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We study curved and flat Bogomol’nyi-Prasad-Sommerfield (BPS)-domain walls in 5D, N � 4
gauged supergravity and show that their effective dynamics along the flow is described by a generalized
form of ‘‘fake supergravity.’’ This generalizes previous work in N � 2 supergravity and might hint
towards a universal behavior of gauged supergravity theories in supersymmetric domain wall back-
grounds. We show that BPS-domain walls in 5D, N � 4 supergravity can never be curved if they are
supported by the supergravity scalar only. Furthermore, a purely Abelian gauge group or a purely
semisimple gauge group can never lead to a curved domain wall, and the flat walls for these gaugings
always exhibit a runaway behavior.
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I. INTRODUCTION

Domain wall solutions of �d� 1�-dimensional super-
gravity theories have received a lot of attention during
the past few years. This interest was largely driven by
applications in the context of holographic renormalization
group flows and certain brane world models. In most of
these applications, the domain walls of interest preserve a
fraction of the original supersymmetry of the supergravity
theory they are embedded in. A domain wall of this type
can be either Minkowski-sliced or anti-de Sitter (AdS)-
sliced,

ds2 � e2U�r�gmn�x�dxmdxn � dr2; (1.1)

depending on whether, respectively, gmn is the metric of
d-dimensional Minkowski or anti-de Sitter space. A non-
trivial warp factor U�r� [i.e., one that does not give rise to
�d� 1�-dimensional Minkowski or anti-de Sitter space]
requires a nontrivial scalar profile �x�r� �x � 1; . . . ; m�,
as dictated by the Einstein equations. A domain wall thus
defines a curve �x�r� on the scalar manifold.

The allowed scalar manifolds in supergravity theories
are in general highly constrained and strongly depend upon
the space-time dimension, the amount of supersymmetry,
as well as on the type of multiplet the scalars are sitting in.
The geometrical constraints on the scalar manifolds also
leave their trace in the Bogomol’nyi-Prasad-Sommerfield
(BPS) equations of the scalar fields, which are likewise
highly space-time-, supersymmetry- and multiplet-
dependent.

It came therefore as quite a surprise when it was found in
[1] that one can reformulate the BPS conditions for domain
walls in 5D, N � 2 supergravity in such a way that their
naive strong multiplet dependence effectively disappears.
The same is true for the scalar potential, which, in this
address: zagermann@itp.stanford.edu
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simplified reformulation, also contains the scalar fields
from vector and hypermultiplets in a symmetric way. In
order to achieve this simplification, one has to restrict one’s
attention to the effective dynamics along the curve�x�r� of
a given BPS-domain wall and properly ‘‘integrate out’’ the
orthogonal scalar fields. Interestingly, this also exactly
reproduces the equations of ‘‘fake supergravity’’ that
were introduced in Ref. [2] to prove the stability of domain
walls in certain scalar/gravity theories that, despite some
superficial similarities, are not necessarily supersymmet-
ric.1 The fake supergravity formalism in [2] was tailor-
made to describe curved domain walls and generalizes and
refines the earlier work [4–6]. It was worked out in [2] in
detail for theories with only one scalar field, and it is this
scalar field that one has to identify with the scalar direction
along the flow curve �x�r� in 5D, N � 2 supergravity.
The fake supergravity equations were also generalized to
several scalar fields in [2], but only for a very particular
type of scalar potential. One of the lessons of [1], however,
is that a generalization and covariantization to more than
one scalar field can go along various different lines, and it
seems that only the effective one-scalar field formulation is
universal.

The results of [1] are by no means of only formal
interest. On the contrary, it was found that the simplified
reformulation of true supergravity à la fake supergravity
provides a very handy tool for studying true BPS-domain
walls themselves. For example, using the simplified lan-
guage of ‘‘fake’’ supergravity, it is fairly easy to prove that
BPS-domain walls that are only supported by scalars from
vector multiplets can at most be Minkowski-sliced. An
AdS-sliced BPS-domain wall thus must involve nontrivial
hypermultiplet scalars. This fact had gone unnoticed
before.

In this paper, we will go one step beyond the work of [1]
and study domain walls in 5D, N � 4 supergravity along
1Some related work appeared in [3].
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similar lines. That is, we will try to similarly recast the BPS
equations and the scalar potential in a generalized fake
supergravity form. This generalization is highly nontrivial
due to the following reasons:
(i) T
he BPS constraints are stronger, as there are now
twice as many supersymmetries to preserve.
(ii) T
he N � 4 theory is Usp�4� � SO�5� instead of
Usp�2� � SU�2� covariant, i.e., several peculiar-
ities of the group SU�2� no longer hold.
(iii) T
he scalar manifolds in the N � 4 theory are of
the type SO�1; 1� � SO�5; n�=�SO�5� � SO�n��,
which are, in general, neither very special nor
quaternionic manifolds. Contrary to what happens
in rigid supersymmetry, the N � 4 theory can
therefore not be viewed as a special case of the
N � 2 theory.
Given these differences, it is all the more intriguing that
only few features of the N � 2 formulation are identified
as SU�2� artifacts and that one finds an exactly analogous
picture: The effective BPS equations and the scalar poten-
tial can again be brought to a simple, generalized fake
supergravity-type form, no matter whether the running
scalar field sits in the N � 4 supergravity multiplet or
in an N � 4 vector or tensor multiplet. Just as in the
N � 2 analogue [1], we can also use this simplified
language in order to study the domain walls themselves.
It is found that BPS-domain walls that are supported by the
supergravity scalar only are necessarily flat. Similarly, if
the gauge group is purely Abelian or purely semisimple,
the domain wall can at most be flat, no matter by which
type of scalar field they are supported. Any flat domain
wall for these gaugings, however, has a runaway behavior.
These results could prove very useful for studies of holo-
graphic renormalization group flows [7] in the setup of,
e.g., [8] or for domain walls in gauged supergravities that
derive from flux compactifications (see e.g., [9–11] for
some recent work in this direction). Moreover, the present
work suggests that the language of fake supergravity is far
more universal than previously thought and that it might
well be applicable to a much wider range of gauged
supergravity theories, perhaps, if properly formulated,
even to all of them. Fake supergravity might thus turn
out to be not that fake after all.

The organization of this paper is as follows: In Sec. II,
we briefly recapitulate the structure of BPS-domain walls
in 5D, N � 2 gauged supergravity and the relation to the
fake supergravity formalism developed in [2]. In Sec. III,
we then discuss the structure of 5D, N � 4 gauged and
ungauged supergravity and study its 1=2-supersymmetric
domain wall solutions. This is done by rewriting the BPS
equations and the scalar potential in a generalized,
‘‘N � 4’’ fake supergravity form. In this simplified ver-
sion, several general statements about possible BPS-
domain walls are easily derived. We end with some con-
clusions in Sec. IV. The appendix proves the equivalence of
two flatness conditions.
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II. TRUE AND FAKE 5D, N � 2 SUPERGRAVITY

In this section, we briefly summarize the key results of
[1] on BPS-domain walls in true and fake, 5D, N � 2
supergravity. For earlier work on (smooth) flat and curved
BPS-domain walls in these theories, see [12–22] and [23–
27], respectively.

A. 5D, N � 2 gauged supergravity

Five-dimensional, N � 2 supergravity can be coupled
to vector-, tensor- and hypermultiplets. The precise form of
these theories was derived in the original references [28–
34], to which we refer the reader for further details. As was
emphasized already in [17,35], all the terms in the theory
that are due to the presence of tensor multiplets have to
vanish on a BPS-domain wall background, and we can thus
restrict ourselves to the coupling of nV vector multiplets
and nH hypermultiplets to supergravity.

The bosonic field content of such a theory consists of the
fünfbein em�, �nV � 1� vector fields AI� �I � 0; 1; . . . ; nV�
and �nV � nH� real scalar fields �’x; qX�, with x �
1; . . . ; nV and X � 1; . . . ; 4nH. Here, we have combined
the graviphoton of the supergravity multiplet with the nV
vector fields of the nV vector multiplets to form a single
�nV � 1�-plet AI�.

The nV scalar fields ’x of the vector multiplets parame-
trize a ‘‘very special’’ real manifold MVS, i.e., an
nV-dimensional hypersurface of an auxiliary �nV �
1�-dimensional space spanned by coordinates hI �I �
0; 1; . . . ; nV�:

M VS � fhI 2 R�nV�1�:CIJKh
IhJhK � 1g; (2.1)

where the constants CIJK appear in a Chern-Simons-type
coupling of the Lagrangian. On MVS, the hI become
functions of the nV physical scalar fields, ’x. The metric,
gxy, on the very special manifold is determined via

gxy � 
3CIJK�@xh
I��@yh

J�hK: (2.2)

The scalars qX �X � 1; . . . ; 4nH� of nH hypermultiplets,
on the other hand, take their values in a quaternionic-
Kähler manifold MQ [36], i.e., a manifold of real dimen-
sion 4nH with holonomy group contained in SU�2� �
USp�2nH�. The vielbein on this manifold is denoted by
fiAX , where i � 1; 2, and A � 1; . . . ; 2nH refer to an adapted
SU�2� �USp�2nH� decomposition of the tangent space.
The hypercomplex structure is �
2� times the curvature of
the SU�2� part of the holonomy group, denoted as RrZX

�r � 1; 2; 3�, so that the quaternionic identity reads

R r
XYR

sYZ � 
1
4#

rs#X
Z 
 1

2"
rstRt Z

X : (2.3)

The vector fields AI� can be used to gauge up to �nV � 1�
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isometries of the quaternionic manifold MQ (provided
such isometries exist).2

The quaternionic Killing vectors, KX
I �q�, that generate

these isometries on MQ can be expressed in terms of the
derivatives of SU�2� triplets of Killing prepotentials (or
‘‘moment maps’’) PrI�q� �r � 1; 2; 3� via

DXPrI � Rr
XYK

Y
I ; ,

�
KY
I � 
 4

3R
rYXDXP

r
I

DXPrI � 
"rstRs
XYD

YPtI;

(2.4)

where DX denotes the SU�2� covariant derivative, which
contains the SU�2� connection !r

X with curvature Rr
XY :

DXP
r � @XP

r � 2"rst!s
XP

t;

Rr
XY � 2@�X!r

Y � 2"rst!s
X!

t
Y:

(2.5)

The prepotentials have to satisfy the constraint

1
2R

r
XYK

X
I K

Y
J 
 "rstPsIP

t
J �

1
2fIJ

KPrK � 0; (2.6)

where fIJ
K are the structure constants of the gauge group.

In this section, we will frequently switch between the
above vector notation for su�2�-valued quantities such as
PrI , and the usual �2� 2� matrix notation,

P I � �PIi
j�; PIi

j � i+ri
jPrI; (2.7)

where boldface expressions such as PI refer to the �2� 2�
matrices with the indices i; j suppressed. Turning on only
the metric and the scalars, the Lagrangian of such a gauged
supergravity theory is

e
1L � 
1
2R
 1

2gxy@�’
x@�’y 
 1

2gXY@�q
X@�qY


 g2V �’; q�; (2.8)

whereas the supersymmetry transformation laws of the
fermions are given by

# �i � r�.i 
!�i
j.j 


i���
6

p g/�Pi
j.j; (2.9)

#0xi � 

i
2
/��@�’

x�.i 
 gPi
jx.j; (2.10)

#1A �
i
2
fiAX /

��@�q
X�.i 
 gN iA.i: (2.11)

Here,  i�, 0xi , 1
A are the gravitini, gaugini and hyperini,

respectively, g denotes the gauge coupling, the SU�2�
connection !� is defined as !�i

j � �@�qX�!Xi
j, and

Pr � hI�’�PrI�q�; (2.12)
2A non-Abelian gauge group also has to leave the CIJK
invariant, which implies that the gauge group also has to be a
subgroup of the isometry group of MVS [29,31,34,37].
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Prx � 

��
3
2

q
gxy@yPr (2.13)

N iA �

���
6

p

4
fiAX �q�hI�’�KX

I �q�: (2.14)

As usual, the potential is given by the sum of ‘‘squares of
the fermionic shifts’’ (the scalar expressions in the above
transformations of the fermions):

V � 
4PrPr � 2PxrPyrgxy � 2N iAN jB"ijCAB;

(2.15)

where CAB is the (antisymmetric) symplectic metric of
USp�2nH�. Using (2.4) and the quaternionic identity
(2.3), the scalar potential for vector and hypermultiplets
can be written in the form

V 12 � 4P2 
 3�@xP��@xP� 
 �DXP��DXP�: (2.16)

One clearly sees that the scalars of the vector- and hyper-
multiplets enter the supersymmetry transformations and
the scalar potential in a rather different way.

B. Curved and flat BPS-domain walls

In this paper, we are interested in Minkowski-sliced
(‘‘flat’’) and AdS-sliced (‘‘curved’’) domain walls of the
form

ds2 � e2U�r�gmn�x�dx
mdxn � dr2 (2.17)

with gmn�x� being either the 4D Minkowski metric or a
metric of AdS4 with curvature scale L4. In a curved domain
wall background of the form (2.17), when the scalar fields
only depend on the radial coordinate r, the vanishing of the
supersymmetry variations (2.9), (2.10), and (2.11) implies�

r
AdS4
m � /m

�
1

2
U0/5 


ig���
6

p P
��
. � 0; (2.18)

�
Dr � /5

�


ig���
6

p P
��
. � 0; (2.19)

�/5’x0 � ig
���
6

p
gxy@yP. � 0; (2.20)

fiAX �/5qX0 
 ig
��
8
3

q
RrXYDYPr.i � 0; (2.21)

where

Dr.i � @r.i 
 qX0!Xi
j.j (2.22)

has been introduced. The gaugino variation suggests a
spinor projector of the form3

.i � 
/5�i
j.j , �12 � /5��. � 0; (2.23)
3As it turns out to be more convenient for the N � 4 case, our
� differs by a factor i from the one used in [1]: �here � i�there.
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where �2 � 12 , �r�r � 
1. Using this projector, the
gaugino and hyperino BPS conditions can be brought to the
following form [1]:

igyx’
x0��

���
6

p
g@yP � 0; (2.24)

igYXq
X0�� iqX0�RYX;� �

���
6

p
gDYP � 0: (2.25)

The hyperino BPS equation (2.25) can be written in the
equivalent form ���

6
p
gKY � 2iqX0fRYX;�g � 0 (2.26)

by contracting (2.25) with the SU�2� curvature.
Contracting now (2.24) and (2.25) with, respectively,’y0

and qY0, one can solve for the projector � [23,25,26]:

� � ig
���
6

p ’x0@xP
’y0’z0gyz

(2.27)

� � ig
���
6

p qX0DXP
qY0qZ0gYZ

: (2.28)

When both vector multiplet scalars and hyperscalars are
nontrivial, consistency of (2.27) and (2.28) obviously re-
quires

qX0DXP
qY0qZ0gYZ

�
’x0@xP
’y0’z0gyz

: (2.29)

Squaring (2.27) and (2.28) finally yields the equations of
motion for the scalar fields,

’x0’y0gxy � �g
���
6

p �������������������������

�’x0@xP�2

q
(2.30)

qX0qY0gXY � �g
���
6

p ��������������������������

�qX0DXP�2

q
: (2.31)

As for the warp factor U�r�, a first order equation can be
obtained from the integrability condition of (2.18), which
yields

�U0�2 � 

e
2U

L2
4



2

3
g2P2: (2.32)

However, the compatibility condition of (2.18) and (2.23)
also implies a first order equation for U�r�:

U0 � 

ig���
6

p f�;Pg: (2.33)

Consistency of (2.32) and (2.33) then implies an algebraic
equation for the warp factor:

6e
2U

g2L2
4

12 � f�;Pg2 
 4P2: (2.34)

This is an important equation, because it tells us that the
domain wall is flat (corresponding to L4 ! 1) if and only
if P and � are proportional to one another, P � c�.
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There is yet one other important consistency condition,
which follows from the compatibility of (2.19) and (2.23).
It reads

��; Dr�� i
��
2
3

q
gP � 0: (2.35)

Since Eqs. (2.27) and (2.28) imply that � is proportional to
DrP:

DrP � ’0x@xP� q0XDXP � 

i���
6

p
g
g����0��0�;

(2.36)

where�� � f’x; qXg, the consistency condition (2.35) can
be rewritten in the form

�DrP; DrDrP� 1
3g����0��0P � 0: (2.37)

Obviously, (2.37) is a constraint on the possible field
dependence of P on a supersymmetric domain wall solu-
tion. As was shown in [1], this constraint is only partially
compatible with the geometric constraints from very spe-
cial geometry. More precisely, if the domain wall is sup-
ported only by vector multiplet scalars, (2.37) can only be
satisfied if � and P are proportional to one another. But,
according to (2.34), this means that the domain wall then
has to be flat. Thus, any BPS-domain wall that is supported
by vector multiplet scalars only has to be flat, and curved
domain walls require nontrivial hyperscalar profiles [1].

C. The relation to (N � 2) fake supergravity

The BPS-domain wall solutions reviewed in the pre-
vious subsection are classically stable solutions of the
underlying gauged supergravity theories. This follows
from standard arguments based on the existence of
Killing spinors and the first order form of the field equa-
tions along the lines of [38,39]. In [4–6], these stability
arguments were formalized and generalized to flat domain
wall solutions of a broader class of theories which, while
having some superficial similarities with true supergravity
theories, do not necessarily have to be supersymmetric and
can live in any space-time dimension D � �d� 1�. In
Ref. [2], such theories were dubbed fake supergravity
theories, and the formalism was further generalized and
refined to include also curved domain walls. More pre-
cisely, the theories studied in Ref. [2] are gravitational
theories with a single scalar field � and an action

S �
Z
dd�1x

�������

g

p
�

1

262 R

1

2
@��@

��
 V���
�
;

(2.38)

with a scalar potential V��� given by

V��� �
2�d
 1�2

62

�
1

2
Tr
��

1

62 �@�W�2 

d

d
 1
W2

�
:

(2.39)
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Here, W��� is an su�2�-valued �2� 2� matrix, which
implies that quadratic expressions such as W2, �@�W�2

or fW; @�Wg are proportional to the unit matrix. This
allows one to write the potential in an equivalent form
without explicitly taking the trace:

V���12 �
2�d
 1�2

62

�
1

62 �@�W�2 

d

d
 1
W2

�
: (2.40)

The matrix W also enters some fake Killing spinor
equations for an SU�2�-doublet spinor .,

�r
AdSd
m � /m�

1
2U

0/5 �W�. � 0; (2.41)

�@r � /5W. � 0; (2.42)

�
/5�

0 

2�d
 1�

62 @�W
�
. � 0: (2.43)

In this expression, U�r� is the warp factor of a �d�
1�-dimensional metric of the form (2.17), and r

AdSd
m de-

notes the covariant derivative for the AdSd background
metric gmn�x�. The prime means a derivative with respect
to r, which we have chosen, for all d, to be the fifth
coordinate x5. These fake Killing spinor equations can be
thought of as arising from some fake supersymmetry trans-
formation rules in a domain wall background (2.17),

�r� � /�W. � 0;�
/�r��


2�d
 1�

62 @�W
�
. � 0;

(2.44)

where r�. � �@� � 1
4!�

78/78�..
It is shown in [2] that the system (2.41), (2.42), and

(2.43) reproduces the second order field equations for the
warp factor U�r� and the scalar field ��r� that follow from
(2.38) and (2.39) with

e
2U�r�

L2
d

�
2TrW2 Tr�@�W�2 
 TrfW; @�Wg2

Tr�@�W�2
(2.45)

(where L2
d � 
12=RAdS is determined by the scalar cur-

vature of the AdS space) provided that the ‘‘superpoten-
tial’’ W��� satisfies the constraint�

@�W;
d
 1

62 @�@�W �W
�
� 0; (2.46)

which is a compatibility condition of (2.42) and (2.43).
As there are some obvious similarities with the analo-

gous equations in Secs. II A and II B, one might wonder
what exactly the relation between fake and real supergrav-
ity is, and how far-reaching the similarities are. As was
found in [1], the answer to this question turns out to be
surprisingly simple. In order to see this, three cases should
be distinguished:
(i) T
he domain wall is supported only by scalar fields
’x that sit in vector multiplets.
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(ii) T
-5
he domain wall is supported only by scalar fields
qX that sit in hypermultiplets.
(iii) T
he domain wall is supported by both types of
scalar fields, ’x and qX.
Let us first consider case (i). In this case, a supersym-
metric domain wall solution is given by profile functions
U�r� and ’x�r� that solve the BPS equations (2.18), (2.19),
and (2.20), where now Dr.i � @r.i, because qX0 � 0:�

r
AdS4
m � /m

�
1

2
U0/5 


ig���
6

p P
��
. � 0; (2.47)

�
@r � /5

�


ig���
6

p P
��
. � 0; (2.48)

�/5’x0 � ig
���
6

p
gxy@yP. � 0: (2.49)

Obviously, the two gravitino equations (2.47) and (2.48)
are now exactly of the fake supergravity form (2.41) and
(2.42) if we identify

W � 

ig���
6

p P: (2.50)

Upon this identification, the gaugino equation (2.49) also
assumes the form (2.43), the only difference being the
different number of scalar fields in these two expressions.
There are now two attitudes one could take. One could, for
example, simply view (2.49) as a suggestion for a gener-
alized form of fake supergravity which involves several
scalar fields. As we will see, however, running hypermul-
tiplet scalars in cases (ii) and (iii) suggest quite a different
generalization to several scalar fields. We will therefore, at
this point, choose the interpretation adopted in [1] and
bring (2.43) and (2.49) to exact agreement, by reducing
(2.49) effectively to an equation for one scalar field. In
order to do this, one recalls that a given domain wall
solution defines a curve on the scalar manifold M, which
in the case at hand lies entirely in MVS. As the coordinates
’x on MVS can be chosen at will, one can, at least locally,
choose ‘‘adapted’’ coordinates ’x�r� � �’�r�; ’x̂�, where
’�r� is aligned with the flow curve, and the other scalars’x̂

correspondingly do not depend on r. It is convenient (and
locally always possible) to choose these r-independent
coordinates ’x̂ to be orthogonal to the coordinate ’, at
least on the flow curve ’�r� itself (or on a sufficiently short
segment of it). This is illustrated in Fig. 1. On the flow
curve, the scalar field metric gxy then takes the form

gxy �
g’’ 0
0 gx̂ ŷ

� �
: (2.51)

By a suitable rescaling of ’, one can, on the curve
�’�r�; ’x̂�, also achieve g’’ � 1. The ’ component of
the gaugino equation (2.49) now coincides with the fake
supergravity version (2.43), and the orthogonal compo-



FIG. 1. A given domain wall defines a flow curve (thick arrow) on the scalar manifold MVS. In (a), the thin arrows correspond to a
generic coordinate system ’x � �’1; ’2�. In (b), the coordinate system ’x � �’;’x̂� is adapted to the flow curve, i.e., the flow curve
coincides with a coordinate line of ’ and intersects the coordinate lines ’x̂ at right angles.
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nents of (2.49) imply

@x̂P � 0: (2.52)

As qX0 � 0 also implies DXP � 0 via (2.25), the effec-
tive scalar potential (2.16) on the domain wall assumes a
simple form,

V12 � g2V12 � 4g2P2 
 3g2�@’P�2

� 
24W2 � 18�@’W�2; (2.53)

which precisely matches (2.40) for d � 4, 6 � 1 and � �
’. Thus, once the �nV 
 1� orthogonal BPS equa-
tions (2.52) have determined the line of flow on the scalar
manifold, the effective dynamics of the supporting scalar
field and the warp factor are precisely described by single-
field fake supergravity equations à la [2].

Let us now turn to case (ii) and assume the domain wall
is supported by hypermultiplet scalars only. In that case,
the gaugino BPS equation (2.20) implies

@xP � 0; (2.54)

because we now have ’x0 � 0. The gravitino equa-
tions (2.18) and (2.19) are again of the same form as the
corresponding fake supergravity equations (2.41) and
(2.42) provided that we again make the identification
(2.50) and gauge away the SU�2� connection along the
flow line:

qX0!Xi
j � 0 �SU�2� gauge choice; (2.55)

which is locally always possible, as explained in [1].
However, due to the explicit appearance of the SU�2�
curvature tensor, the hyperino BPS condition (2.21), or
its equivalent version (2.25),

igYXqX0�� iqX0�RYX;� �
���
6

p
gDYP � 0; (2.56)

clearly differs from the corresponding fake supergravity
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analogue (2.43). Likewise, the scalar potential (2.16) now
reads [remembering (2.54)]

V 12 � 4P2 
 �DXP��DXP�; (2.57)

which seems to have the ‘‘wrong’’ prefactor in front of the
derivative term when compared to (2.40). In order to make
contact between the two formulations, one again has to
interpret fake supergravity as the effective theory along the
flow line. More precisely, for a given domain wall solution,
one again chooses adapted coordinates qX�r� � �q�r�; qX̂�
such that, on the flow curve,

gXY �
gqq 0
0 gX̂ Ŷ

� �
; (2.58)

where gqq�q�r�; qX̂� can again be chosen to be equal to one.
The supersymmetry condition (2.56) now splits into two
equations:

q0�
 ig
���
6

p
DqP � 0; (2.59)

q0�RX̂q;� 
 ig
���
6

p
DX̂P � 0: (2.60)

In view of (2.23), the first equation (2.59) is easily seen to
be equivalent to the fake supergravity equation (2.43) pro-
vided the SU�2� gauge (2.55) is imposed. The second
equation should again be viewed as a set of constraint
equations that determines the position of the flow curve
in the full scalar manifold MQ as a codimension one
hypersurface. Note that (2.60) is different from the analo-
gous equation (2.52) in the case of running vector multiplet
scalars, as it no longer implies that the hatted derivatives of
P have to vanish. In fact, one can show that (2.60) implies
that, on a BPS-domain wall solution [1],

DX̂PD
X̂P � 2DqPDqP; (2.61)

showing that at least some components of DX̂P have to be
-6
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nonzero. Luckily, this is precisely as it should be, because
(2.61) exactly corrects the wrong prefactor �
1� in the
potential (2.57) to �
3�, so that, using the SU�2� gauge
(2.55),

V12 � g2V12 � 4g2P2 
 3g2�@qP�2

� 
24W2 � 18�@qW�2; (2.62)

i.e., exactly as in fake supergravity.
Let us finally mention the last case (iii) of running

vector- and hypermultiplet scalars. The flow curve now
has nontrivial projections ’x�r� and qX�r� on both scalar
manifold components, MVS and MQ. One can then, in a
first step, choose separate adapted coordinates ’x�r� �
�’�r�; ’x̂� and qX�r� � �q�r�; qX̂� on MVS and MQ, re-
spectively. In the SU�2� gauge (2.55), the BPS equations
and the scalar potential then look the same for both types of
scalars ’ and q. One can then employ a coordinate trans-
formation in the �’; q� plane,

�’�r�; q�r�� ! ���r�; �̂�; (2.63)

such that, locally, @r � q0@q � ’0@’ � �0@�. In this new,
totally adapted coordinate system, the BPS equation for �
and the scalar potential as a function of ��r� then take the
standard fake supergravity form [1].

The lesson we learn from this is that a generalization of
the single-field formalism of fake supergravity to several
scalar fields is not so straightforward, as the prefactors in
the scalar potential can be different and nontrivial connec-
tions and curvatures might come into play. However, in-
terpreting single-field fake supergravity as an effective
theory along the flow curve seems to make sense in all
cases. It is this latter interpretation that we will now try to
generalize to the N � 4 case.
III. BPS-DOMAIN WALLS IN N � 4 FAKE AND
TRUE SUPERGRAVITY

In this section, we study curved and flat BPS-domain
walls in 5D, N � 4 gauged supergravity and verify to
what extend one can generalize ‘‘N � 2’’ fake supergrav-
ity to N � 4 fake supergravity. We begin with a brief
summary of 5D, N � 4 ungauged [40] and gauged
[41,42] supergravity. Our notation follows that of
Ref. [42], to which the reader is referred for further details.

A. Ungauged 5D, N � 4 supergravity

In the previous section, the index i � 1; 2 was used to
denote the fundamental representation of the R-symmetry
groupUsp�2� � SU�2� of the 5D, N � 2 Poincaré super-
algebra. In this section,

i � 1; . . . ; 4 (3.1)

will instead denote the fundamental representation of the
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N � 4 R-symmetry group Usp�4�, which is locally iso-
morphic to SO�5�.

In ungauged 5D supergravity, vector fields and antisym-
metric tensor fields are equivalent, and the most general
ungauged N � 4 theory describes the coupling of n vec-
tor multiplets to supergravity.

The supergravity multiplet,

�e�
m;  i�; A

ij
�; a�; :

i; +�; (3.2)

contains the graviton e�
m, four gravitini  i�, six vector

fields �Aij�; a��, four spin 1=2 fermions :i and one real
scalar field +. The vector field a� is USp�4� inert, whereas
the vector fields Aij� transform in the 5 of USp�4�, i.e.,

Aij� � 
Aji�; Aij��ij � 0; (3.3)

with �ij being the symplectic metric of USp�4�.
An N � 4 vector multiplet is given by

�A�; 0
i; ’ij�; (3.4)

where A� is a vector field, 0i denotes four spin 1=2 fields,
and the ’ij are scalar fields transforming in the 5 of
USp�4�, similar to Eq. (3.3). Coupling n vector multiplets
to supergravity, the field content of the theory can then be
summarized as follows:

�e�
m;  i�; A

~I
�; a�; :

i; 0ia; +; ’x�: (3.5)

Here, a � 1; . . . ; n counts the number of vector multiplets
whereas ~I � 1; . . . ; �5� n� collectively denotes the Aij�
and the vector fields of the vector multiplets. Similarly, x �
1; . . . ; 5n is a collective index for all the scalar fields in the
vector multiplets. We will further adopt the following
convention to raise and lower USp�4� indices:

Ti � �ijTj; Ti � Tj�ji; (3.6)

whereas a; b are raised and lowered with #ab. Before we
proceed, we note that, in a more familiar language, quan-
tities such as A�i

j in the 5 of Usp�4� � SO�5� can be
expressed as A�i

j � A=��=i
j, where = � 1; . . . ; 5, and

�=i
j denote SO�5� gamma matrices,

�=i
j�>j

k � �=$ >� � 2#=>#ki : (3.7)

As was shown in [40], the manifold spanned by the �5n�
1� scalar fields is

M �
SO�5; n�

SO�5� � SO�n�
� SO�1; 1�; (3.8)

where the SO�1; 1� part corresponds to the USp�4� singlet
+ of the supergravity multiplet. The theory therefore has a
global symmetry group SO�5; n� � SO�1; 1� and a local
composite SO�5� � SO�n� invariance. The coset part of the
scalar manifold M can be described in two different ways:
(i) S
-7
tandard sigma model description.—As in (3.5) one
can simply choose a parametrization in terms of 5n
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independent real coordinates ’x on the coset space.
The vielbeins on the coset space can then be chosen
to be of the form

fijax � 
fjiax ; fijax �ij � 0; (3.9)

where �ij and a refer to the natural �5;n� tangent
space decomposition with respect to the holonomy
group H � SO�5� � SO�n�. The inverse vielbein,
fxaij, is defined by

faijx fxbkl � 4�#�i
k #

j
l 
 1

4�
ij�kl�#ab: (3.10)

The nonlinear +-model metric gxy on the coset part
of M is then given by

gxy �
1
4f
ija
x fayij; (3.11)

and the kinetic term for the scalar fields takes the
standard form 1

2gxy@�’
x@�’y. This way of describ-

ing M is particularly useful for discussing geomet-
rical properties of the theory.
(ii) C
4In [42], particular attention was paid to gauge groups of the
form K � Abelian � semisimple, but all results of [42] equally
apply to all gauge groups K � SO�5; n� under which the �5� n�
of SO�5; n� decomposes into a completely reducible representa-
tion so that tensor fields and vector fields are not connected by K
transformations (see also [34]). We only consider such gauge
groups in this paper. They include, in particular, the gauge
groups encountered in [43,44].
oset representatives.—The parametrization that
makes the symmetries of the theory as manifest as
possible is in terms of coset representatives, i.e.,
�5� n� � �5� n� matrices L~I

A � G � SO�5; n�
that are subject to local (‘‘composite’’) H �
SO�5� � SO�n� transformations (acting on the in-
dex A) and admit the action of global G � SO�5; n�
transformations (acting on the index ~I). The index
A � 1; . . . ; �5 � n� naturally decomposes into A �
�ij; a�, and so do the coset representatives, L~I

A �
�Lij~I ; L

a
~I
�, where Lij~I transforms in the 5 of SO�5�,

just as in (3.3). Denoting the inverse of L~I
A by LA

~I

(i.e., L~I
ALB

~I � #AB), the vielbeins on G=H and the
composite H connections are determined from the
G-invariant 1-form:

L
1dL � QabTab �QijTij � PaijTaij; (3.12)

where �Tab;Tij� are the generators of the Lie alge-
bra h of H , and Taij denotes the generators of the
coset part of the Lie algebra g of G. More precisely,

Qab � L~IadL~I
b and Qij � L~IikdL~Ik

j (3.13)

are the composite SO�n� and USp�4� connections,
respectively, and

Paij � L~IadL~I
ij � 
1

2f
aij
x d’x (3.14)

describes the space-time pullback of the G=H
vielbein. Note that Qab

� is antisymmetric in the
SO�n� indices, whereas Qij

� is symmetric in i and
j. Denoting by Dx the corresponding USp�4� and
SO�n� covariant derivative, one has the following
differential relations for the coset representatives
[40]:
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DxL~Iij � 
1
2L

a
~I
faxij; (3.15)

DxL
~I
ij �

1
2L

~Iafaxij; (3.16)

DxLa~I � 
1
2f
a
xijL

ij
~I
; (3.17)

DxL
~Ia � 1

2f
ija
x L~I

ij; : (3.18)

We finally note the identities (see [40,42])

#~I
~J � Lij~I L

~J
ij � La~I L

~Ja;

C~I ~J � Lij~I L~Jij 
 La~I L
a
~J
;

(3.19)

where C~I ~J is the (constant) SO�5; n� metric.

In the following, we will frequently switch between these
two formulations, which is easily done using Eq. (3.14).
The Lagrangians and supersymmetry transformation rules
can be found in [40,42].

B. 5D, N � 4 gauged supergravity

The above ungauged supergravity theories cannot sup-
port domain walls, because their scalar potentials vanish
identically, as enforced by supersymmetry. As is typical for
extended supergravity, nontrivial scalar potentials are re-
lated to nontrivial local gauge groups, K. These gauge
groups cannot be chosen at will, but have to be subgroups
of the global symmetry group G � SO�1; 1� � SO�5; n� of
the ungauged supergravity. As is explained in more detail
in [42], the SO�1; 1� factor in G cannot be gauged, and all
gauge groups, K, actually have to be suitable subgroups of
G � SO�5; n�. Under G � SO�5; n�, the vector fields A~I

�

transform in the defining representation �5� n�, whereas
a� is SO�5; n�-inert. If some of these vector fields are
promoted to gauge fields of a local gauge group K �
SO�5; n� under which some of the other fields are charged,
the general equivalence between vector and tensor fields is
broken [42]. Instead, one now has to distinguish carefully
between vector and tensor fields and pay attention to their
transformation properties under the gauge group K �
SO�5; n�. The result of the analysis in Ref. [42] is as
follows4:
(i) I
f the gauge group K is a direct product of an
Abelian factor KA and a (possibly trivial) non-
Abelian factor KS, the Abelian factor KA has to be
one-dimensional [i.e., either U�1� or SO�1; 1�, but
no higher powers/products thereof]. The gauge field
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of this Abelian factor is a�. Decomposing the vector
fields A~I

� into KA singlets, AI�, and nonsinglets, AM� ,
the nonsinglets AM� have to be converted to tensor
fields BM�7 for the gauging to be possible:

A~I
� ! �AI�; BM�7�: (3.20)
(ii) A
 possible non-Abelian factor, KS, is gauged by the
remaining vector fields AI�. The tensor fields BM�7
are inert under KS.
Turning on only the metric and the scalars, the correspond-
ing Lagrangian is of the form

e
1L � 
1
2R
 1

2�@�+�
2 
 1

2gxy@�’
x@�’y 
 V (3.21)

whereas the supersymmetry transformations of the fermi-
ons are

# �i � D�.i 
 i/��gAUi
j � gSSi

j�.j (3.22)

#:i � 

i
2
@6 +.i � 3@+�gAUi

j � gSSi
j�.j (3.23)

#0ai �
i
2
fa jxi �@6 ’

x�.j 
 �gAV
aj
i � gST

aj
i �.j: (3.24)

Here, gA and gS are the gauge couplings of, respectively,
the Abelian and the non-Abelian gauge group, and

Uij � Uji �

���
2

p

6
e2+=

��
3

p

�N
MLNikL

Mk
j (3.25)

Sij � Sji � 

2

9
e
+=

��
3

p

LJikf
K
JIL

kl
KL

I
lj; (3.26)

Vaij � 
Vaji �
1���
2

p e2+=
��
3

p

�N
MLNijL

Ma (3.27)

Taij � Taji � 
e
+=
��
3

p

LJaLKki f
I
JKLIkj; (3.28)

denote the ‘‘fermionic shifts’’ with the structure constants,
fKJI, of KS and the KA transformation matrix, �N

M, of the
tensor fields BM�7. The fermionic shifts also enter the scalar
potential,

V � 1
2�g

2
AV

a
ijV

aij 
 36gAgSUijSij � g2
S�T

a
ijT

aij


 9SijSij�; (3.29)

which is obtained from the trace of the ‘‘Ward identity’’
[42]

1
4#

j
iV � 1

2g
2
AV

ak
i V

aj
k � gAgS�9�Si

kUk
j �Ui

kSk
j�

� 1
2�V

ak
i T

aj
k 
 Taki V

aj
k �


 1
2g

2
S�T

ak
i T

aj
k 
 9Si

kSk
j: (3.30)
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C. BPS-domain walls

Our goal is to study domain walls of the form (2.17) that
are supported by nontrivial scalar profiles +�r� and/or
’x�r� and preserve one-half of the N � 4 supersymmetry.
This analysis would be considerably simplified if one could
bring the BPS equations and the scalar potential into a fake
supergravity form similar to (2.39), (2.41), (2.42), and
(2.43) for the N � 2 case. In N � 2 supergravity, the
gravitino shift W � 
�ig=

���
6

p
�P was a usp�2� �

su�2�-valued �2� 2� matrix [cf. Eq. (2.50)]. For N � 4
supergravity, the gravitino shift is a usp�4� �
so�5�-valued �4 � 4� matrix, 
i�gAUi

j � gSSi
j� [see

Eq. (3.22)]. In analogy with the N � 2 case, we choose
to call this gravitino shift Wi

j:

Wi
j :� 
i�gAUi

j � gSSi
j�: (3.31)

Furthermore, we will, from now on, suppress the usp�4�
indices i; j � 1; . . . ; 4 by using boldface expressions such
as

W � Wi
j; WW � Wi

jWj
k; etc:; (3.32)

just as we did in Sec. II for the analogous �2� 2� matrices.
Note that, in this boldface notation, the position of the
indices is always assumed to be of the form shown in
(3.32), which differs, for example, by a minus sign from
expressions such as WijWjk due to the convention (3.6). In
a domain wall background, the gravitino and dilatino BPS
equations (3.22) and (3.23) then take the form

�r
AdS4
m � /m�

1
2U

0/5 �W�. � 0; (3.33)

�Dr � /5W. � 0; (3.34)

�/5+0 
 6@+W. � 0; (3.35)

which are precisely of the same form as the fake super-
gravity equations (2.41), (2.42), and (2.43), except, that W
is now a �4� 4� matrix instead of a �2� 2� matrix. Adding
0 � 6g2

AU
2 
 9

2g
2
A�@+U�

2 to the right-hand side of (3.30),
the scalar potential reads

1
4V14 � 
6W2 � 9

2�@+W�2 � 1
2�g

2
AV

aVa � gAgS�Va;Ta


 g2
ST

aTa: (3.36)

Thus, if the domain wall is supported by +�r� only [i.e., if
’x0 � 0 and hence Va � Ta � 0 via Eq. (3.24)], the BPS
equations (3.33), (3.34), and (3.35) and the scalar potential
(3.36) generalize the N � 2 fake supergravity equa-
tions (2.40), (2.41), (2.42), and (2.43) to what one might
call N � 4 fake supergravity. The interesting question
now is: Can a nontrivial profile ’x�r� also be incorporated
in this formalism? This obviously requires two things:
(i) T
-9
he gaugino/tensorino BPS condition (3.24) has to
be brought into a form in which Va and Ta are
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expressed in terms of derivatives of W with respect
to ’x with the same relative prefactors as in (3.35).
(ii) T
he term in brackets in the scalar potential (3.36)
should likewise be reexpressed in terms of ’x de-
rivatives of W with the prefactor 9=2, just as for the
�@+W�2 term.
As we will see, the rewriting of the vector and tensor
multiplet sector along these lines bears many similarities
with the hypermultiplet sector of N � 2 supergravity, but
also shows some novel features. Let us start with the BPS
equation (3.24). In the domain wall background (2.17) it
reads, after using a projector of the form (2.23) [now with
�4� 4� matrices],



i
2
’x0fax�
 gAVa 
 gSTa � 0: (3.37)

Multiplying by fay from the left and using [40,42]

f ayfax � gyx14 � 4Ryx; (3.38)

this becomes



i
2
’x0gyx�
 2i’x0Ryx�
 fay�gAVa � gSTa� � 0:

(3.39)

Decomposing (3.39) into symmetric and antisymmetric
part, one obtains



i
2
’x0gyx�
 i’x0�Ryx;� 


gA
2
�fay;Va 


gS
2
ffay;Tag

� 0

(3.40)


i’x0fRyx;�g 

gA
2
ffay;Vag 


gS
2
�fay;Ta � 0: (3.41)

Using (3.15), (3.16), (3.17), (3.18), and (3.19) and the
invariance conditions for the structure constants fKIJ and
the transformation matrices �N

M,

CIJf
I
KL � CILf

I
KJ � 0 (3.42)

�P
MCPN � �P

NCMP � 0; (3.43)

one derives [42]

DyU � 1
6�f

a
y;Va (3.44)

DyS � 1
6ff

a
y;Tag; (3.45)

so that (3.40) becomes

’x0gyx�� 2’x0�Ryx;� � 6DyW � 0: (3.46)

If one now switches to adapted coordinates �’�r�; ’x̂�, with
’x̂ constant and perpendicular to ’ along a given flow
curve, one obtains for the (canonically normalized) ’
component of (3.46)
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’0�� 6D’W � 0: (3.47)

Gauging away the composite Usp�4� connection,

’x0Qxi
j � 0 �Usp�4� gauge choice (3.48)

and taking into account (2.23), this assumes the desired
fake supergravity form [cf. (3.35)]. The other BPS equa-
tions can again be viewed as constraints that determine the
position of the flow curve on the full scalar manifold. Let
us now turn to the scalar potential. Using (3.44) and (3.45)
as well as (3.10), one derives

DxUDxU � 
4
9V

aVa (3.49)

fDxS; DxUg � 1
3�T

a;Va (3.50)

DxSDxS � 1
9�T

aTa � 1
2 Tr�TaTa�14: (3.51)

These relations allow one to reexpress the term in brackets
in (3.36) in terms of derivatives of U and S:

1
4V14 � 
6W2 � 9

2�@+W�2 
 9
8g

2
ADxUDxU


 3
2gAgSfDxS; DxUg 
 9

2g
2
S�DxSDxS


 1
6 Tr�DxSDxS�14�: (3.52)

We note three interesting features of this expression:

(i) I
-10
n contrast to the N � 2 analogue (2.16), the Ward
identity (3.52) can, in general, not be written with-
out taking some traces.
(ii) E
ven after taking the trace of (3.52), the prefactor
of the �DxU�2 term is different from the prefactor of
the fDxS; DxUg term and the �DxS�2 term. This
means that, as long as gA and gS are both non-
vanishing, one cannot write these terms as some-
thing proportional to �DxW�2, i.e., in terms of
derivatives of the full gravitino shift W. Again,
this is different from the N � 2 case (2.16).
(iii) I
f gS � 0, or if gA � 0, the scalar potential can be
written as the full gravitino shift and its derivatives,
but in neither of these two special cases, the ’x

derivatives appear with the ‘‘right’’ coefficient 9=2
required by fake supergravity.
Properties (i) and (ii) are clearly different from the N � 2
case. These differences can in part be traced to the fact that
the adjoint of Usp�4� is no longer equivalent to the vector
representation of SO�5�, as was the case for SU�2� and
SO�3�. This implies, in particular, that symmetric products
of usp�4�-valued matrices such as DxSDxS are no longer
automatically proportional to the unit matrix, as was the
case for su�2�-valued matrices such as DXPDXP in the
N � 2 case due to the anticommutation properties of
the Pauli matrices, i.e., the Clifford algebra of SO�3�. On
the other hand, even the N � 2 hypermultiplet sector did
not fall into the N � 2 fake supergravity framework
before the BPS equations and adapted coordinates were
imposed [see Eqs. (2.16) vs (2.62)]. Thus, there is still
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some hope that imposing the BPS equations (3.40) and
(3.41) and using the adapted coordinates ’x�r� �
�’�r�; ’x̂� miraculously transforms the last three terms in
(3.52) into 9=2�D’W�2 and removes at least some of the
above-mentioned differences to the N � 2 case. To see
whether this works, let us go back to the BPS condition
(3.46) and its ’ component (3.47), which we rearrange as
(normalizing g’’ � 1)

DyW � 
1
6’

x0gxy�
 1
3’

x0�Ryx;� (3.53)

			! D’W � 
1
6’

0� �y � ’�: (3.54)

Squaring (3.54) gives

D’WD’W � 1
36�’

0�214: (3.55)

On the other hand, squaring (3.53) and using (3.41) as well
as the identity

R xyRx
z � 
1

4gyz14 

3
4Ryz; (3.56)

one derives

DyWDyW�
5

36
’x0’z0gxz14 


g2
A

36
ffay;Vagffby;Vbg



gAgS
36

�ffay;Vag�fby;Tb� �fay;Taffby;Vbg�



g2
S

36
�fay;Ta�fby;Tb: (3.57)

Using (3.10), the vielbeins can be eliminated, and (3.57)
becomes

DyWDyW �
5

36
’x0’z0gxz14 


g2
A

9
VaVa



gAgS
9

�Va;Ta �
g2
S

18
Tr�TaTa�14: (3.58)

However, �DxW�2 can be computed directly from (3.49),
(3.50), and (3.51) and the definition (3.31):

DyWDyW �
4

9
g2
AV

aVa 

gAgS
3

�Ta;Va



g2
S

9

�
TaTa �

1

2
Tr�TaTa�14

�
: (3.59)

Consistency of (3.58) and (3.59) then implies

5
4’

x0’z0gxz14 � 5g2
AV

aVa � 4gAgS�Va;Ta


 g2
S�T

aTa � Tr�TaTa�14�; (3.60)

or, after taking the trace,

’x0’z0gxz � g2
A Tr�VaVa� 
 g2

S Tr�TaTa�: (3.61)

Switching to adapted coordinates, (3.55) then becomes

D’WD’W � 1
36�g

2
A Tr�VaVa� 
 g2

S Tr�TaTa��14;

(3.62)
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and we finally obtain for the scalar potential (3.36)

V � 
6TrW2 � 9
2 Tr�@+W�2 � 9

2 Tr�D’W�2: (3.63)

Thus, after employing the Usp�4� gauge choice (3.48), the
’ sector and the + sector enter the theory symmetrically
and with the right prefactors. If both ’ and + are running,
one can, just as in N � 2 supergravity, go over to a total
adapted coordinate ��r� with +0@+ � ’0@’ � �0@� so as
to obtain N � 4 single-field fake supergravity equations
[see the discussion around (2.63)].

D. Consistency conditions and domain wall curvature

Let us summarize what we have shown so far. In 5D,
N � 4 supergravity, the gravitino BPS equations in a
1
2 -supersymmetric domain wall background read

�r
AdS4
m � /m�

1
2U

0/5 �W�. � 0; (3.64)

�Dr � /5W. � 0: (3.65)

Subjecting the spinor . to

/5. � 
�.; (3.66)

the dilatino equation becomes

+0�� 6@+W � 0; (3.67)

and the gaugino/tensorino BPS equation can be decom-
posed as follows:

’x0gyx�� 2’x0�Ryx;� � 6DyW � 0 (3.68)

2’x0fRyx;�g 
 igAffay;Vag 
 igS�fay;Ta � 0: (3.69)

In adapted coordinates, ’x�r� � �’�r�; ’x̂�, the scalar po-
tential reads

V � 
6TrW2 � 9
2 Tr�@+W�2 � 9

2 Tr�D’W�2; (3.70)

and (3.68) splits further into

’0�� 6D’W � 0 (3.71)

2’0�Rŷ’;� � 6DŷW � 0: (3.72)

Equations (3.67) and (3.68) can be solved for �:

� � 
6
@+W
+0

(3.73)

� � 
6
’y0DyW
’x0’z0gxz

� 
6
D’W
’0

: (3.74)

If both + and ’x are running, consistency of these two
expressions requires

@+W
+0

�
’y0DyW
’x0’z0gxz

�
D’W
’0

: (3.75)

Equations (3.73) and (3.74) also imply
-11
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DrW � �+0@+ � ’x0Dx�W � 
1
6��+

0�2 � ’x0gxy’
y0��:

(3.76)

Squaring (3.73) and (3.74) gives the first order equation for
the scalars,

+0 � �6
�����������������
�@+W�2

q
(3.77)

’x0gxy’
y0 � �6

�����������������������
�’x0DxW�2

q
) ’0 � �6

������������������
�D’W�2

q
:

(3.78)

Let us now turn to the warp factor. Just as in Sec. II B, the
integrability condition of (3.64), yields

�U0�2 � 4W2 

e
2U

L2
4

: (3.79)

On the other hand, the compatibility condition between
(3.64) and (3.66) gives

U0 � f�;Wg; (3.80)

which, when combined with (3.79), gives



e
2U

L2
4

14 � f�;Wg2 
 4W2; (3.81)

just as in (2.34). Hence, a BPS-domain wall is flat if and
only if

f�;Wg2 � 4W2 �flatness condition�: (3.82)

It is shown in the appendix that this is equivalent to

��;W � 0 , �DrW;W � 0

�equivalent flatness condition�;
(3.83)

where we have used (3.76). Finally, there is the N � 4
analogue of Eq. (2.35), namely, the compatibility condition
of (3.65) and (3.66),

��; Dr�
 2W � 0; (3.84)

or, using (3.76),

�DrW; DrDrW � 1
3��+

0�2 � ’x’ygxy�W � 0: (3.85)
E. Special cases

In this subsection, we will take a closer look at the
implications of the equations listed in Sec. III D and apply
them to a number of special cases.
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Case 1.—The gauging is purely Abelian:

gS � 0: (3.86)

In this case, W � 
igAU, and (3.67) implies

+0� � 
4
���
3

p
W: (3.87)

Thus, +0 � 0 would imply W � 0 along the flow, and,
hence, because of (3.80), also U�r� � const, i.e., a trivial
domain wall. In other words, for a nontrivial Abelian BPS-
domain wall, +0 has to be nonzero. Now, a running +�r�,
however, means that (3.87) can be solved for �:

� � 
4
���
3

p W
+0
: (3.88)

This implies that the domain wall has to be flat because of
(3.83). On the other hand, due to the simple + dependence,
(3.77) can be readily solved:

+�r� � a ln�r
 ro� � b (3.89)

with some constants a and b. Hence, +�r� always ap-
proaches infinity, which is not surprising in view of the
simple runaway behavior of the scalar potential in the +
direction when gS � 0.

Case 2.—The gauging is purely non-Abelian:

gA � 0: (3.90)

In this case, W � 
igSS, and the simple exponential
behavior of W leads to similar conclusions as in the purely
Abelian case: Just as in (3.87), one concludes that +�r� has
to have a nontrivial r dependence for the domain wall to be
nontrivial. This, however, also implies that � is always
proportional to W, and any domain wall must be flat, due to
(3.83). Again, the runaway behavior of the potential leads
to a logarithmic r dependence of the scalar field +�r�.

Case 3.—The mixed gauging:

gAgS � 0: (3.91)

When both the Abelian part and the non-Abelian part are
gauged, the + dependence of W no longer factors out and
neither does the scalar potential have a simple runaway
behavior in the + direction. Nevertheless, the structure of
domain walls that are solely supported by the supergravity
scalar + are still quite limited. In order to see this, consider
the consistency condition (3.85), which, for ’x0 � 0, sim-
plifies to

�@+W; @2
+W � 1

3W � 0: (3.92)

Using (3.31) and the + dependence of U and S, (3.25) and
(3.26), one easily sees that (3.92) implies

�U;S � 0: (3.93)

But this also implies �@+W;W � 0, and hence, via (3.83),
the flatness of the domain wall. Thus, taking into account
our observations in the purely Abelian and purely non-
-12
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Abelian case, we find that a domain wall supported by+�r�
only can never be curved. Obviously, the condition
�U;S � 0 is automatically satisfied if either gA or gS
vanishes. One way to satisfy �U;S � 0 for gAgS � 0 is
as follows: Suppose, the gauge group K contains the ob-
vious SO�3� � SO�2� subgroup of SO�5� � SO�5; n� as a
factor. More generally, one could take the SO�2� factor of
the gauge group to be a diagonal subgroup of the SO�2� �
SO�5� and some product of SO�2�’s that are contained in
SO�n� � SO�5; n� such that, underKA transformations, the
tensors charged under SO�2� � SO�5� do not mix with the
tensors charged under the other SO�2� subgroups of SO�n�.
These gaugings are precisely the ones that occur in the
N � 4 orbifold compactifications [45] in the AdS/con-
formal field theory correspondence [8]. In such a gauging,
the five vector fields A1;...;5

� of the ungauged supergravity
multiplet split into a triplet of SO�3�-gauge fields, which
we take to be A1;2;3

� , and a doublet of tensor fields, B4;5
�7,

charged under the SO�2�. Suppose further that the scalar
fields ’x of the vector and tensor multiplets all sit at the
‘‘origin’’ of the symmetric space SO�5; n�=SO�5� �
SO�n�: LA~I � #A~I . Since, by assumption, the tensor field
transformation matrix �N

M does not mix the supergravity
tensors B4;5

�7 with the other tensor fields (provided such
additional tensor fields exist), and since the SO�3� part of
the gauge group is supposed to be a direct factor, it is easy
to see that Vaij and Taij from Eqs. (3.27) and (3.28) vanish at
this critical point, which is consistent with the BPS con-
ditions (3.40) and (3.41) and ’x0 � 0. Using SO�5�-gamma
matrices [see Eq. (3.7)] to convert Usp�4� indices i; j �
1; . . . ; 4 into SO�5� indices =;> � 1; . . . 5, it is easy to see
that

U � e2+=
��
3

p

�45 (3.94)

S � e
+=
��
3

p

�123 � e
+=
��
3

p

�45 (3.95)

and hence �U;S � 0. In fact, if the scalars’x are frozen as
described, the model becomes effectively the Romans
model [41]. The BPS conditions for the general case of
running scalars ’x�r� and +�r� can be analyzed along
similar lines using Eqs. (3.44) and (3.45) as well as [42]

DxVa �

�
e2+=

��
3

p

2
���
2

p �N
ML

a
NL

Mb
�
fbx �

3

2
�fax;U (3.96)

DxTa �
�
e
+=

��
3

p

2
fIJKL

JaLbI

�
�LK; fbx �

3

2
ffax;Sg; (3.97)

but the results are in general model-dependent and beyond
the scope of this paper.
IV. CONCLUSIONS

In this paper, we have shown that the BPS equations and
the scalar potentials for 1=2-BPS-domain walls in 5D,
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N � 4 gauged supergravity can be cast into a generalized
form of fake supergravity. In many respects, this parallels
the situation in N � 2 supergravity in five dimensions,
but there are also important differences. Most importantly,
the gravitino shift is now a usp�4�-valued �4 � 4� matrix
instead of a su�2�-valued �2� 2� matrix. This means that
some peculiarities of the group SU�2� are no longer valid,
which makes it all the more surprising that the simple form
of the fake supergravity equations remains largely unal-
tered (in fact, the only immediately visible difference is
that the scalar potential in N � 4 fake supergravity can no
longer be written in terms of the gravitino shift W without
taking the trace). Furthermore, due to the doubled amount
of supersymmetry, there are now twice as many BPS
conditions to satisfy. It should also be noted that the scalar
manifolds are no longer of the type encountered in N � 2
supergravity, but are subject to completely different geo-
metrical constraints. The fact that nevertheless the full
dynamics along the flow line is captured by almost iden-
tical equations suggests that possibly all BPS-domain walls
in all space-time dimensions and for all amounts of super-
symmetry can be described in terms of an appropriately
generalized form of fake supergravity. This could, for
instance, be due to some general properties of gauged
supergravities in the spirit of [46]. The results of this paper
should help distinguish N � 2 artifacts from this general
formulation.

Recasting domain wall equations of supergravity theo-
ries into a fake supergravity language greatly simplifies
their study. This was already demonstrated in [1], and in
this paper we saw that also N � 4 domain walls can be
studied quite efficiently in this language. For example, we
could easily rule out curved BPS-domain walls if the gauge
group is purely Abelian or purely semisimple. In both of
these cases, domain walls furthermore show a runaway
behavior in the + direction. In the mixed gauging, curved
domain walls are ruled out if they are supported by +�r�
only.

It might be interesting to apply the results of this paper to
the study of holographic renormalization group flows along
the lines of [8] or in the context of domain wall solutions in
flux compactifications, which single out certain types of
gauge groups [9–11]. Another interesting further direction
concerns a generalization to 1=4-BPS-domain walls [8],
which are impossible in N � 2 supergravity. One might
also wonder whether other types of solutions such as
charged black holes or cosmic strings have a similar de-
scription in terms of some other form of fake supergravity,
in which all scalars are treated equally, independently of
the space-time dimension or the amount of supersymmetry.
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APPENDIX: THE FLATNESS CONDITION

As shown in Sec. III C, a 1=2-BPS-domain wall in 5D,
N � 4 supergravity is flat if and only if [cf. Eq. (3.82)]

f�;Wg2 � 4W2: (A1)

A sufficient condition for this to hold is obviously

��;W � 0: (A2)

We will now show that this condition is also necessary.
Both � and W are usp�4� � so�5�-valued, so they can be
expressed in terms of the SO�5� gamma matrices (3.7) via

� � �=>�=>; W � W=>�=>: (A3)

Without loss of generality, we can assume � � 2�12�12.
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Using

f�=>;�/#g � 2�=>/# � 2#=##>/ 
 2#>##=/; (A4)

one finds that �2 � 14 implies ��12�2 � 
1=4. (A4) now
implies

f�;Wg2 � �2�=>W/#�=>/# 
 4�=>W=>14
2: (A5)

Isolating the part of (A5) that is proportional to the unit
matrix, one easily sees that this is [remembering � �
2�12�12 and ��12�2 � 
1=4]


16��W12�2 � �W34�2 � �W35�2 � �W45�2: (A6)

In 4W2, on the other hand, the part proportional to the unit
matrix is easily seen to be 
8W=>W=>, so that (A1)
implies that all components except W12; W34; W45; W35

have to vanish. This implies (A2).
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