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Two families of SO�2n� Higgs models in 2n dimensional spacetimes are presented. The energies
corresponding to the monopole solutions of all these models saturate the Bogomol’nyi bound. One of
these families arises from the dimensional reduction of higher dimensional Yang-Mills systems while the
generic models are constructed only with a view to saturating Bogomol’nyi-Prasad-Sommerfield mono-
pole (BPS) bounds. The n � 2 member of each family coincides with the usual SU�2� Yang-Mills–Higgs
system without Higgs potential. All models support BPS ‘‘monopole’’ solutions. While all the monopoles
are BPS, only the ‘‘dyons’’ of the dimensionally descended models are also BPS, the electrically charged
solutions of the generic models not saturating a Bogomol’nyi bound.
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2This is the case when the higher dimensional space is a
product space whose extra dimension consists of one compact
coset space KN of N dimensions, or, is the N dimensional torus
S1 � S1:::� S1, N times.

3This is the case when the extra dimension consists of the
product of more than one compact symmetric space, e.g. Kp
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I. INTRODUCTION

Field theoretic solitons find much application in various
physical models. Most recent applications of these are in
the context of extra dimensional theories, e.g. large extra
dimensions with or without gravity, when gravity and a
negative cosmological constant are included in AdS/CFT
correspondence, and also in various theories employing
Dp-branes. The special case, in which the soliton in ques-
tion saturates the BPS bound, is particularly pertinent in
this last application, a prominent role being played by the
BPS dyons of the Yang-Mills–Higgs (YMH) model. The
generalizations of the SU�2� YMH model in 4 spacetime
dimensions, to all even dimensions, is the objective of this
work. A brief discussion of some of their possible appli-
cations will be given in the Summary section. Here, we
proceed directly to construct the models and their
solutions.

When the dimensionality of the space on which the
soliton lives is higher than two, then the gauge fields1

must necessarily be non-Abelian. Thus in any theory in
which the number of extra dimensions is larger than 2, the
construction of BPS solitons is a pertinent task. The present
work does just this, by constructing BPS ‘‘monopoles’’ of
non-Abelian Higgs models in arbitrary even dimensions.

By ‘‘monopole’’ in even dimensional spacetime, we
mean a static solution to a YMH which is topologically
stable. A BPS such monopole is one for which the
Bogomol’nyi (topological) lower on the ‘‘energy’’ is
saturated.

We present two distinct families of YMH models in all
even spacetime dimensions. The first is a class of models
descending from Yang-Mills (YM) systems in higher di-
mensions. The second, generic family, is constructed in an
olitons of ungauged models, e.g. sigma models or
dimensional generalizations of the Goldstone

thout introducing a gauge field there are no known
h support BPS solitons except in two dimensions.
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ad hoc manner, guided only by the requirement that there
be a topological lower on the energy, and that it is satu-
rated. (These features are automatically present in the first
class of models as a result of the dimensional descent.)
What is remarkable in the case of the first class of models,
namely, those descended from higher dimensional YM, is
that the corresponding dyons are also BPS, directly gen-
eralizing this prominent property present in the familiar
case of d � 4 spacetime.

Subjecting a YM system in even Euclidean dimensions
[1] to dimensional reduction results in a residual YMH
system. Depending on the specific features of the dimen-
sional descent, the residual YMH system may2 [2], or may
not3 [3], inherit the topological lower bound4 of the higher
dimensional YM system. Restricting to the first type of
residual YMH systems, namely, those supporting topologi-
cally stable solitons, those descending from 4p Euclidean
even dimensions have the particularly simple property that
they are characterized with only one dimensionful parame-
ter, which is given by the ‘‘radius’’ of compactification,
presenting itself as the Higgs vacuum expectation value
(VEV). We will henceforth restrict to this simplest type of
YMH models in our considerations of the class of ‘‘dimen-
sionally descended’’ models.

In the present work, we consider spherically symmetric
BPS monopole solutions of the two types of YMH models
just described. Concrete solutions will be constructed nu-
K2 , with p � 2; q � 2, and p� q � N, in which case the radius
of compactification of one of the two K1;2 presents itself as a
cosmological constant in the residual model.

4Assuming that the YM system in even dimensions is one
which is stabilized by the corresponding Chern–Pontryagin
density.
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merically. For the YMH models descended from higher
dimensional YM, the corresponding dyons will also be
given. In Sec. II we present the models, subject them to
spherical symmetry, and display their topological lower
bounds and Bogomol’nyi equations. In Sec. III we give
the numerical solutions and in Sec. IV we summarize the
results and give a brief discussion.

II. THE BPS MODELS

There are two main families of non-Abelian YMH mod-
els which can support self-dual solutions that saturate the
Bogomol’nyi bound, those which are descended from a
higher dimensional YM system [1], and the generic models
which are constructed in an ad hoc manner. The two
classes are given in separate subsections below.

Both families, however, share a common feature in their
definitions, namely, the gauge group and its representation
as well as the multiplet structure of the Higgs fields are the
same and are determined only by the dimensionality d �
2n of the spacetime. For this reason we state these at the
outset.

In d � 2n dimensional spacetime, the gauge connection
A� will take its values in the algebra of SO�d�. Since d is
even, there are two chiral representations of SO�d� and we
will take A� to be in one or the other of these chiral
representations. The elements of the algebra are repre-
sented in terms of the gamma matrices �� in d dimensions
and the corresponding chiral operator �d�1

����
�� � �

1

4

�
1� �d�1

2

�
	��;��
; ����

�� � �
1

4
����

	� ����
�
 ;

(1)

the spacetime index � running over 0; i, with the spacelike
index i running over 1; 2; :::; �d� 1�. The Higgs field will
be taken to consist of a real isovector multiplet �i which
can be expressed in terms of the spin matrices (1) as

� � �i�
���
i;d :

In the following we will be repeatedly making use of the
following spinor identities satisfied by the spin matrices (1)
in d � 2�p� q� dimensions

��2p� � ��?��2q���2p�; (2)

where the 2p-form ?��2q� is the Hodge dual of the
2q-form ��2p�, and the � sign in (2) corresponds to the
sign in (1). The 2p-form spin matrix in (2) is the p-fold
totally antisymmetric product of the spin matrices (1),

��2p� � ��1�2:::�2p

and the Hodge dual of ��2q� is

�?��2q���2p� �
1

�2q�!
"�1�2:::�2p�1�2:::�2q��1�2:::�2q :

Since the present study is restricted to static spherically
125013
symmetric solutions, we give the fields �A�;�� subject to
this symmetry

A0 � �a0�r�x̂i�i;d; Ai �
�
1� w�r�

r

�
����
ij x̂j;

� � �h�r�x̂i�i;d;

(3)

where � is a constant with dimension of inverse length and
the three functions �w; a0; h� of r �

��������
xixi

p
, are dimension-

less. If the model in question is descended from higher
dimensions, then � is the VEV of the Higgs field since in
that case the Higgs field has the same dimension as the
connection. In the other cases, where the Higgs field has
other dimensions, we will be modifying the third member
of (3).

It should be pointed out here that according to the static
spherically symmetric Ansatz (3), all components of the
YM connection take their values in the SO�d� 1� sub-
group of the chiral representations of SO�d�. Accordingly,
as a consequence of symmetry breaking, the asymptotic
gauge connections take their values in SO�d� 2�. This is
most clearly seen in the Dirac gauge, in which there will be
a line singularity along the positive or negative xd�1-axis,
where the asymptotic Higgs isovector points along the
positive or negative xd�1-axis [2].

A. Dimensionally descended models

Higgs models arise from the dimensional reduction of
YM models in higher dimensions, and their various fea-
tures depend on the particular mode of dimensional de-
scent, namely, on the extra compact dimension and the
gauge group of the YM system in the higher dimension.

A remarkable feature of YMH systems descended from
YM models in 4p Euclidean dimensions is that for a
subclass of these models the Bogomol’nyi bounds can be
saturated. This subclass of models consists of those in
4p� 1 and 2 Euclidean dimensions. The Bogomol’nyi
equations of all YMH models in the intermediate residual
dimensions, 4p� 2 down to 3 are overdetermined [4] and
are satisfied only by trivial solutions, so they are excluded
from consideration in this work since we insist on BPS
systems. The class of models in 2 Euclidean dimensions
are generalized Abelian Higgs models [5], which do not
interest us here since we are concerned with higher dimen-
sions and hence necessarily non-Abelian systems. Thus the
family of 4p� 1 dimensional YMH models just described
will be the main focus of our attention. For completeness
however, we will also consider all other YMH models in
even dimensional spacetimes (in odd dimensional
Euclidean spaces) which do not result from the dimen-
sional reduction of higher dimensional YM systems but
were constructed in an ad hoc manner in [6]. Recently, the
spherically symmetric solution to the Bogomol’nyi equa-
tions of the 6 dimensional example of these generic models
[6], was constructed numerically by Kihara et al. [7].
-2
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This is the case of primary interest in this paper, namely,
the family of models descended from the pth YM system
on IR4p�1 � S1 with action

Z
IR4p�1�S1

S �
Z
IR4p�1�S1

TrF�2p�2

�
Z
IR4p�1�S1

TrF2
M1M2:::M2p

;

M1 � 1; 2; :::; 4p, etc., which after integration over the
coordinate on S1 yields the residual Higgs model on IR4p�1

S residual � Tr	F�2p�2 � 2p�F�2p� 2� ^D��2


� Tr	�Fm1m2:::m2p
�2 � 2p�F	m1m2:::m2p�2

Di2p�1

��2


(4)

m1 � 1; 2; :::; �2p� 1�, etc., and the square brackets denot-
ing total antisymmetrization of the indices m. In (4), the
2p-form curvature

F�2p� � Fm1m2:::m2p

is the totally antisymmetric p-fold product of the YM
curvature 2-form F�2� � Fm1m2

. This is identical to the
notation used in (2), for the 2p-form spin matrices.

Since the dimensional descent is by one step only5 the
gauge group of the higher dimensional model is not broken
as a result of the imposition of symmetry effecting the
descent, so it is the same in the residual theory (4). It is also
clear that the Higgs field in (4) has the dimensions of
inverse length and � is its VEV.

Sresidual in (4) is a YMH action density defined on a
Euclidean space of odd dimensionality 4p� 1. To gener-
ate a theory in 4p dimensional (flat) Minkowski space, we
introduce the time coordinate x0 by hand, such that the new
coordinates are x� � �x0; xi�, the spacelike coordinates xi
replacing xm in (4). The Lagrangian of the said model is
now defined as

L 4p � Tr
�

1

2�2p�!
F�2p�2 �

1

2�2p� 1�!
�F�2p� 2�

^D��2
�

� Tr
�

1

2�2p�!
�F�1�2:::�2p

�2 �
1

2�2p� 1�!

��F	�1�2:::�2p�2
D�2p�1


��2
�

(5)

the spacetime index �1, etc. running over 0; i1, etc., with
i1 � 1; 2; :::; 4p� 1, etc. Note that for p � 1 (5) is just the
Lagrangian of the usual four dimensional YMH model.
5If the descent was over a larger number of dimensions, e.g. if
S1 were replaced by SN , �N > 1�, the fixed YM curvature on SN

would result in a symmetry breaking leading to a smaller
residual gauge group.
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The curvature 2-form F�2� � F�� and the covariant
derivative D��

F�� � @�A� � @�A� � 	A�; A�


D�� � @��� 	A�;�


both take their values in the algebra of the gauge group, but
not the higher order forms appearing in (5). This means
that the definition of the model depends not only on the
gauge group but also on its representation, given by (1).

1. A0 � 0: Purely magnetic field

In this case the static Hamiltonian pertaining to (5) is

H 4p � Tr
�

1

2�2p�!
F�2p�2 �

1

2�2p� 1�!

� �F�2p� 2� ^D��2
�

� Tr
�

1

2�2p�!
�Fi1i2:::i2p�

2 �
1

2�2p� 1�!

� �F	i1i2:::i2p�2
Di2p�1


��2
�

(6)

which is bounded from below by

H 4p � "i1i2:::i2p�3i2p�2i2p�1
TrFi1i2 :::Fi2p�3i2p�2

Di2p�1
�; (7)

the right -hand side of which is a total divergence, by virtue
of the Bianchi identities, of the ‘‘magnetic field’’

B � �
1

Nd
Tr�F ^ F ^ ::: ^ F; p times

Bi1 � �
1

Nd
"i1i2:::i2p�3i2p�2i2p�1

Tr�Fi2i3 :::Fi2p�2i2p�1
;

(8)

where Nd is the angular volume in the d� 1 dimensional
Euclidean subspace. The general definitions of magnetic
fields in arbitrary dimensions given in [8] include (8).

The inequality (7) is saturated by the Bogomol’nyi
equations

F�2p� � �?�F�2p� 2� ^D��Fi1i2:::i2p

� �"i1i2:::i2pj1j2:::j2p�1
Fj1j2Fj3j4 :::Fj2p�3j2p�2

Dj2p�1
�:

(9)

Subjecting (8) to spherical symmetry according to (3), and
making use of the spinor identities (2) (with q � p in the
case at hand) results in the reduced Bogomol’nyi equations

w0 � �wh � 0; (10)

�r	�1� w2�p�1h
0 �
�2p� 1�

r
�1� w2�p � 0: (11)

The analytic proof of existence of the solution to (10) and
(11), for the case p � 2, was given in [9].
-3
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Subjecting the static Hamiltonian (6) to this symmetry
yields the one dimensional residual energy density func-
tional

Emon � �1� w2�2�p�1�

�
2pw02 � �2p� 1�

�1� w2�2

r2

�

� �2

�
r2

2p� 1
�	�1� w2�p�1h
0�2

� 2p�1� w2�2�p�1�w2h2
�
: (12)

It instructive to express (12) as
Emon � 2p�1� w2�2�p�1��w0 � �wh�2

�

�
�r

2p� 1
	�1� w2�p�1h
0 �

�1� w2�p

r

�
2

� 2�
d
dr

	�1� w2�2p�1h
: (13)

Finally, we state the asymptotic behaviors of the solutions
to (10) and (11),
125013
i

-4
n r� 1 region

	h�r� � 1
 � r�1 � o�r�3�;

w�r� � e��r
(14)
i
n r� 1 region

h�r� � 2pbr2p�1 � o�r2p�1�;

w�r� � 1� br2p � o�r2p�2�:
(15)

2. A0 � 0: Dyon fields

As in the case of the dyons in d � 4 spacetime [10], we
substitute the full static spherically symmetric Ansatz (3)
directly into the Lagrangian (5). The consistency of this
Ansatz can be readily checked. The resulting static reduced
one dimensional action functional analogous to (12) now is
Edyon � �1� w2�2�p�1�

�
2pw02 � �2p� 1�

�1� w2�2

r2

�
� �2

�
r2

2p� 1
�	�1� w2�p�1h
0�2 � 2p�1� w2�2�p�1�w2h2

�

� �2

�
r2

2p� 1
�	�1� w2�p�1a0


0�2 � 2p�1� w2�2�p�1�w2a20

�
: (16)
It now follows from the form of the reduced action of the
model in d � 4p spacetime, just as for the familiar special
case of p � 1 [10], that the following substitution

h�r� � f�r� cosh%; a0�r� � f�r� sinh%; (17)

with a constant parameter %, renders the action functional
(16) identical to the energy functional (12), with h�r� in
(12) now replaced by f�r�.

Since the second order Euler-Lagrange equations per-
taining to (12) are solved by the first order Bogomol’nyi
equations (10) and (11), the solution fsol�r� of the latter
then yields the self-dual dyon solutions to (16) via the
replacements (17).

In the absence of electric-magnetic duality in spacetimes
of dimensions d > 4, in all cases with p � 2 the electric
flux might be defined as the flux of the following 1-form
field

E � �
1

Nd
TrA0F ^ F ^ ::: ^ F; p times

Ei1 � �
1

Nd
"i1i2:::i2p�3i2p�2i2p�1

TrA0Fi2i3 :::Fi2p�2i2p�1
;

(18)

analogous to (8).

B. The generic models

These models are defined in all even spacetime dimen-
sions d � 2n, and are characterized by the Lagrangians
L2n � Tr
�

1

2�2p�!
F�2p�2 �

1

2�2q� 1�!

� �F�2q� 2� ^D��2
�

(19)

analogous to (5). Note that for p � q � 1, in which case
F�0� ^D� � D�, (5) is just the Lagrangian of the usual
YMH model.

Here, in (19), q � p unlike in (5). Here, our choices will
include all possible q within the range 1 � q � �p� 1�,
with q � p omitted since that reverts to the class of models
already discussed in the previous subsection. Unlike in the
last class of models however, where p is fixed by 4p � d,
the choice of p in (19) is not restricted in that way. It is
nonetheless restricted by two other criteria. The first is the
requirement that there be first order Bogomol’nyi equa-
tions saturating the lower bound of the static Hamiltonian
(with A0 � 0) pertaining to (19)

H 2n � Tr
�

1

2�2p�!
�Fi1i2:::i2p�

2 �
1

2�2q� 1�!

��F	i1i2:::i2q�2
Di2q�1


��2
�
; (20)

as a result of which p and q are restricted by p� q � n.
The second criterion is that the integral of the first term in
(20) be convergent, i.e.

Z
IRd�1

TrF�2p�2 �
Z rd�2

r4p
dr �

Z dr

r4p�d�2
; r� 1
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will be convergent only if

4p � d � 2n; (21)

the minimum acceptable value of p being given by 4p �
d, and the maximum possible value being dictated by the
antisymmetry of F�2p�, namely 2p � d.

Another difference of models (20) from the dimension-
ally descended models (6) is that the Higgs field does not
have the same dimensions as the connection.

Subject to these restrictions, there will numerous
SO�2n� Higgs models of the types (20) supporting BPS
monopoles in spacetime dimensions d � 2n, their num-
bers increasing with n. Amongst the plethora of such
models, we will restrict our attention to a subclass with
p � n� 1 and q � 1, the n � 2 case yielding the usual
BPS monopole, and the �p � 2; n � 3� monopole in d � 6
constructed numerically recently in [7]. The Bogomol’nyi
equations for these �p � n� 1; q � 1� models are

Fi1i2:::i2p � �"i1i2:::i2pjDj�; (22)

the p � 2 member of which was proposed a long time ago
in [6]. To subject (22) to spherical symmetry we employ
the Ansatz (3), subject to a modification due to the fact that
the Higgs field in this class of models has the dimension of
length raised to the power of 2n� 3. We account for this
by making the replacement

� ���! �2n�3

in the third member of (3), leaving the other two terms
intact. The resulting one dimensional Bogomol’nyi equa-
tions are

�1� w2�n�2

rn�2
w0 � ��2�2n�3�rn�2wh; (23)

�2�2n�3�rn�1h0 � �
�1� w2�n�1

rn�1 : (24)

The reduced energy density functional corresponding to
(20) with �p � n� 1; q � 1� is

E mon �
�1� w2�2�n�2�

r2�n�2�

�
2�n� 1�w02 �

�1� w2�2

r2

�

� �2�2n�3�	r2�n�1�h02 � 2�n� 1�r2�n�2�w2h2


(25)

which can be rewritten as

Emon � 2�n� 1�
�
�1� w2�n�2w0

rn�2 � �2n�3rn�2wh
�
2

�

�
�2�2n�3�rn�1h0 �

�1� w2�n�1

rn�1

�
2

� 2�2�2n�3� d
dr

	�1� w2�n�1h
; (26)

confirming (23) and (24).
125013
The solutions to (23) and (24) are the BPS monopoles of
the class of models (20) with �p � n� 1; q � 1�. Again,
there will be dyon solutions with A0 � 0, but now these
will not be given by the BPS functions (evaluated numeri-
cally) via the substitution (17). Rather, they will be solu-
tions to the full second order Euler-Lagrange equations.
That these dyons are not BPS can be seen directly by
examining the reduced action density functional of the
Lagrangian (19), with �p � n� 1; q � 1�, subject to the
Ansatz (3)

Edyon �
�1� w2�2�n�2�

r2�n�2�

�
2�n� 1�w02 �

�1� w2�2

r2

�

� �2�2n�3�	r2�n�1�h02 � 2�n� 1�r2�n�2�w2h2


� �2	r2�	�1� w2�p�1a0
0�2 � 2�n� 1��2n� 3�

� �1� w2�2�p�1�w2a20
 (27)

which simply does not revert to the form of (25), with f
replacing h, under the substitution (17).

The asymptotic behaviors of the solutions to (23) and
(24) are
i

-5
n r� 1 region

	h�r� � 1
 � r��2n�3� � o�r��2n�3�2��;

w�r� � e���r�2n�3=�2n�3� (28)
i
n r� 1 region

h�r� � �2b�n�1r� o�r3�; w�r� � 1� br2 � o�r4�:

(29)

Before proceeding with the numerical construction, we
examine briefly those generic models (20) which are not
subject to the restriction of q � 1. In spacetime d � 10
(n � 5) there is only one such model, characterized by
�p � 3; q � 2�. In d � 12 (n � 6) there is again only one
such model, characterized by �p � 4; q � 2�. In d � 14
(n � 7) there are two of these, characterized by �p �
4; q � 2� and �p � 3; q � 2�, etc., their numbers increas-
ing with d.

For the rest of this section we will restrict our attention
to only the simplest example, namely, that in spacetime
d � 10 (n � 5) with �p � 3; q � 2�. The Higgs field in
this example has dimension of length raised to the 3rd
power. The static, one dimensional energy density func-
tional, with a0 � 0, is

E mon � 3
�1� w2�4

r2

�
w02 �

�1� w2�2

2
r2
�

�
1

6
�6r2	r2�	�1� w2�h
0�2 � 18�1� w2�2w2h2


(30)

which can be rewritten as
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Emon � 3�1� w2�2
�
�1� w2�

r
w0 � �3rwh

�
2

�
1

6

�
�3r2	�1� w2�h
0 � 3

�1� w2�3

r2

�
2

� �3 d
dr

	�1� w2�h
: (31)

yielding the Bogomol’nyi equations

�1� w2�

r
w0 � ��3rwh; (32)

�3r2	�1� w2�h
0 � �3
�1� w2�3

r2
: (33)

The asymptotic behaviors of the solutions of (32) and
(33) are
 0.2 p=1
i
 0.1

 0.15

E
m

on

p=2

ex
so
ram
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FIG. 1. The profiles of the functions w�r�; h�r� and the energy
densities Emon are shown for several dimensionally descended
models.
III. NUMERICAL RESULTS

All the Bogomol’nyi equations, (10), (11), (23), (24),
(32), and (33) can be expressed as coupled first order
ordinary differential equations (ODEs) in the dimension-
less variable ' � �r.

Both the dimensionally descended and the generic mod-
els have solutions with the correct asymptotics only when
the second derivative of the gauge function w evaluated at
the origin, w00�0� � b, takes on a certain value, which is
dimension and model dependent. For example for the
dimensionally descended models we have b�p � 1� �
1=6, b�p � 2� ’ 0:055 209 6 and b�p � 4� ’ 0:017 615 4.
For the solutions of generic models we find b�d � 6� ’
0:722 803 9, b�d � 10� ’ 0:740 092 9 and b�d � 12� ’
0:764 016 3. The corresponding value for the only hybrid
ad hoc model studied numerically is b ’ 0:459 399 4.

In both classes of systems, the models in spacetime
dimension d � 4 coincide and are identical to the usual
SU�2� YMH model in the BPS limit. The Bogomol’nyi
equations for this case are the only ones which can be
integrated analytically in closed form [11].6 For all d � 6,
6The appearance of these nonrational values of b in the
pansion at the origin suggests that analytically evaluated
lutions of higher p monopoles, if they exist, should be pa-

etrized by a set of functions different from (w; h).
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the solutions to these first order equations are constructed
numerically. We follow the usual approach and, by using a
standard ordinary differential equation solver, we evaluate
the initial conditions at r � 10�6 for global tolerance
10�14, adjusting for fixed shooting parameter and integrat-
ing towards r! 1.

In Figs. 1(a) and 1(b) we present, respectively, the
profiles of the functions w�r� and h�r� corresponding to
the BPS solutions of Eqs. (10) and (11) of the dimension-
ally descended models, and their energy densities, for
several values of p. The same profiles for the BPS equa-
tions (23) and (24) and energy densities are plotted in
Fig. 2(a) and 2(b) for the generic models. For completeness
we present in Fig. 3 the profile of the solutions to Eqs. (32)
and (33) and its energy density for the ten dimensional
monopole of the hybrid ad hoc model with �p � 3; q � 2�.

The qualitative properties of these solutions are the same
as for the well-known p � 1, d � 4 BPS configurations
[11]. The profiles of the functions w�r� and h�r� do not
change appreciably for the solutions living in different
spacetime dimension. The gauge and Higgs functions in-
terpolate between the asymptotic values, presenting no
-6
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FIG. 3. The profile of the functions w�r�; h�r� and the energy
density Emon are shown for the ten dimensional hybrid ad hoc
model.
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local extrema. The energies of these solutions are always
concentrated in a small region.

It turns out that in the case of the dimensionally de-
scended models, both the profiles of w and h as well as the
peaks of the energy densities move out from the origin with
increasing dimension d � 4p. Also, the heights of those
energy density peaks decrease with increasing p, while the
areas giving the total energies remain the same, with unit
normalization due to spherical symmetry.

In the case of the sequence of generic models by con-
trast, the profiles of w and h move in towards the origin
with increasing d � 2n. The corresponding heights of the
energy density peaks increase with increasing n, again with
unit area unchanged, and the positions of these peaks seem
to depend very weakly on n.

IV. SUMMARY AND COMMENTS

We have constructed topologically stable finite energy
static solutions to two families of Yang-Mills–Higgs mod-
els in all d � 2n, even, spacetime dimensions, subject to
spherical symmetry in the appropriate dimension.

One of these families is arrived at via the dimensional
reduction of the pth member of the Yang-Mills hierarchy
on the Euclidean space d � �4p� 1� � S1 down to 4p�
1 Euclidean dimensions, whose solutions then appear as
the static solutions of the corresponding theory in 4p
spacetime dimensions. These configurations are solutions
of the appropriate family of Bogomol’nyi equations, (9) or
(10) and (11), and hence saturate the respective topological
lower bounds.

It may be interesting to note a particular feature of the
Bogomol’nyi equations (10) and (11): For p � 1, the
solutions are found [11] in closed form, while for p � 2
an analytic proof for the existence of the solution was given
in [9]. (This proof [9] can be adapted to all p.) Substituting
(10) into (11) eliminates the function w and yields a second
order equation for h.

For p � 1, this equation corresponds to the Liouville
equation resulting from the self-duality equations of 4
dimensional SU�2� YM subject to axial symmetry [12].
Similarly, for p � 2, the second order equation in h cor-
responds to the generalization of the Liouville equation
resulting from the self-duality equations of 4p dimensional
SO��4p� YM subject to axial symmetry, presented in [13].
The analytic proof of existence to the latter was given in
[14].

The other class of models examined is arrived at in an
generic manner, the only criterion being that the energies
of the static solutions saturate the topological (monopole)
lower bounds by the appropriate Bogomol’nyi equations,
namely (22) or (23) and (24) and (32) and (33). Typically,
the Higgs fields in these models have dimensions different
from the inverse of a length.

The first member of both classes of models proposed,
namely, those in d � 4 dimensional spacetime, coincide
-7
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with the usual YMH model in the Prasad–Sommerfield
(PS) limit whose solutions are known in closed form [11].
The solutions of all the other models in higher spacetime
dimensions cannot be constructed in closed form and are
evaluated numerically.

What is markedly more interesting about the first, di-
mensionally descended class of models, is, that like the
usual YMH model in the PS limit they also admit dyon
solutions obeying first order equations analogous to the
Julia-Zee dyons [10] in the PS limit. Of course in space-
time d > 4 the corresponding electric field, which we have
defined by (18), is not dual to the magnetic field (8), but is
nonetheless there as a consequence of solutions with non-
vanishing electric potential A0. This family of solutions
generalizing the Julia-Zee dyons obeying first order equa-
tions is a feature only of the dimensionally descended
models introduced in Sec. II A, and not of the various
generic models discussed in Sec. II B. In the latter case,
there are of course solutions with nonvanishing A0, but
these are subject to the second order Euler–Lagrange
equations rather than first order equations.

We conclude by making some brief remarks concerning
the potential applicability of the higher dimensional mono-
poles that we have presented above. For a start, it is always
of interest to see how the dimensionality of spacetime
affects the physical consequences of a given theory. Also,
these types of objects might form in the early Universe
when the present three spatial dimensions were not yet
separated from others, and a greater number of dimensions
were equally important.
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The most immediate application, technically, is to pro-
ceed to the gravitating case, thus enabling the study of the
properties of gravitating monopoles in higher dimensions,
with reference to the detailed studies [15,16] in d � 4
spacetime.

Another direction to be explored straightforwardly is the
construction of the axially symmetric multimonopoles and
dyons of the dimensionally descended models. Since all
our solutions obey Bogomol’nyi equations, all these solu-
tions are guaranteed to be topologically stable. Such
dyonic solutions may be of special interest in light of the
lack of electric-magnetic duality in higher dimensions.

Perhaps the most stringent test of our models is their
status vis à vis supersymmetry. Our Bogomol’nyi equa-
tions are first order, but they are not linear in the curvature
field strength (except in d � 4 spacetime). This contrasts
with the BPS equations in 6 and 8 Euclidean dimensions,
(not involving Higgs fields) employed in [17]. These are
linear in the YM curvature, unlike ours. On the other hand
the energies of our models are finite and bounded from
below by topological charges. Should a way be found to
make our models respect supersymmetry, then they could
be candidates for the construction of field theory
Supertubes [18], where Higgs fields feature.
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