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We investigate the strong coupling region of the topological sector of the two-dimensional �4 theory.
Using discrete light cone quantization, we extract the masses of the lowest few excitations and observe
level crossings. To understand this phenomena, we evaluate the expectation value of the integral of the
normal ordered �2 operator and we extract the number density of constituents in these states. A coherent
state variational calculation confirms that the number density for low-lying states above the transition
coupling is dominantly that of a kink-antikink-kink state. The Fourier transform of the form factor of the
lowest excitation is extracted which reveals a structure close to a kink-antikink-kink profile. Thus, we
demonstrate that the structure of the lowest excitations becomes that of a kink-antikink-kink configuration
at moderately strong coupling. We extract the critical coupling for the transition of the lowest state from
that of a kink to a kink-antikink-kink. We interpret the transition as evidence for the onset of kink
condensation which is believed to be the physical mechanism for the symmetry restoring phase transition
in two-dimensional �4 theory.
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I. INTRODUCTION

As is well known [1–3], topological excitations (kinks)
exist in the classical two-dimensional�4 model with nega-
tive quadratic term (broken phase). However, the study of
topological objects in quantum field theory is highly non-
trivial. Most of the investigations to date use semiclassical
or Hartree approximations. Using the techniques of con-
structive quantum field theory [4], it was proven rigorously
that in quantum theory, a stable kink state is separated from
the vacuum by a mass gap of the order ��1 and from the
rest of the spectrum by an upper gap [5]. More detailed
nonperturbative information on the spectrum of the mass
operator or on other observables from rigorous approaches
is not available. It is worthwhile to recall that the study of
these objects in lattice field theory is also highly nontrivial
[6,7]. For very recent work on the kinks in two-
dimensional �4 theory in the Hartree approximation, see
Refs. [8,9].

Light-front quantization offers many advantages for the
study of two-dimensional quantum field theories. As is
well known, of the three Poincare generators only the
Hamiltonian is dynamical. In contrast, in the conventional
instant form formulation, only momentum is a kinematical
operator. Kinematical boost invariance allows for the ex-
traction of Lorentz invariant observables such as the parton
distribution function which has the simple interpretation of
address: dipankar@phys.ufl.edu
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a number density. The formulation allows for the extrac-
tion of the spectrum of the invariant mass operator in a
straightforward manner. In this work we utilize the discrete
version of the light-front quantization, namely, discrete
light cone quantization (DLCQ) [10] for numerical inves-
tigations of two-dimensional �4 theory with antiperiodic
boundary condition (APBC) at strong coupling. Since the
zero momentum mode is absent, the Hamiltonian has the
simplest Fock space structure in this case.

The quantum kink on the light front was first addressed
by Baacke [11] in the context of semiclassical quantiza-
tion. Recently Rozowsky and Thorn [12], with the help of a
coherent state variational calculation, have shown that it is
possible to extract the mass of topological excitations in
DLCQ with periodic boundary condition (PBC) while
dropping the zero momentum mode. Motivated by the
remarkable work of these authors, we have initiated the
study [13] of topological objects in the broken symmetry
phase of two-dimensional �4 theory using APBC in
DLCQ. We presented evidence for degenerate ground
states, which is both a signature of spontaneous symmetry
breaking and mandatory for the existence of kinks. Guided
by a constrained variational calculation with a coherent
state ansatz, we then extracted the vacuum energy and kink
mass and compared with classical and semiclassical re-
sults. We compared the DLCQ results for the number
density of partons in the kink state and the Fourier trans-
form of the form factor of the kink with corresponding
observables in the coherent variational kink state. We have
also carried out similar investigations using PBC [14].
-1  2005 The American Physical Society
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In this work, we probe the strong coupling region of the
topological sector of the theory with topological charge
�1. The plan of this work is as follows. We follow the
notations and conventions of Ref. [13]. Major aspects of
Hamiltonian diagonalization are given in Sec. II. In Sec. III
we extract the mass of the lowest few excitations as a
function of the coupling and display results for the gaps
in mass-squared. As the coupling increases, we observe
level crossing in the spectrum. In this section, we also
discuss the manifestation of level crossing in another ob-
servable, namely, the expectation value of the integral of
the normal ordered �2 operator. To gain further insights,
we need to probe other physical properties of the low-lying
excitations. Toward this end, we perform DLCQ calcula-
tions of the parton density and the Fourier transform of the
form factor of the lowest excitation at moderately strong
couplings and the results are presented in Sec. IV. In the
same section a coherent state variational calculation of the
kink-antikink-kink profile and corresponding parton den-
sity are also given. Section V contains a discussion, a
summary, and conclusions.
II. HAMILTONIAN AND DIAGONALIZATION

We start from the Lagrangian density

L �
1

2
@��@���

1

2
�2�2 �

�
4!
�4: (2.1)

The light-front variables are defined by x� � x0 � x1.
The Hamiltonian density

P � � �
1

2
�2�2 �

�
4!
�4 (2.2)

defines the Hamiltonian

P� �
Z
dx�P� �

L
2�
H (2.3)

where L defines our compact domain �L � x� � �L.
Throughout this work we address the energy spectrum of
H.

The longitudinal momentum operator is
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1

2

Z �L

�L
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2�
L
K (2.4)

where K is the dimensionless longitudinal momentum
operator. The mass-squared operator M2 � P�P� � KH.

In DLCQ with APBC, the field expansion has the form
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3
2 ; . . . .
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The normal ordered Hamiltonian is given by
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with

Nlmn � 1; l � m � n;

�
�����
2!

p
; l � m � n; l � m � n;

�
�����
3!

p
; l � m � n;

(2.7)

and

Nkl � 1; k � l; �
�����
2!

p
; k � l: (2.8)

Since the Hamiltonian exhibits the �! �� symmetry,
the even and odd particle sectors of the theory are de-
coupled. When the coefficient of �2 in the Hamiltonian
is positive, at weak coupling, the lowest state in the odd
particle sector is a single particle carrying all the momen-
tum. In the even particle sector, the lowest state consists of
two particles having equal momentum. Thus for massive
particles, there is a distinct mass gap between odd and even
particle sectors. When the coefficient of �2 in the
Hamiltonian is negative, at weak coupling, the situation
is drastically different. Now, the lowest states in the odd
and even particle sectors consist of the maximum number
of particles carrying the lowest allowed momentum. Thus,
in the continuum limit, the possibility arises that the states
in the even and odd particle sectors become degenerate. In
this case, for any state jei in the even sector we find a state
joi in the odd particle sector with the same mass. Hence,
we can construct two degenerate states of mixed symmetry
which are eigenstates of the Hamiltonian: j�> � jei � joi
and j � �i � jei � joi. Under � parity j�i ! j � �i and
j � �i ! j�i. These eigenstates of the Hamiltonian do not
respect the symmetry of the Hamiltonian and hence a clear
signal of spontaneous symmetry breaking (SSB) is the
degeneracy of the spectrum in the even and odd particle
sectors. Recall that with APBC, for integer (half integer)
K, we have even (odd) particle sectors. Thus at finite K, we
can compare the spectra for an integer K value and its
neighboring half integer K value and look for degenerate
states.

All the results presented here were obtained on clusters
of computers ( � 15 processors) using the many fermion
dynamics (MFD) code adapted to bosons [15]. The
Lanczos diagonalization method is used in a highly scal-
able algorithm that allows us to proceed to high enough
values of K for smooth K ! 1 extrapolations. For our
-2
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largest value, K � 60, the Hamiltonian matrix reaches the
dimensionality 1 928 175, with configurations up to 120
bosons participating.
III. LEVEL CROSSING IN THE SPECTRUM AT
STRONG COUPLING

In Ref. [13] we presented the lowest four eigenvalues as
a function of 1

K for � � 1:0 and the extracted values of the
vacuum energy density and kink mass. We saw that the
values extracted are close to the semiclassical result.
(a)

FIG. 1 (color online). (a) Mass2 gap as a function of � for K �
55. All calculated results are connected by straight line segments
to guide the eye. (b) Same as in (a) but the detailed structure for a
narrow range of � around the critical coupling is shown. Here,
two straight lines have been fit to the lowest gap near the
crossing point to extract the ‘‘critical’’ value of the coupling as
indicated in the figure.
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As we increase the coupling, we find that the lowest two
energy levels cross each other. The value of the coupling at
which this occurs lowers as K increases. In Fig. 1(a), we
present the mass-squared differences for the lowest five
excitations as a function of � in the critical region for the
even (K � 55) particle sector. Many interesting features
are exhibited in this figure. Not only the lowest two levels
but all the low-lying levels cross. Before the occurrence of
level crossing, the nature of the spectrum is as follows.
There is a substantial size to the mass-squared gap between
the lowest three excitations. Thereafter, the gaps become
more closely packed, and more evenly spread.

In the semiclassical analysis [2], the lowest states, in
order of excitation, are kink, excited kink, kink plus boson,
and the continuum states. The wide gaps that exist between
the second and first level and the third and first level and
the close packing of higher levels are consistent with the
expectations from semiclassical analysis. But as we see in
Fig. 1(a), the gaps vanish at strong coupling. After the level
crossings, we observe almost equally spaced gaps for the
mass-squared of all the low-lying excitations suggestive of
a harmonic mass-squared spectrum. This indicates that the
nature of low-lying levels are substantially different in the
two regions of the coupling.

In Figs. 1(b) and 2 we exhibit the finer details of level
crossing for K � 55 and 60. Here the linearity of the
disappearing mass-squared gap is clearly observed. At
low K values, we see evidence for the mixing of lowest
levels (not shown in the figures) but that mixing disappears
with increasing K. The vanishing of the mass-squared gap
is exhibited more clearly in Fig. 2. In this case we have
observed vanishing mass-squared gap to a very high pre-
cision (6 significant figures) which is of the same order as
the machine accuracy in single precision; i.e., there is no
FIG. 2 (color online). Same as in Fig. 1 but for K � 60. The
upper gaps are connected by straight line segments while the
straight lines of the lowest gaps are obtained as in Fig. 1(b).
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FIG. 3 (color online). h1j�2j1i (short hand notation for the
expectation value of the integral of the normal ordered �2

operator) as a function of � and selected K values. For com-
parison we have also shown �2

classical � 6��2=�� with �2 � 1.

FIG. 4 (color online). hj�2ji (see caption to Fig. 3 for the
notation) as a function of � for K � 55 for the lowest two
excitations.
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FIG. 5 (color online). hj�2ji (see caption to Fig. 3 for the
notation) as a function of � for K � 55 for the lowest five
excitations. The pattern of transitions correspond to five states
falling with increasing � and crossing the five lowest states, thus
replacing them and becoming the new five lowest states. At
selected values of �, the character of the lowest states is
indicated on the figure with the top level of each column
signifying the nature of the lowest state. Successive excited
states are signified by the labels proceeding down the column.
The letter ‘‘K’’ represents ‘‘kink’’ while ‘‘K �KK’’ represents
‘‘kink-antikink-kink.’’
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mixing or the level of mixing present is at or below the
level of computational noise.

Another manifestation of the level crossing phenomena
is found in the expectation value of the integral of the
normal ordered �2 operator. In Fig. 3 we show the behav-
ior of this observable for the lowest excitation as a function
of � for different values ofK. The sudden drops match with
level crossing points of the lowest state in the mass-squared
gap spectra. For comparison we have also shown the
behavior of �2

classical � 6��2=�� as a function of � in the
same figure. Note that the value of � at which the drop
occurs, �c, decreases with increasing K. Furthermore, we
observe that as K increases the difference in the �c ex-
tracted from the even and the odd sector transitions sys-
tematically tends towards zero. The drop in the �2

observable sharpens as a function of � with increasing K.
Again, this agrees well with a sharpening of level crossing
with increasing K. As discussed in next section, the reason
for this drop is the transition of the lowest states of the
system from a kink type to a dominant kink-antikink-kink
type. We will show that in the number density, this tran-
sition manifests as a shift of maximal occupation from the
lowest momentum mode to the next available mode.

In Fig. 4 we compare the behavior of the same observ-
able for the lowest two states for the even (K � 55) particle
sector. As one approaches the critical coupling, a set of
states which are highly excited states at weak coupling
drop rapidly into the low-energy region. Between the
values of the coupling, 2.65 and 2.7, the first falling state
crosses and becomes the new second state. In the vicinity
of the coupling 2.75, the first falling state crosses and
becomes the new lowest state and the rising state becomes
the newest second state. Close to the coupling 2.8, the
second falling state becomes the new second state.
125012
In Fig. 5 we demonstrate that such level crossings occur
for all the low-lying excitations. For example, at the cou-
pling of 2.5 all the lowest five excitations are of the kink
type. At the coupling of 3, all of them have become
dominantly kink-antikink-kink type. It is remarkable that
-4
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in the entire region of the coupling, the �2 observable for
all the low-lying states cluster around that of either a kink
or a dominantly kink-antikink-kink type; i.e., we observe
no case caught in the midst of a transition. We conclude
that there is essentially no mixing of the lowest five states
of one type with any states of the other type within nu-
merical precision.

All these features in our results suggest we are observing
the characteristics of a phase transition that can manifest in
a system with finite degrees of freedom.

IV. CALCULATION OF OTHER OBSERVABLES

To gain further understanding of the nature of the levels
that cross, we next examine the behavior of the parton
(a)

(b)

FIG. 6 (color online). (a) � versus n, the half-odd integer
representing light-front momentum with APBC, for the lowest
nine excitations for K � 50, � � 1. (b) Same as in (a) but
showing the region from n � 6 to 18 in detail.
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density ��n� for the lowest excitation for different values
of coupling. In Figs. 6(a) and 6(b) we present the parton
distribution function ��n� for the lowest nine excitations at
� � 1 and K � 50. At small coupling, the lowest excita-
tion is a kink state which yields a characteristic parton
distribution which peaks at the lowest momentum mode
available. In the semiclassical picture, the next excitation is
an excited kink for which also we expect and find a smooth
distribution function. The excited kink, the second excita-
tion in the spectrum, features a broad and smooth peak
spanning n � 10:5 to n � 17:5 as is seen in Fig. 6(b). The
integrated momentum fraction under this peak accounts for
22% of the momentum sum rule.

The third and higher excitations are expected to be kink
plus boson states. The characteristic peaks in Fig. 6(b) for
states 3–8 are observed at n � �10:5; 9:5; 8:5; 11:5;
12:5; and 13:5, respectively. Sharp peaks suggest a boson
in a pure momentum state coupling weakly to the kink.
This picture is supported by the momentum fraction of
approximately 20% of the sum rule carried in each of these
peaks, which corresponds well to a boson positioned
around n � 10 in a state carrying a total light-front mo-
mentum of K � 50.

The ninth state in the spectrum does not exhibit the
simple isolated boson plus kink features and this state
may indicate the onset of more complicated multiboson
excitations. It would be necessary to perform calculations
at higherK and for more states to further explore the higher
lying features of the spectrum at this coupling.

At strong coupling the situation changes drastically. As
seen from Fig. 7(a), at � � 5�K � 55�, the lowest momen-
tum mode (n � 0:5) for all the lowest four excitations has
almost zero occupation and the next mode (n � 1:5) has
maximum occupation for all four lowest excitations. Thus,
between � � 1 and � � 5, a change in the structure of the
lowest excitations (kink) takes place for this K value. Can
one gain a better understanding of the parton structure of
these states, in particular, the striking feature of the ab-
sence of the lowest momentum mode? In the next subsec-
tion we carry out a coherent state variational calculation for
a kink-antikink-kink state and from the calculation of the
number density confirm that the lowest excitation after the
first level crossing indeed corresponds dominantly to that
of the kink-antikink-kink state.

A. Coherent state variational calculation
of kink-antikink-kink state

We have seen that a simple way to realize the parton
picture of the classical kink solution in DLCQ is the
unconstrained coherent state variational calculation[12].
Can one understand the parton structure of other topologi-
cal excitations in the same method? In particular, we are
interested in the kink-antikink-kink state. (For a detailed
investigation of kink-antikink-kink dynamics in classical
two-dimensional �4 theory see Ref. [16].)
-5



(a)

(b)

FIG. 7 (color online). (a) � versus n, the half-odd integer
representing light-front momentum with APBC, for the lowest
four excitations for K � 55, � � 5. (b) Kink-antikink-kink
parton density in unconstrained variational calculation for � �
5.

DIPANKAR CHAKRABARTI, A. HARINDRANATH, AND J. P. VARY PHYSICAL REVIEW D 71, 125012 (2005)
Choose as a trial state, the coherent state

j�i � N e

P
n

�na
y
n

j0i (4.1)

where N is an arbitrary normalization factor.
With APBC we have

h�j��x��j�i
h�j�i

�
1�������
4�

p f�x�� (4.2)

with

f�x�� �
X
n

1���
n

p 
�ne�i��=L�nx
�
� ��

nei��=L�nx
�
� (4.3)

with n � 1
2 ;

3
2 ; . . . . Minimizing the expectation value of the
125012
Hamiltonian, we obtain

fmin � �

���������������
24��2

�

s
� �

���
3
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s
: (4.4)

Our starting point is the expression for the function

f�x�� given in Eq. (4.3). With fmin � �
��
3
g

q
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f�x�� � �
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��������
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q
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��������
3=g

q i
�

1���
n

p 
1� 2 cos�2n�=3��: (4.6)

Thus

f�x�� �
2

�

��������
3=g

q X
n

1

n

1� cos�2n�=3�� sin�2n�x�=L�:

(4.7)

The number density of constituents, i.e., parton density, in
light-front theory is given by

��n� �
h�jaynanj�i

h�j�i
� j�nj2: (4.8)

For � � 5, the parton density of the kink-antikink-kink
state is presented in Fig. 7(b).

In Fig. 8 we compare the number density of the lowest
excitation at � � 4 for K � 50, 55, 60 and show remark-
able stability of results with respect to variations in K.
Further, by comparison with the lowest state in Fig. 7(a),
we see that the shape is independent of coupling and the
magnitude follows the trend of the coherent state analysis.

Evaluation of the number density in the unconstrained
variational calculation clearly shows that the lowest exci-
tation after the first level crossing is definitely not a kink
but a dominantly kink-antikink-kink state. It has small
admixtures of other topological structures as is evident
from the following. For a pure kink-antikink-kink state,
��n� vanishes for n � 5

2 ;
7
2 ;

11
2 , etc. as seen from Fig. 7(b)

but it does not vanish for these modes for the state observed
after the transition as seen in Fig. 7(a). An interesting issue
is whether we can identify the nature of the excitation
within DLCQ, i.e., without the help from unconstrained
variational calculation. This is possible since the
Hamiltonian diagonalization provides us with various ei-
genfunctions of the lowest few excitations and we may
evaluate other observables that yield more information
about the structure of these states.
-6



(a)

(b)

FIG. 9 (color online). (a) Fourier transform of the form factor
of the lowest excitation at � � 5, K � 32. The figure legend
indicates the number of adjoining momentum transfer terms
(sets) included in the summation. (b) Expectation value of the
field operator in the kink-antikink-kink state in the unconstrained
variational calculation for � � 5:0.

FIG. 8 (color online). � versus n, the half-odd integer repre-
senting light-front momentum with APBC, for the lowest exci-
tation for K � 50, 55, and 60, � � 4.
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B. Fourier transform of the form factor

A useful observable that gives direct information on the
nature of the physical state is the Fourier transform of the
form factor of the lowest state, which, according to
Goldstone and Jackiw [3], gives the coordinate space
profile of the topological excitation. The analysis of
Ref. [3] was restricted to weak coupling theory, whereas,
we are able to perform reliable nonperturbative calcula-
tions at strong coupling. By explicitly calculating the form
factor for different momentum transfers, we perform the
Fourier transform numerically. For weak coupling, the
result is presented in Ref. [13] which reveals a kink profile.
In Fig. 9(a) we present the profile of the lowest excitation
in DLCQ for � � 5 and K � 32. Results are presented for
three cases where the magnitude of the maximum momen-
tum transfer included in the sum for the Fourier transform
ranges from 5 to 8. The profile is that of a dominant kink-
antikink-kink state. But as we have learned from the evalu-
ation of the number density, the state after the transition is
not a pure kink-antikink-kink configuration. The appear-
ance of more structures near the origin in Fig. 9(a) may be a
consequence of this fact. In Fig. 9(b) we present the
expectation value of the field operator in the kink-anti-
kink-kink state in the unconstrained coherent state varia-
tional calculation. It is worthwhile to note that the sharp
features present in the profile in the unconstrained varia-
tional calculation as the number of modes included in-
creases as shown in Fig. 9(b) is an artefact of the
unconstrained variational calculation which yields an infi-
nite value for the expectation value of K. We expect much
smoother behavior for the constrained variational calcula-
tion which yields a finite expectation value of K [13].
Noting the close similarities of the observables in
Figs. 7(a) and 7(b) and Figs. 9(a) and 9(b) we conclude
125012
that at a critical coupling, the lowest excitation in the
topological sector with charge �1 of broken phase of �4

2

theory changes its character from a kink state to a state
dominated by kink-antikink-kink structure.

In Fig. 10 we present the behavior of this critical cou-
pling with 1

K from the analysis of vanishing mass-squared
gaps and�2 jumps as shown in Figs. 1 and 3 and extract its
value in the continuum limit as �c � 1:38.

We have already observed that the mass-squared gap
vanishes linearly at the critical coupling for level crossing.
This implies that, parametrizing the behavior of the mass-
squared gap near the critical coupling as �M2 �
��c � ��!, we have obtained the exponent ! � 1:0.
-7



FIG. 10 (color online). Critical coupling for level crossing as a
function of 1

K , and an indication of the critical coupling in the
continuum limit.

DIPANKAR CHAKRABARTI, A. HARINDRANATH, AND J. P. VARY PHYSICAL REVIEW D 71, 125012 (2005)
V. DISCUSSION, SUMMARY, AND CONCLUSIONS

To investigate the strong coupling region of the topo-
logical sector of two-dimensional �4 theory we have uti-
lized DLCQ which provides us with all the advantages of
the Hamiltonian approach with additional features of light-
front quantization. A major bonus of using DLCQ is the
detailed information we gain about the parton structure of
the states. We have shown that between � � 1 and � � 2,
level crossings occur in the continuum limit. The important
issues to resolve are the nature of this transition and its
physical implications. To settle this issue we have studied
the expectation value of the integral of the normal ordered
�2 operator in the lowest excitations of the system. We
have observed a sharp drop in this observable. We also
observed a corresponding change in behavior of the num-
ber density in the lowest excitations, namely, the shift of
the maximum occupation from the lowest momentum
mode to the next higher momentum mode.

In the weak coupling region, one can use analytical
variational calculations with a coherent state ansatz for
the lowest state to gain physical insights for the DLCQ
data. Following Rozowsky and Thorn [12] we have carried
out unconstrained variational calculations but with APBC.
Variational calculations predict maximum occupation in
the lowest momentum mode for the lowest eigenstate. Our
numerical results show that this simple semiclassical pic-
ture becomes invalid as the coupling grows greater than 1.
A coherent state variational calculation corresponding to a
kink-antikink-kink state predicts maximum occupation for
125012
the next higher momentum mode and almost zero occupa-
tion of the lowest momentum mode. This is consistent with
the observed properties of our states above the transition.

In Ref. [13], following Goldstone and Jackiw, we have
calculated the Fourier transform of the form factor of the
kink state in DLCQ at weak coupling and demonstrated
consistency with the classical solution. At strong coupling
after the drop in the �2 observable, we have shown here
that the profile calculated in DLCQ is approximately that
of a kink-antikink-kink state. From the analysis of vanish-
ing mass-squared gap and the drop in the�2 observable we
have extracted the critical coupling for the first transition in
the infinite volume limit as �c � 1:38.

The transition that we have observed is very sensitive to
the boundary conditions. We have observed that in similar
calculations performed with PBC such a transition is ab-
sent at the same value of �. With PBC, we do observe level
crossings at much higher coupling which appears to cor-
respond with the transition from a kink-antikink state to a
mixture of states with a dominant kink-antikink-kink-
antikink component.

In the two-dimensional Ising model it is well known that
the physical mechanism for the symmetry restoring phase
transition is the phenomena of kink condensation [17,18].
It is known that at strong coupling, the �4

2 theory under-
goes a symmetry restoring phase transition. As far as we
know, the physical mechanism behind the phase transition
has not been investigated before in the two-dimensional�4

2
quantum field theory. We have demonstrated that in this
theory, at strong coupling, it is energetically favorable for a
dominantly kink-antikink-kink configuration to be the low-
est excitation rather than a kink configuration. At still
higher coupling we have observed additional level cross-
ings for the lowest state for both PBC and APBC. Further
investigations are necessary to clarify the nature of the
lowest excitation after these transitions and to quantify
the critical point of the transition. In the light of all our
observations, we interpret the observed level crossing pre-
sented here as the onset of kink condensation which leads
to the restoration of symmetry.
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