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Generating perfect fluid spheres in general relativity
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Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a
particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-
independent density—the general relativity community has continued to devote considerable time and
energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle
of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly
independent from each other. To bring some order to this collection, in this article we develop several new
transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation
theorems sometimes lead to unexpected connections between previously known perfect fluid spheres,
sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a
systematic way of classifying the set of all perfect fluid spheres.
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I. INTRODUCTION

General relativistic perfect fluid spheres, or more pre-
cisely general relativistic static perfect fluid spheres, are
interesting because they are first approximations to any
attempt at building a realistic model for a general relativ-
istic star [1–4]. The central idea is to start solely with
spherical symmetry, which implies that in orthonormal
components the stress energy tensor takes the form

Tâ b̂ �

� 0 0 0
0 pr 0 0
0 0 pt 0
0 0 0 pt

26664
37775 (1)

and then use the perfect fluid constraint pr � pt, making
the radial pressure equal to the transverse pressure. By
using the Einstein equations, plus spherical symmetry,
the equality pr � pt for the pressures becomes the state-
ment

G	̂ 	̂ � Gr̂ r̂ � G
̂ 
̂: (2)

In terms of the metric components, this leads to an ordinary
differential equation (ODE), which then constrains the
spacetime geometry, for any perfect fluid sphere.

Over the last 90 years, many ‘‘ad hoc’’ approaches to
solving this differential equation have been explored, often
by picking special coordinate systems, or making simple
ansatze for one or another of the metric components [5–8].
(For recent overviews see [1–3].) The big change over the
last several years has been the introduction of ‘‘algorith-
mic’’ techniques that permit one to generate large classes
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perfect fluid spheres in a purely mechanical way [9–11]. In
this article we will extend these algorithmic ideas, by
proving several solution-generating theorems of varying
levels of complexity. We shall then explore the formal
properties of these solution-generating theorems (which
generalize the notion of the Buchdahl transformation)
and then will use these theorems to classify some of the
previously known exact solutions, and additionally will
generate several new previously unknown perfect fluid
solutions.

II. SOLUTION-GENERATING THEOREMS

Start with some static spherically symmetric geometry
in Schwarzschild (curvature) coordinates

d s2 � ��r�2dt2 �
dr2

B�r�
� r2d�2 (3)

and assume it represents a perfect fluid sphere. That is,
G	̂ 	̂ � Gr̂ r̂ � G
̂ 
̂. WhileG	̂ 	̂ � G
̂ 
̂ is always fulfilled
due to spherical symmetry, setting Gr̂ r̂ � G	̂ 	̂ supplies us
with an ODE

�r�r�0�B0 � �2r2 00 � 2�r�0�B� 2 � 0; (4)

which reduces the freedom to choose the two functions in
Eq. (3) to one. This equation (4) is a first-order linear
nonhomogeneous equation in B�r�. Thus—once you
have chosen a �r�—this equation can always be solved
for B�r�. Solving for B�r� in terms of �r� is the basis of
[10,11], (and is the basis for Theorem 1 below). On the
other hand, we can also regroup this same equation as

2r2B 00 � �r2B0 � 2rB� 0 � �rB0 � 2B� 2� � 0; (5)

which is a linear homogeneous second-order ODE for �r�,
which will become the basis for Theorem 2 below. The
question we are going to answer in this section is, how to
systematically ‘‘deform’’ the geometry (3) while still re-
taining the perfect fluid property. That is, suppose we start
-1  2005 The American Physical Society



PETARPA BOONSERM, MATT VISSER, AND SILKE WEINFURTNER PHYSICAL REVIEW D 71, 124037 (2005)
with the specific geometry defined by

d s2 � �0�r�
2dt2 �

dr2

B0�r�
� r2d�2 (6)

and assume it represents a perfect fluid sphere. We will
show how to deform this solution by applying five different
transformation theorems on f0; B0g, such that the outcome
still presents a perfect fluid sphere. The outcome of this
process will depend on one or more free parameters, and so
automatically generates an entire family of perfect fluid
spheres of which the original starting point is only one
member. In addition, we analyze what happens if you apply
these theorems more than once, iterating them in various
ways.

A. Four theorems

The first theorem we present is a variant of a result first
explicitly published in [11], though another limited variant
of this result can also be found in [3]. We first rephrase the
theorem of [11] in a slightly different formalism, and
demonstrate an independent way of proving it. Using our
proof it is easy to show that by applying Theorem 1 more
than once no further solutions will be obtained, therefore
the transformation in Theorem 1 is, (in a certain sense to be
made precise below), ‘‘idempotent.’’

Theorem 1.— Suppose f0�r�; B0�r�g represents a perfect
fluid sphere. Define

�0�r� �
�

0�r�
0�r� � r 00�r�

�
2
r2

� exp
	
2
Z  00�r�
0�r�

0�r� � r 00�r�
0�r� � r 00�r�

dr
�
: (7)

Then for all �, the geometry defined by holding 0�r� fixed
and setting

d s2 � �0�r�
2dt2 �

dr2

B0�r� � ��0�r�
� r2d�2 (8)

is also a perfect fluid sphere. That is, the mapping

T 1���:f0; B0g � f0; B0 � ��0�0�g (9)

takes perfect fluid spheres into perfect fluid spheres.
Furthermore a second application of the transformation
does not yield new information, T 1 is ‘‘idempotent,’’ in
the sense that

T 1��n� �    � T 1��2� � T 1��1�:f0; B0g

�

(
0; B0 �

 Xn
i�1

�i

!
�0�0�

)
(10)

We also note that T 1 always has an inverse

�T 1�����1 � T 1����: (11)
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Proof for Theorem 1.— Assume that f0�r�; B0�r�g is a
solution for Eq. (4). Under what conditions does
f0�r�; B1�r�g also satisfy Eq. (4)? Without loss of general-
ity, we write

B1�r� � B0�r� � ��0�r�: (12)

Equation (4) can now be used to determine �0�r�. That
ordinary inhomogeneous first-order differential equation in
B now simplifies to

�r�r0�0��0
0 � �2r2 000 � 2�r0�0��0 � 0; (13)

which is an ordinary homogeneous first-order differential
equation in�0. A straightforward calculation, including an
integration by parts, leads to

�0�r� �
r2

��r0�0�2
exp

	Z 4 00
�r0�

0
dr
�
: (14)

Adding and subtracting �2�r 020 �=�0�r0�
0� to the argu-

ment under the integral leads to

�0 �
�

0�r�
0�r� � r 00�r�

�
2
r2 exp

	
2
Z  00�r�
0�r�

0�r� � r 00�r�
0�r� � r 00�r�

dr
�
;

(15)

as advertised. If we apply this transformation a second time
we obtain no additional information. To see this, consider
the sequence

f0; B0g � f0; B1g � f0; B2g . . . (16)

But at the second step, since 0 has not changed, we have
�1�r� � �0�r�. More generally, at all subsequent steps,
�i�r� � �0�r�. We can write this as

Yn
i�1

T1��i� � T1

 Xn
i�1

�i

!
: (17)

or in the more suggestive form

Yn
i�1

T1 �
4 T1 (18)

where the symbol �
4 indicates ‘‘equality up to relabeling of

the parameters.’’ That is, transformation T1 is idempotent
up to relabeling of the parameters. (See Fig. 1.) �

A version of Theorem 1 can also be found in [3].
Specifically, after several manipulations, changes of nota-
tion, and a change of coordinate system, the transformation
exhibited in Eq. (16.11) of [3] can be converted into the
transformation T1 of Theorem 1 above.

Applying Theorem 1 to a fixed f0; B0g generates a one-
dimensional space of perfect fluid spheres, which leads to
the corollary below:

Corollary 1.— Let f0; Bag and f0; Bbg both represent
perfect fluid spheres, then for all p

f0; pBa � �1� p�Bbg (19)
-2
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FIG. 1 (color online). The solid lines show B�r� for 10
reapplications of Theorem 1 onto the Minkowski metric. The
dashed line corresponds to a single application with the specific
choice �once �

P
�i. It can be seen that 10 applications of

Theorem 1 can be expressed by one application.
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is also a perfect fluid sphere, furthermore all perfect fluid
spheres for a fixed 0 can be written in this form.

Proof.— The result is automatic once you note that for
fixed 0 the ODE for B is linear, (though not homogeneous,
which is why the two coefficients p and 1� p are chosen
to add up to 1). �

We defer extensive discussion of the application of this
theorem and its corollary until Sec. III, where we use this
and our other generating theorems as a basis for classifying
perfect fluid spheres. At this stage we mention, only as a
very simple example, that T1 applied to Minkowski space
results in the geometry of the Einstein static universe.

Theorem 2.— Let f0; B0g describe a perfect fluid sphere.
Define

Z0�r� � �� �
Z rdr

0�r�2
�����������
B0�r�

p : (20)

Then for all � and �, the geometry defined by holding
B0�r� fixed and setting

d s2 � �0�r�2Z0�r�2dt2 �
dr2

B0�r�
� r2d�2 (21)

is also a perfect fluid sphere. That is, the mapping

T 2��; ��:f0; B0g � f0Z0�0; B0�; B0g (22)

takes perfect fluid spheres into perfect fluid spheres.
Furthermore a second application of the transformation
does not yield new information, T 2 is idempotent in the
sense that

T 2��n; �n� �    � T 2��3; �3� � T 2��2; �2� � T 2��1; �1�

� T 2��n . . .�3�2�1; �n...321�; (23)
124037
where

�n...321 � ��1�2�3   �n� � ���1
1 �2�3   �n�

� ���1
1 �

�1
2 �3   �n� �   

� ���1
1 �

�1
2 �

�1
3    �n�: (24)

Furthermore, Theorem 2 is invertible (as long as � � 0):

�T 2��; ����1 � T 2�1=�;���: (25)

Proof for Theorem 2.— The proof of Theorem 2 is based
on the technique of ‘‘reduction in order.’’ Assuming that
f0�r�; B0�r�g solves Eq. (5), write

1�r� � 0�r�Z0�r�: (26)

and demand that f1�r�; B0�r�g also solves Eq. (5). We find

�r20B
0
0 � 4r2 00B0 � 2r0B0�Z

0
0 � �2r20B0�Z

00
0 � 0;

(27)

which is an ordinary homogeneous second-order differen-
tial equation, depending only on Z00 and Z000 . (So it can be
viewed as a first-order homogeneous differential equation
in Z0, which is solvable.) Separating the unknown variable
to one side,

Z000
Z00

� �
1

2

B0
0

B0
� 2

 00
0

�
1

r
: (28)

Rewrite Z000=Z
0
0 � d ln�Z00�=dt, and integrate twice over

both sides of Eq. (28), to obtain

Z0 � �� �
Z rdr

0�r�
2
�����������
B0�r�

p ; (29)

depending on the old solution f0�r�; B0�r�g, and two arbi-
trary integration constants � and �.

To see that the transformation T2 defined in Theorem 2
is idempotent we first show

T 2 � T2 �
4 T2; (30)

and then iterate. The precise two-step composition rule is

T 2��2; �2� � T2��1; �1� � T2
�
�2�1; �1�2 �

�2
�1

�
: (31)

To see ‘‘idempotence,’’ note that for fixed B0�r� Eq. (5) has
a solution space that is exactly two dimensional. Since the
first application of T2 takes any specific solution and maps
it into the full two-dimensional solution space, any subse-
quent application of T2 can do no more than move one
around inside this two-dimensional solution space—
physically this corresponds to a relabeling of parameters
describing the perfect fluid metric you are dealing with, not
the generation of new solutions. To be more explicit about
this note that at step one

0 ! 1 � 0

	
�1 � �1

Z rdr

0�r�
2
�����������
B0�r�

p �
; (32)
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FIG. 2 (color online). The solid lines show �r� for 10
reapplications of Theorem 2 onto the Minkowski metric. The
dashed line corresponds to a single application with the specific
choice for �once and �once determined by the composition law of
Theorem 2. It can be seen that 10 applications of Theorem 2 can
be reexpressed by a single application.
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while at the second step

1 ! 2 � 1

(
�2 � �2

Z rdr

1�r�2
�����������
B0�r�

p
)
: (33)

That is:

2 � 0

(
�1� �1

Z rdr

0�r�2
�����������
B0�r�

p
)(
�2

� �2
Z rdr

0�r�2
�����������
B0�r�

p
��1� �1

R
rdr=�0�r�2

�����������
B0�r�

p
�2

)
:

(34)

But this can be rewritten as

2 � 0Z0

(
�2 �

�2
�1

Z dZ0
Z20

)
� 0Z0

(
�2 �

�2
�1

Z
d
�
1

Z0

�)

� 0Z0

	
�2 �

�2
�1

�
1

Z0
�
1

�1

��
: (35)

Therefore

2 � 0

	
�
�2
�1

�

�
�2 �

�2
�1

1

�1

�
Z0

�
: (36)

That is

Z1 � �
�2
�1

�

�
�2 �

�2
�1

1

�1

�
Z0; (37)

from which the composition law

T 2��2; �2� � T2��1; �1� � T2
�
�2�1; �1�2 �

�2
�1

�
(38)

follows immediately. (Note that the composition law for T2
is actually a statement about applying reduction of order to
second-order ODEs, it is not specifically a statement about
perfect fluid spheres, though that is how we will use it in
the current article.) The general composition law then
follows by induction. To find the inverse transformation
we choose �2 � 1=�1 and �1 � ��2, for which

T 2�1=�1;��1� � T2��1; �1� � T2�1; 0� � I: (39)

�
Comment.— As other special cases of the composition

law we also mention the results that

Yn
i�1

T2�1; �i� � T2

 
1;
Xn
i�1

�i

!
; (40)

and

T 2��; ��n � T2��n; ���n�1 � �n�3    � ���n�3�

� ���n�1���: (41)

Now as long as �> 1 then for sufficiently large n we see
124037
T 2��; ��
n � T2��n; �n�1�� � �n�1T2��; �� �

4 T2��; ��;

(42)

where at the last step we have used the fact that the overall
multiplicative factor �n�1 can simply be reabsorbed into a
redefinition of the time coordinate. Because of this result,
we see that for fixed �> 1 (and fixed but arbitrary �)
repeated numerical applications of T2��; �� will have a
well-defined limit. In Fig. 2 we have tested the composition
law numerically.

A strictly limited version of Theorem 2, with little com-
ment on its importance, can be found in [3]. Specifically,
after several manipulations, changes of notation, and a
change of coordinate system, the transformation exhibited
in Eq. (16.12) of [3] can be seen to be equivalent to the
subcase � � 0, � � 1 of transformation T2 above.

For some purposes it is more useful to rephrase Theorem
2 as below:

Corollary 2.—Let fa; B0g and fb; B0g both represent
perfect fluid spheres, then for all p and q

fpa � qb; B0g (43)

is also a perfect fluid sphere. Furthermore, for fixed B0 all
perfect fluid spheres can be written in this form.

Proof.—The result is automatic once you note that for
fixed B0 the ODE for  is second-order linear and
homogeneous. �

We again defer extensive discussion of the application of
this theorem and its corollary until Sec. III, at this stage
mentioning only as a very simple example that T2 applied
to either the Einstein static universe or the anti-de Sitter
universe results in Schwarzschild’s stellar solution
-4
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(position-independent density). Similarly, Corollary 2 ap-
plied to a combination of the Einstein static universe
and anti-de Sitter space is another way of obtaining
Schwarzschild’s stellar solution.

Having now found the first and second generating the-
orems makes it useful to define two new theorems by
composing them. Take a perfect fluid sphere solution
f0; B0g. Applying Theorem 1 onto it gives us a new perfect
fluid sphere f0; B1g. The new B1 is given in Eq. (7). If we
now continue by applying Theorem 2, again we get a new
solution f~; B1g, where ~ now depends on the new B1. All
together we can consider this as a single process, by
introducing the following theorem:

Theorem 3.—If f0; B0g denotes a perfect fluid sphere,
then for all �, �, and �, the three-parameter geometry
defined by

ds2 � �0�r�
2

(
�� �

Z rdr

0�r�
2
��������������������������������
B0�r� � ��0�r�

p
)
2

dt2

�
dr2

B0�r� � ��0�r�
� r2d�2 (44)

is also a perfect fluid sphere, where �0 is

�0�r� �
�

0�r�
0�r� � r

0
0�r�

�
2
r2

� exp

(
2
Z  00�r�
0�r�

0�r� � r
0
0�r�

0�r� � r 00�r�
dr

)
: (45)

That is

T 3 � T 2 � T 1:f0; B0g � f0; B0 � ��0�0�g

� f0Z0�0; B0 � ��0�0��; B0 � ��0�0�g: (46)

Now, instead of starting with Theorem 1 we could first
apply Theorem 2 on f0; B0g. This gives us a new perfect
fluid sphere f1; B0g, where 1 � 0Z0�0; B0� is given by
Eq. (29). Continuing with Theorem 1 leads to f1; ~Bg,
where ~B depends on the new 1. Again, we can consider
this as a single process, by introducing the following
theorem:

Theorem 4.—If f0; B0g denotes a perfect fluid sphere,
then for all �, �, and �, the three-parameter geometry
defined by

d s2 � �0�r�2
(
�� �

Z rdr

0�r�
2
�����������
B0�r�

p
)
2

dt2

�
dr2

B0�r� � ��0�1; r�
� r2d�2 (47)

is also a perfect fluid sphere, where �0�1; r� is defined as
124037
�0�1; r� �
�

1�r�
1�r� � r 01�r�

�
2
r2

� exp

(
2
Z  01�r�
1�r�

1�r� � r
0
1�r�

1�r� � r
0
1�r�

dr

)
; (48)

depending on 1 � 0Z0, and where as before

Z0�r� � �� �
Z rdr

0�r�2
�����������
B0�r�

p : (49)

That is

T 3 � T 1 � T 2:f0; B0g � f0Z0�0; B0�; B0g

� f0Z0�0; B0�; B0 � ��0�0Z0�0; B0��g: (50)

Theorem 3 and Theorem 4 are in general distinct, which
can be traced back to the fact that Theorem 1 and Theorem
2 do not in general commute. Furthermore Theorem 3 and
Theorem 4 are in general not idempotent

T 3 6�
4 T4; T3 � T3 6�

4 T3; T4 � T4 6�
4 T4: (51)

The best way to verify this is to try a few specific examples.
There may be some specific and isolated special metrics for
which Theorem 3 and Theorem 4 happen to be degenerate,
or idempotent, and finding such metrics is important for
our classification program.

B. Formal properties of the generating theorems

The solution-generating theorems we have developed
interact in a number of interesting ways and exhibit nu-
merous formal properties that will be useful when classi-
fying generic perfect fluid spheres. To start with, Theorem
3 �T3� and Theorem 4 �T4� can be expressed in terms of
Theorem 1 �T1� and Theorem 2 �T2�:

T 3�g� :� �T2 � T1�g � T2�T1�g��;

T4�g� :� �T1 � T2�g � T1�T2�g��:
(52)

where g is a metric representing a perfect fluid sphere.
Having this in mind, some of the new solutions generated
by starting from some specific solution can be identified.
For example:

T 4 � T1 � T1 � T2 � T1 � T1 � T3; (53)

or

T 3 � T3 � T2 � T1 � T2 � T1 � T2 � T4 � T1: (54)

The idempotence of T1 and T2 in this formalism is:

�T1 � T1�g � T1�T1�g�� �
4 T1�g�;

�T2 � T2�g � T2�T2�g�� �
4 T2�g�:

(55)

Taken together, it is possible to simplify all formulae
wherever T1 and T2 appear next to each other more than
once. The following examples should demonstrate how this
-5



TABLE I. Some well-known perfect fluid spheres and their corresponding metrics. Note that we have often reparametrized these
metrics to make them easier to deal with, and so their appearance (but not the substance) may differ from other sources [1–3]. Metric
S1 is a special case of K-O III, Tolman V, and Tolman VI notable for its extreme simplicity.

Name Metric

Minkowski �dt2 � dr2 � r2d�2

Einstein static �dt2 � �1� r2=R2��1dr2 � r2d�2

de Sitter ��1� r2=R2�dt2 � �1� r2=R2��1dr2 � r2d�2

Schwarzchild Interior ��A� B
����������������������
1� r2=R2

p
�2dt2 � �1� r2=R2��1dr2 � r2d�2

Schwarzchild Exterior ��1� 2m=r�2dt2 � �1� 2m=r��1dr2 � r2d�2

S1 �r4dt2 � dr2 � r2d�2

K-O III ��A� Br2�2dt2 � dr2 � r2d�2

Kuch1 Ib ��Ar� Br lnr�2dt2 � 2dr2 � r2d�2

B–L �A�r2=a2�dt2 � 2�1� r2=a2��1dr2 � r2d�2

Tolman IV �B2�1� r2=a2�dt2 � 1�2r2=a2

�1�r2=b2��1�r2=a2� dr
2 � r2d�2

Tolman IV (b! 1) �B2�1� r2=a2�dt2 � 1�2r2=a2

1�r2=a2
dr2 � r2d�2

Tolman V �B2r2�1�n�dt2 � �2� n2��1� Ar2�2�n
2�=�2�n���1dr2 � r2d�2

Tolman V (A! 0) �B2r2�1�n�dt2 � �2� n2�dr2 � r2d�2

Tolman VI ��Ar1�n � Br1�n�2dt2 � �2� n2�dr2 � r2d�2

Tolman VII �B2 cosfln�
������������������������������������������
1� 2r2=a2 � r4=b4

p
� r2=a2 � b2=a2�1=2 � 	g2 � �1� 2r2=a2 � r4=b4��1dr2 � r2d�2

Tolman VIII �A2r2�n�1��n�4�=n� �n2

�n2�4n�2��n2�8n�8� � Br
��n2�8n�8�=n � Cr�2�n

2�4n�2�=n�

� � �n2

�n2�4n�2��n2�8n�8�
� Br��n2�8n�8�=n � Cr�2�n

2�4n�2�=n��1dr2 � r2d�2

Kuch 68 II ��1� 2m=r�dt2 � ��1� 2m=r��1� C�2r� 2m�2���1dr2 � r2d�2

Kuch 68 I ��A
���������������������
1� 2m=r

p
� B�r2=m2 � 5r=m� 30� 15

���������������������
1� 2m=r

p
lnf1� r=m�

���������������������
r�r� 2m�

p
=mg��2dt2

� �1� 2m=r��1dr2 � r2d�2

M–W III �Ar�r� a� � 7=4
1�r2=a2 dr

2 � r2d�2

Kuch I b �r2�A� Barctanh�a=
����������������
a2 � r2

p
��2dt2 � 2�1� r2=a2��1dr2 � r2d�2

Heint IIa (C=0) ��1� ar2�3dt2 � ��1� ar2�=�1� ar2=2��dr2 � r2d�2

Heint IIa ��1� ar2�3dt2 � �1� 3ar2

2�1�ar2�
� Cr2

�1�ar2�
������������
1�4ar2

p ��1dr2 � r2d�2
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works:

�T2 � T3�g � �T2 � T2 � T1�g �
4
�T2 � T1�g � T3�g�;

�T1 � T4�g � �T1 � T1 � T2�g �
4
�T1 � T2�g � T4�g�;

(56)

and in the same way

T4 � T3 � T1 � T2 � T2 � T1 �
4 T1 � T2 � T1 � T1 � T3

� T4 � T1;

T3 � T4 � T2 � T1 � T1 � T2 �
4 T2 � T1 � T2

� T2 � T4 � T3 � T2: (57)

These relationships can be used to structure the solution set
generated starting from any particular perfect fluid sphere,
and moreover to classify which metrics can be produced by
our theorems, and ones which cannot. For example, the
idempotence property of Theorem 1 and Theorem 2 en-
124037
ables us to divide the class of perfect fluid spheres into seed
metrics and nonseed metrics. Seed metrics can never be
generated by using one of the two theorems T1 or T2, while
nonseed metrics are connected to other simpler metrics via
one of these theorems. We formalize this in the following
subsection.

C. Seed and nonseed metrics

Definition (Seed metric).—Take a metric g (or a parame-
trized class of metrics) and apply Theorem 1 or Theorem 2
on it. Three different cases are possible:
(i) E
-6
ach of the applications supplies us with a new
solution. [T1�g� 6�

4 g 6�
4 T2�g�.] We define a metric

with this behavior as a seed metric. (We shall
soon see several examples of this behavior.)
(ii) O
nly one of the applications supplies us with a new
solution, while the other one gives us the same
metric we started with. [T1�g� �

4 g or T2�g� �
4 g.]

These metrics are nonseed metrics. (We shall soon
see several examples of this behavior.)



TABLE II. Some apparently new perfect fluid spheres and their corresponding metrics. Sometimes the relevant integrals cannot be
done in elementary form. When they can be done they are explicitly shown.

Name Metric

Martin 1 ��Ar� Br lnr�2dt2 � 2 2A�2B lnr�B
2A�2B lnr�B�Cr2

dr2 � r2d�2

Martin 2 �Ar�r� a�dt2 � 7
4 �1�

r2

a2
� B �r�a�r7=3

�4r�3a�4=3
��1dr2 � r2d�2

Martin 3 ��1� ar2�2dt2 � �1� br2=�1� 3ar2�2=3��1dr2 � r2d�2

P1 ��1� ar2�2�A� B
R �1�ar2��2������������������������������

1�br2=�1�3ar2�2=3
p rdr�2dt2 � �1� br2=�1� 3ar2�2=3��1dr2 � r2d�2

P2 ��Ar� Br lnr�2��� �
R
�Ar� Br lnr��2�2 2A�2B lnr�B

2A�2B lnr�B�Cr2
��1=2rdr�2dt2 � 2 2A�2B lnr�B

2A�2B lnr�B�Cr2
dr2 � r2d�2

P3 ��1� ar2�3�A� B �5�2ar2�
��������������
1�ar2=2

p

�1�ar2�3=2
�2dt2 � ��1� ar2�=�1� ar2=2��dr2 � r2d�2

P4 �r4�A� B
R

dr

r3
�������������
1��r2=3

p �2dt2 � �1� �r2=3��1dr2 � r2d�2

P4 �r4�A� B�1516�
3tanh�1�1=

��������������������
1� �r2=3

p
� � 1

16

��������������������
1� �r2=3

p
�8r�2 � 10�r�4=3 � 15�2r�2=3���2dt2

� �1� �r2=3��1dr2 � r2d�2

P5 �r�A
������������
r� a

p
� B

������������
r� a

p
�2 � 7=4

1�r2=a2
dr2 � r2d�2

P6 �r�r� a��A� B
R

dr

�r�a�

��������������������������
1�r2

a2
�B �r�a�r7=3

�4r�3a�4=3

q �2 � 7
4 �1�

r2

a2
� B �r�a�r7=3

�4r�3a�4=3
��1dr2 � r2d�2

P7 �B2�1� r2=a2��A� B
R ������������

a2�2r2
p����������

b2�r2
p

�a2�r2�3=2
rdr�2dt2 � 1�2r2=a2

�1�r2=b2��1�r2=a2�
dr2 � r2d�2

P8 ��1� ar2�3�A� B
R rdr

�1�ar2�2
���������������������������������������
1� 3ar2

2�1�ar2 �
� Cr2

�1�ar2 �
���������
1�4ar2

p
q �2dt2 � �1� 3ar2

2�1�ar2�
� Cr2

�1�ar2�
������������
1�4ar2

p ��1dr2 � r2d�2
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(iii) B
oth applications give us the same metric we
started with. [T1�g� �

4 g �
4 T2�g�.] Metrics of this

type are fixed points of the transformation process
and we then also have T3�g� �

4 g �
4 T4�g�.
While we have encountered numerical examples that seem
to exhibit this fixed-point behavior, we have no analytic
proof for the existence of nonobvious fixed-point metrics.
There is one obvious but not particularly useful example of
a fixed-point class of metrics. If we take the ODE in
Eq. (4), and write down its most general solution as a
functional of the arbitrary parameters �r�, then any of
our solution-generating theorems applied to this most gen-
eral solution will at most move us around in the parameter
space characterizing the most general solution—the most
general solution of Eq. (4), or equivalently Eq. (5), is thus
an infinite-parameter fixed point of the generating theo-
rems. But apart from this obvious example, it is unclear
whether other fixed-point classes of metric exist.

We can nevertheless develop several formal lemmata
regarding fixed-point metrics. For instance

Lemma 1.—Suppose we have a metric such that 8�, �,
�

T 3��; �; ��g �
4 g; (58)

where we recall that �
4 denotes equality up to redefinition

of parameters. Then in particular

T 1���g �
4 g �

4 T 2��; ��g; (59)
124037
and so

T 4��; �; ��g �
4 g: (60)

Conversely, suppose we have a metric such that

T 4��; �; ��g �
4 g; (61)

then

T 1���g �
4 g �

4 T 2��; ��g; (62)

and so

T 3��; �; ��g �
4 g: (63)

Proof.—Trivial, note that T3��; �; � � 0� � T2��; ��
and T3�� � 0; � � 0; �� � T1���. Then recall T4 � T1 �
T2. Similarly for the converse. �

Lemma 2.—Suppose we have a metric g such that

T 4g �
4 T 3g (64)

and then define g0 by

T 4g �
4 g0 �

4 T 3g: (65)

Then we have

T 4g0 �
4 g0 �

4 T 3g0 (66)

so that g0 is a ‘‘fixed point’’ of both T 3 and T 4.
-7



TABLE III. Seed solutions and their generalizations derived via Theorems 1– 4. The notation ‘‘[integral]’’ denotes a metric so
complicated that explicitly writing out the relevant integral is so tedious that it does not seem worthwhile.

Seed Theorem 1 Theorem 2 Theorem 3 Theorem 4

Minkowski Einstein static K-O III interior Schwarzschild Martin 3
exterior Schwarzschild Kuch68 II Kuch 86 I [integral] [integral]
de Sitter Tolman IV interior Schwarzschild P7 [integral]
Tolman V (A � 0) Tolman V Tolman VI Wyman III Wyman IIa
S1 Tolman V (n � �1) K–O III P4 Martin 3
M-W III Martin 2 P5 P6 [integral]
Heint IIa (C=0) Heint IIa P3 P8 [integral]
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Note

T 4g0 �
4 T4 � T3g �

4 T1 � T2 � T1g �
4 T1 � T3g

�
4 T1 � T4g �

4 T4g � g0 (67)

and similarly for T3:

T 3g0 �
4 T3 � T4g �

4 T2 � T1 � T2g �
4 T2 � T4g

�
4 T2 � T3g �

4 T3g � g0 (68)

�
Several other formal theorems along these lines can be

constructed, but these seem the most important results.
Finally, among the formal properties enjoyed by the

generating theorems, we mention the fact that Theorems
3 and 4 are ‘‘conjugate’’ to each other in the following
sense

T 4 � T1 � T2 � T1 � T2 � T1 � �T1��1

� T1 � T3 � �T1��1; (69)

and similarly (when the appropriate inverse �T2��1 exists)

T 3 � T2 � T1 � T2 � T1 � T2 � �T2��1

� T2 � T4 � �T2��1: (70)

We can write this as
124037
T 3��; �; �� � T4��; �; ��; (71)

where � denotes the concept of ‘‘similarity’’ under con-
jugation by invertible generating theorems. We wish to
emphasize that similarity � is a statement that holds for
particular and fixed values of the parameters ��; �; ��, as
opposed to �

4 which denotes equivalence under redefini-
tion of parameters. If one is working numerically, it is
much easier to ask questions involving similarity �. For
analytic work, it is typically easier to ask questions involv-
ing equivalence �

4 .

D. Two linking theorems

The last two solution-generating theorems we shall
present are slightly different from those developed so far:
Consider a perfect fluid sphere solution f0; B0g and extend
it to a new perfect fluid sphere f0Z0; B0 � �g. Previously,
we had either set Z0 � 1 and obtained Theorem 1, or we
had set � � 0 and obtained Theorem 2. In other words, we
only changed one metric component at a time. (From this
point of view Theorem 3 and Theorem 4 are, strictly
speaking, not new theorems, in that they are replaceable
by iterations of Theorem 1 and Theorem 2 and vice versa.)
We now investigate what happens if we place no a priori
restrictions on Z and �, and allow both metric components
to vary simultaneously. The differential Eq. (4) for this
problem now becomes
�r�r0Z0�
0��0 � �2r2�0Z0�

00 � 2�r0Z0�
0��� �r20B

0
0 � 4r2 00B0 � 2r0B0�Z

0
0 � 2r20B0Z

00
0 � 0: (72)

Note that if � � 0 this becomes Eq. (13), while if Z0 � 1 this becomes Eq. (27). In general, this ODE of first-order in �,
and—as long Z is not a constant—inhomogeneous. In terms of� this ODE can be solved explicitly and the result stated as
a new theorem:

Theorem 5.—Suppose f0; B0g describes a perfect fluid sphere, and let Z0�r� be arbitrary. Define

���; r� � �0�r�

(
��

Z ��4r2 00B0 � r
20B

0
0 � 2r0B0�Z

0
0 � 2r20B0Z

00
0 �f0 � r

0
0g
2

r3�r0Z0�
020Z

2
0

� exp

(
�2

Z �0Z0�
0

0Z0

0Z0 � r�0Z0�
0

0Z0 � r�0Z0�
0
dr

)
dr

)
; (73)
-8
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where

�0�r� �
�

0Z0
0Z0 � r�0Z0�

0

�
2
r2

� exp

(
2
Z �0Z0�

0

0Z0

0Z0 � r�0Z0�
0

0Z0 � r�0Z0�
0
dr

)
: (74)

Then for all �, the geometry defined by an arbitrary chosen
Z0�r� and setting

d s2 � �0�r�2Z0�r�2dt2 �
dr2

B0�r� ����; r�
� r2d�2

(75)

corresponds to a perfect fluid sphere. That is, the mapping

T 5���:f0; B0g � f0Z0; B0 � ���; 0�g (76)

takes perfect fluid spheres into perfect fluid spheres.
Note that if Z0�r� � 1 this simply reduces to Theorem 1.

Rearranging Eq. (72) in terms of Z0 leads to a second-order
inhomogenous differential equation, which cannot in gen-
eral be solved for a prescribed �, unless one imposes
further constraints. So further exploration in that direction
is moot. There is however a related theorem (which may be
easier to understand) in terms of parametric derivatives:

Theorem 6.—Let f���; B���g denote a one-parameter
class of perfect fluid spheres, so that the differential Eq. (4)
is satisfied for all �. Then

�r�r�0�
�
dB
d�

�
0
� �2r2 00 � 2�r�0�

�
dB
d�

�
� 2r2B

�
d
d�

�
00

� �r2B0 � 2rB�
�
d
d�

�
0

� �rB0 � 2B� 2�
�
d
d�

�
� 0: (77)

In particular if d=d� � 0 this reduces to the ODE (13),
while if dB=d� � 0 this reduces to the ODE (5). This is
simply an alternative viewpoint on the previous theorem,
emphasizing the differential equation to be solved.

We again defer extensive discussion to the next section,
but at this stage point out that if we invoke Theorem 5 and
apply it to Minkowski space, then making the choice Z0 �
1� r2=a2 leads to the general Tolman IV metric—that is:

T 5�Minkowski; Z0 � 1� r2=a2� � �Tolman IV�:

(78)
TABLE IV. Nonseed solutions and their generalizations.

Base Theorem 1 Theorem 2 Theorem 3 Theorem 4

Tolman IV Tolman IV P7 P7 [integral]
B-L B-L Kuchb I b Kuchb I b [integral]
Heint IIa Heint IIa P8 P8 [integral]
Tolman VI Wyman IIa Tolman VI [integral] [integral]
Kuch1 Ib Martin 1 Kuch1 Ib P2 Martin 1
K-O III Martin 3 K–O III P1 Martin 3

124037
Even before we systematically start our classification ef-
forts, it is clear that the solution-generating theorems we
have established will interrelate many of the standard
perfect fluid spheres.

E. Formal properties of the linking theorems

Before turning to issues of systematic classification of
perfect fluid metrics, we wish to establish a few formal
properties of the linking theorems. To simplify the nota-
tion, let us define the differential expression

D�; B� � �r�r�0�B0 � �2r2 00 � 2�r�0�B� 2

� 2r2B 00 � �r2B0 � 2rB� 0 � �rB0 � 2B� 2�:

(79)

Then the condition for a perfect fluid sphere is simply

D�; B� � 0: (80)

Now define

D�0; B0 � �0� � D�0; B0� �D1�0; �0�: (81)

Then it is easy to check that

D1�0; �0� � �r�r0�0��0
0 � �2r2 000 � 2�r0�0��0: (82)

The ODE for Theorem 1, where we assume f0; B0g is a
perfect fluid sphere, is then

D1�0; �0� � 0: (83)

Now define

D�0Z0; B0� � Z0D�0; B0� �D2�0; B0;Z0�; (84)

then it is easy to check that

D2�0; B0;Z0� � �r20B0
0 � 4r2 00B0 � 2r0B0�Z00

� �2r20B0�Z000 : (85)

The ODE for Theorem 2, where we assume f0; B0g is a
perfect fluid sphere, is then

D2�0; B0;Z0� � 0: (86)

Now let us consider any simultaneous shift in  and B, as
considered in Theorem 5. We have

D�0Z0; B0 ��0� � D�0Z0; B0� �D1�0Z0; �0�

� Z0D�0; B0� �D2�0; B0;Z0�

�D1�0Z0; �0�: (87)

But now let us write

D1�0Z0; �0� � Z0D1�0; �0� �D12�0;Z0;�0�; (88)

where a brief computation yields

D12�0;Z0;�0� � r20Z
0
0�

0
0 � �2r20Z

00
0 � 4r2 00Z

0
0

� 2r0Z
0
0��0: (89)
-9
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Then all in all

D�0Z0; B0 ��0� � Z0D�0; B0� � Z0D1�0; �0�

�D12�0;Z0;�0� �D2�0; B0;Z0�:

(90)

So if 0; B0 and f0Z0; B0 ��0g are both perfect fluid
spheres we must have

Z0D1�0; �0� �D12�0;Z0;�0� �D2�0; B0;Z0� � 0:

(91)

This is

Z0 � �ODE for Theorem 1� � �cross term�

� �ODE for Theorem 2�

� 0: (92)

The cross term vanishes if either Z0 � constant or �0 � 0
in which case we recover the usual Theorem 1 and
Theorem 2. If we do things in the opposite order, then

D�0Z0; B0 � �0� � Z0D�0; B0 � �0�

�D2�0; B0 ��0;Z0� (93)

� Z0D�0; B0� � Z0D1�0;�0� �D2�0; B0 � �0;Z0�:

(94)

We now have to compute

D2�0; B0 � �0;Z0� � D2�0; B0;Z0�

�D21�0; B0;Z0;�0�; (95)

and after a brief calculation

D21�0; B0;Z0;�0� � 2r20�0Z000

� �r20�
0
0 � 4r2 00�0 � 2r0�0�Z

0
0

� D12�0; B0;Z0;�0�: (96)

Thus the cross term is the same, no matter how you
calculate it, and we still have the identity

D�0Z0; B0 ��0� � Z0D�0; B0� � Z0D1�0; �0�

�D12�0;Z0;�0� �D2�0; B0;Z0�:

(97)

Provided 0; B0 and f0Z0; B0 � �0g are both perfect fluid
spheres we again deduce

Z0D1�0; �0� �D12�0;Z0;�0� �D2�0; B0;Z0� � 0:

(98)

Now this gives us another way of looking at Theorem 3 and
Theorem 4. For Theorem 3 we first apply Theorem 1 so we
have the two equations

D1�0; �0� � 0; (99)
124037
and

D2�0;B0��0;Z0� �D12�0;Z0;�0��D2�0;B0;Z0� � 0:

(100)

Conversely, for Theorem 4 where we first apply Theorem 2
we see that we need to solve

D2�0; B0;Z0� � 0; (101)

and

D1�0Z0; �0� � Z0D1�0; �0� �D12�0;Z0;�0� � 0:

(102)

For Theorem 5 we pick Z0 arbitrarily, and solve the single
ODE

D1�0Z0; �0� �D2�0; B0;Z0� � 0: (103)

This is a single first-order linear inhomogeneous ODE for
�0, and hence solvable. (In particular this makes it clear
that Theorem 5 is an inhomogeneous version of Theorem 1
with a carefully arranged ‘‘source term’’ D2�0; B0;Z0�.
While Theorem 5 is not idempotent it does satisfy the
important formal property that:

Lemma 3.—

T 1 � T 5 �
4 T 5; (104)

which, in particular, tells us that the output from Theorem 5
is never a seed metric.

Applying Theorem 5 we need to solve

D1�0Z0; �0� �D2�0; B0;Z0� � 0; (105)

in order to map

f0; B0g ! f0Z0; B0 ��0g: (106)

Now apply Theorem 1 to f0Z0; B0 ��0g, this means we
have to solve the homogeneous ODE

D1�0Z0; �1� � 0: (107)

But then, using properties of first-order ODEs

fD1�0Z0;�0� �D2�0; B0;Z0� � 0g � fD1�0Z0;�1� � 0g

) fD1�0Z0;�0��1� �D2�0; B0;Z0� � 0g (108)

which is the ODE from Theorem 5 back again. �
(The net result of this observation, as we shall see in the

next section, is that Theorem 5 can be used to connect one
seed metric with the ‘‘descendants’’ of another seed
metric.)

III. CLASSIFYING PERFECT FLUID SPHERES

We will now see the power of these transformation
theorems (solution-generating theorems) by using them
in a number of different ways: to generate several new
perfect fluid spheres, to relate various perfect previously
known fluid spheres to each other, and to classify the
-10
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geometries we encounter. First some minor comments and
warnings: Despite comments made in [1], Kuch 2 I �
Tolman V; and Kuchb I b is a perfect fluid for general
values of its parameters. Furthermore RR� I �
Einstein static; RR� V � Tolman V �n � �5=4�. If we
had not noted these degeneracies then our tables below
would have been more extensive, but would have conveyed
no extra information.

Starting with the metric for any known perfect fluid
sphere and successively applying Theorem 1 and
Theorem 2 numerous times, will supply us with endless
‘‘new’’ perfect fluid sphere solutions. Some of these new
solutions might already be found in the literature, some of
them might be truly novel. Some of these solutions can be
written down in fully explicit form. Some solutions are
explicit but not elementary, in the sense that while the
metric components can be exhibited as specific and explicit
integrals, these integrals cannot be done in elementary
form. Some solutions are so complex that present day
symbolic manipulation programs quickly bog down. (For
specific symbolic computations we have used a vanilla
installation of MAPLE.)

To summarize the situation we present several tables and
diagrams. Two tables are used to provide the names and
explicit metrics for the perfect fluid spheres we consider
(Tables I and II, respectively. Two additional tables are
used to describe the interrelationships of these perfect fluid
spheres—starting from either seed (Table III) or nonseed
(Table IV) metrics—under T1, T2, T3, and T4. In these
tables the notation ‘‘[integral]’’ means that it is definitely a
novel perfect fluid solution but the metric components
involve an explicit integral that does not appear to be
doable by elementary methods, and is so complicated
that it does not seem worthwhile to even write it down.
Recall that a seed metric is one for which Theorem 1 and
FIG. 3. Structure graph for Min
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Theorem 2 both yield metrics distinct from the seed:
T1�g� 6�

4 g 6�
4 T2�g�. In contrast for nonseed metrics one or

the other of these theorems is trivial, either T1�g� �
4 g or

T2�g� �
4 g.

By considering the idempotence of Theorem 1 and
Theorem 2, and the fact that Theorem 3 and Theorem 4
can be expressed in terms of the first two theorems, it is
possible to structure, and therefore to graphically visualize
the relationship between all metrics generated from a given
seed metric. We demonstrate this behavior starting with
Minkowski spacetime as seed metric, checking if it is
possible to create endless new perfect fluid spheres starting
with this trivial seed. The first few steps can be carried out
explicitly, and show that Minkowski space generates sev-
eral well-known interesting perfect fluid models.

In Fig. 3 all the ideas from the previous sections are
used. Each box represents a specific metric (perfect fluid
sphere) while the arrows correspond to the application of
the different theorems. The horizontal arrows correspond
to an application of Theorem 1 and the vertical arrows to an
application of Theorem 2. In addition, the vectors pointing
along the diagonals can either indicate an application of
Theorem 3 or Theorem 4. A dotted arrow corresponds to
the application of Theorem 3 while the dashed arrow
represents an application of Theorem 4.

Figure 3 shows that after applying Theorem 1 to the
Minkowski seed metric, we get the Einstein static universe.
By the idempotence of Theorem 1, n applications of T1 to
the seed metric still results in the Einstein static. Similary,
any number of applications of Theorem 2 after the first
(which leads to the K-O III solution) does not give us any
further new solutions (see Fig. 2). We can also see that the
first and second generating theorems are not commutative.
Application of Theorem 1 and Theorem 2 in that order to
kowski space as seed metric.
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FIG. 4. Numerical implementations of Theorem 3 and Theorem 4 can be used to investigate their behavior for n applications, as the
number of applications becomes large. For specific choices of parameters �i, �i and �i successive applications of Theorem 3 and
Theorem 4 appear to be approaching a limit, in the sense that both metric components seem to converge toward fixed points.
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the Minkowski seed metric results in the Schwarzchild
Interior geometry, whereas application of Theorem 1 after
Theorem 2 gives us the Martin 3 solution, and the three-
parameter Schwarzschild interior solution is quite distinct
from the three-parameter Martin 3 solution.

Indeed, it seems as if it is possible to create endless new
solutions for a perfect fluid sphere out of the Minkwoski
metric (or any other of the seed metrics). After several
iterations the calculations become more complex, and can
no longer be carried out analytically. We then resort to
numeric computation to find out whether Theorem 3 and
Theorem 4 have some sort of numerical limit, a numerical
fixed point, or not. Depending on the choices made for the
parameters ��;�; �� both theorems converge very quickly.
Specifically, we used MATLAB to numerically analyze the
evolution of �r� and B�r� after applying Theorem 3 sev-
eral times to the Minkowski metric. Numerical results are
summarized in Fig. 4. This figure indicates that Theorem 3
and Theorem 4 both appear to have well-defined numerical
limits, though we have no direct analytic solution for the
fixed-point metric.
IV. DISCUSSION

Using Schwarzschild coordinates we have developed
several transformation theorems that map perfect fluid
spheres into perfect fluid spheres, and have used these
transformations as a basis for classifying different types
of perfect fluid sphere solutions. If we apply these theo-
124037
rems on a known perfect fluid sphere, different solutions
are often obtained. While some of the solutions are already
known in the literature, most of them are novel. Therefore,
we have developed a tool to generate new solutions for a
perfect fluid sphere, which does not require us to directly
solve the Einstein equations. (Of course the whole proce-
dure was set up in such a way that we are implicitly and
indirectly solving the Einstein equations, but the utility of
the transformation theorems is that one does not have to go
back to first principles for each new calculation.)

In addition, we have also established several relation-
ships among the generating theorems. Previously, all met-
rics seemed to have nothing more in common than
representing a perfect fluid sphere. We have developed
the concept of a seed metric, which is one that cannot be
generated by our theorems. Starting with a seed metric and
applying our theorems, it is possible to structure, therefore
to visualize, the relationship between all metrics generated
from a given seed metric in a graph. Based on this example
it is possible to create endless new solutions out of the
Minkowski metric. We also used a numeric program to
investigate whether Theorem 3 and Theorem 4 have fixed-
point limits. Both seem to converge very quickly.

In summary, the class of static perfect fluid sphere
solutions to the Einstein equations exhibits a deep and
somewhat unexpected structure—the transformation the-
orems of this article provide a new and distinct way of
looking at the problem, and yield a new way of viewing the
interrelationships between different static fluid spheres.
-12
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