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Nonequilibrium dynamics of moving mirrors in quantum fields:
Influence functional and the Langevin equation
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We employ the Schwinger-Keldysh formalism to study the nonequilibrium dynamics of the mirror with
perfect reflection moving in a quantum field. In the case where the mirror undergoes the small
displacement, the coarse-grained effective action is obtained by integrating out the quantum field with
the method of influence functional. The semiclassical Langevin equation is derived, and is found to
involve two levels of backreaction effects on the dynamics of mirrors: radiation reaction induced by the
motion of the mirror and backreaction dissipation arising from fluctuations in quantum field via a
fluctuation-dissipation relation. Although the corresponding theorem of fluctuation and dissipation for the
case with the small mirror’s displacement is of model independence, the study from the first principles
derivation shows that the theorem is also independent of the regulators introduced to deal with short-
distance divergences from the quantum field. Thus, when the method of regularization is introduced to
compute the dissipation and fluctuation effects, this theorem must be fulfilled as the results are obtained by
taking the short-distance limit in the end of calculations. The backreaction effects from vacuum
fluctuations on moving mirrors are found to be hardly detected while those effects from thermal
fluctuations may be detectable.
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I. INTRODUCTION

Zero-point fluctuations due to the imposition of the
boundary conditions can lead to an impact on macroscopic
physics. One of the most celebrated examples is the attrac-
tive Casimir force between two parallel conducting plates
[1]. However, the dynamics of fluctuations subject to the
moving boundary may also be detectable, sometimes re-
ferred to as the dynamical Casimir effects [2–9]. Consider
a perfectly reflecting mirror moving in quantum fields. The
boundary conditions on quantum fields corresponding to
perfect reflection result in the interaction of the mirror with
the fields. The motion of the mirror, which leads to the
moving boundary, can create quantum radiation that in turn
damps out the motion of the mirror as a result of the
motion-induced radiation reaction force. In fact, as re-
quired by Lorentz invariance of quantum fields, this radia-
tion reaction force vanishes for a motion with uniform
velocity. In a motion of uniform acceleration, the mirror
suffers from the same fluctuations as if it was at rest in a
thermal bath due to the Unruh effects [10], also leading to
the zero dissipative radiation reaction force. Fulling and
Davies have computed this force for a moving mirror in a
massless scalar field in the 1� 1 dimensional spacetime. It
turns out that the induced dissipative force is proportional
to the third time derivative of the mirror’s position [7]. In
3� 1 dimensional spacetime, the problem has been
studied by Ford and Vilenkin in terms of a first order
approximation of the mirror’s displacement. The corre-
sponding dissipative force then is given by the fifth time
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derivative of the position in the nonrelativistic limit [8].
However, as we know, all quantum fields exhibit fluctua-
tions that manifest themselves through the fluctuating
forces on the mirror such as fluctuations of Casimir forces
[11–14]. Thus, through a fluctuation and dissipation rela-
tion as in the case of Brownian motion, in addition to
motion-induced radiation reaction, the mirror must expe-
rience the backreaction dissipation effect arising from the
force fluctuations [2–5]. In this paper, a first principles
derivation is provided to study the dynamics of the moving
mirror by taking account of the backreaction effects from
quantum fields consistently within the context of the
Schwinger-Keldysh formalism. Coarse graining the de-
grees of freedom of quantum fields results in the coarse-
grained effective action with the method of influence func-
tional. This approach can naturally lead to the Langevin
equation in the semiclassical approximation, and allows us
to obtain the corresponding fluctuation and dissipation
theorem from a microscopic point of view.

The problem addressed in this paper can be viewed as a
special case of the larger problem of radiation reaction
arising from vacuum or/and thermal fluctuations [15–17].
Especially, in vacuum, this problem can probe the nature of
vacuum fluctuations and viscosity in relation with the
backreaction of cosmological particle creation.

This paper is organized as follows: The theory to de-
scribe the interaction between the mirror and quantum
fields is discussed in Sec. II. In Sec. III the Langevin
equation in the semiclassical approximation is obtained
by integrating out quantum fields. The backreaction forces
are computed in Sec. VI. In Sec. V we derive the corre-
sponding fluctuation and dissipation theorem, and discuss
its applications. The calculations to obtain the dynamics of
-1  2005 The American Physical Society
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the moving mirror involving backreaction effects from
quantum fields in vacuum and at finite temperature, re-
spectively, are presented in Sec. VI. We then draw the
conclusions in Sec. VII.
II. FIELD PERTURBATION DRIVEN BY SMALL
MIRROR’S DISPLACEMENT

We consider a mirror with perfect reflection moving in a
quantum field given by a massless, minimally coupled
scalar field. As a result, the corresponding boundary con-
dition on the scalar field is as follows:

�jS � 0: (1)

The mirror of mass m and area A is oriented parallel to the
z � 0 plane. We assume that the mirror has a small dis-
placement �q�t� along the z direction from the origin
which can be obtained, for example by applying the clas-
sical external force. Then, the boundary condition above
can be expressed in the specific form

��x; y; �q�t�; t� � 0: (2)

To first order in �q�t�, we obtain

���x; y; 0; t� � �q�t�@z��x; y; 0; t� � � � �� � 0: (3)

We then further assume that the mirror’s surface S has
small perturbations induced from the motion of the mirror.
This means that the quantum field � can be written as

� � �0 � ��; (4)

where the field �0 corresponds to the field fluctuations
with respect to the unperturbed surface S0 at the z � 0
plane, while the field �� is the induced fluctuations on the
surface S driven by the motion of the mirror, and is of order
�q�t�. Thus, together with Eqs. (3) and (4), and the vanish-
ing boundary condition of the field �0 on S0,

�0�x; y; 0� � 0; (5)

the perturbed field ��, to first order in �q�t�, is given by

���x; y; 0; t� � 	�q�t�@z�0�x; y; 0; t�: (6)

The force acting on both sides of the mirror is given by the
area integral of the z	 z component of the stress tensor in
terms of field operators:

F�t� � F�0	; t� 	 F�0�; t�

�
Z
A
dxdy�Tzz�x; y; 0

	; t� 	 Tzz�x; y; 0
�; t��; (7)

where

Tzz �
1

2
��@t��2 � �@z��2 	 �@x��2 	 �@y��2�: (8)

To first order in �q�t�, we can write

Tzz � T0;zz � �Tzz; (9)
125005
where

T0;zz �
1

2
��@t�0�

2 � �@z�0�
2 	 �@x�0�

2 	 �@y�0�
2�;

(10)

�Tzz �
1

2
�@t�0@t��� @t��@t�0 � @z�0@z��

� @z��@z�0 	 @x�0@x��	 @x��@x�0

	 @y�0@y��	 @y��@y�0�: (11)

It leads to the following effective force term:

F�t� � F0�t� � �q�t�
�F
�q

�t�; (12)

where

F0�t� � F0�0
	; t� 	 F0�0

�; t�

�
Z
A
dxdy�T0;zz�x; y; 0

	; t� 	 T0;zz�x; y; 0
�; t��;

(13)

�q�t�
�F
�q

�t� � �q�t�
�
�F
�q

�0	; t� �
�F
�q

�0�; t�
�

� �q�t�
Z
A
dx dy

�
�Tzz
�q

�x; y; 0	; t�

�
�Tzz
�q

�x; y; 0�; t�
�
: (14)

Notice that the � sign for the perturbed force in Eq. (14) is
due to the fact that there is a sign difference for the mirror’s
displacement seen from the forces in the opposite sides of
the mirror. The �q in Eq. (14) is defined to be the mirror’s
displacement with respect to the force from z � 0	.

Thus, the Lagrangian can be expressed as

L��q;�0� �
1

2
m�� _q�2 	 V��q� � �q�t�F0�t� �

1

2
�q2�t�



�F
�q

�t� �
Z
d3x

�
1

2
�@t�0�

2 	
1

2
� ~5�0�

2

�
;

(15)

which is subject to the boundary condition on the field �0

given by

�0�x; y; 0; t� � 0: (16)

The classical external force is also considered to apply to
the mirror with potential energy V��q�. Units with �h �
c � 1 are used, and factors �h and c will be restored in our
main results.

Notice that the first term in the right hand side of
Eq. (12) given by the homogeneous background scalar
field is evaluated at the unperturbed surface S0, where by
symmetry, the mean pressure force vanishes as the forces
are cancelled from both sides of the mirror, i.e.,
-2
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hF0�t�i � hF0�0
	; ti� 	 hF0�0

�; t�i � 0: (17)

NONEQUILIBRIUM DYNAMICS OF MOVING MIRRORS . . .
However, this force undergoes fluctuations about its
mean value due to quantum and/or thermal effects, and
will influence the dynamics of the mirror. In addition,
h�F=�qi�q�t� is the force arising from the motion of the
mirror. This motion-induced radiation reaction force has
been extensively studied in the case of the background
scalar field in vacuum as well as in thermal equilibrium
respectively [7,8,14].

Here we employ the Schwinger and Keldysh formalism
to obtain the influence functional on the moving mirror by
integrating out the scalar field with the Lagrangian given
by Eq. (15). Recall that Eq. (6) is based upon the fact that
the mirror undergoes the small displacement where the
Lagrangian in Eq. (15) is correct up to order O��q2�. We
then implement the semiclassical approximation by assum-
ing that the quantum fluctuations coming from the mirror
itself can be ignored to obtain its semiclassical Langevin
equation. It can be justified by the fact that the typical size
of the mirror is much larger than its Compton wavelength.
Under this semiclassical approximation, the dynamics of
the mirror is governed by the coarse-grained effective
action involving the influence functional. However, for a
general interacting field theory, one cannot obtain the
influence functional that includes all of the quantum loop
effects by integrating out the scalar field. However, here we
obtain the influence functional including all quantum ef-
fects up to order O��q2� consistent with the approximation
in the Lagrangian [Eq. (15)] we mention above. It is then
expected that in addition to the classical dynamical equa-
tion given by the external potential V��q�, the obtained
semiclassical Langevin equation will involve the backre-
action force terms arising from the quantum effects of the
scalar field where the terms are kept up to �q. The terms
we ignore are say, � _q2, �q� �q, so on and so forth. On top of
that, the noise force with the Gaussian correlation function
will be introduced to mimic the stochastic dynamics from
the scalar field fluctuations.
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III. INFLUENCE FUNCTIONAL AND LANGEVIN
EQUATION

We now consider the case where an initial density matrix
for the mirror plus the scalar field at t � ti is factorized as

�̂�ti� � �̂mirror�ti� � �̂�0
�ti�; (18)

where we have assumed that the mirror and the scalar field
are initially uncoupled. The mirror initially is assumed to
be in its position eigenstate with the eigenvalue �qi given
by

�̂ mirror�ti� � j�qi; tiih�qi; tij: (19)

However, the scalar field is in thermal equilibrium at
temperature T � 1=� with the density matrix

�̂ �0
�ti� � e	�H�0 ; (20)

where H�0
is the Hamiltonian for the free scalar field given

from Eq. (15). The zero-temperature limit corresponding to
the initial vacuum state for the scalar field can be studied
by taking T ! 0. The interaction between the mirror and
the scalar field is considered to switch on at t � ti. Then, in
the Schrödinger picture, the density matrix evolves in time
as

�̂�tf� � U�tf; ti��̂�ti�U	1�tf; ti� (21)

with U�tf; ti�, the time evolution operator. Thus, the non-
equilibrium partition function can be defined as

Z � Tr�U�tf; ti��̂�ti�U	1�tf; ti��: (22)

We then insert an identity in terms of a complete set of the
mirror plus field eigenstates,Z

dq d�jq;�ihq;�j � 1; (23)

between all time evolution operators where the mirror plus
field state denoted as jq;�i is given by the direct product of
the state of the mirror and that of the scalar field, namely,
jq;�i � jqi � j�i. Then, the nonequilibrium partition
function becomes
Z�
Z
d�q1d�1

Z
d�q2d�2

Z
d�q3d�3h�q1;�1jU�tf; ti�j�q2;�2ih�q2;�2j�̂�ti�j�q3;�3ih�q3;�3jU	1�tf; ti�j�q1;�1i

�
Z
d�q1

Z
D�q�D�q	

Z
d�1d�2d�3

Z
D��

0 D�	
0 exp

�
i
Z tf

ti
dt�L��q�;��

0 �	L��q	;�	
0 ��

�

h�2j�̂�0

�ti�j�3i; (24)
with the boundary conditions: ��
0 �x; tf� � �	

0 �x; tf� � �1�x�, ��
0 �x; ti� � �2�x�, �	

0 �x; ti� � �3�x� as well as
�q��tf� � �q	�tf� � �q1, �q��ti� � �q	�ti� � �qi. This method for studying nonequilibrium phenomena has been
developed by Schwinger and Keldysh [18]. In recent years, it has been applied in particle physics and cosmology by one of
us [19,20].

Then, we can obtain the coarse-grained effective action from the nonequilibrium partition function
-3
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Z �
Z
dq1

Z
D�q�D�q	 expiS��q�; �q	� (25)

that involves the influence functional F ��q�; �q	� by
integrating out the degrees of freedom of the scalar field
given by

S��q�; �q	� �
��
1

2
m�� _q��2 	 V��q��

�

	

�
1

2
m�� _q	�2 	 V��q	�

��
	 i lnF ��q�; �q	�: (26)

In the semiclassical approximation where we ignore the
quantum fluctuations from the mirror itself, the dynamics
of the mirror is governed by the above coarse-grained
effective action S��q�; �q	�.

To obtain the influence functional, we now construct the
real-time Green’s functions for the scalar field �0 with the
boundary condition in Eq. (16). The field can be expanded
in terms of the creation and annihilation operators which
obey the commutation relation with the proper choice of
the mode functions:

CHUN-HSIEN WU AND DA-SHIN LEE
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�0�x; t� �
Z dk?

�2��

Z d2kk

�2��2
i sin�k?z����

k
p


 ��ake
	ikt � ay	ke

ikt���z�

� �bke
	ikt � by	ke

ikt���	z��eikk�xk (27)
with x � �xk; z�, and k � �kk; k?�, k � jkj for a massless
scalar field. We have assumed that the area of the mirror A
is large as compared with the relevant length scales under
consideration so that the scalar field can be expanded with
respect to an infinite area. However, the area A can be
obtained as the quantum effects of the scalar field on the
mirror are included from all over the mirror’s surface. As
we will see, the results we define to measure are in general
for per unit area. The mirror of perfect reflection, which is
thus of impermeability to the quantum scalar field, means
that the fluctuations from opposite sides of the mirror have
no correlation, thus leading to the commutability between
ak; a

y
k and bk; b

y
k. The essential ingredients to perturbative

calculations are the following Green’s functions where
x;x0 are in the same side of the mirror:
G��
0 �x;x0; t; t0� � G>

0 �x;x
0; t; t0���t	 t0� �G<

0 �x;x
0; t; t0���t0 	 t�;

G		
0 �x;x0; t; t0� � G>

0 �x;x
0; t; t0���t0 	 t� �G<

0 �x;x
0; t; t0���t	 t0�;

G�	
0 �x;x0; t; t0� � G<

0 �x;x
0; t; t0�;

G	�
0 �x;x0; t; t0� � G>

0 �x;x
0; t; t0�;

G>
0 �x;x

0; t; t0� � h�0�x; t��0�x0; t0�i � Tr��̂��0�x; t��0�x0; t0��;

G<
0 �x;x

0; t; t0� � h�0�x0; t0��0�x; t�i � Tr��̂��0�x0; t0��0�x; t��:

(28)

Using the field expansion in Eq. (27), the Green’s functions can be expressed as

G>
0 �x;x

0; t; t0� � G>�x	 x0; t	 t0� 	G>�x	 �x0; t	 t0�;

G<
0 �x;x

0; t; t0� � G<�x	 x0; t	 t0� 	G<�x	 �x0; t	 t0�;
(29)

where the Green’s functions in the right hand side of the above expressions are the corresponding functions in free space
given by

G>�x	 x0; t	 t0� �
Z d3k

�2��3
h�k�t��	k�t

0�ieik��x	x0� �
Z d3k

�2��3
1

2k
��1� nk�e

	ik�t	t0� � nke
ik�t	t0��eik��x	x0�;

G<�x	 x0; t	 t0� �
Z d3k

�2��3
h�	k�t

0��k�t�ie
ik��x	x0� �

Z d3k
�2��3

1

2k
�nke

	ik�t	t0� � �1� nk�e
ik�t	t0��eik��x	x0�:

(30)

The point �x � �x; y;	z� is the mirror image of the point x � �x; y; z� with respect to the unperturbed mirror’s surface S0 at
the z � 0 plane. From Eq. (29), we can derive the following useful identities:

@t0G
<�>�
0 �x;x0; t; t0�jz0�0 � @x0 or y0G

<�>�
0 �x;x0; t; t0�jz0�0 � 0; @z0G

<�>�
0 �x;x0; t; t0�jz0�0 � 2@z0G<�>��x;x0; t; t0�jz0�0;

(31)

where the Green’s functions are evaluated on the mirror’s surface S0. The momentum integral can be carried out to obtain
the Green’s functions in terms of space and time as
-4
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G>�x	 x0; t	 t0� � Re�G�x	 x0; t	 t0�� � iIm�G�x	 x0; t	 t0��;

G<�x	 x0; t	 t0� � Re�G�x	 x0; t	 t0�� 	 iIm�G�x	 x0; t	 t0��;
(32)

where

Re �G�x	 x0; t	 t0�� �
�kBT

8�2jx	 x0j
fcoth��kBT�t	 t0 � jx	 x0j�� 	 coth��kBT�t	 t0 	 jx	 x0j��g;

Im�G�x	 x0; t	 t0�� �
1

8�2jx	 x0j
f��t	 t0 � jx	 x0j� 	 ��t	 t0 	 jx	 x0j�g:

(33)

Up to order O��q2� consistent with the approximation on the Lagrangian in Eq. (15), the influence functional is given by

F ��q�; �q	� � exp
�
i
Z
dt
�
1

2
��q��t��2

�
@F
@q

�
�t� 	

1

2
��q	�t��2

�
@F
@q

�
�t�
�

	
1

2

Z
dt
Z
dt0��q��t�hF�

0 �t�F
�
0 �t

0�i�q��t0� � �q	�t�hF	
0 �t�F

	
0 �t

0�i�q	�t0� 	 �q��t�hF�
0 �t�F

	
0 �t

0�i


 �q	�t0� 	 �q	�t�hF	
0 �t�F

�
0 �t

0�i�q��t0��
�
: (34)

The nonequilibrium force-force correlation functions are defined as follows:

hF�
0 �t�F

�
0 �t

0�i � hF0�t�F0�t0�i��t	 t0� � hF0�t0�F0�t�i��t0 	 t�;

hF	
0 �t�F

	
0 �t

0�i � hF0�t�F0�t0�i��t0 	 t� � hF0�t0�F0�t�i��t	 t0�;

hF�
0 �t�F

	
0 �t

0�i � hF0�t
0�F0�t�i � Tr��̂�F0�t

0�F0�t��;

hF	
0 �t�F

�
0 �t

0�i � hF0�t�F0�t
0�i � Tr��̂�F0�t�F0�t

0��:

(35)

Together with Eqs. (7)–(14), the force Green’s functions can be written in terms of that of the scalar field.
To obtain the semiclassical Langevin equation, it is more convenient to change variables to the average and relative

coordinates:

�q �
1

2
��q� � �q	�; �r � �q� 	 �q	: (36)

The coarse-grained effective action defined in Eq. (26) with the influence functional in Eq. (34) then becomes

S��q; �r� �
Z
dt �r�t�

�
	m� �q�t� 	

�V
�q

�t� �
�
@F
@q

�
�q�t� �

Z
dt0'FF�t	 t0��q�t0�

�

�
i
2

Z
dt
Z
dt0�r�t�(FF�t	 t0��r�t0� �O��r3�; (37)

where

'FF�t	 t0� � i��t	 t0�h�F0�t�; F0�t
0��i; (38)

(FF�t	 t0� �
1

2
hfF0�t�; F0�t

0�gi: (39)

We then further introduce an auxiliary quantity )�t�, the noise force, with the distribution function in terms of the Gaussian
form:

P�)�t�� � exp
�
	

1

2

Z
dt
Z
dt0)�t�(	1

FF�t	 t0�)�t0�
�
: (40)
125005-5
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In terms of the noise force )�t�, the above coarse-grained action S can be written as the field integration over )�t� given by

expiS �
Z

D)P�)�t�� expiSeff��q; �r; )�; (41)

with the effective action Seff :

Seff��q; �r; )� �
Z
dt�r�t�

�
	m� �q�t� 	

�V
�q

�t� �
�
@F
@q

�
�q�t� �

Z
dt0'FF�t	 t0��q�t0� � )�t�

�
�O��r3�: (42)
The semiclassical approximation requires to extremize the
effective action �Seff=�r with respect to a particular tra-
jectory of the mirror. The lowest order equation of motion
for �q�t� where the terms beyond order O��r3� are
ignored, can be obtained as follows:

m� �q�t� �
�V
�q

�t� 	
�
@F
@q

�
�q�t�

	
Z
dt0'FF�t	 t0��q�t0� � )�t�: (43)

The noise force correlation function is of the Gaussian
form given by Eq. (40):

h)�t�)�t0�i � (FF�t	 t0�: (44)

This is a typical Langevin equation. It contains all of
quantum corrections arising from the scalar field which
are linear in �q. The terms we ignored above involve the
coupling between �r and �q. A consistent improvement
over this semiclassical Langevin equation will involve a
perturbation expansion in these terms.

Here we would like to point out that this Langevin
equation reveals two levels of backreaction effects on the
dynamics of the mirror. They are radiation reaction in-
duced by the motion of the mirror as well as backreaction
dissipation arising from fluctuations in quantum fields via a
fluctuation-dissipation theorem. Both of them are valid in a
first order expansion in the mirror’s displacement. In fact,
the term for motion-induced radiation reaction is given by
the variation of the mean pressure force from the quantum
field that responds to the small displacement of the mirror.
The backreaction dissipation effect involving the nonlocal
kernel obtained from the force correlations that reflects the
general non-Markovian nature of the pressure forces is
balanced by the force fluctuations. The kernel of the dis-
sipative force can be obtained from the commutator of the
forces in Eq. (38), and however, the autocorrelation func-
125005
tion for the noise forces is given by the anticommutator of
the forces in Eq. (39). Thus, the balance between the
effects from dissipation and fluctuation can be encoded
in the underlying fluctuation-dissipation theorem which we
can compute explicitly in this work. In general, when the
full dynamics between the mirror and quantum fields is
considered, the above two backreaction effects have to be
treated in a self-consistent way [2–5] where one may find
the dissipation effect via a fluctuation-dissipation relation
on the uniform accelerated particle in which radiation
reaction vanishes.
IV. BACKREACTION FORCES

We now try to compute the backreaction forces. Here we
mainly follow the approach developed by Ford and
Vilenkin to obtain motion-induced radiation reaction [8].
From Eq. (14), we have�

�F
�q

�
�0�; t��q�t� �

�
�F
�q

�
�0	; t��q�t� (45)

by symmetry. Thus, the motion-induced force from one
side of the mirror needs to be computed. Technically
speaking, it is known that the expectation values of stress
tensors and stress tensor correlation functions will confront
short-distance divergences in the coincidence limit. The
method of the point splitting will be adopted to regularize
these quantities where we take the fields in all products of
the stress tensor at different points, and the same point limit
is taken after doing renormalization. To do so, the expec-
tation value of the motion-induced force obtained from
Eqs. (11) and (14) now becomes�

�F
�q

�
�q�t� � 2

Z
A
d2xk

�
�Tzz
�q

�
�xk; 0	; t��q�t� (46)

with
�
�Tzz
�q

�
�xk; z; t��q�t� �

1

4
�@t@t0 � @z@z0 	 @x@x0 	 @y@y0 ��h�0�x; t����x0; t0�i � h�0�x0; t0����x; t�i

� h���x; t��0�x0; t0�i � h���x0; t0��0�x; t�i�jx0
k!xk;z

0!z;t0!t�+; (47)

where + is introduced for the point-splitting method. The limit of + ! 0 will be taken, and the motion-induced force
expects to be finite in this limit [8]. The perturbed field due to the motion of the mirror in Eq. (6) can be written involving
the retarded Green’s function as (see Ref. [8] for details):
-6
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���xk; z; t�jz!0	 � 	
Z
dt0

Z
A
d2x0

k
@z0G

Ret
0 �x;x0; t; t0�@z0�0�x0; t0��q�t0�jz0;z!0	 : (48)

The retarded Green’s function is defined to be

GRet
0 �x;x0; t; t0� � i��t	 t0�h��0�x; t�; �0�x0; t0��i � i��t	 t0��G>

0 �x;x
0; t; t0� 	G<

0 �x;x
0; t; t0��: (49)

Putting all together, the motion-induced force term becomes�
�F
�q

�
�q�t� � 	

Z t
dt0�q�t0�

�
8
Z
A
d2xk

Z
A
d2x0

k
�@t@z0Im�G�x	 x0; t	 t0 � +��@t@z0Re�G�x	 x0; t	 t0��

� @z@z0Im�G�x	 x0; t	 t0 � +��@z@z0Re�G�x	 x0; t	 t0�� 	 @x@z0Im�G�x	 x0; t	 t0 � +��@x@z0


 Re�G�x	 x0; t	 t0�� 	 @y@z0Im�G�x	 x0; t	 t0 � +��@y@z0Re�G�x	 x0; t	 t0��

� @t@z0Im�G�x	 x0; t	 t0��@t@z0Re�G�x	 x0; t	 t0 � +�� � @z@z0Im�G�x	 x0; t	 t0��@z@z0


 Re�G�x	 x0; t	 t0 � +�� 	 @x@z0Im�G�x	 x0; t	 t0��@x@z0Re�G�x	 x0; t	 t0 � +��

	 @y@z0Im�G�x	 x0; t	 t0��@y@z0Re�G�x	 x0; t	 t0 � +���
�								+!0

z0;z!0	
; (50)

where we have used Eqs. (31) and (32). The retardation effect is included as the time integration in t0 runs to the time t. In
addition, the force above will be evaluated at the surface of the mirror by taking the limits of z0; z ! 0	. It will suffer from
short-distance divergences that we will discuss later [8].

The force-force correlation function evaluated on the unperturbed mirror’s surface S0 at rest can be expressed as

hF0�t�F0�t
0�i � hF0�t�F0�t

0�i 	 hF0�t�ihF0�t
0�i � 2�hF0�0

	; t�F0�0
	; t0�i 	 hF0�0

	; t�ihF0�0
	; t0�i�; (51)

where we have used the fact that for a static mirror the mean pressure force vanishes. In addition, the force-force
correlations of each side of the mirror are the same by symmetry, and there is no correlation between the forces from
opposite sides of the mirror, namely,

hF0�0
	; t�F0�0

	; t0�i 	 hF0�0
	; t�ihF0�0

	; t0�i � hF0�0
�; t�F0�0

�; t0�i 	 hF0�0
�; t�ihF0�0

�; t0�i;

hF0�0
�; t�F0�0

�; t0�i � hF0�0
�; t�ihF0�0

�; t0�i:
(52)

However, one may expect that motion-induced radiation reaction on opposite sides of the mirror might have correlations as
they both arise due to the motion of the mirror even though the induced forces on opposite sides of the mirror can not
communicate with each other. This correlation effect will contribute to the Langevin equation where it is of order O��q3�,
and can be neglected here [21].

Using Eq. (10), we can write the above correlation functions in terms of the Green’s functions of the scalar field given by

hF0�t�F0�t0�i � 2
Z
A
d2xk

Z
A
d2x0

k
�hTzz�xk; 0	; t�Tzz�x0

k; 0	; t0�i 	 hTzz�xk; 0	; t�ihTzz�x0
k; 0	; t0�i�;

hF0�t0�F0�t�i � 2
Z
A
d2xk

Z
A
d2x0

k
�hTzz�x0

k; 0	; t0�Tzz�xk; 0	; t�i 	 hTzz�x0
k; 0	; t0�ihTzz�xk; 0	; t�i�;

(53)

where

hTzz�xk; z; t�Tzz�x0
k; z0; t0�i 	 hTzz�xk; z; t�ihTzz�x0

k; z0; t0�i

�
1

4
f�@t@t00 � @z@z00 	 @x@x00 	 @y@y00 ��@t0@t000 � @z0@z000 	 @x0@x000 	 @y0@y000 ��G

>
0 �x;x

0; t; t0�G>
0 �x

00;x000; t00; t000�

�G>
0 �x;x

000; t; t000�G>
0 �x

00;x0; t00; t0��gj
x00
k
!xk;z00!z;t00!t�+0

x000
k
!x0

k
;z000!z0;t000!t0�+00 ;

hTzz�x0
k; z0; t0�Tzz�xk; z; t�i 	 hTzz�x0

k; z0; t0�ihTzz�xk; z; t�i

�
1

4
f�@t@t00 � @z@z00 	 @x@x00 	 @y@y00 ��@t0@t000 � @z0@z000 	 @x0@x000 	 @y0@y000 ��G

<
0 �x;x

0; t; t0�G<
0 �x

00;x000; t00; t000�

�G<
0 �x;x

000; t; t000�G<
0 �x

00;x0; t00; t0��gj
x00
k
!xk;z

00!z;t00!t�+0

x000
k
!x0

k
;z000!z0;t000!t0�+00 : (54)
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The limits of +0; +00 ! 0 due to the point splitting will be taken. We then evaluate the correlation functions at the surface of
the mirror by taking the limits of z; z0 ! 0	. The above expressions can be simplified with Eq. (31) as

hF0�t�F0�t
0�i � 2

Z
A
d2xk

Z
A
d2x0

k
�@t@z0G

>�x	 x0; t	 t0�@t@z0G
>�x	 x0; t	 t0 � �+0 	 +00��

� @z@z0G
>�x	 x0; t	 t0�@z@z0G

>�x	 x0; t	 t0 � �+0 	 +00�� 	 @x@z0G
>�x	 x0; t	 t0�@x@z0


G>�x	 x0; t	 t0 � �+0 	 +00�� 	 @y@z0G
>�x	 x0; t	 t0�@y@z0G

>�x	 x0; t	 t0 � �+0 	 +00��

� @t@z0G
>�x	 x0; t	 t0 	 +00�@t@z0G

>�x	 x0; t	 t0 � +0� � @z@z0G
>�x	 x0; t	 t0 	 +00�@z@z0


G>�x	 x0; t	 t0 � +0� 	 @x@z0G
>�x	 x0; t	 t0 	 +00�@x@z0G

>�x	 x0; t	 t0 � +0�

	 @y@z0G>�x	 x0; t	 t0 	 +00�@y@z0G>�x	 x0; t	 t0 � +0��j+
0;+00!0
z0;z00!0 ;

hF0�t0�F0�t�i � 2
Z
A
d2xk

Z
A
d2x0

k
�@t@z0G<�x	 x0; t	 t0�@t@z0G<�x	 x0; t	 t0 � �+0 	 +00��

� @z@z0G<�x	 x0; t	 t0�@z@z0G>�x	 x0; t	 t0 � �+0 	 +00�� 	 @x@z0G<�x	 x0; t	 t0�@x@z0


G<�x	 x0; t	 t0 � �+0 	 +00�� 	 @y@z0G<�x	 x0; t	 t0�@y@z0G<�x	 x0; t	 t0 � �+0 	 +00��

� @t@z0G<�x	 x0; t	 t0 	 +00�@t@z0G<�x	 x0; t	 t0 � +0� � @z@z0G<�x	 x0; t	 t0 	 +00�@z@z0


G<�x	 x0; t	 t0 � +0� 	 @x@z0G<�x	 x0; t	 t0 	 +00�@x@z0G<�x	 x0; t	 t0 � +0�

	 @y@z0G
<�x	 x0; t	 t0 	 +00�@y@z0G

<�x	 x0; t	 t0 � +0��j+
0;+00!0
z0;z!0 ; (55)
In this stage, we can compute the commutator, 'FF and the
anticommutator, (FF of the forces in Eqs. (38) and (39),
respectively, which allow us to discuss the issue of the
fluctuation-dissipation theorem below. In particular, it is a
straightforward calculation to show that�

�F
�q

�
�q�t� �

Z
dt0'FF�t	 t0��q�t0�; (56)

using the Green’s functions of the scalar field in Eqs. (32)
and (33). The above relation holds only for the mirror with
the small displacement where the coupling of the mirror to
the quantum field is quadratic in field variables. Similar
result that relates these two backreaction effects has been
found in Ref. [9] in the 1� 1 dimensional spacetime. Even
though the fluctuation-dissipation relation we will discuss
later can link the dissipation effect obtained from force
correlations to the force fluctuations, one cannot conclude
that radiation reaction due to the motion of the mirror is
balanced by the force fluctuations. Notice that it has been
recently mentioned by Hu [2–4] that there are incorrect
claims in which radiation reaction is balanced by the force
fluctuations. We would like to emphasize that Eq. (56) does
not hold for the general situations of couplings. For ex-
ample, one can consider the coupling between the mirror
and the quantum field which is proportional to field vari-
ables to the nth power. For an odd number of the power, it
is obvious that diagrammatically the above radiation reac-
tion vanishes as the dissipation effect from force fluctua-
tions gives the nonzero contribution to the Langevin
equation. However, as for an even number of the power,
since the effect of radiation reaction is given by the
�n=2�-loop integral while the dissipation effect is given
125005
by the �n	 1�-loop integral, two backreaction effects can
possibly be equal only for n � 2.
V. FLUCTUATION-DISSIPATION THEOREM

Fluctuation-dissipation theorem plays a vital role in
balancing between these two effects to dynamically stabi-
lize a nonequilibrium Brownian motion in the presence of
external fluctuation forces. In the case of classical
Brownian motion, the nonequilibrium dynamics of the
Brownian object moving in a stationary fluid can be de-
scribed by a phenomenological Langevin equation.
Incessant collisions from the molecules of the fluid with
the Brownian object produce both resistance to the motion
of the object and fluctuations in its trajectory. The
Langevin equation can account for these two effects by
introducing friction and dissipation as well as a stochastic
force as below:

�q�t� � , _q�t� � )�t�; (57)

where the dissipative force is given by the time derivative
of the position with the damping coefficient ,, and )�t�
stands for a stochastic force that mimics random kicks of
the molecules on the Brownian object with white noise
properties:

h)�t�i � 0; h)�t�)�t0�i � 2,kBT��t	 t0�: (58)

kB is Boltzmann constant and the average is taken with
respect to the thermal ensemble of fluctuations of the fluid
at temperature T. The dissipation and fluctuation kernels
can be defined, respectively, as
-8
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, _q�t� � 	
Z
dt0-�t	 t0�q�t0�;

-�t	 t0� � 	,
d
dt
��t	 t0�; h)�t�)�t0�i � .�t	 t0�;

.�t	 t0� � 2,kBT��t	 t0�: (59)

The fluctuation-dissipation theorem is to relate the dissi-
pation kernel to the fluctuation kernel of the form

-�t	 t0� � 	
1

2kBT
d
dt
.�t	 t0�; (60)

which is independent of the spectrum density of thermal
fluid and the coupling strength of the Brownian object with
the molecules in a fluid.

A very clear microscopic description to the Langevin
equation within the context of one-particle quantum me-
chanics coupled to a bath of harmonic oscillators has been
presented by Caldeira and Leggett [22]. Using the
Feynman-Vernon influence functional, their study reveals
that in general the dissipation term arises from a local
approximation to the non-Markovian kernel for a particular
choice of the density of states of the heat bath, and as a
result, the noise forces become uncorrelated over macro-
scopic time scales larger than the typical scales determined
by the bath. They are thus related by the above classical
fluctuation and dissipation theorem. Recently, the studies
have been devoted to this issue where the Brownian object
is coupled to quantum fields. The coupling between the
Brownian object and quantum fields is assumed to be linear
or nonlinear in terms of the variable of the Brownian
object, and it is linear in terms of the field variable in
which the field in momentum space can be treated as a
bath of harmonic oscillators [2–6]. However, the case we
consider is more complicated since the coupling of the
mirror to quantum fields is given by the area integral of
the stress tensor which is quadratic in fields [9,14]. In the
presence of a perfectly reflecting mirror, we impose an
idealized boundary condition on quantum fields where the
fields vanish on the surface of the mirror. This unrealistic
boundary condition in fact leads to a troublesome result:
the stress tensor is divergent when it is evaluated on the
surface of the mirror [8,12]. Hence we need to introduce a
cutoff on z, the distance to the mirror, thus resulting in
some complications as we try to derive the corresponding
fluctuation-dissipation theorem from a microscopic point
of view.

To obtain the corresponding fluctuation and dissipation
theorem, we take the Fourier transform of 'FF�t	 t0� and
(FF�t	 t0� as

'FF�t	 t0� �
Z dw

2�
'FF�!�e	i!�t	t0�;

(FF�t	 t0� �
Z dw

2�
(FF�!�e	i!�t	t0�:

(61)

Then, we introduce the spectral density ��!� of quantum
125005
field defined to be

'FF�!� �
Z dw0

2�
��!0�

w	 w0 � i�
; (62)

where the i� prescription is introduced to account for the
retardation effect as the limit of � ! 0� is taken. Thus,
substituting Eq. (62) into Eq. (61) leads to

'FF�t	 t0� � 	i��t	 t0�
Z d!

2�
��!�e	i!�t	t0�: (63)

The Fourier transform of the Green’s functions (G>;G<)
in Eq. (30) are given by

G>�<��x	 x0; t	 t0� �
Z dw

2�

Z d3k
�2��3

g>�<��k; !�


 e	i!�t	t0�eik��x	x0�; (64)

where

g>�k; !� �
1

2k
��1� nk���!	 k� � nk��!� k��;

g<�k; !� �
1

2k
��1� nk���!� k� � nk��!	 k��;

(65)

with k � jkj, and nk � �e�k 	 1�	1, the Bose-Einstein
distribution function. Then, they obey the KMS relation
[23] given by

g<�k; !� � e	�!g>�k; !�: (66)

Using Eq. (63), the spectral density can be obtained from
'FF�t	 t0� given by the commutator of the forces from
Eqs. (38) and (55) as

��!� � 	2A
Z d2kk

�2��2
Z dk?

2�

dk0?
2�

Z d!0

2�


 �k?k0?�!
0�!	!0� � k?k0? � k2

k
��


 g>�kk; k?; !	!0�g>�	kk; k
0
?; !

0�


 �1	 e	�!�ei�k?�k0
?
��z	z0�


 e	i!0�+0	+00��1� ei!+
00
�j+

0;+00!0
z0;z!0	 : (67)

The fluctuation-dissipation theorem can be obtained before
taking the short-distance limits. It is then a straightforward
calculation to obtain the relation between the Fourier trans-
form of the anticommutator of the forces (FF�!� from
Eqs. (39) and (55) and the spectral density ��!� above. The
fluctuation and dissipation theorem is to link the Fourier
transform of the fluctuation kernel, the anticommutator of
the forces (FF�!�, to the imaginary part of the dissipation
kernel, the commutator of the forces 'FF�!�, as follows:

(FF�!� � 	
1

2
��!� coth

�
�!
2

�

� Im�'FF�!�� coth
�
�!
2

�
: (68)
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The above relation relies on the fact that

Im �'FF�!�� � 	
1

2
��!�; (69)

as a result of Eq. (62). The high-T limit can be taken and
then the fluctuation and dissipation theorem in this limit
reduces to

Im �'FF�!�� �
!

2kBT
(FF�!�: (70)

As expected, it corresponds to the classical Brownian
motion which can be seen by taking the Fourier transform
of Eq. (60).

The fluctuation and dissipation effects driven by quan-
tum fields in vacuum on a microscopic object are of great
interest in regard to imposing fundamental limits on the
uncertainty of the position and velocity of an object. In
vacuum, the Fourier transforms of the Green’s functions
�G>;G<� are found to satisfy the following relation:

g<�k; !� � g>�k;	!�; (71)

from taking the limit of T ! 0 in Eq. (65). Then, it leads to
the fluctuation and dissipation theorem in vacuum given by

(FF�!� � 	
1

2
��!����!� 	��	!��

� Im�'FF�!�����!� 	��	!��: (72)

This result can also be obtained by taking the limit of
T ! 0 directly from Eq. (68).

Although it is generally expected that the theorem of
fluctuation and dissipation is of model independence for
the case with the small mirror’s displacement in the vac-
uum and/or thermal states of the field such that this theo-
rem has been used to study the dynamics of moving mirrors
in quantum fields on various situations of couplings [9], it
is still worth noticing that the study from the first principles
derivation reveals that the obtained theorem is also inde-
pendent of the short-distance regulators introduced to deal
with divergences from quantum fields. The theorem relates
these two effects in vacuum and/or in a thermal bath
regardless of the details of short-distance divergences as-
sociated with the underlying microscopic dynamics. Thus,
125005
when the method of regularization is introduced to com-
pute the dissipation and fluctuation effects, this theorem
must be fulfilled as the results are obtained by taking the
short-distance limit in the end of calculations. It seems to
play a role as the Ward identity derived from underlying
symmetry in quantum field theory where the introduction
of regularization and renormalization to deal with diver-
gences must respect this identity. This theorem also allows
us to compute the dissipation kernel from the obtained
fluctuation kernel and vice versa which we will adopt to
obtain the Langevin equation later.

VI. MOVING MIRRORS DYNAMICS

We are now to study the dynamics of moving mirrors in
quantum fields driven by either vacuum or thermal fluctu-
ations, respectively. We will take advantage of the
fluctuation-dissipation theorem derived above to obtain
the Langevin equation and to solve it consistently. The
same Langevin equation can be obtained by computing
the effects of fluctuation and dissipation separately where
the corresponding fluctuation-dissipation theorem must be
fulfilled as the short-distance limit is taken.

A. Vacuum fluctuations

We compute the dissipation kernel from Eqs. (50) and
(56). To do so, the Green’s functions of the scalar field in
the limit of T ! 0 are obtained from Eq. (33) as follows:

Re�G�x	 x0; t	 t0�� �
	1

4�2��t	 t0�2 	 jx	 x0j2�
;

Im�G�x	 x0; t	 t0�� �
	1

8�2jx	 x0j
f��t	 t0 	 jx	 x0j�g;

(73)

where Im�G�x	 x0; t	 t0�� has included the retardation
effect. The area integration over x0

k
in Eq. (50) gives the

factor A, area of the mirror. Taking advantage of the
� function in Im�G�x	 x0; t	 t0�� allows us to carry out
the area integral on xk where we assume that the mirror is
of a disk. Then, after a lengthy calculation, the dissipative
force term ends up with
Z
dt0'FF�t	 t0��q�t0� �

A

480�2

Z t	z

0
dt0
�
75�q�t0�

�t	 t0�6
�

75�q0�t0�

�t	 t0�5
�

30�q00�t0�

�t	 t0�4
�

5�q�3��t0�

�t	 t0�3

	 z2


1575�q�t0�

�t	 t0�8
�

1575�q0�t0�

�t	 t0�7
�

675�q00�t0�

�t	 t0�6
�

150�q�3��t0�

�t	 t0�5
�

15�q�4��t0�

�t	 t0�4

�

� z4


1890�q�t0�

�t	 t0�10
�

1890�q0�t0�

�t	 t0�9
�

840�q00�t0�

�t	 t0�8
�

210�q�3��t0�

�t	 t0�7
�

30�q�4��t0�

�t	 t0�6
�

2�q�5��t0�

�t	 t0�5

��
;

(74)

where the limit of + ! 0 has been taken. We now perform the remaining time integral and use the relation
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Z t��1=$�

0
dt0�t	 t0�	n�q�m��t0� �

�	$�n	1�q�m��t� 1
$�

�n	 1�
	

1

n	 1

Z t��1=$�

0

dt0

�t	 t0�n	1 �q
�m�1��t0� (75)
by dropping out the terms evaluated at an initial time which
is equivalent to introducing an adiabatical switch-on inter-
action. Apparently, the force cannot be evaluated infini-
tesimally close to the surface of the mirror by taking the
limit of z ! 0	 due to short-distance divergences. This is
mainly due to an unrealistic perfectly reflecting condition
imposed on the mirror. It can be solved by introducing
either a fluctuating boundary in 3� 1 dimensions [13] or a
nonperfectly reflecting boundary in 1� 1 dimensions
[6,9]. The latter condition seems to be not sufficient to
solve the divergence problem in 3� 1 dimensions [24].
The introduced energy cutoff $ is to set a cutoff on z �
1=$ due to fluctuations of the mirror’s surface. Then, a
local approximation can be made as the time scales we
consider are such that t � 1=$. In vacuum, the local
dissipative force can be obtained asZ
dt0'FF�t	 t0��q�t0� �

A

48�2



$3� �q�t� 	

$

10
�q�4��t�

	
1

15
�q�5��t� �O



1

$

��
: (76)

Then, the dissipation kernel can be read off as

'FF�t	 t0� �
A

48�2



$3��2��t	 t0� 	

$

10
��4��t	 t0�

	
1

15
��5��t	 t0�

�
; (77)

where the derivatives of the � function are involved, and
the terms of order O�1=$� are ignored. Using Eq. (72), the
fluctuation-dissipation theorem in vacuum, we can obtain
(FF�t	 t0� by taking the Fourier transform of (FF�!� as

(FF�t	 t0� �
Z d!

2�
Im�'FF�!�����!�	��	!��e	i!�t	t0�

�
A

720�2

Z d!
2�

!5 cos�!�t	 t0��: (78)

The backreaction dissipation effect above is related to the
force fluctuations via a fluctuation-dissipation relation as in
the case of Brownian motion. In addition, motion-induced
radiation reaction due to nonuniform acceleration of the
moving mirror can be obtained from Eq. (56) consistent
with the result from Ref. [8].

Notice that the known problems of the runaway solution
and preacceleration are in the Lorentz-Dirac theory of
radiation reaction on the motion of point charges in quan-
tum electromagnetic fields. The motion-induced radiation
reaction force is given by the third time derivative of the
position, and is to accelerate point charges [15–17]. The
recent studies in Refs. [2–5] have found that the non-
Markovian nature of the dissipation kernel from quantum
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fields plays a key role to obtain the causal equations with
free of runaway solutions within a context of the fully
nonequilibrium open system dynamics. However, in the
case with the small mirror’s displacement, as we will see,
the obtained Langevin equation below even including the
Markovian backreaction force terms of the higher deriva-
tives (e.g. �q�n�; n > 2) can be solved consistently with the
ordinary Newtonian initial data.

Then, the corresponding Langevin equation including
all backreaction effects becomes

m� �q�t� �
�V
�q

�t� �
�

A

24�2



	$3� �q�t� �

$

10
�q�4��t�

�
1

15
�q�5��t�

��
� )�t�; (79)

with the Gaussian force correlations given by Eq. (78) as

h)�t�)�t0�i �
A

720�2

Z d!
2�

!5 cos�!�t	 t0��: (80)

The first two terms of the backreaction effects in the
Langevin equation will modify the dispersive part of the
mirror while the third term is a dominant dissipative force
term to slow down the motion of the mirror. In fact, the first
term above can be absorbed into the renormalization of
mass given by

mR � m	
A

24�2



$

�hc

�
2 $

c2
; (81)

where the energy cutoff $ is chosen for having positive
renormalized mass so as to avoid the runaway solution.
The renormalized mass is a parameter here to be deter-
mined from experiment.

We now try to solve the equation by first of all, taking the
average of the above equation to understand its relaxational
dynamics. Consider the case where the mirror is attached to
a spring and undergoes oscillations with a natural fre-
quency !0. Then, the equation can be written as

m� �q�t��m!2
0�q�

�
A

24�2



$

10
�q�4��t��

1

15
�q�5��t�

��
� 0:

(82)

To see the quantum effects from the scalar field on the
dynamic of the mirror driven by the classical external
potential, we write the solution of the equation as

�q�t� � �qc�t� � �q �h�t�; (83)

where �qc�t� is a solution of the equation for harmonic
oscillations, and �q �h�t� is derivation from its classical
trajectory induced from vacuum fluctuations due to the
presence of forth and fifth time derivatives of �qc�t�.
-11
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Thus, they obey the following equations respectively:

m� �qc�t� �m!2
0�qc�t� � 0;

m� �q �h�t� �m!2
0�q �h�t� � 	

�
A

24�2



$

10
�q�4�c �t�

�
1

15
�q�5�c �t�

��
:

(84)
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The equations can be solved iteratively in terms of the
retarded Green’s function:

Gret�t	 t0� � ��t	 t0�
�
1

!0
sin�!0�t	 t0��

�
: (85)

Thus, the solution to Eq. (84) is given by
�qc�t� � l0 cos�!0�t	 30��;

�q �h�t� � 	
A

24�2m!0

Z t

t0
dt0 sin�!0�t	 t0��



$

10
�q�4�c �t0� �

1

15
�q�5�c �t0�

�

� l0

�
	

A

720�2m
!4

0�t	 t0� cos�!0�t	 30�� 	
A

240�2m
!3

0$�t	 t0� sin�!0�t	 30��
�
� nonsecular terms:

(86)

Then the �q�t� is obtained as

�q�t� � l0

��
1	

A

720�2m
!4

0�t	 t0�
�
cos�!0�t	 30�� 	

A

240�2m
!3

0$�t	 t0� sin�!0�t	 30��
�
� nonsecular terms:

(87)
The initial time is set at t0 and the parameters, l0 and 30,
can be determined by the initial conditions. Note that the
naive perturbation contains the secular terms that grow
linearly in time while the terms denoted by nonsecular
terms are finite at all times. It indicates that the perturba-
tion breaks down at late times. In order to obtain the
solution with the correct damping behavior, the method
of dynamical renormalization group will be invoked to
resum these secular terms consistently [25]. The dynamical
renormalization can be achieved by introducing an arbi-
trary time scale 4, splitting t	 t0 as t	 4� 4	 t0, and
absorbing the terms containing 4	 t0 into renormalization
of the amplitude l�4� and the phase 3�4� respectively. We
then relate l0 and 30 to l�4� and 3�4� as follows:

l0 � Zl�4�l�4�; 30 � 3�4� �Z3�4�; (88)

where Zl and Z3 are renormalization constants for multi-
plicative amplitude renormalization and additive phase
renormalization, respectively. They are given by

Z l�4� � 1� a�4� � � � � ; Z3�4� � b�4� � � � � :

(89)

The � � � means the terms to be involved while the approxi-
mation under consideration goes beyond the small dis-
placement approximation. Substituting Eqs. (88) and (89)
into Eq. (87) leads us to choose

a�4� �
A

720�2m
!4

0�4	 t0�;

b�4� �
A

240�2m
!2

0$�4	 t0�;

(90)

so as to remove the secular terms containing 4	 t0. After
doing renormalization, the solution is given by Eq. (87) as
l0, 30 and t0 are replaced by l�4�, 3�4� and 4 respectively.
The independence of the time scale 4 on l0 and 30 can lead
to the renormalization group equations by taking the 4
derivative on Eq. (88), which are of the form

d
d4

l�4� � 	
A

720�2m
!4

0l�4�;

d
d4

3�4� � 	
A

240�2m
!2

0$;

(91)

with the solutions:

l�4� � l0e
�	�A=720�2m��!4

0�4	t0�;

3�4� � 30 	
A

240�2m
!2

0$�4	 t0�:
(92)

A change of the renormalization point 4 is compensated by
a change in the renormalized amplitude l�4� and phase
3�4�. Substituting the solutions above to the renormalized
solution and setting 4 � t, we obtain

�q�t� � l0e
�	�A=720�2m��!4

0t
�
cos

�
!0



1�

A

240�2m
!2

0$
�




�
t	 30



1	

A

240�2m
!2

0$
����

; (93)

where the initial time has been set at t0 � 0.
Obviously, the term of forth time derivative in Eq. (82)

modifies the dispersive part of the mirror by changing the
oscillation frequency as well as shifting the phase. The
relaxation time scales are mainly determined from the term
of fifth time derivative given by

trelax ’ 720�2



c2

A!2
0

�

mc2

�h!0

�
1

!0
: (94)
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mc2 � �h!0 holds for a macroscopic mirror. Typically, the
emitted quanta driven by a nonuniform accelerated mirror
is with a frequency which is the same as the oscillation
frequency of a mirror. This condition means that the energy
loss from emitted quanta is far much less than the rest mass
energy of a microscopic mirror. Thus, the recoiled effect of
the mirror for this process is small where one can provide a
prescribed motion of the mirror, and then find its correction
arising from the effects of quantum fields. The validity of
the small displacement approximation imposes the condi-
tion of l0!0 � 1. Then, the order of magnitude of the
relaxation time scales can be obtained as

trelax � 104



c
l0!0

�
2 1

!0
� 104

1

!0
; (95)

where A � l20 has been assumed. Thus, the very long time
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scales for having at least much more than 104 oscillations
are needed to detect tiny damping on the amplitude of the
oscillating mirror [8].

We now study the fluctuations effects from quantum
fields on the mirror. The vacuum fluctuations are of great
importance in early times, say t � trelax, as the dissipation
effects can be ignored. The equation of the mirror then
reduces to

m� �q�t� �m!2
0�q�t� � )�t�: (96)

Its solution is obtained as

�v�t� �
Z t

0
dt0 cos�!0�t	 t0��

)�t0�
m

; (97)

leading to the velocity fluctuations given by
&�v2�t� � h�v2�t�i 	 h�v�t�i2 �
1

m2

Z t

0
dt1

Z t

0
dt2 cos�!0�t	 t1�� cos�!0�t	 t2���h)�t1�)�t2�i 	 h)�t1�ih)�t2�i�

�
1

360�2

A

m2

Z t

0
dt1

Z t

0
dt2

Z 1

0

d!
2�

!5 cos�!0�t	 t1�� cos�!0�t	 t2�� cos�!�t1 	 t2��; (98)

where we have used the fact that the forces from vacuum fluctuations are Gaussian with correlations given by Eq. (80). We
change variables of integration as u � t1 	 t2, v � t1 � t2, and the integral above in terms of u; v is of the form

&�v2�t� �
A

1440�2m2

Z 1

0

d!
2�

!5

�Z 0

	t
du

Z u�2t

	u
�
Z t

0
du

Z 2t	u

u

�
fcos�!0�2t	 v�� � cos�!0u�g cos�!u�: (99)

For the time t, say 1=!0 � t � trelax, we find that the velocity fluctuations grow linearly in t as

&�v2�t� ’
A

720�2m2 t
Z 1

0

d!
2�

!5
Z 1

0
du�cos��!�!0�u� � cos��!	!0�u��

’
A

720�2m2 t
Z 1

0

d!
2�

!5����!�!0� � ��!	!0�� ’
A

1440�2m2!
5
0t: (100)
It can be seen that the typical frequency of quanta absorbed
by the moving mirror to increase its velocity fluctuations is
the frequency of the oscillating mirror. The energy gained
from vacuum fluctuations for each oscillation can be ob-
tained as

E ’
1

1440�2



A!2

0

c2

�

�h!0

mc2

�
�h!0; (101)

with the order of magnitude given by

E � 10	4



l0!0

c

�
2
�h!0 � 10	4 �h!0; (102)

where again A � l20 and mc2 � �h!0 have been used.
Thus, roughly about fewer than 10	4 quanta with fre-
quency !0 is absorbed by a mirror per oscillation per
area l20. Thus, the effects from vacuum fluctuations can
hardly be detected. The largely nonuniform acceleration of
a microscopic object can possibly amplify vacuum fluctu-
ations where the treatment to tackle this issue beyond the
small displacement approximation is required.
B. Thermal fluctuations

This section will be devoted to understanding the dy-
namics of moving mirrors in thermal fields. The large time
and high temperature limits give rise to jt	 t0j � l � 4B
where A � �l2, area of the mirror, and 4B � 1=��kBT�, a
characteristic thermal correlation length scale. Then, the
Green’s function for scalar fields in Eqs. (30) and (33) can
be approximated by
G�>;<��x	 x0; t	 t0� ’
1

4�24Bjx	 x0j
�e�	2=4B��jt	t0j�jx	x0j� 	 e�	2=4B��jt	t0j	jx	x0j��: (103)

Thus, the force correlations including thermal effects can be obtained from Eqs. (39) and (55) as
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(FF�t	 t0� ’
16l2

�246B

( 
1�

1

4� l4B�
	

1

32� l4B�
4

!
e�	4=4B�jt	t0j 	

 
1

16� l4B�
3
	

1

64� l4B�
4

!
e�	4=4B��jt	t0j	l�

�

 
1

16� l4B�
3
�

1

64� l4B�
4

!
e�jt	t0j�l�

)
’

16l2

�246B
e�	4=4B�jt	t0j; (104)
which can be further approximated by

(FF�t	 t0� ’
8l2

�245B
��t	 t0� (105)

using the fact that

lim
9!1

9
2
e	9jxj � ��x�: (106)

It reveals that the high temperature fluctuations are of
uncorrelated white noise. Using Eq. (70), the fluctuation-
dissipation theorem in the high-T limit, one can determine
the imaginary part of 'FF�!� that leads to the dominant
effect on dissipation with the term proportional to the
mirror’s velocity. It is due to the force fluctuations. The
real part of 'FF�!� renormalizes the oscillation frequency
as well as the mass of the mirror with temperature correc-
tions. However, the corresponding temperature correction
to the oscillation frequency, which describes a position
dependent static force, vanishes since the mean pressure
force from thermal scalars on the mirror is zero by the
symmetry argument [9]. The mass will acquire the tem-
perature correction which is subdominant as its correction
is suppressed by a factor of �h!0=kBT comparing with the
damping term. From Eq. (56), the high-T motion-induced
force can be obtained from the corresponding dissipative
force, and is found to be also proportional to the mirror’s
velocity. It arises from the Doppler shift of thermal scalars.

Thus, involving the dominant thermal effects, the
Langevin equation now becomes

m� �q�t� � ,T� _q�t� �m!2
0�q�t� � )�t� (107)

with the white noise correlations

h)�t�)�t0�i � 8�2c3A


kBT
�hc

�
3


kBT

c2

�
2
��t	 t0�: (108)

The damping coefficient can be found to be [14]

,T ’ 8�2cA


kBT
�hc

�
3


kBT

c2

�
: (109)

The relaxation time scales, trelax ’ �,T=m�	1, are the time
scales when dissipation effects become important. To ob-
tain the maximal fluctuations for the mirror, we now con-
sider the time scales, say trelax � t � l, where dissipation
effects can be ignored. We find that
125005
&�v2�t� ’ 4�2c3A


kBT
�hc

�
3


kBT

mc2

�
2
t: (110)

The maximal velocity fluctuations can be achieved by
roughly setting the time scales, t � trelax, as follows:

&�v2
max�t� ’ c2



kBT

mc2

�
: (111)

Thus, it leads to

&lmax

l0
’
&�vmax

�v
’



c

l0!0

�

kBT

mc2

�
1=2

’ 10	8



10 cm

l0

�

1 s	1

!0

�

1 kg

m

�
1=2



T
1kev

�
1=2

(112)

with the corresponding relaxation time scales given by

trelax ’ 10	2 s


100 cm2

A

�

m

1 kg

�

1 kev

T

�
4
; (113)

where l0 and !0 are the typical oscillation amplitude and
frequency of the mirror. As long as the temperature of
thermal fields is of order kev, the amplitude fluctuations
of the oscillating mirror are of order 10	8l0 within the time
scales of 10	2 s, which can be detectable. The mass cor-
rection from thermal effects can be obtained from Eq. (81)
by replacing the energy cutoff $ with the typical thermal
energy kBT given by [14] :

&mT ’ 	A


kBT
�hc

�
2


kBT

mc2

�
m ’ 	10	16m (114)

with the above value of the parameters. This extremely
small mass correction can be ignored in our calculations.

VII. CONCLUSIONS

In this paper, we present a general framework for de-
scribing the dynamics of moving mirrors in quantum fields
in the case where the mirror undergoes the small displace-
ment. The mirror of perfect reflection imposes the bound-
ary conditions on field fluctuations, and leads to the
coupling between the mirror and fields. The force on the
mirror is given by the area integral of the stress tensor of
the fields. Using the Schwinger-Keldysh formalism,
coarse-graining quantum fields leads to the stochastic be-
-14
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havior in the mirror’s trajectory encoded in the coarse-
grained effective action with the method of influence func-
tional. In the semiclassical regime, the Langevin equation
can be derived involving backreaction effects. We find that
the Langevin equation reveals two levels of backreaction
effects on the dynamics of the mirror: radiation reaction
induced by the motion of the mirror as well as backreaction
dissipation arising from fluctuations of quantum fields via a
fluctuation-dissipation relation. The corresponding
fluctuation-dissipation theorem is derived for quantum
fields in vacuum and at finite temperature, respectively.
We find that, although the theorem of fluctuation and
dissipation for the case with the small mirror’s displace-
ment is of model independence, the obtained theorem from
the first principles derivation reveals that it is also inde-
pendent of the regulators introduced to deal with short-
distance divergences from quantum fields. Thus, when the
method of regularization is introduced to compute the
dissipation and fluctuation effects, this theorem must be
fulfilled as the results are obtained by taking the short-
distance limit in the end of calculations. This theorem also
allows us to compute the dissipation kernel from the ob-
tained fluctuation kernel and vice versa.

Consider a situation where the mirror is attached to a
spring and undergoes oscillations with a natural frequency
!0. In vacuum, we find that the relaxation time scales for
125005
having much more than 104 oscillations are needed to
detect tiny damping on the oscillation amplitudes of the
mirror due to the backreaction effects. The energy gain of
the mirror from vacuum fluctuations is by absorbing fewer
than 10	4 quanta for each oscillation with frequency !0.
Thus, these vacuum fluctuations can hardly be detected.
The largely nonuniform acceleration of a microscopic
object can possibly amplify the effects of vacuum fluctua-
tions where the treatment to tackle this issue beyond the
small displacement approximation is required. On the con-
trary, at finite temperature, as long as the temperature of
thermal fields is of order kev, the ratio of the amplitude
fluctuations to the amplitude of the oscillating mirror are of
order 10	8 within the time scales of 10	2s, leading to the
detectable effects.
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