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We consider the equivalence of covariant and light front quantum electrodynamics at one loop level. We
show that the one loop expressions for fermion self-energy, vacuum polarization, and vertex correction in
the covariant perturbation theory can be reduced to a sum of propagating and instantaneous diagrams of
light front time-ordered perturbation theory by performing k� integration. We show that the third term in
the doubly transverse gauge propagator is necessary to generate the diagrams involving instantaneous
photon exchange both in the case of fermion self-energy as well as the vertex correction. We also show
that the correspondence between the covariant and light front diagrams cannot be established if one
removes the k� � 0 modes by an infrared cutoff before performing k� integration.
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I. INTRODUCTION

There has been a considerable amount of work on the
equivalence of covariant perturbation theory and light front
Hamiltonian perturbation theory in recent years [1–5]. One
of the approaches to show equivalence is at the level of
Feynman diagrams [1]. In this approach, one starts with the
covariant expression for a Feynman diagram and performs
the integration over the light-cone energy k�. This ap-
proach has been found to be successful in theories describ-
ing spinless particles. Ligterink and Bakker [1] have given
a general algorithm for proving equivalence in theories
involving scalars as well as spin- 12 particles. Equivalence
at the Feynman diagram level in Yukawa theory has
been discussed in Refs. [2–4]. Correspondence between
the light front Hamiltonian approach and the Lorentz-
covariant approach has been discussed for QED 1� 1
and also for QCD by bosonization of the model [5].

Eyck and Rohrlich have shown the equivalence of null-
plane �3� 1� QED in the light front gauge and conven-
tional QED in the Coulomb gauge within the framework of
Feynman-Dyson-Schwinger theory [6]. In this work, we
address the issue of the equivalence of light front quantum
electrodynamics (LFQED) and covariant QED at the one
loop level using the Feynman diagram approach.

One loop renormalization of LFQED has been discussed
by Mustaki et al. [7] in the light front gauge and by
Ligterink and Bakker [8] in the Feynman gauge. There
are two ways to obtain the one loop expressions for elec-
tron self-energy, vacuum polarization, and vertex correc-
tion graphs in LFQED. One way is to start with the light
front Hamiltonian P� and use the Heitler method of the old
fashioned Hamiltonian perturbation theory. This is the
method used in Ref. [7] and in most of the earlier work
on LFQCD [9]. The other way is to start with the covariant
expressions for the one loop diagrams and obtain the light-
cone time-ordered diagrams by performing the k� integra-
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tion. This is the method used in Ref. [8] to obtain the light
front expressions for one loop diagrams in Feynman gauge.
The two treatments differ in the choice of gauge and also
use different regularization schemes. Mustaki et al. use a
mixed regularization scheme in which dimensional regu-
larization is used in the transverse direction and a cutoff is
used in the longitudinal direction. Ligterink and Bakker,
on the other hand, use the ‘‘minus regularization’’ scheme
which treats both kinds of divergences on the same footing.
It is well known that in light front QED, there are addi-
tional one loop diagrams due to the presence of instanta-
neous interactions. In the minus regularization of Ligterink
and Bakker [8], the instantaneous terms are removed by the
regularization procedure as they are independent of p� and
therefore drop under differentiation. However, in the work
of Mustaki et al., the instantaneous diagrams are calculated
by putting a cutoff on small values of k�. Both the proce-
dures have been used to evaluate the one loop expressions
for LFQED.

In this work, we address the issue of showing equiva-
lence of one loop expressions in the light front gauge at the
level of Feynman diagrams. We use the method of per-
forming k� integration on covariant expressions and obtain
the same expressions for all the propagating as well as
instantaneous one loop diagrams which are obtained by
Mustaki et al. using the Heitler method. Our treatment
differs from that of Ligterink and Bakker in two respects.
First, we use the light front gauge, which results in addi-
tional terms in the gauge boson propagator. Second,
Ligterink and Bakker have shown equivalence using the
minus regularization scheme, whereas the expressions that
we have obtained are the same as those obtained by
Mustaki et al. using the Heitler method. Evaluation of
the resulting 3-dimensional integrals in the light front
gauge using the mixed regularization scheme has already
been done in Ref. [7]. We plan to do the corresponding
calculation in the light front gauge using the minus regu-
larization scheme in a future work. It has been shown in
Ref. [7] that in their mixed regularization scheme the
diagrams involving instantaneous interactions are neces-
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sary to obtain the covariant result. It is our aim to show that
these diagrams can also be obtained by the method of
performing k� integration. The aim of the present work
is to show that the unregularized expressions for regular as
well as instantaneous diagrams obtained by using the
Heitler method can also be obtained from the covariant
expression by performing k� integration provided the cor-
rect form of the photon propagator is used and the zero
modes are not ignored.

The major difficulties that one faces while showing
equivalence in the case of QED are the following:
(1) T
he treatment of fermions in light front field theo-
ries (LFFT’s) is difficult due to the presence of a
nonpropagating part in the Feynman propagator.
The free propagator for the fermion in the covariant
theory can be written as

i�p6 �m�

p2 �m2 � i�
�

ip6 on �m

p2 �m2 � i�
�

��

2p�
: (1)

The first term is the on-shell propagator used in
LFFT’s and the second term is the nonpropagating
part, which gives rise to integrals that are more
singular than those in the time-ordered or the man-
ifestly covariant formulation [1]. In the Yukawa
model, it has been shown [2,3] that the nonpropa-
gating part in the Feynman propagator gives, on k�

integration, the instantaneous diagrams involving
the instantaneous fermion line of light front pertur-
bation theory. We will show the same result for one
loop diagrams in QED.
(2) T
he second issue and one that has not been ad-
dressed so far is the presence of diagrams involving
instantaneous photons and how do they arise by
performing k� integration in covariant expressions.
To establish equivalence, one must be able to show
that the covariant expressions for diagrams involv-
ing internal photon lines reduce, on k� integration,
to a sum of propagating and instantaneous diagrams
of light-cone-time-ordered field theory.
As an initial step in proving the equivalence of
covariant QED and LFQED at the Feynman diagram
level, we have considered in this paper one loop
renormalization of LFQED in the light front gauge
[7] and have shown that one can obtain all the
propagating as well as instantaneous diagrams by
performing the k� integration. However, if one im-
poses an infrared cutoff on k� before performing the
k� integration, then the correct expressions for in-
stantaneous diagrams cannot be reproduced.
(3) T
he main difficulty that one faces in proving equiva-
lence arises due to an ambiguity in literature over
the form of the photon propagator in the light-cone
gauge [7,10]. Mustaki et al.[7] use the following two
term photon propagator in the light-cone gauge:
125011-2
D�� �
1

k2 � i�

�
�g�� �

���k� � ���k�
k�

�
: (2)

There exists an alternative form of the photon propa-
gator with an extra term [6,10–16] given by

D�� �
1

k2 � i�

�
�g�� �

���k� � ���k�
k�

�
k2������

�k��2

�
: (3)

The third term in this expression has always been
dropped from actual calculations on the grounds that
it has no physical significance because it does not
propagate any information [15]. Recently, Suzuki
et al. have presented the gauge fixing conditions
which can lead to the three term propagator [16].
However, the question of which of the two propa-
gators is the correct one is still not resolved.
In this work, we consider the question of equivalence of
covariant and LFQED at the Feynman diagram level using
the three term photon propagator. We derive the one loop
expressions of LFQED obtained by Mustaki et al. [7] by
performing the k� integrations in the covariant expres-
sions. We show that the nonpropagating terms in the fer-
mion propagator as well as in the photon propagator are
necessary to obtain the instantaneous diagrams involving
the instantaneous fermion exchange and the instantaneous
photon exchange. For the photon propagator, one must
include the third term also. We also find that if one puts
a cutoff on small k� values before performing the k�

integration then the instantaneous diagrams cannot be
reproduced.

The plan of the paper is as follows: In Sec. II, we
summarize the one loop renormalization of LFQED [7].
Here, we present only those results of Ref. [7] which are
needed for our discussion. In Sec. III, we consider the self-
energy diagram and show that the covariant expression on
k� integration reduces to a sum of propagating as well as
instantaneous graphs of LFQED. In Secs. IV and V, we
carry out a similar analysis for vacuum polarization and
vertex correction graphs. In Sec. VI, we summarize and
discuss our results. The Appendix contains the notations
and basics.
II. PERTURBATIVE RENORMALIZATION OF
LIGHT FRONT QED

In this section, we briefly review the work done by
Mustaki et al. [7] on one loop renormalization of light
front QED in the Hamiltonian formalism. Here, we will
summarize the relevant parts of the calculation of the mass
shift for the fermion as well as the photon and the one loop
vertex correction in LFQED.
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A. Electron mass renormalization

In light-cone time-ordered perturbation theory, the tran-
sition matrix is given by the perturbative expansion,

T � V � V
1

p� �H0
V � � � � ; (4)

where

V � V1 � V2 � V3; (5)

with V1, V2, and V3 being the standard three-point interac-
tion, an O�e2�-nonlocal effective four-point vertex corre-
sponding to instantaneous fermion exchange and an
O�e2�-nonlocal effective four-point vertex corresponding
to an instantaneous photon exchange, respectively. The
forms of these are given in the Appendix.

The one loop correction to fermion self-energy is ob-
tained by calculating the matrix element of the first two
terms of the above series between the initial and final one
electron states jp; si and jp0; s0i:

2m�m�ss0 � 2p�Tpp (6)

which implies

�m�ss0 �
p�

m
Tpp: (7)

Here, the electron states are chosen as
k

k’

p’,s’

p,s                          (a)       

p,s

p,s

p’,s’

(c)

k

p,s

FIG. 1. Diagrams for electr
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j �p; si �
���������
2p�

q
jp; si (8)

for Lorentz-invariant normalization. One can also identify
a matrix element ��p� through the following expression:

�m�ss0 � u�p; s0���p�u�p; s�: (9)

At O�e2�, there are three contributions to this amplitude.
The second term in the expansion of T yields a contribution
which is second order in V1 and is given by

�u�p; s0��1�p�u�p; s� � hp; s0jV1
1

p� �H0
V1jp; si: (10)

This corresponds to the diagram in Fig. 1(a). Unlike
conventional QED, in LFQED, there are additional dia-
grams due to first order contributions from the instanta-
neous interactions V2 and V3, which are given by

�u�p; s0��2�p�u�p; s� � hp; s0jV2jp; si (11)

corresponding to the diagram in Fig. 1(b) and

�u�p; s0��3�p�u�p; s� � hp; s0jV3jp; si (12)

corresponding to the sum of diagrams in Figs. 1(c) and
1(d). Here all the particles are on shell:

p �

�
p�;

p2
? �m2

2p�
; p?

�
; (13)
p,sk

(b)

(d)

p’,s’

k

on mass shift in LFQED.
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FIG. 2. Diagrams for vacuum polarization in LFQED.
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k �
�
k�;

k2?
2k�

; k?

�
; (14)

and

k0 �
�
p� � k�;

�p? � k?�2 �m2

2�p� � k��
; p? � k?

�
: (15)

The contribution of Fig. 1(a) to �m is given by Eq. (10) and
leads to the light-cone expression

�ma�s� �
e2

m

Z d2k?
�4��3

Z p�

0

dk�

k��p� � k��


�u�p;�����k6 0 �m���u�p; s�d���k�

p� � k� � k0�
: (16)

Similarly, the contribution of Fig. 1(b) is

�mb�ss0 �
e2p��ss0

2m

Z d2k?
�2��3

Z �1

0

dk�

k��p� � k��
(17)

and the sum of contributions of Figs. 1(c) and 1(d) is

�mc�d�ss0 �
e2p��ss0

2m

Z d2k?
�2��3

�Z �1

0

dk�

�p� � k��2

�
Z �1

0

dk�

�p� � k��2

�
: (18)

These integrals have singularities at k� � 0 and k� � p�

which are regularized by introducing small cutoffs � and
�,

�< k� <p� � �; (19)

and the poles at k� � p� in �mb and �mc are removed by
the principal-value prescription. These integrals have been
evaluated in Ref. [7] and finally add up to yield

�m �
e2m

8�2�
: (20)
B. Photon mass renormalization

Consider now the amplitude Tpp of the transition matrix
T between free photon states �p;  � and �p;  0� at order e2.
��2 is given by

��2�  0 � 2p�Tpp; (21)

where now

p �

�
p�;

p2
?

2p�
; p?

�
(22)

is the initial (or final) photon momentum. One can also
identify a ‘‘tensor’’ ����p� through

��2�  0 � � ��p��
���p�� 

0

� �p�: (23)

The corresponding diagrams are displayed in Fig. 2. The
sea gulls, which are displayed in Figs. 2(b) and 2(c), yield
125011
��2
b�c � hp;  jV2jp;  i (24)

and have been evaluated to be [7]

��2
b�c � e2

Z d2k?
�2��3

Z 1

0
dk�

�
1

p� � k�
�

1

p� � k�

�
:

(25)

Here a principal-value prescription is implied. ��2
a is

given by

��2
a�  0 � hp;  jV1

1

p� �H0
V1jp;  i: (26)

Inserting appropriate sets of intermediate states and fol-
lowing the standard procedure, one obtains

��2
a�  0 � 2e2

Z d2k?
�4��3

Z p���

�

dk�

k��p� � k��


Tr��6 � ��p��k6 �m��6 � 

0��p��k6 0 �m��
p� � k� � k0�

; (27)
-4
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where

k �
�
k�;

k2? �m2

2k�
; k?

�
(28)

and

k0 �
�
p� � k�;

�p? � k?�2 �m2

2�p� � k��
; p? � k?

�
: (29)

The sum of ��2
a and ��2

b�c is

��2 � e2
Z d2k?

�2��3
Z p���

�
dk�

�
p�

k��k� � p��

�
2k2?

p��k2? �m2�

�
: (30)

Evaluating this integral using dimensional regularization,
one obtains

��2 � �
e2m2

4�2�
: (31)
k

k’

q

p,s

p’,s’

k’’

(a)

p,s

k’

k

p,s

FIG. 3. Diagrams for v
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C. Vertex correction

The vertex corrections ���p; p0� are of order e3 as they
get contributions from V3

1 , V2 V1 and V3 V1. It will be
adequate for the purpose of finding vertex corrections to
calculate ��. Figure 3 contains the diagrams which con-
tribute to �� excluding the diagrams corresponding to
incoming or outgoing fermion line renormalization. The
full set of diagrams is given in Ref. [7]. However, the
diagrams that we have omitted do not contribute to ��

due to their tensor structure.
In Hamiltonian perturbation theory, corrections to ��

are obtained by calculating the matrix elements of the
series on the right-hand side of Eq. (4) between jp;�i
and jp0; �0; q;  i states. The one loop correction to �� is
given by the diagram in Fig. 3. Contributions to �� from
Figs. 3(a) and 3(b) arise from

��
�3a� ���

�3b� � hp0; s0; k jV1
1

p� �H0
V1

1

p� �H0
V1jp; si

(32)

and the contribution of the instantaneous diagram in
Fig. 3(c) comes from
q

k’
k’’

k

p’,s’

(b)

k’’ p’,s’

q

(c)

ertex correction ��.
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��
�3c� � hp0s0; k jV1

1

p� �H0
V3jpsi: (33)

These expressions can be evaluated by inserting appropri-
ate sets of intermediate states. Following the standard
procedure one obtains

��
�3a� � e3

Z d2k?
�4��3

Z p0�

0

dk�

k�k0�k00�


���k6 00 �m����k6 0 �m���d��

�p� � k� � k0���p� � k� � k00� � q��
;

(34)

��
�3b� � �e3

Z d2k?
�4��3

Z p�

p0�

dk�

k�k0�k00�


�"�k6 00 �m����k6 0 �m���d"�

�p� � k� � k0��p� � k0� � k00� � p0��
;

(35)

��
�3c� � 2e3

Z d2k?
�4��3

Z p�

p��q�

dk�

�k��2k0�k00�


���k6 00 �m����k6 0 �m���

�p� � p0� � k00� � k0��
: (36)

These expressions will be used in Sec. V for demonstrating
the equivalence of covariant and light front expressions.
These integrals have been evaluated in Appendix D of
Ref. [7] using dimensional regularization. However, we
will not need the details of this calculation. The sum of
��

�3a�, �
�
�3b�, and ��

�3c� yields the vertex correction

�� � ��
0

e2

8�2�

�
�

3

2
� lnp� �p��2

�
: (37)
III. EQUIVALENCE OF COVARIANT AND LIGHT
FRONT FERMION SELF-ENERGY GRAPHS

In this section, we will demonstrate the equivalence of
self-energy graphs in covariant QED and light front QED
at O�e2� at the level of Feynman diagrams. We start with
the one loop expressions for electron self-energy and show
that by performing the k� integration, these covariant
expressions can be reduced to the light-cone time-ordered
expressions given in Sec. II.

The covariant expression for electron self-energy in the
light front gauge is given by

X
�p� �

�ie�2

2mi

Z d4k

�2��4


���p6 � k6 �m���d0���k�

��p� k�2 �m2 � i���k2 ��2 � i��
; (38)

where d0��=k2 is the photon propagator in the light-cone
gauge in covariant perturbation theory with d0���k� given
125011
by

d0���k� � d���k� �
������k2

�k��2
: (39)

Here, d���k�=k2 is the photon propagator in the light-cone
gauge used in light front QED [7] where d���k� is given by

d�� � �g���k� �
���k� � ���k�

k�
: (40)

To prove equivalence, we note that the momenta in the
light front expressions in Sec. II are on-shell momenta.
Therefore, we substitute in Eq. (38):

p6 � k6 �m � ��

��
�p? � k?�

2 �m2

2�p� � k��

��
� ���p� � k��

� �?�p? � k?�

� ��

�
p� � k� �

�p? � k?�2 �m2

2�p� � k��

�
(41)

and write

�i��p� � �i�1�p� � i�2�p�; (42)

where

�i�1�p� � �
e2

2m

Z d4k

�2��4


���k6 0 �m���d0���k�

��p� k�2 �m2 � i���k2 ��2 � i��
(43)

and

�i�2�p� �
e2

2m

Z d4k

�2��4
������d0���k�

2�p� � k���k2 ��2 � i��
:

(44)

�2�p� can be rewritten as

�2�p� �
ie2

2m

Z dk�

2�

Z d2k?
�2��

Z dk�

2�


��������g�� �

k�����k����
k� �

2�p� � k��2k��k� �
k2
?
��2�i�
2k� �

: (45)

The k� integral here has a pole at k� � �k2? ��2�=2k�

and another pole at k� � 1. To deal with the pole at
infinity, we change the variable from k� to u � 1

k� , so
that the pole at infinity is shifted to the origin and the k�

integral reduces to

D � i
Z du

u�2k� � �k2? �m2 � i��u�
: (46)

Next, we regularize the pole at the origin by the replace-
ment [1]
-6
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1

u
!

1

2

�
1

u� i�
�

1

u� i�

�
(47)

which gives

Dreg � i
Z
du

1

2

�
1

u� i�
�

1

u� i�

�


1

2k� � �k2? ��2 � i��u
(48)

� i
Z du

2

1

�u� i���2k� � �k2? ��2 � i��u�

� i
Z du

2

1

�u� i���2k� � �k2? ��2 � i��u�
: (49)

The first integral has a pole at u � �i� which is below the
real axis and another pole at u � 2k�=�k2? ��2 � i��.
For k� < 0, both the poles lie below the real axis.
Therefore, the integral vanishes. For k� > 0, the second
pole is above the real axis. Therefore, we perform contour
integration along a semicircle which goes along the real
line and is closed at infinity in the lower half complex
plane. The second integral has poles at u � �i� and at
u � 2k�=�k2? ��2 � i��. For k� > 0 both the poles are
above the real axis, and therefore I � 0 for k� > 0. For
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k� < 0, we close the contour in the upper half plane.
Performing complex integration with this choice of con-
tours, we obtain

Dreg �
�%�k��

2k� � i�k2? ��2 � i���

�
��%��k��

2k� � i�k2? ��2 � i���
(50)

which reduces, in the limit � ! 0, to

D �
2�%�k��
2k�

: (51)

Substituting this into �2�p� we get

�2�p� �
e2

2m

Z 1

0

dk�

2k�
Z d2k?

�2��3
������d0���k�

2�p� � k��
: (52)

Using Eqs. (39) and (A11), we finally obtain

�m2�ss0 � �u�p; s0��2�p�u�p; s�

�
e2p��s�

2m

Z d2k?
�2��3

Z 1

0

dk�

k��p� � k��
: (53)

�1�p� can be written as
�1�p� � i
e2

2m

Z d3k

�2��3
Z dk�

2�

���k6 0 �m����d�� �
������k2

�k��2
�

2k�2�p� � k���k� �
k2
?
��2�i�
2k� ��p� � k� � �p?�k?�2�m2�i�

2�p��k�
�
: (54)

We define

�1�p� � ��a�
1 �p� ���b�

1 �p�; (55)

where

��a�
1 �p� � �i

e2

2m

Z d3k

�2��3
Z dk�

2�

���k6 0 �m���d���k�

2k�2�p� � k���k� �
k2
?
��2�i�
2k� ��k� � p� � �p?�k?�2�m2�i�

2�p��k�� �
(56)

and

��b�
1 �p� � i

e2

2m

Z d3k

�2��3
Z dk�

2�

���k6 0 �m����������k
2�

2k��2p� � k���k� �
k2
?
��2�i�
2k� ��k� � p� � �p?�k?�2�m2�i�

2�p��k�� ��k��2
: (57)
The integrand in ��a�
1 �p� has poles at k� � �k2? ��2 �

i��=2k� and k� � p� � f��p? � k?�2 �m2 � i��=�p��
k��g. One can notice that
(1) F
or k� < 0, both the poles are above the real axis.

(2) F
or k� >p�, both poles are below the real axis.

(3) F
or 0< k� < p�, the pole at k� � �k2? �m2 �

i��=2k� is below the real axis and the pole at k� �
p� � f��p? � k?�2 �m2 � i��=2�p� � k��g is
above the real axis.
Thus the integral vanishes for k� < 0 and k� >p� and for
0< k� < p�, we can close the contour in the lower half
plane . The integral is then equal to

��a�
1 �p� �

ie2

2m

Z p�

0

d3k

�2��3


���k6 0on �m���d���k�

2k�2�p� � k���p� � k�on � k0��
; (58)
-7
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where

k0� �
�p? � k?�2 �m2

2�p� � k��
: (59)

��b�
1 is given by

��b�
1 � i

e2

2m

Z d2k?
�2��3

Z
dk�

Z dk�

�2��

k2���k6 0 �m���������

2k��2p� � 2k���k� �
k2
?
��2�i�
2k� ��p� � k� � �p?�k?�2�m2�i�

2�p��k�� ��k��2
: (60)
Using the properties of gamma matrices Eqs. (A4)–(A9),
this reduces to

��b�
1 � i

e2

2m

Z d2k?
�2��3

dk�

�k��2
Z dk�

2�


������

2�p� � k� � �p?�k?�2�m2�i�
2�p��k�� �

: (61)

This integral has a pole at k� � 1 at k� � p�. To deal
with the pole at infinity, we change the variable from k� to
u � 1

k� , so that the k� integral changes to

I � �
1

2

Z du
2�

1

u
1

�1� u�p� � �p?�k?�2�m2�i�
2�p��k�� ��

(62)

and the pole at infinity is shifted to the origin. I has poles at
u � 0 and

u �
1

p� � �p?�k?�2�m2�i�
2�p��k��

:

We regularize the integral by the replacement

1

u
�

1

2

�
1

u� i�
�

1

u� i�

�
(63)

and write

I � I1 � I2; (64)

where

I1 � �
1

4

Z du
2�

1

u� i�
1

1� u�p� � �p?�k?�2�m2�i�
2�p��k�� �

(65)

and

I2 � �
1

4

Z du
2�

1

u� i�
1

1� u�p� � �p?�k?�2�m2�i�
2�p��k�� �

:

(66)

The first integral has poles at u � �i� which is below the
real axis and at

u �
1

p� � �p?�k?�2�m2�i�
2�p��k��
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which is above the real axis only when p� < k�. I2 has
poles at u � �i� which is above the real axis and at

u �
1

p� � �p?�k?�2�m2�i�
2�p��k��

which is below the real axis only for p� > k�. Therefore,
we close the contour by a semicircle at infinity in the lower
half plane for I1 and in the upper half plane for I2. Thus we
obtain

Ireg �
i
4

%�k� � p��

1� i��p� � �p?�k?�2�m2�i�
2�p��k�� �

�
i
4


%�p� � k��

1� i��p� � �p?�k?�2�m2�i�
2�p��k�� �

: (67)

Taking the limit � ! 0 and substituting in ��b�
1 , we obtain

��b�
1 �

ie2

2m

Z d2k?
�2��2

Z dk�

�2���k��2


i
4
�������%�k� � p�� � %�p� � k���: (68)

Thus, �u��b�
1 u is given by

�u��b�
1 u � �

e2p�

2m

Z d2k?
�2��3

�
�
Z p�

�1

dk�

�k��2
�

Z 1

p�

dk�

�k��2

�

�
e2p�

2m

Z d2k?
�2��3

2
Z p�

0

dk�

�k��2
; (69)

where we have used Eqs. (A8) and (A13). Using [10]

2
Z p�

0

dk�

�k��2
�

Z 1

0

dk�

�p� � k��2
�

Z 1

0

dk�

�p� � k��2
(70)

we finally obtain

�u��b�
1 �p�u �

e2p�

2m

Z
d2k?

Z 1

0

dk�

�2��3



�
1

�p� � k��2
�

1

�p� � k��2

�
: (71)

Adding Eqs. (53), (58), and (71), one obtains the self-
energy expression obtained using light-cone time-ordered
Hamiltonian perturbation theory, i.e., the sum of
Eqs. (16)–(18). One may notice that the contribution cor-
responding to the instantaneous diagrams arises from the
-8
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consideration of the pole at infinity, i.e., if we regularize
the k� integrals by putting a cutoff on small values, then
we get only �ma. The pole at infinity is essential to gen-
erate the instantaneous diagrams. Also we get �mc�d to be
zero if we drop the third term in the photon propagator.

IV. EQUIVALENCE OF COVARIANT AND LIGHT
FRONT VACUUM POLARIZATION GRAPHS

Now we will show the equivalence of covariant and
light-cone expressions for vacuum polarization graphs us-
ing the same procedure. Photon self-energy is defined by
125011
��2�  0 � � ��p�����p�� 
0

� �p�; (72)

where

i����p� � ���ie�2


Z d4k

�2��4
Tr
�
��

i
k6 �m

��
i

p6 � k6 �m

�
:

(73)

One can rewrite Eq. (73) as
i����p� � �e2
Z d3k

�2��3
Z dk�

2�
Tr����k6 �m����p6 � k6 �m��

2k�2�p� � k���k� �
k2
?
�m2�i�
2k� ��p� � k� � �p?�k?�2�m2�i�

2�p��k�� �
: (74)

To reduce this expression to a sum of light front diagrams, we first change the off-shell momenta to on-shell momenta by
using

p6 � k6 � ��

�
p� � k� �

�p? � k?�
2 �m2

2�p� � k��

�
�

�
��

�
�p? � k?�

2 �m2

2�p� � k��

�
� ���p� � k�� � �?�p? � k?�

�
(75)

obtaining

����p� � ���
1 �p� ����

2 �p�; (76)

where

i���
1 �p� � e2

Z d3k

�2��3
Z dk�

�2��
Tr����k6 �m����k6 0 �m��

2k�2�p� � k���k� �
k2
?
�m2

2k� ��p� � k� � �p?�k?�2�m2

2�p��k�� �
(77)

and

i���
2 �p� � �e2

Z d3k

�2��3
Z dk�

�2��
Tr����k6 �m������

2k�2�p� � k���k� �
k2
?
�m2�i�
2k� �

: (78)
Here k0� is the on-shell momentum:

k0� �
�p? � k?�2 �m2

2�p� � k��
: (79)

���
1 �p� has poles at k� � �k2? �m2 � i��=2k� and k� �

p� � f��p? � k?�2 �m2 � i��=2�p� � k��g. We note
that
(1) F
or k� < 0, both poles are above the real line.

(2) F
or k� >p�, both poles are below the real line.

(3) F
or 0< k� < p� the first pole is below the real line

whereas the second pole is above the real line.

As a result, the k� integration yields zero for k� < 0 and
for k� > p�. For 0< k� < p�, we perform the k� inte-
gration by closing the contour in the lower half plane and
obtain

���
1 � 2e2

Z d3k

�4��3
Tr����k6 on �m����k6 0on �m��
k��p� � k���p� � k�on � k0�on �

;

(80)

where
k�on �
k2? �m2

2k�
(81)

and

k0�on �
�p? � k?�

2 �m2

2�p� � k��
: (82)

Thus, the contribution of ���
1 to the photon self-energy

expression is given by

� ��
��
1 � 

0

� � 2e2
Z d3k

�4��3
Tr��6  �k6 �m��6  

0
�k6 0 �m��

k��p� � k���p� � k� � k0��
(83)

which is the same as Eq. (27), i.e., the propagating part of
the photon self-energy in the light front calculation (Here,
the subscript ‘‘on’’ has been dropped but the momenta k
and k0 are on-shell momenta.) ���

2 can be simplified by
using
-9
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��k6 ���� � ��������k� � ��������k�

� ���i����ki (84)

and dropping the terms linear in ki to obtain

���
2 � ���

�2a� ����
�2b�; (85)

where

���
�2a� � ie2

Z d3k

�2��3
Z dk�

�2��


Tr����������k�

4k��p� � k���k� �
k2
?
�m2�i�
2k� �

(86)

and

���
�2b� � ie2

Z d3k

�2��3
Z dk�

�2��


Tr����������k�

4k��p� � k���k� �
k2
?
�m2�i�
2k� �

: (87)

Using Eqs. (A4)–(A9) one obtains

�� �� ���
�2a��

� �
� � 0 (88)

and

�� �� ���
�2b��

� �
� � �8ie2

Z d3k

�2��3
Z dk�

�2��


1

4�p� � k���k� �
k2
?
�m2�i�
2k� �

: (89)

To deal with the pole at k� � 1, we make a change of
variable, u � 1

k� leading to

�� �� ���
�2b��

� �
� � 8ie2

Z d3k

�2��3
Z du

2�u2


1

4�p� � k���1u�
k2
?
�m2�i�
2k� �

(90)

� 2ie2
Z d3k

�2��3
1

p� � k�
Z du

2�u
1

�1� u�
k2
?
�m2�i�
2k� ��

:

(91)
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This expression is regularized to

�� �� ���
�2b��

� �
� � ie2

Z d3k

�2��3
1

p� � k�


Z du

2�

�
1

u� i�
1

1� u�
k2
?
�m2�i�
2k� �

�
1

u� i�
1

1� u�
k2
?
�m2�i�
2k� �

�
: (92)

The first term in this expression has a pole at u � �i�
which is below the real line and another pole at u �

2k�=�k2? �m2 � i�� which is below the real line for k� <
0 and above the real line for k� > 0. Similarly, the second
term has a pole at u � �i� and another at u � 2k�=�k2? �

m2 � i��. Therefore, we close the contour in the lower half
plane in the former case and in the upper half plane in the
latter. Performing the k� integration one obtains

�� �� ���
�2b��

� �
� � e2

Z d2k

�2��2


Z dk�

2��p� � k��

�
%�k��

1� i��
k2
?
�m2�i�
2k� �

�
%��k��

1� i��
k2
?
�m2�i�
2k� �

�
: (93)

Taking the limit � ! 0, one gets

�� �� ���
2 �� �� � e2

Z d2k

�2��3
Z 1

0

�
dk�

�p� � k��
�

dk�

p� � k�

�

(94)

which is the same as the contribution of the instantaneous
diagrams to ��2 in the light front expression Eq. (25).

V. EQUIVALENCE OF COVARIANT AND LIGHT
FRONT VERTEX CORRECTION GRAPHS

We will now consider the covariant expression for one
loop vertex correction ���p; p0; q� and show that the �
component �� can be reduced to the sum of corresponding
light front diagrams evaluated in the light front time-
ordered perturbation theory. The covariant expression for
the one loop vertex correction is
���p; p0; q� � ie3
Z d4k

�2��4
�"�p6

0 � k6 �m����p6 � k6 �m���d
0"��k�

��p� k�2 �m2 � i����p0 � k�2 �m2 � i���k2 � i��
(95)

which can be rewritten as

���p; p0; q� � ��
�a��p; p

0; q� ���
�b��p; p

0; q� ���
�c��p; p

0; q�: (96)

Here
-10
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��
�a��p; p

0; q� ���
�b��p; p

0; q� � ie3
Z dk�d2k?

�2��4
Z
dk�

�"�p6 0 � k6 �m����p6 � k6 �m���d"��k�

2k�2�p� � k��2�p0� � k��


1

�k� �
k2
?
��2�i�
2k� ���p� � k�� � �p?�k?�2�m2�i�

2�p��k�� �

1

�p0� � k� �
�p0

?
�k?�2�m2�i�
2�p0��k�� �

(97)

is the contribution of the conventional two term photon propagator and

��
�c��p; p

0; q� � �ie3
Z dk�d2k?

�2��4
Z
dk�

���p6 0 � k6 �m����p6 � k6 �m���

2�p� � k��2�p0� � k��


1

�k��2��p� � k�� � �p?�k?�2�m2�i�
2�p��k�� ��p0� � k� �

�p0
?
�k?�2�m2�i�
2�p0��k�� �

(98)
arises from the third term in the modified propagator in the
light front gauge. The integrand in ��

�c��p; p
0; q� has poles

at

(1) k
��p��f��p?�k?�

2�m2� i��=2�p��k��g.

(2) k
��p0��f��p0�

? �k?�
2�m2� i��=2�p0��k��g.
For k� <p0�, both the poles are above the real axis and
hence the integral is zero for k� < p0�. Similarly for k� >
p�, both the poles are below the real axis, and hence
125011
��
�c��p; p

0; q� is zero in this region also. In the region
defined by p0� < k� < p�, the pole at k� � p� �
f��p? � k?�2 �m2 � i��=2�p� � k��g is above the real
axis and the pole at k� � p0� � f��p0

? � k?�2 �m2 �

i��=2�p0� � k��g is below the real axis. Closing the
contour in the lower half plane, ��

�c��p; p
0; q� reduces

to
��
�c��p; p

0; q� � e3
Z d2k?

�2��3
Z p�

p0�
dk�

���p6 0 � k6 �m����p6 � k6 �m���

�k��22�p� � k��2�p0� � k���p� � p0� � k00� � k0��
; (99)
where

k0� �
�p? � k?�

2 �m2 � i�
2�p� � k��

(100)

and

k00� �
�p0�

? � k?�
2 �m2 � i�

2�p0� � k��
: (101)

Equation (99) is the same as the expression for ��
�3c� given

by Eq. (36).
Similarly, ��

�a��p; p
0; q� ���

�b��p; p
0; q� has poles at
(1) k
���k2?�m2� i��=2k�.

(2) k
��p��f��p?�k?�

2�m2� i��=2�p��k��g.
(3) k
-11
��p0��f��p0�
? �k?�

2�m2� i��=2�p0��k��g.

For k� < 0, all three poles are above the real axis and for
k� > p� , all three are below the real axis. Therefore, the
k� integration yields zero in these two regions. In the
region, p0� < k� <p�, the second pole is above the real
axis and the other two are below; therefore we perform the
k� integration by closing the contour in the upper half
plane. In the region, 0< k� <p0�, the first pole is below
the real axis and the other two are above. Therefore, we
close the contour of integration in the lower half plane .
Thus, the two terms in ��

�a��p; p
0; q� ���

�b��p; p
0; q� yield

after performing the k� integration,
��
�a��p; p

0; q� � �e3
Z d2k?

�2��3
Z p0�

0

dk�

2k�2k0�2k00�
�"�k6 00 �m����k6 0 �m���d"�

�p� � �p?�k?�2�m2

2�p��k�� �
k2
?
��2

2k� �

1

�p0� �
k2
?
��2

2k� �
�p0

?
�k?�2�m2

2�p0��k�� �
(102)

and

��
�b��p; p

0; q� � �e3
Z d2k?

�2��3
Z p�

p0�

dk�

2k�2k0�2k00�
�"�k6 00 �m����k6 0 �m���d"�

�p0� � �p?�k?�2�m2

2�p��k�� �
k2
?
��2

2k� �

1

�p� � �p?�k?�2�m2

2�p��k�� � p0� �
�p0

?
�k?�2�m2

2�p0��k�� �

(103)

which are the same as the expressions for Figs. 3(a) and 3(b) given by Eqs. (34) and (35) respectively. Thus, the covariant
expression for ��, after performing the k� integration reduces to a sum of light front expressions for diagrams in Fig. 3,
which are obtained within the framework of light front Hamiltonian perturbation theory. The point to be noticed is that the
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diagram in Fig. 3(c) cannot be generated if we ignore the
third term in the modified photon propagator.

VI. SUMMARY AND DISCUSSION

We have considered the three primitively divergent dia-
grams in QED, i.e., fermion self-energy, vacuum polariza-
tion, and vertex correction and have established the
equivalence between these and the corresponding diagrams
in light front QED. We have shown that by performing the
k� integration the covariant expressions can be reduced to
a sum of propagating and instantaneous diagrams of
LFQED. The earlier work on the equivalence at the
Feynman diagram level deals with theories involving sca-
lars and spin- 12 fields and �3� 1� QED in the Feynman
gauge. The new feature that comes in when one performs
the same analysis in the light front gauge is the noncovar-
iant terms in the photon propagator. We find that the photon
propagator in the light front gauge that is often used in the
light front literature [7], i.e.,

D�� �
1

k2 � i�

�
�g�� �

���k�� � ���k�
k�

�
(104)

is not enough to prove equivalence. On the other hand, if
one uses the modified three term propagator [10,16]

D0
�� �

1

k2 � i�

�
d�� �

������
�k��2

k2
�

(105)

in the covariant expression then the extra term leads to the
correct expressions for instantaneous diagrams. However,
these diagrams cannot be generated if one naively uses
Eq. (104) for the photon propagator. The reason for the
ambiguity in the expression for the photon propagator may
lie in the fact that in light front field theories all particles
are on mass shell and therefore if one directly writes the
expression for diagrams using light front Hamiltonian
perturbation theory Feynman rules, then it is sufficient to
use Eq. (104). However, for the purpose of proving equiva-
lence one has to start from the covariant expression and
therefore one has to take into account the third term in the
modified propagator. It has been shown in Ref. [6] that in
the light front formulation of QED in the light front gauge,
the third term in the photon propagator is canceled by a
pseudophoton propagator coming from the instantaneous
part of the light front Hamiltonian. Our calculation also
shows that the third term in the photon propagator is the
one that leads to the one loop diagrams involving instan-
taneous photon exchange, which are necessary to obtain a
covariant result in the mixed regularization scheme of
Mustaki et al. In Ref. [14], it is shown in the context of a
tree level calculation of electron-muon scattering in QED
that the instantaneous terms in the light front interaction
Hamiltonian restore the manifest covariance of the matrix
element which is broken by the noncovariant gauge and the
noncovariant terms in the gauge propagator. Our calcula-
tion thus illustrates further the correspondence between the
125011
third term in the propagator and the instantaneous part of
the light front Hamiltonian.

Another difficulty that we encountered in the proof of
equivalence was the presence of a pole at infinity which
can be avoided by putting a cutoff on small values of k�.
However, it is apparent from our analysis that a proper
handling of these poles is essential for proving equiva-
lence. In other words, if we try to avoid the pole at infinity
by introducing a cutoff k� >� we cannot prove the
equivalence of covariant and light front expressions be-
cause the light front diagrams involving instantaneous
interactions cannot be generated if we ignore the zero
modes. Therefore, in order to obtain the light front expres-
sions by performing k� integration on covariant expres-
sions, one should put a cutoff on small k� only after
performing the k� integration. In earlier work on equiva-
lence in the context of the Yukawa theory [2] the form of
infrared regulator ��k�� is determined by requiring the
equivalence to the covariant calculation, Here we show that
one does not need to make a particular choice of � to prove
equivalence.
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APPENDIX

1. Basics

We define the light front coordinates by

x� �
x0 � x3���

2
p ; (A1)

x� �
x0 � x3���

2
p ; (A2)

x? � �x1; x2�: (A3)

The metric tensor is given by

g�� �

0 1 0 0
1 0 0 0
0 0 �1 0
0 0 0 �1

0
BBB@

1
CCCA:

Dirac matrices satisfy the following properties:

����2 � ����2 � 0; (A4)

f��; ��g � 2g��; (A5)

��0�� � �0; (A6)

��k�y � ��k�k � 1; 2; 3�; (A7)
-12
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������ � 2��; (A8)

������ � 2��; (A9)

also,

����d���p� � �2; (A10)

������d���p� �
2

p�
����� � g��p6 �: (A11)

Dirac spinors satisfy

�u�p; s�u�p; s0� � � �v�p; s�v�p; s� � 2m�s;s0 ; (A12)

�u�p; s���u�p; s0� � �v�p; s���v�p; s� � 2p��s;s0 :

(A13)

2. Light front Hamiltonian

P�, the light front Hamiltonian, is the operator conju-
gate to the ‘‘time’’ evolution variable x� and is given by

P� � H0 � V1 � V2 � V3; (A14)

EQUIVALENCE OF COVARIANT AND LIGHT FRONT . . .
125011
where H0 is the free Hamiltonian, V1 is the standard,
order-e three-point interaction,

V1 � e
Z
d2x?dx

� �(��(a�: (A15)

V2 is an order-e2 nonlocal effective four-point vertex cor-
responding to an instantaneous fermion exchange,

V2 � �
i
4
e2

Z
d2x?dx�dy���x� � y��� �(ak�k�

 �x����aj�
j(��y� (A16)

and V3 is an order-e2 nonlocal effective four-point vertex
corresponding to an instantaneous photon exchange,

V3 ��
e2

4

Z
d2x?dx�dy��(��(��x�jx�� y�j�(��(��y�:

(A17)
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