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Distortion of Schwarzschild-anti-de Sitter black holes to black strings
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Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with
a negative cosmological constant, we study axisymmetric static solutions describing any large distortions
of Schwarzschild-anti-de Sitter black holes parametrized by the mass m. Under the approximation such
that m is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is
obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event
horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating
both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference.
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I. INTRODUCTION

Stationary black holes in spacetimes with a negative
cosmological constant � (which we call hereafter anti-
de Sitter black holes for abbreviation) have been a subject
of current interest, in particular, motivated by the con-
jecture of the anti-de Sitter/Conformal field theory-
correspondence [1], according to which the emergence of
black hole thermodynamics is interpreted in terms of ther-
mal states of the dual conformal field theory [2,3]. It is also
interesting that the vacuum Einstein equations with the
cosmological term admit stationary exact solutions which
have the event horizon with various topologies even in four
dimensions [4–12]. Namely, the spatial section of the event
horizon can be Einstein’s manifold with positive, zero or
negative scalar curvature corresponding to k � �1; 0;�1.
The thermodynamic properties of such anti-de Sitter (AdS)
black holes have been investigated in [13] for k � �1 and
in [10,11] for k � 0;�1. Though the higher-dimensional
generalization has been extensively studied (see, for ex-
ample, [14,15]), in this paper we focus our attention on the
four-dimensional black holes.

For k � 1 the event horizon has a spherical topology
(S2), and the Schwarzschild-anti-de Sitter (SAdS) solution
is well-known as a typical example of spherically symmet-
ric anti-de Sitter black holes. On the other hand, the
horizon topology corresponding to zero scalar curvature
(i.e., k � 0) may be planar (R2), cylindrical (R1 � S1) or
toruslike (S1 � S1) according to the compactification
scheme for the two-dimensional spatial section.
Hyperbolic (sometimes called topological) black holes
represented by the k � �1 solutions may have a negative
mass, and the (in)stability becomes a subtle problem
[16,17].

It is remarkable that conformal (compactified) spatial
infinity of a stationary AdS black hole spacetime has the
same topology as the event horizon. If the horizon topology
is fixed, a black hole solution satisfying the stationary
vacuum Einstein equations with �< 0 may be unique
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[18,19]. However, this uniqueness theorem holds only if
the boundary metric at conformal spatial infinity is re-
quired to be the Einstein metric with a constant scalar
curvature. In fact, axisymmetric static perturbations of
the SAdS solution have been explicitly presented in [20].
The key result of the perturbative analysis is that a static
small distortion from spherical symmetry (which is regular
at the event horizon) does not vanish even at spatial infin-
ity. Namely, we obtain a nonuniform spherical 2-surface at
spatial infinity, where an arbitrary function f��� dependent
on the zenithal angle � appears. This should be compared
to vacuum black hole (namely, Schwarzschild and Kerr)
solutions with � � 0, for which any static distortion regu-
lar at the horizon must diverge at spatial infinity (see
[21,22] for the exact solutions of distorted black holes).
The role of a negative cosmological constant is to give a
finite distortion to the boundary metric on S2 at spatial
infinity. Interestingly, we note the one-to-one correspon-
dence between the boundary data represented by the func-
tion f��� and the bulk spacetime geometry from the
horizon to spatial infinity.

In this paper we consider a large distortion of a SAdS
black hole as an extension of the analysis in [20] to a
nonperturbative case. Our purpose is to construct a family
of distorted anti-de Sitter black hole solutions connecting
the k � 1 (SAdS) black hole solution to the k � 0 black
string solution with a cylindrical horizon topology. This
will be useful for studying the important area of AdS black
hole physics concerning the quasistatic or thermodynamic
evolution which may be accompanied with a large distor-
tion from spherical symmetry.

For mathematical convenience our investigation is lim-
ited to the large mass domain such that m� rA, where m
is the SAdS mass parameter and rA �

��������������
�3=�

p
is the anti-

de Sitter radius. (Hereafter we use units such that c � G �
@ � kB � 1.) Because in the large mass domain the in-
equality rA 	 rH 	 m holds for the SAdS horizon radius
rH, the effect of � becomes significant even near the
horizon, and the horizon 2-surface is distorted in the nearly
same manner as the 2-surface at spatial infinity, as was
-1  2005 The American Physical Society
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shown in [20]. This allows us to obtain easily a nonpertur-
bative distortion of the metric in Sec. II. Then, in Sec. III,
we estimate the mass of distorted AdS black holes, using
the definition proposed by Ashtekar and Magnon [23]
applicable to spacetimes with a distorted boundary metric
at spatial infinity. We find the condition for distortion
keeping the Astekar-Magnon mass equal to the SAdS
mass parameter m. It is also possible to obtain the
Euclidean gravitational action, using the boundary coun-
terterm technique [24,25]. The leading-order calculation in
the large mass domain clearly shows that the thermody-
namic mass energy is equal to m. The entropy and the
temperature are given as functions of m in the same way as
the SAdS case. We can conclude that any effect due to the
horizon distortion becomes thermally insignificant in the
large mass domain. In Sec. IV, we present an explicit
example representing a black hole distortion connecting
to a uniform black string. Such a distortion is shown to
satisfy the so-called Penrose inequality for the mass and
the horizon area, of which the validity has been discussed
in asymptotically flat spacetimes (see, for example, [26]).
We also mention, in terms of the hoop conjecture proposed
by Thorne [27], the possible existence of an extremal state
of distorted (nonrotating) AdS black holes.
II. STATIC AXISYMMETRIC DISTORTION

Without loss of generality the static axisymmetric metric
for describing a black hole with a spherical horizon topol-
ogy is given by

ds2 � �e2�dt2 � e2�dr2 � r2e2 �d�2 � sin2�d�2�; (1)

where the functions �,� and depend only on r and �. For
the SAdS metric we obtain

e2�0 � e�2�0 � 1�
2m
r

�

�
r
rA

�
2
; e2 0 � 1: (2)

If we consider a static axisymmetric distortion of the SAdS
metric according to a usual perturbative scheme, we have
up to the first order

� � �0 � ��1; � � �0 � ��1;  � � 1; (3)

with a small parameter �. Using the vacuum Einstein
equations Rab � �gab with a negative cosmological con-
stant �, the first-order perturbations �1�r; ��, �1�r; �� and
 1�r; �� have been studied in [20]. For each multiple
component given by Legendre’s polynomial Pl�cos��
with l 
 2 we obtain

�1 � ��1 � �H�1��r�Pl�cos��;

 1 � K�1��r�Pl�cos��:
(4)

In this paper we focus our interest on the large mass
domian such that m� rA, in which the radial functions
are given by
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H�1� �
3x

x2 � x� 1
�

1

x
�O�"�;

K�1� �
6

"�l2 � l� 2�
�O�1�;

(5)

where " � rH=2m	 1, x � r=rH, and the horizon radius
rH is approximately written by rH ’ �2mr2A�

1=3 (see [20]
for the derivation). The key point of the result (5) is that the
functional form ofH�1� does not depend on l in the leading-
order calculation with respect to the new small parameter
". This allows us to write the first-order perturbation �1 as
follows,

�1 � ��1 �

�
3x

x2 � x� 1
�

1

x

�
h���; (6)

where h��� is an arbitrary function of �. Note also that the
radial function K�1� does not depend on r, though the
constant value depends on l. The first-order perturbation
 1 can be written by

 1 �
1

"
f���; (7)

where the function f��� must satisfy the relation

6h �
d2f

d�2
� cot�

df
d�

� 2f: (8)

This linear analysis clearly shows that one arbitrary func-
tion (i.e., f or h) of � appears as a hair of distorted AdS
black holes. In particular, for SAdS black holes with large
mass m, any axisymmetric distortion of a spherical 2-
surface (S2) is represented by the function f��� indepen-
dent of the radial coordinate r. Namely, we obtain the same
distortion of S2 in the whole range from the horizon r � rH
to spatial infinity r! 1.

Now we consider a nonperturbative extension of the
results obtained by the linear analysis. It is clear from
Eqs. (6) and (7) that if the distortion parameter � is chosen
to be � � "	 1, the linear approximation for � 1 breaks
down, while the perturbation ��1 � ���1 remains small.
Hence, the expansion of the metric (1) with respect to the
small parameter " will allow us to give a nonperturbative
distortion only to the metric function  defined on S2.

Note that the SAdS metric (2) can be written by

e2�0 � e�2�0 �
1

"

�
x2 �

1

x

�
� 1 (9)

in the range x 
 1. Then the expansion of the metric
function � with respect to " (i.e., � � �0 � "�1) should
be rewritten into the form

e2� ’ e�2� ’
1

"

�
x2 �

1

x

��
1� 2"�1 � "

�
x2 �

1

x

�
�1
�
:

(10)

The approximation such that e2"�1 ’ 1� 2"�1 is still pos-
sible in the same way as the linear analysis. However, the
-2
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leading term for the metric function  should be

e2 ’ e2f���; (11)

which does not allow the approximation such that e2" 1 ’
1� 2" 1. Nevertheless it is straightforward to see that the
vacuum Einstein equations with a negative cosmological
constant are satisfied up to the next-to leading-order cal-
culation in the small " domain, only if the nonlinear
relation

6h� 1 � e�2f
�
d2f

d�2
� cot�

df
d�

� 1
�
; (12)

is required instead of Eq. (8). Of course, for a small
distortion corresponding to the approximation jfj 	 1
Eq. (12) reduces to Eq. (8).

We can treat any nonperturbative distortion of S2 by the
use of the arbitrary metric function f���, which also de-
termines the small correction "h��� to the metric function
� � �� through Eq. (12). If such a distortion is required
to preserve the area of S2, the function f should satisfy the
additional condition

1

2

Z $

0
e2f��� sin�d� � 1; (13)

from which Eq. (12) leads to the result that the mean value
h vanishes if the distortion perturbation h��� is averaged
over S2, namely,

h �
1

2

Z $

0
e2f���h��� sin�d� � 0: (14)

Let us remark that the area-preserving condition (13) is
allowed without loss of generality. For some choice of f���
the integral in Eq. (13) may become equal to e2 f with a
nonzero value f. Then, we can consider the new distortion
functions f0��� and h0���, using the transformations f !

f0 � f� f and h! h0 � e2 fh� �1� e2 f�=6. It is easy to
check that these functions f0 and h0 can satisfy Eqs. (13)
and (14). Further, as was previously mentioned, for a small
distortion of S2 (i.e., for jfj 	 1) the distortion functions
f��� and h��� may be given by Legendre’s polynomial
Pl�cos�� with l 
 2. We note that if the distortion is treated
as a linear perturbation, Eqs. (13) and (14) should be
regarded as the necessary conditions for f and h. Hence,
in the following section we will discuss mass and thermo-
dynamic properties of distorted AdS black holes under the
condition (13).
III. THE ASHTEKAR-MAGNON MASS AND
THE ENTROPY

The distortion given by f��� may induce a black hole
mass different from the SAdS mass parameter m. Though
the mass is a basic quantity characterizing black hole
states, the definition in spacetimes with a negative cosmo-
logical constant remains ambiguous as a problem to be
124044
investigated from various viewpoints. If the distortion from
spherical symmetry vanishes at spatial infinity, one may
use the so-called Abbott-Desser mass MAD [28].
Unfortunately, as was shown in [20], the calculation based
on the Abbott-Deser method which depends on the choice
of the background metric is not applicable to distorted AdS
black holes. Hence, we adopt here the evaluation method
proposed by Ashtekar and Magnon [23], for which any
background subtraction is unnecessary. The Ashtelar-
Magnon mass denoted by MAM is a conserved quantity
defined in the conformally transformed spacetime with the
metric gab � �2gab, where gab is the physical metric (1)
representing a AdS black hole. If the conformal factor � is
chosen to be � � 1=r, it is given by

MAM � �
rA
4
lim
r!1

Z $

0
'tr2e�

�
e�2�f�;rr��;r ��;r��;r �g

�
e�2 

r2
�;� �;��

1

r2A

	
e2 sin�d�; (15)

where 't is a time component of the timelike Killing vector
'a on the conformal boundary at r! 1.

For distorted black holes obtained under the approxima-
tion "	 1 in the previous section, we find that �1 �
��1 ! 0 in the limit r! 1, and the conformal boundary
metric is given by

d s2 � �
1

r2A
dt2 � e2f����d�2 � sin2�d�2�: (16)

Though the normalization of the Killing vector 'a on the
boundary metric distorted by f has been discussed in [20],
here we choose 't � 1 in the same way as the SAdS
spacetime, considering the condition (13) for f. To calcu-
late Eq. (15) to the leading order in the small " domain, it is
sufficient to use the approximated SAdS form

e2� ’ e�2� ’
1

"

�
x2 �

1

x

�
(17)

for � and � in the integrand, while we have  � f � 0 for
the metric function on S2. Then, the final result is simply

MAM � m: (18)

In spite of a large distortion of black hole geometry repre-
sented by f a change of the black hole mass can remain
very small, namely, �MAM �m�=m � O�"�.

Let us also check the effect of black hole distortion at the
thermodynamic level. For this purpose we calculate the
Euclidean gravitational action I, using the counterterm
prescription applicable to spacetimes with a negative cos-
mological constant [24,25]. For the leading-order calcula-
tion of thermodynamic quantities in the small " domain,
the gravitational action I may be evaluated by giving the
Euclidean version of the approximate metric (17) such as
-3
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ds2 �
�
r2

r2A
�

2m
r

�
d)2 �

�
r2

r2A
�

2m
r

�
�1
dr2

� r2e2f����d�2 � sin2�d�2�; (19)

where ) � it is the Euclidean time with the period + given
by

+ �
2$
3

�
4r4A
m

�
1=3
: (20)

The Euclidean gravitational action I contains three con-
tributions denoted by

I � Ibulk � Isurf � Ict: (21)

The first two terms Ibulk and Isurf in Eq. (21) are the familiar
classical action corresponding to the volume integral in the
range rH � r � r0 and the boundary integral at r � r0,
respectively, and we have

Ibulk �
3

8$r2A

Z
d4x

���
g

p
�

+

2r2A
�r30 � r3H�; (22)

and

Isurf � �
1

8$

Z
d3x

���
h

p
K �

3+

2r2A

�
�r30 �

r3H
2

�
; (23)

where K is the trace of the extrinsic curvature of the
boundary with the metric hab, giving the determinant

���
h

p
�

�
r20
r2A

�
2m
r0

�
1=2
r20e

2f sin�: (24)

Here, the counterterm Ict necessary for canceling the di-
vergence of I is given by the boundary integral

Ict �
1

4$rA

Z
d3x

���
h

p
�
+r20
rA

�
r20
r2A

�
2m
r0

�
1=2
: (25)

Then, in the limit r0 ! 1, we obtain

I � �
+
2
m � �

$
3
�2r2Am�

2=3: (26)

By virtue of the condition (13) it is clear that no correction
due to the distortion function f appears in this formula for
I. Hence, for the thermodynamic mass energy E and the
entropy S defined by

E �
@I
@+

; S � +M� I; (27)

we arrive at the well-known results

E � m; S � $r2H � $�2r2Am�
2=3: (28)

Thermodynamic properties of distorted AdS black holes
become almost the same as SADS black holes in the small
" domain.
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IV. CONNECTION TO BLACK STRINGS

In the previous section we have seen that the thermody-
namic evolution of black holes to a distorted configuration
can occur without changing the mass energy and the en-
tropy. Here we present an explicit example of a family of
solutions describing a distortion from a SAdS black hole to
a uniform black string which has the cylindrical metric [4]

ds2 � �

�
r2

r2A
�

2m
r

�
dt2 �

�
r2

r2A
�

2m
r

�
�1
dr2

� r2
�
dz2

z20
� d�2

�
; (29)

where r is interpreted as a cylindrical radius, and z0 is an
arbitrary parameter with the dimension of length. The
parameter m differs from the black hole mass which will
become divergent for this cylindrical system with the
infinite horizon area. Hence, to obtain such a black string
solution, we must consider the increase of the SAdS mass
in addition to the cylindrical distortion.

Note that the SAdS metric rewritten into the form

ds2 � �

�
a2 �

2m
r

�
r2

r2A

�
dt2 �

�
a2 �

2m
r

�
r2

r2A

�
�1
dr2

�
r2

a2
�d�2 � sin2�d�2�; (30)

represents a spherical black hole with mass m=a3. If the
distortion procedure explained in Sec. II is applied to this
spherical metric (30), the distorted metric is given by

e2� ’ e�2� ’
1

"

�
x2 �

1

x

��
1� 2"�1 � a2"

�
x2 �

1

x

�
�1
�
;

(31)

and

e2 ’
e2f���

a2
; (32)

instead of Eqs. (10) and (11). Then it is easily found that

6h

a2
� 1 � e�2f

�
d2f

d�2
� cot�

df
d�

� 1
�

(33)

as a modified version of Eq. (12). Though the condition
(13) is assumed to be preserved, the area of S2 (and the
mass m=a3) can increase as the positive parameter a
decreases.

The interesting example of the distortion function f is

e2f �
b

sin2�� /
; (34)

where / is an arbitrary positive parameter, and the condi-
tion (13) leads to

b � 2
�������������
1� /

p �
ln

�������������
1� /

p
� 1�������������

1� /
p

� 1

�
�1
: (35)
-4
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Further, from Eq. (33) we obtain

6h

a2
� 1�

/
b

�
1�

2�1� /�

sin2�� /

	
: (36)

We find that in the large / domain (where a is assumed to
be a ’ 1) the function f represents a small quadrupole
distortion given by

f ’
1

3/
P2�cos��; (37)

using the approximated relation b ’ /� �2=3�. On the
other hand, in the small / domain, we obtain

b ’

�
ln

2����
/

p

�
�1

	 1: (38)

We must keep the metric function e2 finite even in the
limit /! 0. Hence, from Eq. (32) the parameter a is
chosen to be a2 ’ b! 0 in the small / limit, for which
it is easy to see that the metric functions given by Eqs. (31)
and (32) reduce to the cylindrical metric given by Eq. (29),
using the coordinate transformation

z
z0

�
Z $=2

�

d�
sin�

: (39)

In fact, the limit a2 ! 0 for the metric (30) means a
transition to the horizon with zero scalar curvature k � 0.
Further, according to Eq. (36) the function h giving the
perturbed metric �1 also vanishes in the same limit. By
virtue of the disappearance of h we obtain a nonperturbed
uniform black string solution. Thus, we can claim that the
distorted black hole metric written by Eq. (34) is a one-
parameter family of solutions giving a SAdS black hole in
the limit /! 1 (i.e., a! 1) and a uniform black string in
the limit /! 0 (i.e., a! 0).

Finally, let us discuss the validity of the Penrose inequal-
ity [26] and the hoop conjecture [27] for black hole ge-
ometry in the distortion process to the black string. The
Penrose inequality states that the black hole mass given by
M � m=a3 is not less than

���������������
A=16$

p
, where A is the hori-

zon area given by A � 4$�2mr2A=a
3�2=3. The parameter a

is required to decrease from unity to zero as / decreases to
zero. Then the validity of the Penrose inequality is appar-
ent, because the ratio given by

M���������������
A=16$

p �
1

"a2
(40)

cannot be smaller than unity in the range a � 1.
On the other hand the hoop conjecture states that any

circumference C on the horizon is bounded by C � 4$M.
Here, the circumference C should be given as the length of
a closed loop at a constant �, namely, we obtain

C �
�2mr2A�

1=3

a

Z $

0
efd�: (41)

Then, in the limit /! 0, we can roughly evaluate the ratio
124044
C=4$M as

C
4$M

� "
�
ln
1

/

�
�1=2

	 1; (42)

using a2 ’ b� 1= ln�1=/�. We find that the hoop conjec-
ture remains valid even for the extremely prolonged dis-
tortion /! 0.

It should be noted that the hoop conjecture becomes
consistent with the existence of such a prolonged horizon
owing to the rapid increase of mass M � m=a3 as a2

decreases in proportion to b. Hence, one may expect the
breakdown of the hoop conjecture for a prolonged distor-
tion (i.e., /	 1) keeping M � m (i.e., a � 1), which
gives the ratio

C
4$M

� "
�
ln
1

/

�
1=2
: (43)

However, the circumference C can become larger than
4$M only for ln�1=/� larger than 1="2. This is the case
such that the perturbation "�1 � "h which is assumed to
be very small in our analysis has the amplitude of the order
of "b 
 1="� 1. The nonperturbative change of the
metric functions � and � may make the horizon structure
disappear, consistently with the hoop conjecture.
Unfortunately, it is impossible to find solutions describing
the disappearance of the event horizon within the frame-
work of our analysis, in which the distortion of the metric
functions � and � is treated perturbatively, though the
spherical surface S2 is nonperturbatively distorted by the
function  � f���. To construct an extremal state of dis-
torted ‘‘static’’ black holes is an interesting problem to be
studied in future works.

In summary, we have succeeded in providing a simple
nonperturbative scheme to obtain strongly distorted AdS
black holes and showing explicitly the existence of a
family of solutions connecting spherically symmetric
black holes to uniform black strings. From the leading-
order calculations in the large mass domain (i.e., m� rA),
we have found that the black hole mass is identical with the
SAdS mass parameter m, and the usual thermodynamic
relation between the mass and the entropy holds, irrespec-
tive of the large distortion of the metric on S2.

We would like to emphasize that the above-mentioned
results have been obtained under the large mass approxi-
mation " � rH=2m	 1. If the parameter " is not so
small, the amplitude of the first-order metric perturbation
 1 distorting geometry on S2 has the same order as �1 and
�1, as was discussed in [20]. Namely, no large distortion of
S2 is allowed, unless the metric functions �0 and �0 of
SAdS black holes are also strongly disturbed. In particular,
in the small mass domain corresponding to m	 rA (i.e.,
" ’ 1), the second-order perturbations �2 and �2 can
become significantly large even if the first-order perturba-
tions �1 and �1 has the small amplitude of the order of
�m=rA�1=2. In relation to the uniqueness theorem (as well as
the hoop conjecture) for black hole solutions in four-
-5
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dimensional � � 0 spacetimes, it is a remaining important
task to check nonperturbatively whether the horizon dis-
torted from spherical symmetry can exist for the small
mass domain.
124044
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[9] S. Åminneborg, I. Bengtsson, S. Holst, and P. Peldán,

Class. Quant. Grav. 13, 2707 (1996).
[10] D. R. Brill, J. Louko, and P. Peldán, Phys. Rev. D 56, 3600

(1997).
[11] L. Vanzo, Phys. Rev. D 56, 6475 (1997).
[12] D. Klemm, V. Moretti, and L. Vanzo, Phys. Rev. D 57,

6127 (1998).
[13] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87,

577 (1983).
[14] R. B. Mann, in Internal Structure of Black Holes and

Spacetime Singularities, edited by L. Burko and A. Ori,
(Technion University Press, Haifa, 1998).

[15] D. Birmingham, Class.Quant. Grav. 16, 1197 (1999).
[16] G. Gibbons and S. A. Hartnoll, Phys. Rev. D 66, 064024
(2002).

[17] I. P. Neupane, Phys. Rev. D 69, 084011 (2004).
[18] M. Anderson, P. T. Chruściel, and E. Delay, J. High
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