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Stellar oscillations in scalar-tensor theory of gravity
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We derive the perturbation equations for relativistic stars in scalar-tensor theories of gravity and study
the corresponding oscillation spectrum. We show that the frequency of the emitted gravitational waves is
shifted proportionally to the scalar field strength. Scalar waves which might be produced from such
oscillations can be a unique probe for the theory, but their detectability is questionable if the radiated
energy is small. However, we show that there is no need for a direct observation of scalar waves: The shift
in the gravitational wave spectrum could unambiguously signal the presence of a scalar field.
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I. INTRODUCTION

Scalar-tensor theories of gravity are an alternative or
generalization of Einstein’s theory of gravity, where, in
addition to the tensor field, a scalar field is present. The
theory has been proposed in its earlier form about a half
century ago [1–3], and it is a viable theory of gravity for a
specific range of the coupling strength of the scalar field to
gravity [4–6]. Actually, the existence of scalar fields is
crucial (e.g., in inflationary and quintessence scenarios) to
explain the accelerated expansion phases of the Universe.
In addition, scalar-tensor theories of gravity can be ob-
tained from the low-energy limit of string theory and/or
other gauge theories. Experimentally, the existence of a
scalar field has not yet been probed, but a number of
experiments in the weak field limit of general relativity
set severe limits on the existence and coupling strengths of
scalar fields [6,7].

A basic assumption is that the scalar and gravitational
fields ’ and g�� are coupled to matter via an ‘‘effective
metric’’ ~g�� � A2�’�g��. The Fierz-Jordan-Brans-Dicke
[1–3] theory assumes that the ‘‘coupling function’’ has the
form A�’� � �0’; i.e., it is characterized by a unique free
parameter �20 � �2!BD � 3��1, and all its predictions dif-
fer from those of general relativity by quantities of order
�20 [8]. Solar system experiments set strict limits in the
value of the Brans-Dicke parameter !BD, i.e., !BD *

40 000, which suggests a very small �20 < 10
�5 (see [7,9]).

In the early 1990s, based on a simplified version of
scalar-tensor theory where A�’� � �0’� 	’2=2,
Damour and Esposito-Farèse [8,10] found that for certain
values of the coupling parameter 	 the stellar models
develop some strong field effects, which induce significant
deviations from general relativity. This sudden deviation
from general relativity for specific values of the coupling
constants has been named ‘‘spontaneous scalarization.’’
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Harada [11] studied in more detail models of nonrotating
neutron stars in the framework of the scalar-tensor theory
and he reported that spontaneous scalarization is possible
for 	 & �4:35. DeDeo and Psaltis suggested that the
effects of scalar fields might be apparent in the observed
redshifted lines of x rays and � rays observed by Chandra
and XMM-Newton [12] and in quasiperiodic oscillations
[13].

Recently, we have examined the possibility to obtain the
information for the presence of the scalar field via gravi-
tational wave observations of oscillating neutron stars
([14], hereafter paper I). This previous study has been
done using the so-called Cowling approximation. In this
approximation, one studies the fluid oscillations freezing
the perturbations of the spacetime and of the scalar field.
Even under these assumptions, the effect of the scalar field
on the fluid perturbations can be significant. We showed
that for values of 	 & �4:35 the oscillation frequencies of
the fluid change drastically, and the observation of such
oscillations can verify or rule out the spontaneous scalari-
zation phenomenon.

It has been suggested that stellar oscillations can provide
a unique tool for estimating the parameters of the star, i.e.,
mass, radius, rotation rate, magnetic field, and equation of
state. These ideas have been developed in the last decade in
a series of papers [15–21], where the properties of the
various families of oscillation modes have been used to
probe the stellar parameters. The modes which are mainly
excited during the formation of a neutron star or during
starquakes and emit detectable gravitational waves are the
fluid f and pmodes and the wmodes, which are associated
to oscillations of the spacetime [22].

The effect of the scalar field on the f and p modes has
been examined in paper I (in the Cowling approximation).
In this article, we derive the full set of equations describing
the oscillations of a relativistic star, i.e., the perturbations
of the fluid, the spacetime, and the scalar field. Since the
stellar models are spherically symmetric, the oscillations
can be classified as axial or polar depending on their parity,
-1  2005 The American Physical Society
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and we can derive perturbation equations for each class of
perturbations. In the polar case, we show that the wave
equations describing the perturbations of the fluid and
spacetime couple to the wave equation describing the
perturbations of the scalar field. In other words, the polar
perturbations are affected not only by the presence of the
scalar field in the background but also by the coupling with
the wave equation describing the perturbations of the scalar
field. In the axial case, we find a single equation describing
the perturbation of the spacetime. This equation is not
coupled to perturbations of the fluid and of the scalar field:
The scalar field affects only the dynamics through its
influence on the background.

The paper is organized as follows. In the next section,
we establish our notation and briefly introduce the theo-
retical framework for the scalar-tensor theories of gravity
we consider. In Sec. III we derive the perturbation equa-
tions which will be used for the numerical estimation of the
oscillation frequencies. In Sec. IV we describe the methods
that have been used to derive the axial w modes in scalar-
tensor theory of gravity and show the results. In the final
section V we discuss the results and their implications. We
have included in three appendices the details of the various
analytic and numerical calculations. In Appendix A we
describe the perturbations of the energy-momentum ten-
sors for the fluid and the scalar field, while in the next
Appendix B we provide the analytic forms of the perturbed
Einstein equations. Finally, in the last Appendix C we
describe the numerical techniques that have been used to
calculate the quasinormal modes. In this paper, we adopt
the unit of c � G � 1, where c and G denote the speed of
light and the gravitational constant, respectively, and the
metric signature of ��;�;�;��.
II. STELLAR MODELS IN SCALAR-TENSOR
THEORIES OF GRAVITY

In this section, we will study neutron star models in
scalar-tensor theory of gravity with one scalar field. This
is a natural extensions of Einstein’s theory, in which grav-
ity is mediated not only by a second rank tensor (the metric
tensor g��) but also by a massless long-range scalar field
’. The action is given by [4]

S �
1

16�G�

Z ����������
�g�

p
�R� � 2g

��
� ’;�’;��d4x

� Sm��m; A
2�’�g���	; (1)

where all quantities with asterisks are related to the
‘‘Einstein metric’’ g���; then R� is the curvature scalar
for this metric, and G� is the bare gravitational coupling
constant. �m represents collectively all matter fields, and
Sm denotes the action of the matter represented by �m,
which is coupled to the ‘‘Jordan-Fierz metric tensor’’ ~g��.
The field equations are usually written in terms of the
Einstein metric, but all nongravitational experiments mea-
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sure the Jordan-Fierz or ‘‘physical metric.’’ The Jordan-
Fierz metric is related to the Einstein metric via the con-
formal transformation,

~g �� � A2�’�g���: (2)

Hereafter, we denote by a tilde quantities in the ‘‘physical
frame’’ and by an asterisk those in the ‘‘Einstein frame.’’
From the variation of the action S, we get the field equa-
tions in the Einstein frame

G��� � 8�G�T��� � T
�’�
���; (3)

��’ � �4�G���’�T�; (4)

where T�’�
��� is the energy momentum of the massless scalar

field, i.e.,

T�’�
��� 
 2�’;�’;� �

1
2g���g

�	
� ’;�’;	� (5)

and T��� is the energy-momentum tensor in the Einstein
frame which is related to the physical energy-momentum
tensor ~T�� as follows:

T��� 

2����������
�g�

p
�Sm
�g���

� A6�’� ~T��: (6)

The scalar quantities T� and ��’� are defined as T� 

T��

� � T��� g��� and ��’� 
 d lnA�’�=d’. It is apparent
that ��’� is the only field-dependent function which cou-
ples the scalar field with matter; for ��’� � 0 the theory
reduces to general relativity. Finally, the law of energy-
momentum conservation ~r� ~T�

� � 0 is transformed into

r��T��
� � ��’�T�r��’; (7)

and we set ’0 as the cosmological value of the scalar field
at infinity. In this paper, we adopt the same form of
conformal factor A�’� as in Damour and Esposito-Farèse
[8], which is

A�’� � e1=2	’
2
; (8)

i.e.,��’� � 	’, where	 is a real number. In the case	 �
0, this scalar-tensor theory reduces to general relativity,
while spontaneous scalarization occurs for 	 & �4:35
[11].

We will model the neutron stars as self-gravitating per-
fect fluid of cold degenerate matter in equilibrium. Then
the metric describing an unperturbed, nonrotating, spheri-
cally symmetric neutron star can be written as

ds2� � g���dx�dx�

� �e2�dt2 � e2�dr2 � r2�d�2 � sin2�d 2�; (9)

where e�2� � 1� 2��r�=r, while for the calculation of
the mass function ��r� and the ‘‘potential’’ function ��r�,
the reader should refer to paper I. Finally, the stellar matter
is assumed to be a perfect fluid
-2
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~T �� � �~!� ~P� ~U� ~U� � ~P~g��; (10)

where ~U� is the four-velocity of the fluid, ~! is the total
energy density, and ~P is the pressure in the physical frame.

III. BASIC PERTURBATION EQUATIONS

In this section, we present the equations describing
perturbations of the spacetime, scalar field, and fluid in a
spherically symmetric background. The equations we pro-
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vide describe the nonradial oscillations of spherically sym-
metric neutron stars in scalar-tensor theories. We assume,
in the physical frame, using the Regge-Wheeler gauge
[23], the following form of the perturbed metric tensor:

~h �� � ~h���
�� � ~h���

�� ; (11)

where ~h���
�� denotes the axial (or odd parity) part of metric

perturbations
~h ���
�� �

X1
l�2

Xl
m��l

0 0 �h0;lm sin�1�@ h0;lm sin�@�
0 0 �h1;lm sin

�1�@ h1;lm sin�@�
� � 0 0
� � 0 0

0
BBB@

1
CCCAYlm; (12)

and ~h���
�� denotes the polar (or even parity) part of metric perturbations

~h ���
�� �

X1
l�2

Xl
m��l

H0;lme2� H1;lm 0 0
� H2;lme2� 0 0
0 0 r2Klm 0
0 0 0 r2Klm sin2�

0
BBB@

1
CCCAYlm: (13)

The functions h0;lm, h1;lm, H0;lm, H1;lm, H2;lm, and Klm describing the spacetime perturbations have only radial and
temporal dependence, while Ylm � Ylm��; � is the spherical harmonic function.

Following the previous definitions, the perturbed metric tensor h��� in the Einstein frame has the form:

h��� �
1

A2
~h�� �

2

A
g����A (14)

�
X1
l�2

Xl
m��l

1

A2

�H0;lm � 2A�A�e2� H1;lm �h0;lm sin
�1�@ h0;lm sin�@�

� �H2;lm � 2A�A�e2� �h1;lm sin�1�@ h1;lm sin�@�
� � �Klm � 2A�A�r2 0
� � 0 �Klm � 2A�A�r2 sin2�

0
BBB@

1
CCCAYlm; (15)
where �A 
 A	’�’ is the perturbation of the conformal
factor A and �’ is the perturbation of the scalar field,
where �’ is a function of t and r only. The above definition
of h��� will be used to derive the perturbation equations: In
other words, we will work out the perturbations in the
Einstein frame and we will transform back to the physical
frame whenever we need it.

By defining the new set of perturbation functions Ĥ0,
Ĥ1, Ĥ2, K̂, ĥ0, and ĥ1 as follows:

Ĥ 0;lm �
1

A2
�H0;lm � 2A�A�; Ĥ1;lm �

1

A2
H1;lm;

(16)

Ĥ 2;lm �
1

A2
�H2;lm � 2A�A�;

K̂lm �
1

A2
�Klm � 2A�A�;

(17)

ĥ 0;lm �
1

A2
h0;lm; ĥ1;lm �

1

A2
h1;lm; (18)
the perturbed metric h���, in the Einstein frame, is sim-
plified considerably and reduced to the ‘‘standard’’ Regge-
Wheeler form of a perturbed spherical metric. We should
notice that the scalar perturbations �A are linked only with
the polar perturbation functions H0;lm, H1;lm, H2;lm, and
Klm. The axial perturbation functions h0;lm and h1;lm are
affected only by the contribution of the scalar field to the
background.

The perturbation equations will be derived by taking the
variation of Eqs. (3) and (4)

�G��� � 8�G��T��� � �T
�’�
���; (19)

���’ � �4�G�����’�T�	: (20)

The various components of �T�’�
��� are expressed as linear

combinations of �’ and ~h��. In the Einstein frame, the
perturbed energy-momentum tensor describing the matter
fields �T��� is some linear combination of the velocity
variation of the fluid � ~Ui 
 �WYlm; V@�Ylm �

u sin�1�@ Ylm; V@ Ylm � u sin�@�Ylm�, the density and
-3
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pressure variations (�~! and � ~P) together with the variation
of the scalar field (�’ or �A), and the metric perturbation
h���. The explicit form of the energy-momentum tensor is
given in Appendix A.

The linearized Einstein equations (19) will be written as
follows. From the tt, tr, rr components and the sum of the
components �� and   , we getX

l;m

A�I�
lmYlm � 0 �I � 0–3�; (21)

where the four expressions A�I�
lm � 0 are given in

Appendix B. They contain combinations of Ĥ0, Ĥ1, Ĥ2,
K̂, W, � ~P, �~!, �’, and their temporal and spatial deriva-
tives. It is worth noticing that all four equations above are
describing only polar perturbations. In a similar way, from
the t�, t , r�, and r components, we get four more
equations

X
l;m



��J�
lm@�Ylm � 	�J�

lm

1

sin�
@ Ylm

�
� 0 �J � 0; 1�;

(22)

X
l;m



	�J�
lm@�Ylm � ��J�

lm

1

sin�
@ Ylm

�
� 0 �J � 0; 1�:

(23)

Here the expressions ��J�
lm are some linear combinations of

polar perturbation functions, while, on the other hand, the
expression 	�J�

lm is a combination of only axial perturbation
functions (see Appendix B).

Furthermore, from the � component and the subtrac-
tion of �� and  components, we get two more equationsX

l;m

fslmXlm � tlm sin�Wlmg � 0; (24)

X
l;m

ftlmXlm � slm sin�Wlmg � 0; (25)

where slm and tlm describe polar and axial type perturba-
tions, respectively, while Xlm and Wlm are defined as

Xlm � 2@ 

�
@� �

cos�
sin�



Ylm and

Wlm �

�
@2� �

cos�
sin�

@� �
1

sin2�
@2 



Ylm:

(26)

Taking the product of Eqs. (21)–(25) with �Ylm, integrat-
ing over the solid angle, and looking at components with
fixed values of l and m, we get ten partial differential
equations in the variables t and r:

A�I�
lm � 0; ��J�

lm � 0; slm � 0;

�I � 0–3 and J � 0; 1�
(27)
124038
	�J�
lm � 0; tlm � 0 �J � 0; 1�: (28)

Equations (27) describe the polar perturbations, and
Eqs. (28) describe the axial perturbations. The analytic
expressions for Eqs. (28), i.e., Eqs. (B7), (B8), and
(B10), do not couple to the perturbations of the scalar field
�A or �’. Therefore, the perturbed scalar field is coupled
only to the polar perturbations.

A. Axial perturbations

It is quite easy to derive a wave equation for the axial
perturbations by combining Eqs. (B8) and (B10)

�X� e����e���X0�0

� e2�
�
l�l� 1�

r2
�
6�

r3
� 4�G��~!� ~P�A4



X � 0; (29)

where we introduce the new function X�t; r� defined as
ĥ1 � e���Xr. This equation does not couple to the scalar
field perturbations, as we have mentioned earlier, and the
effects of the scaler field will enter only via the background
terms. Thus, for 	 � 0, i.e., A � 1, it reduces to the
standard wave equation describing axial perturbations
[24]. Finally, from Eq. (B8) we get the following relation:

_u � �e�2� _̂h0; (30)

which suggests that there are no axial oscillatory fluid
motions; i.e., they have zero frequency and represent sta-
tionary currents. Thus, axial perturbations are described
only by a single wave equation (29), which does not couple
neither to polar fluid or spacetime perturbations nor to the
perturbed scalar field and it can be studied independently.

B. Polar perturbations

The equations describing polar perturbations can be
simplified, introducing a new set of perturbation functions.
Introducing these functions, we can reformulate the seven
equations describing polar perturbations as a pair of wave
equations and a constraint equation, using a procedure
similar to Ref. [25]. The new metric perturbation functions
will be

F�t; r� � rK̂ and S�t; r� �
e2�

r
�Ĥ0 � K̂�; (31)

while the fluid perturbations can be described by variation
of the enthalpy function, i.e.,

H�t; r� �
� ~P

~!� ~P
: (32)

The system of equations describing the polar perturbations
can be reduced to the following pair of wave equations:
-4
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�F� e2�����F00 � e2�
�
4�G�r� ~P� ~!�A4 �

2�

r2

�
F0 � 2r�~!� ~P�

�
1�

1

C2s



A4e2�H

� e2�
�
l�l� 1�

r2
�
2�

r3
� 4�G��3~!� ~P�A4 � 2e�2��2

�
F� 2e�2��1� r2�2 � 4�G�r

2e�2��~!� ~P�A4	S

� 8e2���e�2� � 4�G��r� ~P� ~!�A4	�’ � 0; (33)

and

�S� e2�����S00 � e2�
�
4�G�r� ~P� ~!�A4 �

2�

r2

�
S0 � e2�

�
l�l� 1�

r2
�
2�

r3
� 4�G��3 ~P� ~!�A4 � 2e�2��2

�
S

�
4e4�

r5



�02r3e�2� � 4�G� ~!Ar

3 � 3��
4�G�

r
�~!� 3 ~P��A4�� �4�G��~!� ~P�r5A4 � 2r3	�2

�
F

� 4e4�


�3e�2� �

�
8�G��2 ~P� ~!�A4 �

10�

r3
�
2

r2

�
�
�
�’ � 0: (34)

From the tt component of the perturbed Einstein equations, we get the Hamiltonian constraint:

F00 �

�
e2�

r2
��� 4�G�r

3 ~!A4� �
1

2
r�2

�
F0 �

e2�

r3

�
12�G� ~!r

3A4 ��� rl�l� 1� �
1

2
r3�2e�2�

�
F

� re�2�S0 � e�2��2�

�
�2r2e�2� � 8�G�r

2�~!� ~P�A4 � 2e�2� �
l�l� 1�
2

�
S�

8�G�r

C2s
�~!� ~P�e2�A4H

� 2r��’0 � 32�G�rA4e2� ~!��’ � 0: (35)

Furthermore, for the special form of the conformal factor, i.e., A � exp�	’2=2� or � � 	’, from Eq. (20) we obtain a
wave equation for the perturbed scalar field �’:

� �’� e����e����’0�0 �
2

r
e2��2��’0 � e2�

�
l�l� 1�

r2
� 4e�2��2 � 4�G�A4�~!� 3 ~P��4�2 � 	�

�
�’

�

�
r2e�2��3 �

2��
r

� 4�G�rA4f2r�~P� ��~!� 3 ~P�g
�
S

� e2�
�
e�2��3 �

2��

r3
� 4�G�A

4



2�~P�

�
r
�~!� 3 ~P�

��
F� 4�G�A

4�e2��~!� ~P�
�
1

C2s
� 3



H; (36)

where C2s � d ~P=d~!.
Finally, by linearizing Eq. (7), i.e., the energy-momentum conservation equations, we get a system of evolution

equations for the components of the perturbed velocity and the density perturbation

W0 �
1

C2s
e2��2� _H � e2��2�

�
3�� _’�

r
2
e�2� _S�

3

2r
_F


�
l�l� 1�

r2
e2�V

�

�
2�0 ��0 �

2

r
� 3���

1

C2s
��0 � ���

�
W � 0; (37)

_W �H0 � ��’0 �
r
2
e�2�S0 �

1

2r
F0 � e�2�

�
1

2
� r�0 � r2�2 �

2�
r
e2� � 8�G�r2A4e2� ~P



S

�

�
�2 �

2�

r3
e2� �

1

2r2
� 8�G�A

4e2� ~P


F� �	� 4���’ � 0; (38)

_V �
r
2
e�2�S�

1

2r
F�H � ��’ � 0: (39)
124038-5
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Concluding, the dynamics of the polar perturbation is
described by the system of evolution equations (33), (34),
and (36) together with the constraint equation (35). The
rest of the functions describing the spacetime and fluid
perturbations will be computed by taking proper combina-
tions of F, S, H, and �’.
IV. SPACETIME PERTURBATIONS IN
SCALAR-TENSOR GRAVITY

In paper I we have studied stellar perturbations in scalar-
tensor theories of gravity freezing the spacetime and scalar
field perturbations. This is the so-called Cowling approxi-
mation, in which we consider only perturbations of the
fluid. In practice, we worked with a system of equations
similar to (37)–(39), but setting H1 � H0 � H2 � K �
�’ � 0. Even under this approximation, spontaneous sca-
larization has a remarkable effect on the oscillation spectra
of the f and p modes. Based on this observation, we
proposed in paper I that a successful detection of gravita-
tional waves from oscillating stars will provide us with
a tool to constrain the phenomenon of spontaneous
scalarization.

The quasinormal modes of the fluid perturbations de-
scribed in paper I will be affected by the coupling to the
spacetime and scalar field perturbations. This is an inter-
esting problem on its own. However, since we have already
shown that the effect of spontaneous scalarization is quite
strong when we limit consideration to perturbations of the
fluid, in this paper we will examine the effect of the scalar
field on the quasinormal modes describing the pure space-
time oscillations, i.e., the so-called w modes [26]. The w
modes are similar to quasinormal modes of black holes.
They have higher frequencies and shorter damping times
than the f modes, typical frequencies being of order 7–
12 kHz and damping times of order of 0.1 ms. These
properties of the w modes are common to axial and polar
perturbations [17]. In the case of polar perturbations, the w
modes are associated to small fluid motions, while in the
axial case there is no coupling with the fluid at all. This is
FIG. 1. Waveforms describing the evolution of X for EOS A (left p
MADM � 1:4M� for 	 � 0, �4, �6, and �8. The cases 	 � 0 and
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the reason why here we choose to study the effect of the
scalar field considering only the axial perturbations, de-
scribed by the single wave equation (29). We expect the
effect of the scalar field on the axial and polar w modes to
be of the same order of magnitude. It should be pointed out
here that, according to recent collapse calculations [27],
the w modes are significantly excited. This adds further
motivation to our study of the effects of scalar fields on w
mode oscillations.

The equations needed to construct the equilibrium stellar
configurations as well as the equations of state (EOS) used
are described in paper I. In paper I we also considered cases
where the asymptotic value of the scalar field’0 � 0; here,
for simplicity, we deal only with scalar fields with ’0 � 0.

To compute the quasinormal frequencies of the axial w
modes, we will use two different techniques. In the first
approach, we carry out time evolutions of Eq. (29) and
Fourier transform the signal at infinity; in the second
approach, we assume a harmonic time dependence of the
perturbations and the corresponding boundary value
problem.

A. Evolving the axial perturbation equation

The time evolution of the 1� 1 equation (29) is rather
simple to obtain. We set some arbitrary initial data (for
example, a Gaussian pulse) in Eq. (29) and evolve these
data for some time. Then we compute the oscillation
frequencies by taking the Fourier transform of the signal
emitted at infinity.

In Fig. 1 we show the waveforms observed at a distance
of about 300 km from a neutron star with Arnowitt-Deser-
Misner (ADM) mass 1:4M�. It is noticeable that the arrival
time of wave for different values of 	 is not the same,
because the effective potential due to central neutron star
changes as a function of 	. In this figure, we can see that
the waveforms for 	 � 0 and for 	 � �4 are identical.
This result can be understood as follows. For the axial
perturbation, the gravitational wave is not coupled with
the perturbation of the matter and the scalar field. So the
presence of the scalar field is realized only due to the
anel) and EOS II (right panel) generated for stellar models with
	 � �4 are indistinguishable.
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modified background. On the other hand, with ’0 � 0, the
central value of scalar field ’c is zero for any 	>�4:35
(see [14]). Thus, for values of 	>�4:35 the effect of the
scalar field is insignificant and it will affect the results only
for 	<�4:35.

B. Boundary value method

Our second approach to calculate the quasinormal fre-
quencies of the axialwmodes is more involved than simple
time evolutions. However, using time evolutions we can
identify only those modes that are significantly excited by a
certain set of initial data. For example, using time evolu-
tions it is not easy to identify quasinormal modes that damp
out very fast. The approach we present here allows us to
calculate both slowly and highly damped quasinormal
modes. We Fourier expand the wave equation (29) as
X�t; r� � X�r� exp�i!t� and get

X00 �
2�

r�r� 2��
X0 �

�
1�

2�
r



�1

�

�
!2e�2� �

l�l� 1�

r2
�
6�

r3
� 4�G��~!� ~P�A4

�
X � 0:

(40)

In this way, we obtain an eigenvalue problem: The com-
plex quasinormal modes ! can be obtained by imposing
appropriate boundary conditions. In our case, the boundary
conditions are that X�r� should be regular at the stellar
center and that there are no incoming waves at infinity.
Inside the star, we can just integrate the above differential
equation; outside the star, we use appropriate asymptotic
expansions to ensure that there is no incoming radiation.
Here we adopt a variant of Leaver’s continued fraction
method [28] that has been originally used for the calcula-
FIG. 2. The frequencies of the axial w modes for l � 2, here we hav
corresponds to EOS A and the right panel to EOS II. We show both th
left corner in the plot). Open diamonds, squares, and triangles cor
respectively. Similarly, solid symbols refer to the fundamental w m
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tion of quasinormal modes of black holes. The procedure is
described in detail in Appendix C.

C. Results

The results of the two methods we described agree very
well, providing a good consistency check on our calcula-
tions. In Figs. 2– 4, we present the eigenvalues. Our results
suggest that the presence of a spontaneous scalarization
can be inferred from the wmodes emitted by a newly born,
oscillating neutron star.

In Fig. 2 we show the eigenfrequencies of the w modes
for neutron star models with MADM � 1:4M�. The plot is
reminiscent of earlier calculation of these modes (see, e.g.,
Fig. 3 in Ref. [29]). The modes that might be relevant for
gravitational wave detectors are the lowest w modes [26].
ThewII modes damp out [30] roughly twice as fast as thew
modes, but having lower frequencies they could also be
relevant for detection by Earth-based interferometers. The
higher-frequency w modes (w2; w3; w4; . . . ) are difficult, if
not impossible, to detect.

In the study of w modes as a tool for asteroseismology
[15–17,22], it has been suggested that a proper normaliza-
tion for Re�!� is to multiply it with the radius R of the star
and to scale it as a function of the compactness M=R.
This phenomenological argument has been recently veri-
fied analytically by Tsui and Leung [31]. Introducing
f � Re�!�=2�, it is clear that Rf scales linearly as a
function of the compactness M=R. This applies to both
wII and w1 modes (and even to the higher overtones). The
linear relations that can be derived from Fig. 3 are

f!1-mode�kHz� �
1
�R

�
�1 � 	1

�M
�R



and

f!II-mode�kHz� �
1
�R

�
�II � 	II

�M
�R



; (41)
e considered stellar models withMADM � 1:4M�. The left panel
e ‘‘ordinary’’ wmodes (w1; w2; w3; . . . ) and the wII modes (upper
respond to the wII modes with 	 � 0, 	 � �6, and 	 � �8,
ode and its overtones.
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FIG. 4. Dependence of the imaginary part of w1 and wII mode on the stellar compactnessMADM=R. The left panel is for the w1 mode
and the right for the wII mode. It is apparent that the imaginary part for wII mode can decrease by up to 30% in the presence of a scalar
field. For the w1 modes, on the contrary, the damping time becomes shorter.

FIG. 3 (color online). The w1 modes (left panel) and the wII modes (right panel) for EOS A and II and for values of 	 � 0, �4, �6,
and �8.
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where the constants �1, 	1, �II, and 	II are listed in
Table I.

Another reason why it is harder to detect high-damped
quasinormal modes such as the wII modes for compact
stars is that the effective amplitude scales as the square
root of the number of oscillations [22]. Typically, we can
hardly observe more than 2–3 cycles for highly damped
quasinormal modes of black holes and for the wII modes of
compact stars. Spontaneous scalarization might help in this
direction. Figure 4 shows that the damping time of the wII
mode for stars with 	 & �4:35 is significantly longer than
TABLE I. The coefficients for the fitting factors of Eqs. (41).

	 �1 	1 �II 	II

0 13.35 4.20 2.48 3.32
�6 13.57 4.89 3.09 1.88
�8 13.36 5.17 2.89 1.50

124038
for typical stars in general relativity. The reason is that the
presence of a scalar field increases the maximum mass of
the stars and their compactness. Since the damping scales
with compactness, the wII modes live considerably longer.
On the contrary, the damping times of the w1 modes
become shorter as the compactness increases (left panel
in Fig. 4).

V. CONCLUSION

We derived the equations describing stellar perturba-
tions in scalar-tensor theories of gravity. The presence of
a scalar field affects the equilibrium model and, conse-
quently, the oscillation spectrum. The scalar field pertur-
bations couple with the polar perturbations of the
spacetime and fluid, but they do not couple with the axial
perturbations. Since the spacetime modes of polar and
axial perturbations have the same qualitative behavior,
we have chosen to study the effect of the scalar field on
the axial perturbations.
-8
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The results show that, in the presence of spontaneous
scalarization, a scalar field reduces the oscillation fre-
quency of the w1 modes by about 10% (i.e., by about
1 kHz). The decrease in frequency for the wII modes is
about 25% the frequency (i.e., about 1.5 kHz). The effect
on the damping time is even more pronounced. The damp-
ing of wII modes can decrease by as much as 30%, while it
can increase by as much as 50% for the w1 modes.
Detectors operating at these high frequencies are under
development. Through a detection of the w mode spec-
trum, they could provide a unique proof for the existence of
scalar fields with 	 & �4:35.

A more detailed model of the effect of the scalar field on
the oscillation spectra requires the inclusion of a larger set
of equations of state. Another open problem is the study of
polar oscillations, which couple directly to the scalar field.
Work in these directions is in progress.
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APPENDIX A: THE PERTURBED
ENERGY-MOMENTUM TENSOR

In this appendix, we show the explicit form of the
various components of the perturbed energy-momentum
tensor (of the fluid and of the scalar field) appearing in the
perturbation equations. We will use primes for spatial
derivatives and dots for temporal derivatives. For simplic-
ity, we will omit the subscript lm in the various perturbed
quantities.

The components of the perturbed energy-momentum
tensor T�’�

��� for the scalar field have the form

�T�’�
�tt � e2��2��2��’0 � �Ĥ0 � Ĥ2��2	Ylm; (A1)

�T�’�
�tr � �2�� _’� e�2��2Ĥ1	Ylm; (A2)

�T�’�
�t� � e�2��2ĥ0

1

sin�
@ Ylm; (A3)

�T�’�
�t � �e�2��2ĥ0 sin�@�Ylm; (A4)

�T�’�
�rr � 2��’0Ylm; (A5)

�T�’�
�r� �

�
2��’@� � e

�2��2ĥ1
1

sin�
@ 

�
Ylm; (A6)

�T�’�
�r � �2��’@ � e�2��2ĥ1 sin�@�	Ylm; (A7)
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�T�’�
��� � r2e�2���2��’0 � �Ĥ2 � K̂��2	Ylm; (A8)

�T�’�
�  � r2e�2���2��’0 � �Ĥ2 � K̂��2	sin2�Ylm:

(A9)

In order to get the components of the perturbed energy-
momentum tensor for the fluid, we define, in the physical
frame, the variations of pressure � ~P � � ~PYlm, energy
density �~! � �~!Ylm, and the components of the perturbed
4-velocity (in the physical frame)

� ~Ut �
1

2A3
e��H0Ylm; (A10)

� ~Ur �
1

A
e��2�WYlm; (A11)

� ~U� �
1

Ar2
e�

�
V@�Ylm � u

1

sin�
@ Ylm



; (A12)

� ~U �
1

Ar2 sin2�
e��V@ Ylm � u sin�@�Ylm�; (A13)

where the perturbation functions � ~P, �~!, W, V, and u
defined in the previous relations depend only on t and r.
Using the above definition, the components of the per-
turbed energy-momentum tensor �T��� take the form

�T�tt � A4e2�
�
�~!� ~!Ĥ0 �

4~!
A
�A

�
Ylm; (A14)

�T�tr � �A4e2���~!� ~P�W � e�2� ~!Ĥ1	Ylm; (A15)

�T�t� � �A4e2��~!� ~P�V@�Ylm

� A4e2���~!� ~P�u� e�2� ~!ĥ0	
1

sin�
@ Ylm;

(A16)

�T�t � �A4e2��~!� ~P�V@ Ylm

� A4e2���~!� ~P�u� e�2� ~!ĥ0	 sin�@�Ylm;

(A17)

�T�rr � A4e2�
�
� ~P� ~PĤ2 �

4 ~P
A
�A

�
Ylm; (A18)

�T�r� � �A4 ~Pĥ1
1

sin�
@ Ylm; (A19)

�T�r � A4 ~Pĥ1 sin�@�Ylm; (A20)
-9
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�T��� � A4r2
�
� ~P� ~P K̂�

4 ~P
A
�A

�
Ylm; (A21)

�T�  � A4r2
�
� ~P� ~P K̂�

4 ~P
A
�A

�
sin2�Ylm: (A22)
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APPENDIX B: THE COMPONENTS OF THE
LINEARIZED EINSTEIN EQUATIONS

Here we provide the explicit form of the various expres-
sions used in Eqs. (21)–(25) for the description of the
perturbed Einstein equations (19). We have chosen to use
the same notation as Kojima [32] to facilitate comparison.
A�0�
lm � �K̂00 � e2�

�
1

2
re�2��2 �

5�

r2
�
3

r
� 4�G�rA

4 ~!


K̂0 �

1

r
Ĥ0
2 �

�l� 1��l� 2�

2r2
e2�K̂

� e2�
�
l�l� 1�

2r2
�
1

r2
� 8�G�A

4 ~!


Ĥ2 � 2��’

0 � 8�G�A
4e2���~!� 4~!��’�; (B1)

A�1�
lm � � _̂K � e2�

�
1

2
re�2��2 �

3�

r2
�
1

r
� 4�G�rA

4 ~P


_̂K �

1

r
_̂H2 �

l�l� 1�

2r2
Ĥ1 � 2�� _’� 8�G�A

4e2��~!� ~P�W;

(B2)

A�2�
lm � �e�2��2� �̂K � e2�

�
1

2
re�2��2 �

�

r2
�
1

r
� 4�G�rA

4 ~P


K̂0 �

2

r
e�2� _̂H1 �

1

r
Ĥ0
0 �

�l� 1��l� 2�

2r2
e2�K̂

�
l�l� 1�

2r2
e2�Ĥ0 � e2�

�
1

r2
� 8�G�A4 ~P



Ĥ2 � 2��’0 � 8�G�A4e2��� ~P� 4 ~P��’�; (B3)

A�3�
lm � K̂00 � Ĥ00

0 � e
�2��2�� �̂K � �̂H2� � 2e�2�

_̂H
0
1 � e2�

�
1

2
re�2��2 �

r��

r2
� 4�G��2 ~P� ~!�rA4



Ĥ0
0

� e2�
�
1

2
re�2��2 �

�

r2
�
1

r
� 4�G�rA4 ~P



Ĥ0
2 � e

2�

�
4�G�� ~P� ~!�rA4 �

2�r���

r2



K̂0

� 2e�2��2�

�
1

2
re�2��2 �

�� r

r2
� 4�G�rA4 ~!



_̂H1 �

l�l� 1�

2r2
e2�Ĥ0 � e2�

�
16�G�A4 ~P�

l�l� 1�

2r2



Ĥ2

� 4��’0 � 16�G�A
4e2��� ~P� 4 ~P��’�; (B4)

��0�
lm �

1

2
e�2�

�
Ĥ0
1 � e

2�� _̂H2 �
_̂K� � e2�

�
4�G�� ~P� ~!�rA4 �

2�

r2



Ĥ1

�
� 8�G�A4e2��~!� ~P�V; (B5)

��1�
lm �

1

2

�
Ĥ0
0 � K̂

0 � e�2� _̂H1 � e2�
�
1

2
re�2��2 �

3�

r2
�
1

r
� 4�G�rA4 ~P



Ĥ0

� e2�
�
1

2
re�2��2 �

�

r2
�
1

r
� 4�G�rA

4 ~P


Ĥ2

�
� 2��’; (B6)

	�0�
lm �

1

2
e�2��ĥ000 �

_̂h
0
1� �



2�G��~!� ~P�rA4 �

�
r
2
��



�2

�
�ĥ00 �

_̂h1� �
1

r
e�2� _̂h1

�
1

2r3
fl�l� 1�r� 4�� 8�G��~!� ~P�r3A4 � 2r3e�2��2gĥ0 � 8�G�A4e2��~!� ~P�u; (B7)
	�1�
lm �

1

2
e�2�� _̂h

0
0 �

�̂h1� �
1

r
e�2� _̂h0 �

�l� 1��l� 2�

2r2
ĥ1;

(B8)

slm �
1

2
�Ĥ0 � Ĥ2�; (B9)
tlm � e�2� _̂h0� e
�2�ĥ01�

1

r2
f2�� 4�G�� ~P� ~!�r3A4gĥ1;

(B10)

where the equations are simplified by virtue of Eqs. (13)–
(17) in paper I.
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APPENDIX C: NUMERICAL TECHNIQUES

In this appendix, we present two numerical techniques to
determine quasinormal modes. The first is the direct evo-
lution of the time dependent, axial perturbation equa-
tion (29). In the second approach, we assume a harmonic
decomposition for the perturbation function X of the form
X�r; t� � X�r�ei!t and solve Eq. (40) as the eigenvalue
problem. We shall consider Eqs. (40) in the interior and
the exterior of the star; then we will find the eigenvalues
(quasinormal modes) by matching the interior and exterior
solutions.

The largest numerical error in the interior solution oc-
curs at stellar surface, where the pressure is zero. In order
to avoid this difficulty, we integrate the perturbation equa-
tion (40) from both sides, i.e., from the stellar center r � 0
and from the stellar surface r � R. Then we match the
solutions at some intermediate point, e.g., r � R=2 (see,
for example, [26,33]). In order to deal with the boundary
condition at infinity, we adopt the continued fraction
method, originally used for black-hole perturbations by
Leaver [28]. To use this method, we must know the forms
of the coefficient in the perturbation equation as functions
of 1=r. Because of the presence of a scalar field, we do not
know the exact forms of these coefficients. Therefore, we
just use the asymptotic forms of the coefficients and derive
a five-term recurrence relation. We believe that the quasi-
normal modes obtained using these asymptotic forms are
accurate enough, because the difference between the value
of � at the stellar surface and at infinity is not so large.

1. Interior region of the star

The numerical integration of Eq. (40) inside the star will
be split (for numerical reasons) into two parts. First, we
will integrate Eq. (40) from the center towards R=2, and
then we will integrate from the surface towards the same
point. The matching of the two solutions will provide a
unique solution valid throughout the star.

Near the center, it can be shown that X has a behavior of
the form

X � Xcrl�1�1�O�r2��; (C1)

where Xc is some arbitrary constant. Using this boundary
condition (C1) and by integrating Eq. (40) from r � 0 to
the matching point r � R=2, one can obtain the values of
X�r� and X0�r�. For convenience, we represent the two
functions X and X0 in the vector form Y � �X;X0�, and
we will call Y0�r� the solution in the range 0 � r � R=2.
The next step will be to integrate Eq. (40) from the stellar
surface towards R=2 with a set of boundary conditions at
r � R such as �X�R�; X0�R�� � �1; 0� and �X�R�; X0�R�� �
�0; 1�. In this way, we get two independent solutions Y1�r�
and Y2�r� corresponding to each one of the previous
boundary conditions. Thus, the solution of the perturbation
equation (40) is
124038
Y �r� � Y0�r� for 0 � r � R=2; (C2)

Y �r� � aY1�r� � bY2�r� for R=2 � r � R; (C3)

where a and b are some constant, which will be determined
from the junction condition at r � R=2:

Y 0�R=2� � aY1�R=2� � bY2�R=2�: (C4)

The determination of the two constants specifies uniquely
the solution in the interior of the star for a given value of
the frequency ! and the constant Xc. At the stellar surface
the values of X�R�, X0�R� are simply X�R� � a and
X0�R� � b.

2. Exterior region of the star

The functions describing the stellar background simplify
considerably outside the star. This leads to a corresponding
simplification of the wave equation (40). In the exterior, the
equations describing the background reduce to

�0 �
1

2
re�2��2; (C5)

�0 �
1

2
r�2 �

�

r2
e2�; (C6)

’0 � �; (C7)

�0 � �
2

r2
�r���e2��: (C8)

Therefore, the asymptotic forms of the above background
quantities are

� � MADM �
�1
r

�O
�
1

r2



; (C9)

� � �
MADM

r
�O

�
1

r2



; (C10)

’ � ’0 �
!A
r

�O
�
1

r2



; (C11)

where �1 � �!2A=2 and !A � �MADM�s=�
0
s.

The perturbation equation (40) in view of the above
relations, outside the star, get the form

�
1�

2�
r



X00 �

2�

r2
X0 �

�
!2e�2��

l�l� 1�

r2
�
6�

r3

�
X� 0;

(C12)

which is similar (in the absence of a scalar field, identical)
to the Regge-Wheeler [23] equation describing the axial
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perturbations in the exterior of a spherically symmetric
spacetime (either a black hole or a neutron star). Using
as boundary values for the integration the values of X and
X0 at the surface given by the two relations X�R� � a and
X0�R� � b, one can integrate Eq. (C12) together with
(C5)–(C8) from the stellar surface towards infinite. The
numerical integration will obviously stop at some distance
r � ra, where we will have to match the numerical solution
with the appropriate asymptotic boundary conditions (in
this case, the absence of incoming radiation).

In order to find the asymptotic form of the solution of
Eq. (C12), we can assume a solution of the form

X�r� �
�
r

2M̂
� 1



�2iM̂!

e�i!r
X1
n�0

an

�
1�

ra
r



n
; (C13)

where M̂ � MADM. By substituting this form of the solu-
tion into the perturbation equation (C12) and taking the
leading orders for � and�, i.e., keeping only the terms up
to order 1=r, from Eqs. (C9) and (C10), we obtain a five-
term recurrence relation for the expansion coefficients an
�n � 1�,

�nan�1 � 	nan � �nan�1 � �nan�2 � 9nan�3 � 0;

(C14)

where the coefficients of the recurrence relation are given
by the following formulas:

�n � c0n�n� 1�; (C15)

	n � d0n� c1n�n� 1�; (C16)

�n � e0 � d1�n� 1� � c2�n� 1��n� 2�; (C17)

�n � e1 � d2�n� 2� � c3�n� 2��n� 3�; (C18)

9n � e2 � d3�n� 3� � c4�n� 3��n� 4�: (C19)

The coefficients ci, di and ei are functions of the back-
ground quantities and have the form

c0 � 1�
2M̂
ra

�
2�1
ra
2 ; (C20)

c1 � �2�
6M̂
ra

�
8�1
ra
2 ; (C21)

c2 � 1�
6M̂
ra

�
12�1
ra2

; (C22)
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c3 �
2M̂
ra

�
8�1
ra
2 ; (C23)

c4 � �
2�1
ra2

; (C24)

d0 � �2i!ra � 2�
6M̂
ra

�
4i!�1
ra

�
8i!M̂�1
ra
2 �

6�1
ra
2 ;

(C25)

d1 � 2�
12M̂
ra

�
8i!�1
ra

�
24i!M̂�1
ra2

�
18�1
ra2

; (C26)

d2 �
2

ra

�
3M̂� 2i!�1 �

12i!M̂�1
ra

�
9�1
ra



; (C27)

d3 � �
2�1
ra
2 �3� 4i!M̂�; (C28)

e0 � �l�l� 1� � 2!2�1 �
6M̂
ra

�
8!2M̂�1
ra

�
2i!�1
ra

�
8i!M̂�1
ra2

�
6�1
ra2

; (C29)

e1 �
2

ra

�
�3M̂� 4!2M̂�1 � i!�1 �

8i!M̂�1
ra

�
6�1
ra



;

(C30)

e2 �
2�1
ra
2 �3� 4i!M̂�: (C31)

The first four terms of the recurrence relation (C14) a�2,
a�1, a0, and a1 are provided by the values of X and X0 at
r � ra, i.e.,

a�2 � a�1 � 0; a0 �
X�ra�
&�ra�

; and

a1 �
ra
&�ra�

�
X0�ra� �

i!ra
ra � 2M̂

X�ra�
�
;

(C32)

where

&�r� �
�
r

2M̂
� 1



�2iM̂!

e�i!r: (C33)

The five-term recurrence relations have, in principle, four
possible solutions. A high order recurrence relation can
generally be reduced to a three-term recurrence relation, in
which case convergence criteria for the solution can be
easily applied, and we can identify the solution describing
-12
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only outgoing radiation [28]. To obtain a three-term recur-
rence relation, we define new coefficients �̂n, 	̂n, �̂n, and
�̂n as

�̂ n � �n; 	̂n � 	n; �̂n � �n for n � 1; 2

(C34)

and for n � 3

�̂n � �n; 	̂n � 	n �
�̂n�19n
�̂n�1

;

�̂n � �n �
	̂n�19n
�̂n�1

; �̂n � �n �
�̂n�19n
�̂n�1

:

(C35)

The original five-term recurrence relation becomes a four-
term recurrence relation:

�̂ nan�1 � 	̂nan � �̂nan�1 � �̂nan�2 � 0: (C36)

Note that, for the case of �1 � 0, that is, the case of the
standard neutron star obtained by Einstein’s theory for
gravity (	 � 0), the recurrence relation for an has four
terms [17,34,35].

The final step will be to define another set of coefficients
~�n, ~	n, and ~�n:

~� 1 � �̂1; ~	1 � 	̂1; ~�1 � �̂1; (C37)
124038
and for n � 2

~�n � �̂n; ~	n � 	̂n �
~�n�1�̂n
~�n�1

; and

~�n � �̂n �
~	n�1�̂n
~�n�1

: (C38)

The four-term recurrence relation (C36) is thus reduced to
a three-term relation of the form

~� nan�1 � ~	an � ~�nan�1 � 0: (C39)

Using this three-term recurrence relation, the boundary
condition can be expressed as a continued fraction relation
between ~�n, ~	n, and ~�n:

a1
a0

�
�~�1
~	1�

~�1 ~�2
~	2�

~�2 ~�3
~	3�

. . . ; (C40)

that can be rewritten as

0 � ~	0 �
~�0 ~�1
~	1�

~�1 ~�2
~	2�

~�2 ~�3
~	3�

. . . 
 f�!�; (C41)

where ~	0 
 a1=a0, ~�0 
 �1. The eigenfrequency ! of a
quasinormal mode can be obtained solving the equation
f�!� � 0.
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