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Soft-gluon production due to a gluon loop in a constant chromoelectric background field
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We obtain an exact result for the soft-gluon production and its pT distribution due to a gluon loop in a
constant chromoelectric background field Ea with arbitrary color. Unlike Schwinger’s result for e�e� pair
production in QED which depends only on one gauge invariant quantity, the electric field E, we find that
the pT distribution of the gluons depend on two gauge invariant quantities, EaEa and �dabcEaEbEc�2.
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Although hard gluon production at high-energy colliders
is computed by using perturbative quantum chromodynam-
ics (pQCD), it is not possible to calculate soft-gluon pro-
duction by using perturbation theory because the coupling
constant becomes large at low energy. In this paper we
study nonperturbative soft-gluon production due to vac-
uum polarization in a constant chromoelectric field by
applying the background field method to QCD with gauge
group SU(3). While e�e� production from a constant
electromagnetic field in spinor QED has been calculated
long ago by Euler and Heisenberg [1], and Schwinger [2],
and by Weisskopf [3] for scalar QED, there is of course no
direct photon production in QED as photons do not interact
with a classical electromagnetic field. In the case of QCD,
gluons do interact with a background chromofield and
gluons are produced. As we want to study the pT distribu-
tion of gluons produced at collider experiments, we shall
not employ Schwinger’s proper time method but, rather,
we will directly evaluate the path integral and obtain the
partition function which gives both the pT distribution and
the total gluon production.

For the interpretation of experiments which probe the
quark-gluon plasma at high-energy large-hadron colliders
such as RHIC (Au-Au collisions at

���
s

p
� 200 GeV) [4]

and LHC (Pb-Pb collisions at
���
s

p
� 5:5 TeV) [5] it might

be necessary to know the pT spectrum of soft gluons
produced by a chromofield. The physical picture behind
this calculation is that two heavy nuclei collide and then
move apart, creating a classical chromofield in between
[6,7]. We consider here a constant chromoelectric field
along the beam direction. Subsequently this constant chro-
moelectric field breaks up into quark antiquark pairs and
gluons. The quark antiquark production has been calcu-
lated before [8] and the corresponding pT distribution has
been approximated by WKB methods [9]. Also the total
gluon production rate by a covariantly constant field
(dN=d4x) has been calculated for SU(2) in [10,11] and
for SU(3) in [12]. The pT distribution (dN=d4xd2pT) of
gluon production due to a constant chromoelectric field
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which we present in this article is new, as far as we know,
and we consider the realistic case of SU(3).

We obtain the following formula for the number of
nonperturbative soft gluons produced per unit time and
per unit volume and per unit transverse momentum from
a given constant chromoelectric field Ea

dNgg
dtd3xd2pT

�
1

4�3

X3
j�1

jg�jj ln�1� e��p
2
T=jg�jj�: (1)

This result is gauge invariant because j�1j, j�2j, and j�3j
are the positive square root of the following gauge invariant
real positive quantities
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�1� cos ��; �2

2 �
C1
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�
1� cos

�
�
3
� �
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;
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3 �

C1

2

�
1� cos

�
�
3
� �

��
; (2)

where � is real and is given by

cos 3� � �1� 6C2=C3
1: (3)

They depend only on the Casimir invariants for SU(3)

C1 � EaEa; C2 � �dabcEaEbEc�2; (4)

where a; b; c � 1; . . . ; 8 are the color indices of the adjoint
representation of the gauge group SU(3). Note that � is real
because C3

1 � 3C2 � 0.
This can be contrasted with the corresponding formula

for massless fermion pair production

dNe�e�

dtd3xd2pT
�

�jeEj

4�3 ln�1� e��p
2
T=jeEj�: (5)

The result for the pT distribution in (5) was obtained by
WKB methods in [9] and integration over pT reproduces
Schwinger’s result for total production rate dN=d4x [2].
(The first term in the expansion of the logarithm of the
total production rate dN=d4x was already obtained by
Heisenberg and Euler [1]. For an excellent review on
Euler-Heisenberg actions, see [13]). In our result the sym-
metric tensor dabc appears. Hence the extension of
Schwinger’s formula for e�e� pair production to gluon
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production is not straight forward. We now present a
derivation.

The Lagrangian density in the background field method
of QCD with covariant background gauge fixing term in
Feynman-’t Hooft gauge is given by [14]

L gluon �
1

2
Q�aMab

���A�Q
�b (6)

where

Mab
���A� � ����D�	A
D�	A
�ab � 2gfabcFc�� (7)

with ��� � 	�1;�1;�1;�1
 the Minkowski metric. The
corresponding ghost Lagrangian density is given by

L ghost �  aDab
� �A�D�;bc�A�Q� c �  aKab�A;Q� b

(8)

where Q, A and  are the gluon quantum field, the back-
ground field, and the ghost field, respectively, and
D��A�Qa

� � �@�Qa
� � gfabcAb�Qc

��.
The one-loop effective action for a gluon loop in a

background field Aa� is given by

S	1
gluon � �i ln	detM
�1=2

�
i
2
Tr�lnM�A�H � lnM�0�H�; (9)

where H�� � ���. We added the matrices H�� since this
will allow us to factorize the trace over Lorentz indices.
The trace Tr contains an integration over d4x and a sum
over color and Lorentz indices. We replace the logarithm
by using the exponential representation

S	1
gluon �
i
2
Tr

Z 1

0

ds
s
�eis	M�0�H�i&
 � eis	M�A�H�i&
�: (10)

We shall say more about the s-integration contour later. We
assume that the electric field is along the z axis (the beam
direction) and we choose the gauge Aa0 � 0 so that Aa3 �
�Eax̂0. The color indices (a � 1; . . . ; 8) are arbitrary.
Since �ab � ifabcEc is Hermitian and antisymmetric, its
eigenvalues are real and come in pairs 	�;��
. We will
show later that the matrix �ab has six nonvanishing eigen-
values. So after diagonalization it reads

�ab
d � 	�1;��1; �2;��2; �3;��3; 0; 0
: (11)

We replace the derivative @� by ip� satisfying �p�; x�� �
�i(�� and obtain

M�A�ab���
�� � (���	p̂0

2 � p̂T
2 � p̂3

2
(ab

� 2g�abx̂0 p̂3 �g2	�2
abx̂02�

� 2ig�abS�
� (12)

where pT �
�����������������
p2
1 � p2

2

q
is the transverse momentum of the

gluons (transverse to the electric field direction) and
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S�� �

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

2
6664

3
7775: (13)

To reduce this problem to one harmonic oscillator, we
make the usual similarity transformation [15]. We also
make a similarity transformation in group space which
diagonalizes the matrices �

M�A�ab���
�� � feip

3p0=g�d�	p̂0
2 � p̂T

2 � g2	�2
d
x̂

02
(��

� 2ig�dS���e�ip
3p0=g�dgab: (14)

Recalling that �ab has two vanishing eigenvalues, we
should read this expression as follows: for a � b �
1; . . . ; 6 each �d denotes an eigenvalue ��1;��2 � �3,
while for a � b � 7; 8 one finds an expression which is
independent of Aa� and which we omit because it cancels
against the contributions from M�0�.

The trace over Lorentz indices factorizes because (��

commutes with S�� and we obtain

S	1
gluon �
�i
2

Z 1

0

ds
s

�
X6
j�1

tr�eip
3p0=g�jeis	p̂0

2�p̂T2�g2�2j x̂0
2�i&
e�ip

3p0=g�j

� �2� 2 cosh 2sg�j� � 4eis	p̂0
2�p̂T 2�i&
� (15)

The trace tr denotes integral over a complete set of x
eigenstates. From here we proceed as in QED [15]. We
add complete sets of p eigenstates, and obtain

S	1
gluon �
�i
2

Z 1

0

ds
s

X6
j�1

1

	2�
3
Z
d4x

Z
d2pTe�isp

2
T�s&

�

�
jg�jj

1� cosh 2sg�j
sinh sjg�jj

�
2

s

�
: (16)

The one-loop effective action for the ghost in the back-
ground field Aa� is given by

S	1
ghost � �i ln	detK


� �iTr
Z 1

0

ds
s
�eis�K�0��i&� � eis�K�A��i&��; (17)

where Kab�A� is given by (8). Since there is now no trace
over �; � but also no square root of the ghost determinant,
we find an overall factor �1=2. In addition there is no term
fabcFc�� in K�A� so that the term cosh 2sg�j is absent. We
obtain then

S	1
ghost �
i
2

Z 1

0

ds
s

X6
j�1

1

	2�
3
Z
d4x

Z
d2pTe

�isp2
T�s&

�

�
jg�jj

1

sinh sjg�jj
�

1

s

�
: (18)
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Adding the effective action due to a gluon and a ghost loop
we find for the one-loop effective action

S	1
 �
�i
2

Z 1

0

ds
s

X6
j�1

1

	2�
3

�
Z
d4x

Z
d2pTe

�isp2
T�s&

�
jg�jj

cosh 2sg�j
sinh sjg�jj

�
1

s

�
:

(19)

The s integral at fixed pT is convergent at s! 0, but
integration over pT yields an extra factor 1=s, and charge
renormalization cures this ultraviolet problem by sub-
stracting also the term linear in s in the expansion of
cosh 2sjg�jj= sinh sjg�jj. In fact the term linear in s yields
the beta function [10,11].

A more serious problem occurs for s! 1. Obviously,
the integral over s diverges, indicating the presence of
infrared divergences. Although such divergences in
Feynman graphs with on-shell external gluons are well
known, the full nonperturbative treatment of these diver-
gences seems complicated. However, we are only inter-
ested in the imaginary part of the effective action, since it
gives us the gluon production rate, and hence we proceed
similarly to Yildiz and Cox [see Eq. (22) in [12] ]. We use
the well-known expansion

1= sinh x �
1

x
� 2x

X1
n�1

	�1
n

x2 � n2�2 (20)

and then we formally replace s by �is (as first advocated
by Schwinger in QED where no infrared problems are
present). The integral is now real, except for half-circles
around the poles at sjg�jj � �in� for n � 1; 2; 3 . . . . The
term 1=x in (20) cancels against the term 1=s in (19). This
yields probability for gluon production per unit time and
per unit volume

Wgluon � 2ImS	1


�
1

	2�
3
Z
d2pT

X1
n�1

	�1
n�1

�
X6
j�1

jg�jj

n
e��n�p

2
T=jg�jj�: (21)
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All that is left is to determine the eigenvalues �j (j �
1; . . . ; 8) of the matrix ifabcEc. First we evaluate the deter-
minant of the 8� 8 matrix �fabcEc � �(ab� and find

Det �fabcEc � �(ab� � �2��6 � A�4 � B�2 � C�

� �2	�2 � �2
1
	�

2 � �2
2
	�

2 � �2
3
:

(22)

Because Eb is an eigenvector of the matrix ifabcEc, and
because eigenvalues come in pairs 	�j;��j
, there are two
eigenvalues zero, which explains the factor �2. The gauge
invariant quantities A, B, and C in the above equation can
only depend on the Casimir invariants in (4) and we find

A �
3

2
EaEa; B �

A2

4
;

C �
1

16
	�EaEa�3 � 3�dabcE

aEbEc�2
;

(23)

where dabc is the symmetric invariant tensor in the adjoint
representations of SU(3). It follows that the three eigen-
values satisfy

�2
1 � �2

2 � �2
3 � A �2

1�
2
2 � �2

2�
2
3 � �2

3�
2
1 � B

�2
1�

2
2�

2
3 � C;

(24)

the solution of which is given by Eq. (2).
In this paper we have derived the pT distribution of the

soft gluons produced by the vacuum polarization due to a
gluon loop in a constant chromoelectric field. We have
used the background field method of QCD with gauge
group SU(3). For application at RHIC and LHC we have
constructed the pT distribution of the gluon production. We
find that, unlike the case in QED where the e�e� pair
production rate depends on one gauge invariant quantity
jEj, the pT distribution of the gluon production rate de-
pends on two gauge invariant quantities, EaEa and
�dabcE

aEbEc�2. We intend to add a chromomagnetic field
later.
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