields are anti-
holomorphic. We can therefore use conformal field theory
operator product expansion (OPE)s to calculate
commutators.

(To avoid clutter, unless otherwise specified we will
from now on write formulas only for the left movers and
suppress the L subscripts.) Dimensional reduction pro-
ceeds in a similar fashion as for the B model. Instead of
(3.28), we have
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Er � e2�irP4 : Z1 � Z1; Z2 � Z2;

Z3 � Z3 � 2�rZ1; Z4 � Z4 � 2�rZ2;

Y1 � Y1 � 2�rY3; Y2 � Y2 � 2�rY4;

Y3 � Y3; Y4 � Y4; %A � %A;

&A � &A �A � 1; . . . ; 4�:

(3.33)

In the limit r! 0 we gauge a continuous symmetry. We
can do this by introducing an extra auxiliary gauge field
~Bz; ~Bz and modifying the covariant derivatives of Z3; Z4 to

rzZ
3 � @zZ

3 � AzZ
3 � ~BzZ

1;

rzZ
4 � @zZ

4 � AzZ
4 � ~BzZ

2;
(3.34)

and similarly for the right-moving fields. Inserting these
covariant derivatives into the action (3.30) and integrating
over ~Bz, we get the constraint

Y3Z1 � Y4Z2 � 0: (3.35)

Out of Z1; . . . ; Z4, %1; . . . ;%4 we can make the following
~B-gauge invariant combinations: W :� Z3Z2 � Z4Z1 with
GL�1� charge �2, and Z1, Z2, %A with GL�1� charge �1.
The constraint (3.35) allows us to define

U :�
Y3
Z2
�
Y4
Z1
: (3.36)

This field U has GL�1� charge �2. It is well defined
provided that either Z1 � 0 or Z2 � 0, which is indeed
always the case. We also define

~Y 1 � Y1 �UZ4; ~Y2 � Y2 �UZ3: (3.37)

The action (3.30) together with the constraint (3.35) be-
comes

S �
Z
d2z� ~Y1rzZ

1 � ~Y2rzZ
2 �UrzW �&Arz%

A�

� �right movers� � SC; (3.38)

where SC is the action of the current algebra and rz :�
@z � Az is the covariant GL�1� derivative.

The resulting theory is easy to interpret if we recall that
mini-twistor space is equivalent to WCP1;1;2 [see (3.14)].
The fields Z1, Z2 and W correspond to standard projective
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coordinates on WCP1;1;2 with weights 1, 1 and 2, respec-
tively. The GL�1� charges of those fields correspond to
these weights. In addition, we have four anticommuting
fields%A (A � 1; . . . ; 4) withGL�1� charges 1. Each of the
fields above has a canonical conjugate field. ~Y1; ~Y2 are the
conjugates of Z1; Z2, and U is the conjugate of W. The
conjugate of %A is &A. In addition, there are also left- and
right-moving current algebras. As Berkovits and Motl [33]
explained, the world-sheet path integral splits into discrete
sectors labeled by the flux d of the GL�1� gauge field. The
left-moving fields are listed in Table II. The right-moving
fields have similar quantum numbers.

The generators of the Poincaré algebra (2.10) and (2.13)
can easily be expressed in terms of the fields Z1, Z2,W and
their conjugates ~Y1, ~Y2, U. The world-sheet currents that
correspond to the translation generators P�; P� and P1 are

P � � �U�Z1�2; P 1 � UZ1Z2; P� � U�Z2�2:

(3.39)

The transformation properties can be determined from the
OPEs

Zi�z� ~Yj�0� �
1

z
; W�z�U�0� �

1

z
; (3.40)

Zi�z�U�0� � Zi�z�Zj�0� � ~Yi�z� ~Yj�0� �W�z�W�0�

�U�z�U�0� � regular:

The supersymmetry generators (2.12) can also be ex-
pressed as currents. The left-moving currents correspond-
ing to the SUSY generators are

Q A� � Z1&A; QA
� � �iZ1%AU;

QA� � Z2&A; QA
� � iZ2%AU:

(3.41)
I. Spin(7) R-symmetry

The R-symmetry group of our D � 3 super Yang-Mills
theory is Spin(7). It acts linearly on the 8 supersymmetry
generators, which transform as the spinor representation 8
of Spin(7). However, only an SU�4� subgroup is manifest
in mini-twistor string theory. This is the subgroup that acts
linearly on %A and can be identified with the D � 4
R symmetry, before dimensional reduction.8

It is not a big surprise that full Spin(7) symmetry is not
explicit. Some symmetries are obscure in twistor string
theory. A nice example is parity, which is not at all mani-
fest in the B model [35], but was cleverly identified by
Berkovits and Motl [33] in the open twistor string model.
8We are now working in signature �� ���� again. Had we
started instead in signature �� ���� and dimensionally re-
duced along a timelike direction, we would have had to work
with the noncompact R-symmetry group Spin(4,3), which ex-
tends the D � 4 group Spin�3; 3� � SL�4�:
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In this subsection we will identify the full Spin(7) R-
symmetry generators in Berkovits’s model.

Let us first write down the commutation relations for the
Spin(7) R-symmetry generators. We take a basis for the
so�7� Lie algebra that consists of SU(4) generators, which
we denote by TAB, and 6 additional generators, which we
denote by TAB � �TBA (A;B � 1; . . . ; 4). The commuta-
tion relations are

�TAB; T
C
D� � +ADT

C
B � +CBT

A
D;

�TAB; T
CD� � +DBT

AC � +CBT
AD;

�TAB; TCD� � �,ABCETDE � ,ABDETCE � ,CDAETBE

� ,CDBETAE:

(3.42)

To see how the missing R-symmetry generators TAB oper-
ate, let us look at a particular example of a Spin(7) multi-
plet of fields. According to [18], D � 4 twistor string
theory contains, in addition to the super Yang-Mills theory,
a sector that describes conformal supergravity. Our ex-
ample of a Spin(7) multiplet of fields will comprise the
dimensional reduction of some of these D � 4 conformal
supergravity fields. We will take a multiplet of fields that
transform in the irreducible representation 35 (antisym-
metric 3-tensors) of Spin(7). This irreducible representa-
tion decomposes under SU�4�  Spin�7� as

35 � 15� 10� 10: (3.43)

Thus, we can construct our multiplet by combining fields
that transform in the three irreducible representations on
the right-hand side of (3.43).

The fields of D � 4 conformal supergravity are listed in
Table 1 in Sec. 4.2 of [18]. We can obtain our multiplet by
combining three irreducible SU�4�R representations from
that list. In the notation of [18], we pick the fields EAB �
EBA, EAB � EBA and V0AB. The first is aD � 4 space-time
scalar in the 10 of SU�4�R; the second is a D � 4 space-
time scalar in the 10 of SU�4�R, and the last one is a D � 4
space-time vector in the 15 adjoint representation of
SU�4�R. After dimensional reduction to D � 3, the scalars
EAB, EAB and the 4th component V4

A
B of V0 form a

Spin(7) multiplet in the irreducible representation 35.
Now let us see how Spin(7) acts on EAB, EAB and V4

A
B.

The action of the SU�4�  Spin�7� generators TAB is ob-
vious. The Spin(7) generators TAB must also transform
these states to each other. It is, however, difficult to identify
the TAB generators in the B-model version of mini-twistor
string theory. Part of the problem is that there are no
perturbative B-model string vertex operators that corre-
spond to the fields EAB. The vertex operator for the dimen-
sionally reduced EBA and the vertex operator for V4

A
B were

constructed in [18], and we will recall them below, in (4.10)
and (4.13). But the vertex operators for EAB are absent in
the perturbative B model. To understand this, recall that the
states of a perturbative B model with target space X
-16
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correspond to the sheaf cohomology Hp�X;^qTX� where
TX is the holomorphic tangent bundle. Nonperturbatively,
it is conjectured [36] that the B model is S dual to the
A model and therefore also has states that correspond to
Dolbeault cohomology Hp�X;�qX� [where �qX is the
sheaf of holomorphic �q; 0� forms]. The states EAB are
analogous to the latter. [See also the discussion after
Eq. (2.12) of [18].] For recent developments in the non-
perturbative formulation of the topological string theory
see [37–39].

J. Spin(7) in Berkovits’s model

It is easier, however, to identify TAB in Berkovits’s
model. As usual in a two-dimensional conformal field
theory, the symmetry generators correspond to holomor-
phic and antiholomorphic currents. We will denote these
currents by JAB. Let us first identify the world-sheet
currents that correspond to the generators TAB. They are
easily constructed from the SU�4� transformation proper-
ties of %A and &A, and we get

J A
B :� &B%

A �
1

4
+AB&C%

C:

We claim that the world-sheet currents that correspond to
TAB can be expressed, formally, as

J AB :� U%A%B � 1
2U
�1,ABCD&C&D: (3.44)

We determined the generators (3.44) by looking for ex-
pressions with total conformal dimension 1, GL�1� charge
zero, and the correct residues in their OPEs among them-
selves and with the Poincaré currents (3.39) and supersym-
metry currents (3.41). These residues are determined by the
known commutation relations between the R symmetry
and super-Poincaré generators. For example, using the
residues of the simple poles in the OPEs of the currents
JAB and JA

B, one can verify the commutation relations
(3.42).

The operatorU�1 that appears in (3.44) has to be defined
carefully. It is required to have the OPE

U�1�z�U�0� � 1�O�z�:

This operator U�1 can be handled by bosonization as
follows. The �U;W� system is very similar to the super-
conformal ghosts �2;E� of superstring theory, except that
the conformal dimensions are shifted. Thus, �U;W� can be
bosonized in much the same way as the superconformal
ghosts. [See, e.g., Sec. 10.4 of [40]. Bosonization of the
�YI; ZI� fields has also been discussed in [33,41], and see
also [42].] Let � be a chiral boson, and let �?; @� be
anticommuting ghosts, with OPEs

��z�@��0� �
1

z
; @�z�?�0� �

1

z
:

(See Sec. 10.4 of [40].) The bosonization formulas are then
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W ’ �e��@?; U ’ e�@: (3.45)

We can then take

U�1 ’ e��?; (3.46)

and this has all the properties required of the inverse of U.
We can now use the R-symmetry operators (3.44) to

complete partial Spin(7) multiplets in mini-twistor string
theory. We will apply this procedure in Sec. IV F, where we
will again encounter our operators EAB, EAB and V4

A
B,

from Sec. III I. More details on bosonization can be found
in the Appendix.

IV. MASS TERMS

We come now to the main new point of our paper—
adding mass terms. We can augment the D � 3 super
Yang-Mills Lagrangian with mass terms for the scalars
and fermions. The D � 3 fermions are in the spinor rep-
resentation 8 of the R-symmetry group Spin(7). Fermion
mass terms are linear in the mass parameter and correspond
to operators of the formMab7

a
17

1b, whereMab is the mass
matrix, and we used the notation of (3.1). These operators
are in the symmetric part of the tensor product representa-
tion 8 % 8 of Spin(7). (It decomposes into the irreducible
representations 1� 35.) The D � 3 scalars are in the
vector representation 7 of Spin(7). Scalar mass terms are
quadratic in the mass parameter and correspond to opera-
tors in the symmetric part of the tensor product represen-
tation 7 % 7. (It decomposes into irreducible
representations 1� 27.) The D � 3 super-mini-twistor
space formalism only exhibits a manifest SU�4�  
Spin�7� subgroup of the R symmetry. This is the subgroup
inherited from D � 4, and the anticommuting variables �A

(A � 1; . . . ; 4) are in the 4 of this SU�4�, while the @=@�A

derivatives are in the 4 conjugate representation. The op-
erators that correspond to D � 3 fermion mass terms split
into the following SU�4� irreducible representations:

�8 % 8�S � �4 % 4�S � �4 % 4�S � 4 % 4

� 10� 10� �1� 15�: (4.1)

Here �� � ��S denotes the symmetric part of a tensor product,
and 15 is the adjoint representation of SU�4�. We will now
study the deformations of mini-twistor string theory that
correspond to these mass terms. Generating the mass terms
in the adjoint representation 15 is simpler, and we therefore
start with those.

A. Dimensional reduction with twists

A convenient way to achieve a massive theory with mass
terms in the 15 representation is to modify the procedure of
dimensional reduction by adding an R-symmetry twist. In
Sec. III G we obtained massless D � 3 super Yang-Mills
theory from the masslessD � 4 theory by gauging a trans-
lation generator P4 (in the world-sheet theory). To obtain
-17



CHIOU et al. PHYSICAL REVIEW D 71, 125016 (2005)
massive D � 3 super Yang-Mills theory from the massless
D � 4 theory, we gauge a linear combination of translation
and R symmetry, P4 � tr�MR�, where R is the SU�4� R-
symmetry charge (realized as a 4� 4 Hermitian traceless
matrix) andM is a constant 4� 4Hermitian traceless mass
matrix that will end up as the mass matrix of the D � 3
fermions. The logic behind this reduction is as follows. Let
 A1 (A � 1; . . . ; 4) be a D � 4 Weyl fermion field, which
transforms in the fundamental representation 4 of the R-
symmetry group SU�4�. Gauging the combination P4 �
tr�MR� on the world sheet corresponds to setting

i@3 A1 � MA
B 

B
1

in physical space. The term  _1
A<

3
1 _1@3 

A1 in the D � 4
Lagrangian will become a mass term in the D � 3 dimen-
sionally reduced Lagrangian. The fermion mass matrix
will be M, and the scalar mass matrix squared will be the
antisymmetric part of M %M, which, in the 6 representa-
tion of SU�4�, is the 6� 6 matrix representative of M.

In twistor space, we augment (3.27) to get

P4 � tr�MR�: +Z1 � +Z2 � 0; +Z3 � ,Z1;

+Z4 � �,Z2; +�A � ,MA
B�

B �A;B � 1; . . . ; 4�:

(4.2)

Gauging this translation symmetry can be done along the
lines that led to (3.10). We get a similar supermanifold that
can be covered by two patches U1; U2 with transition
functions that are a slight modification of (3.10),

z0 �
1

z
; w0 � �

w

z2
; �0 �

1

z
ei�w=z�M� (4.3)

where � represents a 4-component vector, and
exp�i�w=z�M� is a 4� 4 matrix [in the complexification
of SU�4�]. This is one of our main results. Equation (4.3)
describes the target space of a twistor string theory that is,
by conjecture, dual to a mass-deformedD � 3 super Yang-
Mills theory with a mass matrix M.

Similarly to the discussion at the end of Sec. III G, we
can think of (4.2) as the r! 0 limit of the discrete orbifold
of CP3j4 by the group �r;M ’ Z generated by

Er;M � e2�ir�P4�tr�MR��: Z1 � Z1; Z2 � Z2;

Z3 � Z3 � 2�rZ1; Z4 � Z4 � 2�rZ2;

� � e�2�irM�;

(4.4)

where � again denotes a 4-component vector. Physically,
(4.4) corresponds to a circle compactification of D � 4
super Yang-Mills theory with an R-symmetry twist. That
is, the scalars and fermions have nonperiodic boundary
conditions on the circle. Such compactifications have
been studied, for example, in [43]. R-symmetry orbifolds
of the D � 4 theory (without the P4 generator) have been
recently studied in [44]. For recent developments in world-
sheet orbifolds see [45].
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B. Mini-twistor string theory mass operators

For any value of the mass matrix M, the manifold
described by (4.3) is, presumably, the target space of the
world-sheet (mini-)twistor string theory that describes the
massive deformation studied in Sec. IVA. In particular, for
an infinitesimally small M, (4.3) describes a small defor-
mation of the complex structure of the super mini-twistor
space T3 (defined as TCP1 with four extra anticommuting
coordinates fibered over it).

In general, a small deformation of the complex structure
corresponds to an operator in the world-sheet theory, which
is the topological B model with target space T3. For
example, an interesting case was studied in [46] where
marginal deformations of the D � 4 theory [47–49] were
associated with certain B-model closed string operators.
The operators of the topological B model on a manifold X
correspond to the sheaf cohomology classes
Hp�X;^mT�1;0�X� [50]. Locally on X, with a choice of
complex coordinates zi (i � 1; . . . ; dimCX) and their com-
plex conjugates zi, these sheaf cohomology classes can be
realized as tensors Vj1���jm

i1���ip
that are antisymmetric in the is

and jt indices. Deformation by the operators with p � 1
and m � 1 corresponds to a complex structure deforma-
tion. (The target space action that describes these deforma-
tions is the Kodaira-Spencer action [51].) This
correspondence can be extended, presumably, to super-
manifolds and we get the cohomology classes
Hpjq�X;^mjnT�1;0�X�. In [46], B-model operators that cor-
respond to elements of H0j2�X;^0j2T�1;0�X�, with X �
CP3j4, were identified with cubic deformations of the D �
4, N � 4 super Yang-Mills superpotential. Furthermore,
general deformations of holomorphic vector bundles over
weighted projective superspaces were recently studied in
[29]. The particular complex structure deformation that we
need for the mass term is a special case.

Let us now study the D � 3 supercohomology classes.
First, let us take the mass deformation in the limit of
infinitesimal mass matrix M. Equation (4.3) teaches us
that the infinitesimal change in coordinate transition func-
tions on the intersection U12 � U1 \U2 of the two patches
U1 � fz <1g and U2 � fz0 <1g is

+z0 � 0; +w0 � 0;

+�0 � i
w

z2
M� � �i

w0

z0
M�0 �O�M�2:

(4.5)

Here, we think ofU1,U2 as two patches of the undeformed
(MA

B � 0) D � 3 twistor supermanifold T3. Equation (4.5)
defines a holomorphic vector field on U12 whose compo-
nents are given, in local coordinates, by

+z0
@
@z0
� +w0

@
@w0

� +�0T
@
@�0
� �i

w0

z0
�0TMT @

@�0

� i
w
z
�TMT @

@�
: (4.6)
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This defines an element of the sheaf cohomology
H1j0�X;^0j1T�1;0�X� for X � T3. In fact,
H1j0�X;^0j1T�1;0�X� is the space of holomorphic vector
fields of the form

VAB�z; w; �1; . . . ; �4��A
@
@�B

that are defined for 0< z<1 up to the equivalence rela-
tion

VAB � VAB � �Vf1g�
A
B � �Vf2g�

A
B; (4.7)

where Vf1g is a holomorphic vector field of a similar form
that is defined for all z <1 (including z � 0) and Vf2g is
similarly defined for all 0< z (including z � 1). [Recall
that in general, given a cover of X by contractible open
patches X � [1U1, an element of Hp�X; T�1;0�X� can be
described by a collection of local vector fields, one vector
field for each nontrivial intersection of �p� 1� patches
U11 \ � � � \U1p�1 , such that a certain linear relation—
the cocycle condition—holds on intersections of �p� 2�
patches. In our case, there are only two patches,U1 andU2,
and a vector field that is defined on the intersection U1 \
U2 defines an element of H1�X; T�1;0�X�.]

The vector field corresponding to (4.6) is

VAB �
w
z
MA

B � �
w0

z0
MA

B:

This vector field therefore has poles both at z � 0 and z0 �
0.

More generally, the field

wr

zs
MA

B �
��w0�r

z02r�s
MA

B (4.8)

has poles both at z � 0 and z0 � 0 only if 0< s< 2r. For
other values of s, the vector field can be extended to either
z � 0 or z � 1, and therefore is trivial in cohomology. Let
us check for which values of s; r this cohomology class is
invariant under translations of the physical R3. The gen-
erators of translations were written down in (2.10). Since
the field (4.8) is holomorphic, only the holomorphic parts
of P1; P2; P3 in (2.10) are relevant. We therefore need to
check that zk@=@w, for k � 0; 1; 2, annihilates (4.8) in
cohomology. By the discussion above, this is equivalent
to requiring that 0< s� k < 2�r� 1� is not satisfied for
any of the values k � 0; 1; 2. It is not hard to check that the
only solution is s � r � 1, which is the field from (4.6).
Similarly, using Eqs. (2.11) for the rotation generators, it
can be checked that (4.6) is rotationally invariant. Thus, the
mass deformation (4.6) corresponds to the unique (up to
multiplication by a constant) translationally invariant ele-
ment of H1j0�X;^0j1T�1;0�X�.

Alternatively, the cohomology H1j0�X;^0j1T�1;0�X� can
be represented by a global differential 1-form with coef-
ficients in ^0j1T�1;0�X. The way to convert a sheaf coho-
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mology representative to a global form is to write

VAB � �Vf1g�
A
B � �Vf2g�

A
B;

where Vf1g and Vf2g are well defined on U1 and U2 respec-
tively, but, unlike (4.7), Vf1g and Vf2g are not required to be
holomorphic (otherwise VAB would be trivial in cohomol-
ogy). Then, the 1-form @�Vf1g�

A
B � @�Vf2g�

A
B (where @ is

the Dolbeault differential operator) is globally defined and
represents the cohomology class. In our case, we can pick
an arbitrary differentiable function f�jzj2� such that f�0� �
1 and f�1� � 0 and set

�Vf1g�
A
B � �1� f�jzj2��

w
z
MA

B;

�Vf2g�AB � �f�jzj
2�
w
z
MA

B:

Then,

@�Vf1g�AB � @�Vf2g�AB � �f
0�jzj2�MA

Bwdz (4.9)

is a global 1-form that represents the cohomology class.
The corresponding B-model operator is easily constructed
from this form. It is

V�15� � �f0�~Z ~Z�@z#AMA
B
~W%B: (4.10)

(The world-sheet fields of the B model are listed in
Table I.) Can the operator corresponding to (4.9) be related
by dimensional reduction to a D � 4 operator? We will
work in the coordinates (3.26) for CP3j4, and define the two
patches

U01 :� fZ1 � 0g; U02 :� fZ2 � 0g:

Together, U01 and U02 cover the D � 4 twistor space (given
by the condition that Z1 and Z2 do not vanish simulta-
neously). Using (3.6), we calculate

w
z
�
0 _1

31
�
0 _2

32
�
Z3
Z1
�
Z4
Z2
:

The element (4.6) can therefore be dimensionally ‘‘oxi-
dized’’ (the inverse of ‘‘dimensionally reduced’’) to the
following (super-)vector field on U01 \U

0
2,

V�D�4�m �

�
Z3
Z1
�
Z4
Z2

�
�AMA

B @
@�B

�

�
Z3
Z1
�AMA

B @

@�B

�
�

�
Z4
Z2
�AMA

B @

@�B

�
: (4.11)

In the last equality, we have written Vm as the difference of
two terms, the first of which can be extended to a holo-
morphic function on the entire U01 patch, and the second
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can be extended to a holomorphic function on the entire U02
patch. Vm is therefore exact in sheaf cohomology and
corresponds to the zero operator. This was to be expected,
since the D � 3 mass terms that we consider in this sub-
section, which are in 15 of SU�4�, lift to terms of the form
MA

BA3<
3
1 _1 

1
A 

B _1 �O�M�2 inD � 4, where A3 is the 4th
component of the gauge field (counting from 0). These
terms can be gauged away by an x4-dependent gauge
transformation.

C. The 10 and 10 mass terms

We still have to analyze the remaining mass terms from
(4.1). These are the terms in the representations 10, their
complex conjugates in 10, and the representation 1. We
will discuss the singlet 1 separately, and concentrate on the
10 and 10 first.

First, let us ask whether these D � 3 mass terms can be
derived by dimensional reduction of D � 4 mass terms.
The answer is yes. Looking back at (4.1), we see that,
unlike the mass terms in 15 that were discussed in
Sec. IVA, the mass terms in 10 and 10 can indeed be
gotten by dimensional reduction of D � 4 mass terms.
This is because D � 4 mass terms are of the form
,12 A1 B2 and , _1 _2 _1A _2B but cannot involve  A1 _1B,
since spinors of different chirality in D � 4 cannot be
contracted in a Lorentz invariant manner. After dimen-
sional reduction to D � 3, however, both spinors become
the same representation. Thus, the D � 3mass terms in 10
and 10 can be derived from dimensionally reduced D � 4
mass terms, but the mass terms in 15 have to be derived by
twisting as in Sec. IVA.

So what are theD � 4 operators that can give such mass
terms upon dimensional reduction? These are closed string
vertex operators of the B-model twistor string theory of
D � 4 super Yang-Mills. It has been argued in [4,18,52]
that they correspond to fields of D � 4 superconformal
supergravity. In particular, Table 1 in Sec. 4.2 of [18] lists
the physical states of that theory. And indeed, among these
fields we find two that have the right quantum numbers. In
the notation of [18], these are E�AB� [A;B � 1; . . . ; 4 are
SU�4� indices] in 10, and E�AB� in 10. The conformal
dimensions of these fields can be read off from their
U�1�R charge, which is Q � �2 (and is also listed in
Table 1 of [18]). Their conformal dimensions are' � D�
�3=2�Q � 1, and this is consistent with a fermionic mass
term.

Now let us write down the vertex operators for the
dimensionally reduced D � 3 mass terms in the 10 repre-
sentation. The EAB operators correspond to linear combi-
nations of vector fields of the form

wr

zs
MAB,ACDE�

C�D�E
@
@�B

; (4.12)

defined on the intersection U1 \U2 (i.e., 0< jzj<1),
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where r; s are integers. By the same arguments that follow
(4.8) we conclude that only r � 0 and s � 1 describes a
nonzero Poincaré invariant operator. Converting from
sheaf to Dolbeault @ cohomology, we find the operator

V�10� � �
1
6f
0�~Z ~Z�@zMAB,ACDE%

C%D%E#B: (4.13)

Here, f�jzj2� is, as in (4.9), an arbitrary function that
satisfies f�0� � 1 and f�1� � 0.

D. Chiral D � 4 mass terms

Let us make a brief digression to check that EAB indeed
corresponds to a mass term inD � 4. We hope to present a
more complete analysis elsewhere.

The mass-deformed N � 4 super Yang-Mills theory
that, we claim, corresponds to turning on an EAB VEV is
nonstandard. It is the CPT violating theory that one obtains
by giving a mass term only to the positive-helicity spinors
of D � 4, N � 4 super Yang-Mills theory. This is a per-
turbation of the form MAB 1A 1B , where  1A denote, as
before, the D � 4 fermions in the 4 of SU�4�.

In momentum space, the free massive Dirac equation
now reads

p1 _1 1A � MAB _1B; p1 _1 
_1
A � 0: (4.14)

Thus, the 4-momentum p1 _1 is still lightlike, and we can
decompose it as in the massless case,

p1 _1 � 31 ~3 _1:

The general solution to (4.14) is of the form

 _1A � ~3 _1 ~%A;  A1 � 31%
A �MAB@1 ~%B; (4.15)

where ~%A�3; ~3� and %A�3; ~3� are arbitrary functions, and
@1 is any (3-dependent) solution to the linear equation

@13
1 � 1: (4.16)

There is, of course, a family of solutions to this equation.
Given a solution @1 and an arbitrary function ��3; ~3�, the
following is also a solution to (4.16):

@01 :� @1 � 31�: (4.17)

If we choose @01 instead of @1 as the solution to (4.16), we
can preserve the physical wave functions (4.15) by setting

~% 0A :� ~%A; %0A :� %A �MAB� ~%B; (4.18)

so that

 _1A � ~3 _1 ~%
0
A;  A1 � 31%

0A �MAB ~%0B@
0
1:

An example of a solution to (4.16) is given by @1 � 1=31

and @2 � 0. It is well defined on the patch of 3 space
where 31 � 0. Similarly, on the patch where 32 � 0 we
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can take @02 � 1=3
2 and @01 � 0, so that on the intersection

of the two patches, where both components of 3 are non-
zero, we have @01 � @1 � ,1232=�3132�. If we choose to
work with @ on the patch 31 � 0 and with @0 on the patch
32 � 0, we need the transition relations

%0A � %A �
1

3132
MAB ~%B; ~%0A � ~%A:

External fermions in scattering amplitudes are described
by wave functions of the form (4.15). These wave functions
can be twistor transformed as usual,

%̂A�3;0� :�
Z
d2 ~3ei0 _1

~3 _1%A�3; ~3�;

~̂%A�3;0� :�
Z
d2 ~3ei0 _1

~3 _1 ~%A�3; ~3�:
(4.19)

The freedom (4.18) extends to the twistor transforms

~̂% 0A :� ~̂%A; %̂0A :� %̂A �MAB�̂ � ~̂%B; (4.20)
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where �̂ � ~̂%A denotes the convolution of ~̂%A with the twistor
transform of � , and the convolution is taken with respect to
0 _1. Note, however, that the equivalence (4.18) can be
generalized to �’s that are operator functions of 31, ~3 _1
and @=@~3 _1. For the special case that � is of the form
��31; i@=@~3 _1� the convolution becomes an ordinary prod-
uct, and (4.20) becomes
~̂% 0A :� ~̂%A; %̂0A :� %̂A �MAB� ~̂%B; (4.21)
where ��3;0� is a function on twistor space.
Following similar steps as in the appendix of [4], we take

the twistor transforms (4.19), plug them into (4.15), and
integrate over 3 and ~3 to convert from momentum space
back to coordinate space. We perform the 31 integrals by
gauge fixing 31 � 1 and integrating z � 32 over a path C
around the origin.
 _1A�x� �
1

2�

I
C
d32

Z
d2 ~3

Z
d20eix1 _13

1 ~3 _1�i0 _1
~3 _1 ~3 _1 ~̂%A�3;0�

�
1

2�i

I
C
dz
@ ~̂%A
@0 _1









�31;x1 _131�;
 A1�x� �

1

2�

I
C
d32

Z
d2 ~3

Z
d20eix1 _13

1 ~3 _1�i0 _1
~3 _1�31%̂A�3;0� �MAB@1�3� ~̂%B�3;0��

�
1

2�

I
C
dz�31%̂A�31; x1 _131� �MAB@1�3� ~̂%B�31; x1 _131��;

(4.22)
where

�31; 32� � �1; z�; �@1; @2� � �1; 0�:

Now let us analyze the coupling of the closed string B-
model mode EAB to the open string modes. In general, the
coupling of closed string B-model modes to open string
modes has been extensively studied. (See [46,53–55] for
example.) Turning on a VEV for EAB corresponds to a
perturbation of the complex structure of the supermanifold
target space CP3j4. We will denote by Xi (i � 1; . . . ; 4) and
)A (A � 1; . . . ; 4) the homogeneous coordinates on CP3j4.
(In [4], Xi is denoted by ZI, but we use the symbols Z1, Z2

to denote some of the projective coordinates of WCP1;1j2.)
We will cover the D � 4 twistor space CP3j4 n CP1j4 with
the two patches

U1 :� fX1 � 0g; and U2 :� fX2 � 0g:

On the patch U1 where X1 � 0, we can rescale the projec-
tive coordinates and set X1 � 1. Then X2, X3, X4 and the
)A are the independent coordinates. The good coordinates
on the patch U2, where X2 � 0, are then
1

X2
;
X3

X2
;
X4

X2
;
)1

X2
; . . . ;

)4

X2
: (4.23)

On the patch X1 � 0, the VEV hEABi � MAB corresponds
to the local holomorphic vector field

1

6X2
MAB,ACDE)C)D)E @

@)B ; (4.24)

[see (4.12) with r � 0 and s � 1]. This vector field, in turn,
corresponds to a (super-)complex structure deformation of
the B-model target space CP3j4.

Formula (4.16) of [4] gives us the component expansion
of the B-model super 1-form field as follows:

A �X;X;)� � dXi�Ai �)
A7iA �

1
2)

A)B�iAB

� 1
6,ABCD)

A)B)C ~7D
i

� 1
24,ABCD)

A)B)C)DGi� (4.25)

where Ai, 7iA, �iAB, ~7D
i

and Gi are functions of X and X.
The classical action is given by Eq. (4.18) of [4],
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I �
1

2

Z
� ^

�
A ^ @A�

2

3
A ^A ^A

�
: (4.26)

The equations of motion of this holomorphic Chern-
Simons theory, to first order, state that A is an element
of @ cohomology

@A � 0; A�A� @*;

where * is an arbitrary function.
For our purposes, however, it is more convenient to let

A be an element of Čech cohomology rather than
@ cohomology. For ordinary manifolds these cohomologies
are equivalent, but the advantage of Čech cohomology is
that we work with holomorphic functions. For supermani-
folds the situation is more complicated, and we refer the
reader to [28,29,56] for further details.9

In Čech cohomology, which is a special case of sheaf
cohomology, the B-model field is represented by a holo-
morphic function A that is defined on the intersection of
patches U1 \U2. This is in contrast to @ cohomology for
which A was a (1,0)-form and was not necessarily repre-
sented by holomorphic functions, but was defined on the
entire manifold U1 [U2. In Čech cohomology, there is an
equivalence relation

A �A�*1 �*2; (4.27)

where*1 and*2 are holomorphic functions onU1 andU2,
respectively.

How does the infinitesimal complex structure deforma-
tion that corresponds to (4.24) change the Čech cohomol-
ogy class A? The infinitesimal complex structure
deformation can be interpreted as a change in the holo-
morphic transition functions between the patch U1 and the
patch U2. In the deformed space, (4.23) are no longer good
coordinates on U2. Instead, a good set of coordinates is

1

X2
;
X3

X2
;
X4

X2
;
)A

X2
�

1

6�X2�2
MAB,BCDE)C)D)E

A � 1; . . . ; 4;

(4.28)

where we used (4.24). Thus, the Čech equivalence relation
(4.27) has to be modified to

A�X2; X3; X4; f)Ag� �A�X2; X3; X4; f)Ag�

�*1�X
2; X3; X4; f)Ag�

�*2

�
1

X2
;
X3

X2
;
X4

X2
;
�
)A

X2
�

1

6�X2�2

�MAB,BCDE)C)D)E
��
; (4.29)

where *1 and *2 are holomorphic functions of their var-
iables. Let us expand A in components, similar to (4.25).
9We are grateful to Popov, Sämann and Wolf for pointing this
out to us.
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A � A�X2; X3; X4� �)A7A�X
2; X3; X4�

� 1
2)

A)B�AB�X2; X3; X4�

� 1
6,ABCD)

A)B)C ~7D�X2; X3; X4�

� 1
24,ABCD)

A)B)C)DG�X2; X3; X4�; (4.30)

where A, 7A, �AB, ~7D and G are holomorphic functions of
X2, X3, X4 and are defined on U1 \U2, that is, for X2 � 0
and X2 � 1. (Since confusion is not likely to arise, we use
the same notation for the component fields in Čech coho-
mology as in @ cohomology.) The freedom to add *1 in
(4.29) implies that each of the component fields can be
augmented by a holomorphic function of X2, X3, X4 that is
nonsingular at X2 � 0. Thus, the Čech cohomology classes
of the component fields are only sensitive to the singular
behavior of the fields at X2 � 0.

The freedom to add *2 in (4.29) is now more compli-
cated. Let the component expansion of *2 be

*2�y2; y3; y4; f�Ag� � $� �A�A �
1

2!
�A�B&AB

�
1

3!
,ABCD�A�B�CSD

�
1

4!
,ABCD�A�B�C�DT; (4.31)

where$, &, S, T are holomorphic functions of their generic
variables y2, y3, y4. Expanding (4.29) in components, we
now find the equivalence relations

7A�X
2; X3; X4� � 7A�X

2; X3; X4� �
1

X2
�A

�
1

X2
;
X3

X2
;
X4

X2

�
;

~7A�X2; X3; X4� � ~7A�X2; X3; X4� �
1

�X2�3
SA
�
1

X2
;
X3

X2
;
X4

X2

�

�
1

�X2�2
MAB�B

�
1

X2
;
X3

X2
;
X4

X2

�
(4.32)

for the fermions, and

A�X2; X3; X4� � A�X2; X3; X4� �$
�
1

X2
;
X3

X2
;
X4

X2

�
;

�AB�X
2; X3; X4� ��AB�X

2; X3; X4�

�
1

�X2�2
&AB

�
1

X2
;
X3

X2
;
X4

X2

�
;

G�X2; X3; X4� �G�X2; X3; X4� �
1

�X2�4
T
�
1

X2
;
X3

X2
;
X4

X2

�
(4.33)

for the scalars, where we have used the symmetry of MAB

in the A;B indices. We see that only the equivalence
relation for the field ~7A is modified. This field is the twistor
transform of the h � �1=2 helicity spinor  A1. We would
now like to relate the modified equivalence relation to the
solution to the massive Dirac equation (4.15).

Let us first recall the origin of the equivalence relations
(4.32) in the massless case (MAB � 0). It was explained in
-22
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the appendix of [4] that the physical wave functions are
recovered from ~7A and 7A by a Cauchy integral along a
path C that encircles the origin,

 A1�x� �
1

2�i

I
C
31 ~7

A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z�dz;

 _1
A �x� �

1

2�i

I
C

@
@x1 _1

7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z�dz;

(4.34)
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where we have fixed the rescaling freedom by
31 � 1; 32 � z: (4.35)
[Equations (4.34) are the analogs of Whittaker’s formula
(2.1) for spinor fields in D � 4.] For MAB � 0, the equiva-
lence relation (4.32) can be written in this patch as
~7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� � ~7
A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� �

1

z3
SA
�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�
;

7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� � 7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� �
1

z
�A

�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�
:

(4.36)
These equivalences hold because of the identities

0 �
1

2�i

I
C
31
1

z3
SA
�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�
dz;

0 �
1

2�i

I
C

1

z2
@

@x2 _1
�A

�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�
dz;

(4.37)

that can be derived by deforming the contour of integration
into a circle of radius jzj ! 1. (Note that 31 behaves at
worst like z, and SA at worst like a constant.) In the second
identity in (4.37) we have set @�A=@x1 _1 � �@�A=@x2 _1�=z.

For the massless caseMAB � 0, Eq. (4.34) is the same as
(4.22) with

~̂% A � ~7A; %̂A � 7A: (4.38)
Now let us turn to the massive case. Rewriting the Dirac
wave functions (4.22) in terms of the B-model fields (4.38),
we get

 A1�x� �
1

2�i

I
C
�31 ~7

A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z�

�MAB@17B�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z��dz;

 _1
A �x� �

1

2�i

I
C

@
@x1 _1

7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z�dz;

(4.39)

where

�31; 32� � �1; z�; �@1; @2� � �1; 0�:

The equivalences (4.36) now have to be modified to
~7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� � ~7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� �
1

z3
SA
�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�

�
1

z2
MAB�B

�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�
;

7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� � 7A�z; x1 _1 � x2 _1z; x1 _2 � x2 _2z� �
1

z
�A

�
1

z
;
x1 _1
z
� x2 _1;

x1 _2
z
� x2 _2

�
:

(4.40)
Indeed, these transformations leave the Cauchy integrals
(4.39) invariant. Moreover, the Čech equivalence relations
(4.32), in the form (4.40), determine the form of the
Cauchy integrals (4.39), with @1 determined up to the
ambiguity (4.17). Thus we have shown that a VEV for
EAB corresponds to a chiral mass term.

E. Mass terms in Berkovits’s model

We will now study the counterparts of the mass opera-
tors (4.10) and (4.13) in Berkovits’s twistor string theory.
We will work with the world-sheet fields from Sec. III H.
Berkovits and Witten explained in [18] how to convert B-
model operators to operators in Berkovits’s model.
Adapted to our D � 3 setting, the procedure is as follows.
We start with a holomorphic vector field on mini-twistor
space T3. It can be represented in homogeneous coordi-
nates as

f0 :� fi�Z1; Z2; W;%�
@
@Zi

� fW�Z1; Z2; W;%�
@
@W

� fA�Z1; Z2; W;%�
@

@%A ; (4.41)

subject to the equivalence relation

f0 ’ f0 �*�Z1; Z2; W;%�
�
Zi

@
@Zi

� 2W
@
@W

�%A @

@%A

�
:
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This vector field is converted to a Berkovits vertex operator

V � Yifi �UfW �&AfA:

In particular, starting with a B-model operator that is
represented as a holomorphic vector field

f :� fz�z; w; ��
@
@z
� fw�z; w; ��

@
@w
� fA�z; w; ��

@

@�A
;

(4.42)

we can get the world-sheet vertex operator by lifting (4.42)
to C4j4 by setting Z1 � 1, Z2 � z and W � w.

V � Y2fz
�
Z2

Z1
;
W

�Z1�2
;
%

Z1

�
�Ufw

�
Z2

Z1
;
W

�Z1�2
;
%

Z1

�

�&AfA
�
Z2

Z1
;
W

�Z1�2
;
%

Z1

�
:

This is an open string vertex operator in Berkovits’s model.
The vector field (4.42) is required to preserve the holomor-
phic superform on mini-twistor space

� � dw ^ dz ^ d�1 � � � d�4:

This is a condition that descends from a similar condition
in D � 4 [18].

Applying this Berkovits-Witten prescription to (4.10) we
get our first ansatz for the Berkovits-model mass operators

V�15� !V �15� �
W

Z1Z2
&AM

A
B%

B: (4.43)

The factor of Z1Z2 in the denominator of (4.43) might
appear strange at first, but it can be handled by bosoniza-
tion. We have discussed a similar issue at the end of
Sec. III I, and more details can be found in the Appendix.

To gain more insight, we will now derive (4.43) by
directly gauging translations with an R-symmetry twist
(4.2) in the world-sheet action (3.30). We therefore aug-
ment the covariant derivative (3.34) according to the modi-
fied gauge transformation (4.2),

rzZ
3
L � @zZ

3
L � AzZ

3
L � ~BzZ

1
L;

rzZ
4
L � @zZ

4
L � AzZ

4
L � ~BzZ

2
L;

rz%
A
L � @z%

A
L � i ~BzM

A
B%

B;
(4.44)

and similarly for the right-moving fields. Inserting these
covariant derivatives into the action (3.30) and integrating
out the nondynamical gauge fields ~Bz, ~Bz, we get the
modified constraint

jm�z� :� Y3Z
1 � Y4Z

2 � iMA
B&A%

B � 0: (4.45)

(Again, we suppress the L;R subscripts on fields.) Note
that for MA

B � 0, the left-moving gauge field ~Bz and the
right-moving gauge field ~Bz have to be related by complex
conjugation, because the left-moving gauge transformation
by itself is anomalous, with an anomaly proportional to
MA

BM
B
A.
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According to the previous discussion, and in particular
(4.43), the mass deformation corresponds to an open string
vertex operator and therefore should manifest itself as a
change in the world-sheet boundary conditions. How can
we convert (4.45) to a change of boundary conditions?

Let us first recall, on the classical level, what the equa-
tions of motion of the Berkovits action are. The charged
fields have equations of motion

rzZ
i
L � 0; rzYLi � 0; rzZRi � 0;

rzY
i
R � 0; i � 1; . . . ; 4;

(4.46)

and similarly for &A and %A. The gauge fields Az; Az and
~Bz; ~Bz do not have dynamical equations of motion, and
they can be arbitrary. The equations of motion (4.46) then
imply that gauge invariant combinations of left-moving
fields are holomorphic, and gauge invariant combinations
of right-moving fields are antiholomorphic. This (anti-
)analyticity and the constraints

X4
i�1

YLiZiL �&LA%
A
L � 0;

X4
i�1

YiRZRi �&
A
R%RA � 0;

(4.47)

together with (4.45), are all the restrictions on gauge
invariant combinations. For MA

B � 0, a full set of
~B-gauge invariant combinations is given by (3.36) and
(3.37). For MA

B � 0, we need to modify these formulas.
We define the following field combinations:

Z1; Z2; W :� Z1Z4 � Z2Z3;

U :�
Y4
Z1
�
Y3
Z2
�

i

Z1Z2
MA

B&A%
B;

~Y1 :� Y1 �UZ4 � i
Z3

�Z1�2
MA

B&A%
B;

~Y2 :� Y2 �UZ3; ~% :� exp
�
i
Z3

Z1
M
�
%;

~& :� exp
�
�i

Z3

Z1
M
�
&:

(4.48)

They are invariant under the gauge transformations that
correspond to ~B, and using the constraint (4.47), we see
that they satisfy

0 � ~Y1Z
1 � ~Y2Z

2 � ~&A ~%
A � 2UW: (4.49)

Thus, the equations of motion for Z1, Z2, ~Y1, ~Y2, W, U, ~%,
~& are independent of the mass matrix MA

B. The mass
matrix must, therefore, enter into the boundary conditions.

Let us consider a world sheet with the topology of a disk.
It can be represented as the upper half plane Imz> 0. The
boundary conditions at Imz � 0 are [18]

ZiL � Z	Ri; YLi � �Y
i
R�
	; %A

L � %
	
RA;

&LA � �&
A
R�
	:

(4.50)
-24



MASSLESS AND MASSIVE THREE-DIMENSIONAL . . . PHYSICAL REVIEW D 71, 125016 (2005)
The ‘‘doubling trick’’ (see, e.g., Sec. 2.6 of [40]) is a
standard way of treating a conformal field theory on a
disk. We extend the definition of the left-moving fields to
the full z plane by setting

ZiL�z� :� �Z
i
R�z��

	; YLi�z� � �YiR�z��
	;

%A
L�z� � %RA�z�

	; &LA�z� � �&
A
R�z��

	; Imz < 0:

(4.51)
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Including the point z � 1, the fields are now defined on a
sphere.

Now let us look at the fields from (4.48). They are well
defined only if Z1 � 0. When MA

B � 0, we can use the
alternative definition U � Y3=Z2, which makes sense
when Z2 � 0. Thus, when MA

B � 0, the fields from
(4.48) make sense whenever either Z1 or Z2 is nonzero.
But for MA

B � 0 we have to use a different set of fields in
patches of the world sheet that contain zeros of Z1. Such an
alternative set of fields is given by
Z1; Z2; W :� Z1Z4 � Z2Z3; U :�
Y3
Z2
�
Y4
Z1
�

i

Z1Z2
MA

B&A%
B; ~Y1 :� Y1 �UZ4;

~Y2 :� Y2 �UZ3 � i
Z4

�Z2�2
MA

B&A%
B; ~% :� exp

�
�i

Z4

Z2
M
�
%; ~& :� exp

�
i
Z4

Z2
M
�
&:

(4.52)
These fields were determined by the requirement of invari-
ance under ~B-gauge transformations and the requirement
that (4.49) is satisfied.

We still need to specify which of the two sets of for-
mulas, (4.48) or (4.52), to choose for the left-moving and
the right-moving sectors. We do not have any compelling
reason to prefer one choice over the other, but if we choose
(4.52) for the right movers and (4.48) for the left movers we
will soon see that we recover the mass operator (4.43). It is
not clear to us why we cannot choose the same set of
formulas, say (4.48), for both left movers and right movers,
but we note that if we do that we need a certain condition,
say Z1L � 0, to hold throughout the doubled world sheet,
and this could be too restrictive.

With (4.48) for the left movers and (4.52) for the right
movers, we get the boundary conditions
Z1L � Z	R1; Z2L � Z	R2; WL � W	
R; UL � U	R �

i

Z1LZ
2
L

MA
B&LA%

B
L;

~Y1L � ~Y	1R �
iWL

�Z1L�
2Z2L

MA
B&LA%

B
L; ~Y2L � ~Y	2R �

iWL

Z1L�Z
2
L�
2M

A
B&LA%

B
L; %A

L � exp
�
i
WL

Z1LZ
2
L

M
�
%	RA;

&LA � exp
�
�i

WL

Z1LZ
2
L

M
�
�&AR�

	:

(4.53)
These boundary conditions can be succinctly described by
adding an extra boundary term to the world-sheet action,

+S � �
i
2

Z
dz

WL

Z1LZ
2
L

&LAMA
B%

B
L

�
i
2

Z
dz

WR

Z1RZ
2
R

&BRM
A
B%RA: (4.54)

To first order in M, the full action is given by the bulk
world-sheet action (3.30) plus the boundary action (4.54),
supplemented with the boundary conditions

Z1L � Z	R1; Z2L � Z	R2; WL � W	
R;

%A
L � exp

�
i
WL

Z1LZ
2
L

M
�
%	RA:

The remaining boundary conditions (4.53) follow [up to
O�M2� corrections] by minimizing the action. To conclude,
we note that the boundary term (4.54) is consistent with the
mass operator (4.43) that was predicted from the B model.

Similarly to (4.43), we can convert (4.13) to Berkovits’s
model. Using the fields from Table II, we get the open
string vertex operator

V�10� !
1

Z1Z2
MAB,BCDE&A%C%D%E: (4.55)

The mass terms in 10, which were difficult to identify in
the B-model mini-twistor string theory, can be readily
identified in Berkovits’s model. Dimensionally reducing
the operators EAB from [18], we get the open string vertex
operator

V
�10� !

1

Z1Z2
MAB%

A@%B: (4.56)

F. Application of Spin(7) R symmetry

In Secs. IV B and IV E we found three kinds of D � 3
mass operators. We found the operators (4.55) in the 10 of
SU�4�, the operators (4.56) in the 10 of SU�4�, and the
operators (4.43) in the 15 of SU�4�. The latter were the
easiest to analyze, since they could be derived by a twisted
dimensional reduction. However, all these operators should
be related by the Spin(7) R symmetry that we discussed in
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Sec. III I. In this subsection we will apply the R-symmetry
generators (3.44) to the operators (4.43). We will discover a
surprise: the operators (4.43), (4.55), and (4.56) do not fit
into an irreducible representation of Spin(7).

Nevertheless, starting with the operators (4.56) (in the
10), we can reconstruct a good Spin(7) multiplet of opera-
tors by successively applying the Spin(7) generators (3.44).
These operators will be different from our previous results
(4.43) and (4.55). We can ‘‘distill’’ out of (4.43) the terms
that do fall into the irreducible representation 35 and use
them to complete the Spin(7) multiplet.

Let us now do this in detail. Set

, :�
1

Z1Z2
: (4.57)

The various mass terms that we found in Eqs. (4.43), (4.55),
and (4.56) are

V
�10� ! ,MAB%

A@%B; V�15� ! ,W&AMA
B%

B;

V�10� ! ,MAB,BCDE&A%C%D%E:

These terms are linear combinations of the vertex operators

V AB :� ,%�A@%B�;

~V
A
B :� ,W�&B%

A � 1
4+

A
B&C%

C�;

~V AB :� ,,CDE�B&A�%
C%D%E:

(4.58)

(Here and in the equations below, all operators are under-
stood to be normal ordered.) As we will see below, some of
these vertex operators are not quite what we are looking
for, and the tilde over V will remind us that they are about
to be modified. We will denote the modified vertex opera-
tors by V A

B and V AB. These vertex operators should form
an irreducible representation of Spin(7), isomorphic to 35.
We can therefore write down immediately their expected
commutation relations with the Spin(7) generators (3.42):

�TAB;V CD� � +ACV BD � +ADV BC;

�TAB;V
CD� � �+CBV

AD � +DBV
AC;

�TAB;V
C
D� � +ADV

C
B � +CBV

A
D;

(4.59)

and
TABLE III. The three types of mass operators
their coupling to the fermions, the corresponding
complex structure deformations (+�A is the extra
from the patch z � 0 to the patch z � 1) and the
and (4.66). The operator , � 1=Z1Z2 was define

Operator MABV
AB

SU�4� representation 10
Fermion coupling MAB7

A7B

Conformal SUGRA field EAB
B-model deformation: +�A � � � �

Berkovits model ,%�A@%B� 1
2,
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�TAB;V CD� � +ACV
B
D � +BCV

A
D � +ADV

B
C

� +BDV
A
C;

�TAB;V CD� � ,ABCEVD
E � ,ABDEV C

E;

�TAB;V C
D� � ,ABCEV ED � +ADV

BC � +BDV
AC:

(4.60)

Thus, we can calculate the operators V A
B from the com-

mutation relations of TAB with V CD.
We can read off these commutation relations from the

coefficient of the simple pole in the OPE of JAB and V CD.
The result is

�TAB;V CD� � 1
2,
ABCE,�U�1@&E%D � @U�1&E%D

�U�1&E@%
D� � 1

2,
ABDE,�U�1@&E%

C

� @U�1&E%C �U�1&E@%C�:

A comparison with (4.60) teaches us that

V A
B �

1
2,�U

�1@&B%
A � @U�1&B%

A �U�1&B@%
A�

� 1
8+

A
B,�U

�1@&C%
C � @U�1&C%

C

�U�1&C@%C�:

We have subtracted the trace to make V A
B traceless, as is

required of the irreducible representation 15.
Next, we calculate the commutation relations between

the newly found V A
B and the Spin(7) generators TAB. A

long but straightforward calculation gives

�TAB;V C
D� � �+

�A
D,@%

B�%C � +�AD,%
B�@%C

� ,ABCE,U�2@&
�E&D�: (4.61)

A comparison with (4.60) therefore teaches us that

V AB � U�2,&
�A@&B�; (4.62)

where , was defined in (4.57), and using the bosonized
fields from Sec, III J, we have defined

U�2 :� �e�2�?@?: (4.63)

This definition is natural, given the definition of U�1 in
with their SU�4� irreducible representations,
conformal supergravity fields, the B-model

term in the change of holomorphic variables
Berkovits-model operators from (4.64), (4.65),
d in (4.57).

MA
BV

B
A MABV AB

15 10
MA

B7
A7B MAB7A7B

VA4 EAB

z�1MA
Bw�

B 1
6z
�1MAB,BCDE�

C�D�E

U�1@&B%
A � � � � ,U�2&�A@&B�
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TABLE IV. Various symbols used in the text. The subsection column is the place where the symbol first appeared with its given
meaning.

Symbol Subsection Meaning

a; b; . . . Sec. III A Spin(7) spinor R-symmetry indices (1; . . . ; 8)
A;B;C; . . . Sec. II E SU�4� R-symmetry indices (1; . . . ; 4)

A0 Sec. III A Space-time gauge field (either D � 3 or D � 4)
Az; Az Sec. III H World-sheet GL�1� gauge field
~Bz; ~Bz Sec. III H World-sheet gauge field, used to gauge for translations

EAB; E
AB Sec. III I Space-time conformal supergravity fields from [18]

f; f0 Sec. IV E Holomorphic vector field on mini-twistor space
F Sec. III F Focal curve

i; j; . . . Sec. III A Euclidean space-time indices 1; . . . ; 3 or 1; . . . ; 4
I; . . . Sec. III A Spin(7) vector index 1; . . . ; 7
I Sec. III J A collective index for one of the eight D � 4 Berkovits-model fields

J�; J1 Sec. II D D � 3 rotation generators
L Sec. III A Space-time Lagrangian

MA
B;MAB;M

AB Sec. IVA Mass matrices
P�; P1 Sec. II D D � 3 translation generators
Q�; Q� Sec. II E D � 3 supersymmetry generators
TAB; TAB Sec. III I Spin(7) R-symmetry generators
JAB;JA

B Sec. III J Spin(7) R-symmetry currents
t Sec. II F D � 3 mini-twistor

T3 Sec. II E Mini-twistor space
U1; U2 Sec. III C Patches of mini-twistor space
U Sec. III H World-sheet Berkovits-model field dual to W

V A
B;V

AB;V AB Sec. IV F Berkovits-model mass operators
~V
A
B;
~V
AB
; ~V AB Sec. IV F Berkovits-model mass operators (converted from B model)

~W; ~W Sec. III G B-model world-sheet field (D � 3)
W Sec. III H Berkovits-model world-sheet fields (D � 3)
w;w Sec. II B Coordinates on mini-twistor space (for the fiber of TCP1)
Xi Sec. IV D World-sheet fields in D � 4 B model (i � 1; . . . ; 4)
x1 _1 Sec. III B Space-time coordinate (D � 3 or D � 4)
Yi Sec. III H Berkovits-model dual field (i � 1; 2 in D � 3)
~Z; ~Z Sec. III G B-model world-sheet fields (D � 3)
Zi Sec. III H World-sheet fields in D � 3 Berkovits model (i � 1; 2)
z; z Sec. II B Coordinate on mini-twistor space (for the base of TCP1)
z; z Sec. III H World-sheet coordinate
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(3.46) and the following OPE:

U�1�z�U�1�0� � �e�2��0�?�0�@?�0� �O�z�:

We can now write down our final result for the three
types of mass operators:

V AB � ,%�A@%B�; (4.64)

V AB � ,U�2&�A@&B�; (4.65)

V A
B �

1
2,�U

�1@&B%A �U�1&B@%A � @U�1&B%A�

� 1
8,+

A
B�U

�1@&C%C �U�1&C@%C

� @U�1&C%
C�: (4.66)

We have checked that these operators now satisfy all the
relations (4.59) and (4.60) and hence constitute an irreduc-
125016
ible representation of the R-symmetry group Spin(7) that is
isomorphic to 35.

Our results are summarized in Table III. The operator
(4.64) agrees with the previous result (4.56), but the other
operators (4.65) and (4.66) do not agree with the operators
(4.43) and (4.55) that we found in Sec. IV E. The reason for
this apparent discrepancy is not completely clear to us, but
we expect the difference between (4.43) to (4.66) to de-
couple from physical amplitudes. As for the relation be-
tween (4.55) and (4.65), we suspect that these operators are
in a different ‘‘picture,’’ as we will now explain.

In [33] it was explained that vertex operators in
Berkovits’s model come in different pictures. A disk am-
plitude with �d� 1� negative-helicity gluons and �n� d�
1� positive-helicity gluons requires an insertion of d ‘‘-
instanton-changing operators,’’ in addition to the n vertex
operators that correspond to the physical states. These
instanton-changing operators are analogous to the
-27



TABLE V. Various symbols used in the text (Greek letters). The subsection column is the place where the symbol first appeared with
its given meaning.

Symbol Subsection Meaning

1;2; . . . Sec. II G Chiral spinor indices (D � 3 or D � 4)
_1; _2; . . . Sec. III A Dotted spinors (D � 4)
�0 Sec. II G D � 3 Dirac matrices
�A Sec. IV D Holomorphic component function on twistor space
� Sec. IV D Arbitrary function of 3; ~3
�̂ Sec. IV D Twistor transform of �
@ Sec. III B Fiber coordinate in the fibration CP3 ! TCP1

@ Sec. III J World-sheet field used for bosonization of �U;W�
@1 Sec. IV D Solution to the equation @131 � 1

@z; @w; @A Sec. III G B-model world-sheet fields
%A;%A Secs. III G and III H World-sheet fields
#z; #w; #A Sec. III G B-model world-sheet anticommuting fields

T Sec. IV D Holomorphic component function on twistor space
* Sec. IV D Arbitrary function on twistor space
31 Sec. III B Twistor variable
~3 _1 Sec. II G Appears in the decomposition of null vectors
0 _1 Sec. III B Twistor variable

0; U; . . . Sec. II G Space-time indices 0; . . . ; 2 or 0; . . . ; 3
? Sec. III J World-sheet field used for bosonization of �U;W�

?1; ?2; ?3 Sec. III D Projective coordinates on WCP1;1;2

, Sec. IV F Stands for the world-sheet field 1=�Z1Z2�
�;�0 Sec. III B Projections from D � 4 twistor space to D � 3 mini-twistor space
$ Sec. IV D Holomorphic component function on twistor space

Gz; Gw; GA Sec. III G B-model world-sheet fields
%; ~% Sec. IV D Functions of 3; ~3 appearing in the solution to Dirac’s equation
%̂; ~̂% Sec. IV D Twistor transforms of %; ~%
<i12 Sec. III A D � 3 Pauli matrices
&AB Sec. IV D Holomorphic component function on twistor space
~� Sec. III D Curve in twistor space
� Sec. III D Curve in mini-twistor space
SA Sec. IV D Holomorphic component function on twistor space
&A Sec. III H Berkovits-model fields dual to %A

� Sec. III J World-sheet field used for bosonization of �U;W�
�I Sec. III A Space-time scalars

7A; ~7
A Sec. IV D Component fields of the B model (functions of twistor space)

7A1; 71A; 7
a
1 Sec. III A D � 3 fermions (functions of space-time)

 A1;  
_1
A Sec. III A D � 4 fermions (functions of space-time)

)A Sec. IV D Fermionic coordinates in the B model
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picture-changing operators of superstring theory. They
contain + functions of the YI fields, and are necessary to
absorb zero modes of those fields. Similarly to superstring
theory, one can get rid of a picture-changing operator by
absorbing it in a physical vertex operator, thereby changing
the picture of that vertex operator. This observation played
a crucial role in identifying parity symmetry [33].

Let us now look at the zero modes of U. Using the
bosonization formulas (3.45), we can define the U picture
of an operator to be its � momentum, so that an operator
that contains an exponent exp�p�� will be in the p picture.
It follows from (3.44) that when TAB acts on an operator in
the p picture, it produces a sum of operators in the
�p� 1� picture and �p� 1� picture.
125016
To see why picture changing is necessary, recall our
comment at the end of Sec. III A. There we saw that the
notion of helicity in D � 3 is not invariant under a general
R-symmetry transformation. For example, we saw that a
positive-helicity gluon satisfies�7 � i�8, but one can find
an infinitesimal R-symmetry transformation that acts as
+�7 � ,�6, say. After this transformation, the gluon state
will acquire a 0-helicity component. But replacing a
��1�-helicity state with a 0-helicity state in a scattering
amplitude requires, according to [33], an extra instanton-
changing operator.

Now take a positive-helicity gluon vertex operator in
Berkovits’s model. In D � 3 it is of the form
��Z1; Z2;W�JC, where JC is a holomorphic current from
-28
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the chiral-current algebra component of the world-sheet
theory, and� is a meromorphic function. Acting with TAB

gives

�TAB;�� �
@�
@W

%A%B � 1
2
~��Z1; Z2; U�,ABCD&C&D;

(4.67)

where ~� is the residue of the simple pole in the OPE of �
with U�1 and can be calculated from formula (A3). The
first term on the right-hand side of (4.67) describes the
above-mentioned 0-helicity state. The second term, how-
ever, is in a different U picture and would formally corre-
spond to a ��2�-helicity state. Since no such term exists, it
must decouple from physical amplitudes. Similarly, the
mass operators (4.55) and (4.65) are obviously in a differ-
ent picture, since one contains U�2 while the other does
not.
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We conclude this subsection by demonstrating explicitly

that the operators ~V
A
B are not in the irreducible represen-

tation 35, as we claimed at the beginning of this subsection.
If they were, we could complete them to a Spin(7) multi-
plet using the commutation relations (4.60), just like we did
above with V AB. But an explicit computation gives

�TAB; ~V
D
C � � 2+

�A
C,@%

B�%D � 2,@�+�AC%
B�%D

� ,ABDE,U�2@&E&C

� ,ABDE,U�2@�&E&C

�,%A%B%D&C

�
1

2
,ABEF,U�2&E&F&C%

D: (4.68)

Here @� � �:UW: is a bosonized current. If (4.60) were
satisfied, we could set
~V AB �
1
6,CDEA�T

CD; ~V
E
B�

� U�2,@&
�A&B� �

1
12,CDE�A%

C%D%E&B� �
1
2U
�2,@�&A&B� �,&A&BU

�2@�� 1
3,,ABCD@%

C%D

� 1
3,,ABCD@�%

C%D � 1
12,CDE�A,%

C%D%E&B� �
1
3,U

�2&A&B&C%
C: (4.69)

But ~V AB has to be symmetric in the indices A;B, and the last two lines of (4.69) are antisymmetric in A;B. This means that
~V AB is a mixture of the SU�4� irreducible representations 10 and 15. It suggests that our starting point, (4.58) for ~V

A
B, is a

mixture of the irreducible Spin(7) representations 35 and the adjoint 21. One can similarly check that

~V BC � 1
3�T

AB; ~V
C
A�

� ,@%�B%C� � 1
6,
CDE�B,U�2&C&D&E%

C� � 1
6,
BCDE,U�2@�&D&E� �

1
3,
BCDE,U�2@�&D&E

� 1
3,%

B%C&A%
A � 1

6,
DEF�B,U�2&D&E&F%

C� � 1
2,@�%

B%C� �,@�%B%C:
This is again not symmetric in A;B and thus contains a
mixture of the SU�4� irreducible representations 10 and 6.

G. The singlet mass term

The last remaining mass term in (4.1) is the singlet 1. A
naive guess for the corresponding B-model operator is to
setM in (4.6) to be proportional to the identity matrix. This
means that we cannot obtain (4.6) by dimensional reduc-
tion with an SU�4� twist, because the identity matrix is not
traceless. An even bigger problem is that if M is not
traceless, the complex structure deformation to which
(4.6) corresponds does not preserve the holomorphic vol-
ume form � of CP3j4. Indeed, unless M is traceless,

� �
1

4!2
,IJKLZIdZJ ^ dZL

^ dZL,ABCDd Ad Bd Cd D

is not preserved by (4.3). We do not know how to turn on
singlet mass terms. [See also the related discussion after
Eq. (2.11) in Sec. 2.2 of [18] regarding complex structure
deformations that do not preserve �.]
H. Comments on the decoupling limit M! 1

The discussion in the previous subsections was con-
cerned mainly with infinitesimal mass terms. To first order,
these mass terms are related to deformations of the B-
model action by closed string vertex operators. Our analy-
sis in Sec. IVA, however, allows us to ‘‘integrate’’ the
infinitesimal mass deformations and describe finite mass
terms. Specifically, (4.3) describes a super complex struc-
ture deformation of CP3j4 that preserves the holomorphic
volume superform for any traceless M.

Let m1; . . . ; m4 be the eigenvalues of M, and set mi �
cim for some constants ci. For generic ci, the limit m! 1
is quite interesting from the physical perspective. If all ci
and all ci � cj are nonzero, all fermions and six out of the
seven scalars get a large bare mass and decouple. We can
preserve D � 3, N � 2 supersymmetry if we keep c1 � 0.
In this case, one scalar and twoD � 3 gluinos remain with
zero bare mass. We can also preserve D � 3, N � 4 su-
persymmetry if we keep c1 � c2 � 0. In this case, three
scalars and four gluinos remain with zero bare mass.

Let us now comment on the m! 1 limit from the
perspective of Berkovits’s open twistor string theory. The
-29
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mass appears only in the boundary term (4.54). In the limit
m! 1, the boundary term (4.54) becomes very big. This
suggests that the bulk action of & and % can be neglected.
We end up with a world-sheet theory that has bulk modes
Z1; Z2; W and their conjugates Y1; Y2; U. The & and %
fields live only on the boundary and couple to the bulk
fields via the boundary action (4.54). This state of affairs is
somewhat reminiscent of the Seiberg-Witten limit of large
Neveu-Schwarz–Neveu-Schwarz (NS-NS) 2-form B field
that leads to noncommutative geometry [57–59]. (A con-
nection between deformations of twistor string theory and
noncommutative geometry, and, in particular, its extension
to superspace [60] was also suggested in [46].) This limit in
the present context will be studied elsewhere.
V. CONCLUSIONS AND DISCUSSION

We reviewed Hithcin’s construction of mini-twistor
space, which relates D � 3 mini-twistor space to D � 4
twistor space by dimensional reduction. The key point is
that the 3(complex)-dimensional D � 4 twistor space
CP3 n CP1 can be written as a fiber bundle with the
2(complex)-dimensional D � 3 twistor space TCP1 as
the base, and the fiber is C. The structure group is the
additive translation group �C. We used this fibration to
relate tree-level twistor amplitudes of D � 3 Yang-Mills
theory to D � 4 amplitudes. We calculated D � 3 tree-
level amplitudes from the D � 4 ones by integrating over
the C fibers of the above fibration. This immediately
implies that Witten’s observations [4] regarding scattering
amplitudes and holomorphic curves in twistor space are
valid in D � 3, at least at tree level. In D � 3 there is a
known relation between holomorphic curves on mini-
twistor space and holomorphic curves in complexified
Minkowski space. We used this relation to give a direct
physical interpretation to the holomorphic curves in mini-
twistor space. At one-loop level and higher, the D � 3 and
D � 4 amplitudes are not directly related by dimensional
reduction, and whether or not the conjectures of [4] extend
to D � 3 remains to be seen. For developments regarding
loop amplitudes in D � 4 see [61–68].

Our main new results are related to deformations of the
N � 8 supersymmetric D � 3 Yang-Mills theory by mass
terms. We proposed a variant of the topological B model
that describes massive D � 3 Yang-Mills theory. This
model can describe 15 out of the 35 different possible
mass terms. These mass-deformed D � 3 theories can be
obtained by twisting the dimensional reduction of massless
D � 4 theories. As for the other mass terms, we only
discussed infinitesimal deformations and conjectured that
these deformations correspond to VEVs of certain confor-
mal supergravity fields. In this paper, we gave circum-
stantial evidence in support of the previous statement. It
would be very interesting to show this convincingly by
examining the three point functions of two supergravity
fields and one gauge field operator. This should be possible
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by performing a computation similar to the one in [18] [see
Eq. (5.5) of that paper], where the correlation functions of a
conformal supergravity vertex operator with an arbitrary
number of Yang-Mills vertex operators were calculated in
Berkovits’s model. We hope to report on this in another
paper.

In D � 3 we constructed the Spin(7) R-symmetry cur-
rents that transform one type of infinitesimal mass term to
another. This allowed us to construct vertex operators for
all 35 mass terms in Berkovits’s model. We encountered a
surprise when we tried to compare the vertex operators in
Berkovits’s model with the topological B model. In
Berkovits’s model we found that the 35 mass operators
do not quite fit into an irreducible representation of the R-
symmetry group Spin(7). We suggested a different set of
operators that do fit into an R-symmetry multiplet. It would
be interesting to understand the meaning of this in more
detail.

Our results provide a way to break the supersymmetry
from N � 8 to N � 4, 2, 1, 0 in D � 3 by arbitrary mass
terms, in mini-twistor string theory. One direction for
further research is to analyze the limit of infinite mass. In
this limit we should obtain pure N � 4, 2, 1 Yang-Mills
theories, and also N � 0 with a scalar. Our results also
suggest a way to break N � 4 in D � 4 by infinitesimal
mass terms. It would be interesting to try to integrate these
infinitesimal deformations to get large mass terms.
Understanding R symmetry better may enable us to convert
a noninfinitesimal mass term in the representation 15 [de-
scribed by (4.3) in the B model or (4.45) in Berkovits’s
model] into a mass term in the 10� 10, and then it might
be possible to lift it toD � 4. Alternatively, a better under-
standing of the nonperturbative topological B model, per-
haps along the lines suggested recently in [36–38], may
shed light on how to turn on noninfinitesimal VEVs for the
closed string modes EAB and EAB simultaneously.

Another possible direction for further research is to
explore the mirror manifold of mini-twistor space. The
same techniques of [69], where the mirror manifold of
the twistor space CP3j4 has been constructed, can be
applied to mini-twistor space. It was shown in [69] that
the mirror of CP3j4 is a quadric in CP3j3 � CP3j3. One
might then be tempted to examine the dimensionally re-
duced version of the argument in [70], where the authors
use S duality in conjunction with mirror symmetry to
explain why the amplitudes of N � 4 Yang-Mills are
supported on holomorphic curves. Moreover, certain sym-
metries (e.g. parity) might be more manifest in the mirror.
One would expect to lose some of the manifest SU�4 j 4�
generators.
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APPENDIX: DEALING WITH INVERSES
OF FIELDS

The commuting world-sheet fields of Berkovits’s model,
�Y1; Z

1�, �Y2; Z2� and �U;W�, have the same OPEs as the
superconformal ghosts �2;E� in superstring theory. Based
on this, we bosonized the fields �U;W� in Sec. III J.
Actually, we will need to bosonize the three pairs
�Y1; Z1�, �Y2; Z2� and �U;W�, simultaneously. To ensure
that fields from different pairs are commuting (rather than
anticommuting) it is more convenient to use a bosonization
scheme with no anticommuting fields. Recall that any
�2;E� pair of world-sheet fields with OPE

2�z�E�0� � �
1

z

can be bosonized in one of two ways:

either f�i� 2 � e���7@7; E � e��7g

or f�ii� 2 � e���7; E � e��7@7g; (A1)

where 7�z� and ��z� are chiral bosons. The current in both
cases is

2E � @�:

(See, for example, Sec. 10.4 of [40].)
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At the outset, it seems that for each pair of fields �Yi; Zi�
or �U;W�, we can choose either the bosonization scheme
(i) or (ii). How can we decide which scheme to choose?

Before we pick the bosonization scheme, we have to
decide which of the 2;E fields is to have an inverse. If it is
E, we should pick scheme (i), because we could then define

E�1 :� e���7 in bosonization scheme �i�:

If it is 2, we should pick scheme (ii) and set

2�1 :� e��7 in bosonization scheme �ii�:

The field E does not have an inverse in scheme (i), and 2
does not have an inverse in scheme (ii).

For the application to mini-twistor space we would like
Z1; Z2 andU to have inverses. The inverse ofU was needed
in (3.44) for the Spin(7) R-symmetry current. The inverses
�Z1��1 and �Z2��1 were needed for , [defined in (4.57)]
and for all the mass operators that contained ,. The
inverses of the other fields, Y�11 , Y�12 , W�1 were never
needed.

More basically, if we allow �Zi��1 (i � 1; 2) it means
that we are restricting to the patch of mini-twistor space
where Zi � 0. If we proscribe W�1 it means that we are
including points where w � 0. The discussion above com-
pels us to choose the following bosonization scheme:

Yi � e��i�7i@7i; Zi � e�i�7i ;

�Zi��1 � e��i�7i ; �i � 1; 2�; U � e��3�73 ;

W � e�3�73@73; U�1 � e�3�73 ;

j � Y1Z
1 � Y2Z

2 � 2UW � @�1 � @�2 � 2@�3:

(A2)

We conclude with a few useful OPEs:
U�z�U�1�0� � 1� z�@��0� � @�0�?�0�� �O�z2�; U�z�W�0� � �
1

z
� @��0� �O�z�;

U�1�z�W�0� �
1

z
U�2�0� �U�2�0�@��0� �O�z�; U�1�z�U�1�0� �U�2�0� �

1

2
z@U�2 �O�z�2;

U�1�z�U�2�0� �U�3�0� �O�z�; U�z�@U�1�0� � �@��0� � @�0�?�0� �O�z�;

U�z�U�2�z� �U�0� � z@�U�1�0�� � z2X�0� �O�z�3; U�1�z�@U�1�0� �
1

2
@U�2�0� �O�z�

where we defined the operators

X :� e���@�@?�?� @�@?� 1
2��@��

2 � @2��?�;

and

U�2 :� e�2��@?�?; U�3 :� 1
2e
�3�@2?�@?�?:

(All products on the right-hand side are assumed to be normal ordered.) Finally, we need the OPEs

U�1�z�Wn�0� �
1

z
��1�nn!U�n�1 �O�1�: (A3)
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