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Planckian scattering effects and black hole production in low MPl scenarios
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We reanalyze the question of black hole creation in high energy scattering via shock wave collisions.
We find that string corrections tend to increase the scattering cross section. We analyze corrections in a
more physical setting, of Randall-Sundrum type and of higher dimensionality. We also analyze the
scattering inside anti–de Sitter backgrounds.
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I. INTRODUCTION

The problem of black hole creation in high energy
scattering is one of significant importance, for two possible
reasons. One is that one can have a low gravitational scale,
as in the large extra dimensions [1,2] or Randall-Sundrum
[3,4] scenarios. Thus the possibility of black hole creation
at accelerators has been explored at length in a number of
papers (e.g. [5–13]).

Another reason is that, via gauge-gravity dualities, the
high energy scattering in a gravity theory can be related to
high energy scattering in QCD, or gauge theories in general
[14–16]. Simply put, high energy scattering in QCD can be
described in terms of a conformal field theory with a cutoff,
and that is dual to a two-brane Randall-Sundrum scenario.
But then black hole creation that happens in high energy
gravity scattering has to have some implications for the
QCD side. In fact, in [15] it was argued that black hole
creation, when the black hole size is comparable to the size
of the gravity dual � AdS slice, is responsible for the
much sought-for Froissart behavior (saturation of the uni-
tarity bound). We will revisit these questions in a future
paper [17], but we will still set up some of the calculations
needed for that case in here.

In particular, we will analyze the case of high energy
scattering with black hole formation inside anti–de Sitter
(AdS) space.

We will focus instead on the actual black hole creation at
high energy s�M2

Pl with the idea of applying it to theories
with a low fundamental scale.

Giddings and Thomas [5] and a number of other people
[6,8–10,12] (see also earlier work in [7]) have proposed
that the cross section for black hole creation in flat space at
high energy is just proportional to the geometric horizon
area of a black hole of mass equal to the total center of
mass energy, i.e.,

� ’ �r2H; rH � 2G
���
s

p
�D � 4�: (1.1)

There has been a considerable amount of debate over
whether this assumption is correct (see, e.g.,
[9,10,12,13,18,19]).

In an attempt to prove it, Eardley and Giddings [11] have
treated the high energy collision according to a recipe
proposed some time ago by ’t Hooft [20]. The process is
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well described by the collision of two gravitational shock
waves of Aichelburg-Sexl type. Even though one cannot
calculate precisely the metric in the future of the collision
except perturbatively [21], one can use a trick due to
Penrose that just uses the properties of Einstein gravity to
calculate a lower bound on the area of the horizon that will
form in the collision.

In D � 4 [11] were able to extend Penrose’s method to
collision at nonzero impact parameter b of the two
Aichelburg-Sexl waves, and prove that the cross section
for black hole scattering is indeed of the order of magni-
tude of the geometric cross section of the classical black
hole.

In this paper we will try to refine this calculation, and
answer some of the criticisms addressed to the calculation
and the geometric cross-section result. One such criticism
was that string corrections will significantly lower this
result (see [22] for example) We will try to analyze string
corrections explicitly via two methods.

There are two modifications of the Aichelburg-Sexl
metric that were shown to reproduce string scattering
results (effective metrics). The one in [23] analyzes spe-
cifically the scattering at impact parameter b, and gives an
effective metric for large b (>Rs, the gravitational radius
for black hole formation). It is therefore unsuited for our
purposes, yet with some approximations one can find that
the head-on collision of two such waves (each having a
parameter b) will have an increased horizon area of the
formed black hole, with respect to the Aichelburg-Sexl
case. The second modification [24] corresponds to string-
corrected ’t Hooft scattering in an Aichelburg-Sexl metric.
We will show that scattering of two modified shock waves
will again increase the horizon area of the formed black
hole.

Another possible caveat to the calculation in [11] is that
it was done in flat D � 4. We will analyze the case of the
more realistic Randall-Sundrum scenario and find that we
just get small corrections to the flat D � 4 case. We will
also offer a method of estimating the cross section in the
arbitrary D case.

We should note that we will use the term black hole to
describe an object with a horizon, which can radiate par-
ticles thermally, even if that object is small (comparable
-1  2005 The American Physical Society
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with, but bigger than, Planck size). In that case clearly the
formed object cannot be treated classically anymore [25],
but one should find a smooth interpolation between the
quantum process of creation and decay of the small ‘‘black
hole’’ and the formation of the large classical black hole
and its subsequent thermal decay. This is the essence of the
black hole information ‘‘paradox,’’ for which we implicitly
assume that there is a resolution, i.e. one can somehow
recover the quantum information from the black hole
decay, even if we do not know how. We should also
mention that other attempts to verify the black hole pro-
duction cross-section formula were made in [26].

The paper is organized as follows. In Sec. II we will
review the Aichelburg-Sexl wave and ’t Hooft’s scattering
calculation, and generalize it to higher dimension. In
Sec. III we will review the analysis of [11] and set it up
for generalization to any shock waves and any dimension.
We will also analyze the collision of sourceless waves,
which should describe graviton-graviton scattering, and
present a puzzle. In Sec. IV, we will analyze string correc-
tions via the effective metrics in [23,24]. In Sec. V we
analyze the case of Randall-Sundrum background and
calculate corrections. In Sec. VI we will write down a
solution for an Aichelburg-Sexl wave inside AdS and do
a ’t Hooft scattering analysis.
II. THE AICHELBURG-SEXL WAVE AND ’T
HOOFT SCATTERING AT HIGH ENERGY

’t Hooft [20] has proposed that an (almost) massless
particle at high energies s�M2

Pl � t behaves like a plane
gravitational wave—a shock wave—and its only interac-
tions are given by massless particles, with the gravitational
interactions described by deflection in the gravitational
shock wave corresponding to the massless particle. That
shock wave solution is due to Aichelburg and Sexl [27].

In this section we will review this procedure of gravita-
tional interaction and generalize it to higher dimensions.

The Aichelburg-Sexl solution is of the pp wave type. A
pp wave (plane fronted gravitational waves) has the gen-
eral form in d dimensions:

ds2 � �dx	dx� 	 �dx	�2H�x	; xi� 	
Xd�2
i�1

�dxi�2; (2.1)

and has Ricci tensor

R		 � �1=2@2i H�x	; xi� (2.2)

and the rest are zero. Horowitz and Steif [28] showed that
there are no quantum (�0) corrections to the (purely gravi-
tational and NS-NS background) pp wave solutions, since
all the gravitational invariants made from Ricci and
Riemann tensors vanish on this solution. The inverse met-
ric is given by

g��@�@� � �4@	@� � 4H@2� 	 @2i (2.3)
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and so for instance

R�2� � R��R
�� � R��R��g

��g�� (2.4)

does not contain �R		�
2, and is thus zero.

In particular, a class of purely gravitational (sourceless)
solutions (of R		 � 0) are given by

H �
X
ij

Aijxixj; trA � 0 (2.5)

and preserve 1=2 supersymmetry (SUSY) 
�� � 0.
The Aichelburg-Sexl solution is a solution for a point

particle (delta function source), moving at the speed of
light. It is obtained by boosting the black hole solution to
the speed of light, and taking its mass M to zero, while
keeping Me� � p � const. (� � boost parameter). But a
simpler way to get it is to boost the energy-momentum
tensor and then solve the Einstein equations for the result-
ing pp wave (thus we have to assume the pp wave ansatz,
which however turns out to be consistent with the energy-
momentum tensor).

A black hole at rest has

T00 � m0!
d�2�xi�!�y� (2.6)

and the rest zero. Boosted, one gets

T00 �
m0��������������
1� v2

p !d�2�xi�!�y� vt� (2.7)

and corresponding T10 and T11. At the limit, one has

T		 � p!d�2�xi�!�x	�: (2.8)

This means that H�x	; xi� � !�x	���xi�, where (since
Einstein’s equation is R		 � 8�GT		)

@2i��x
i� � �16�Gp!d�2�xi� (2.9)

(� is harmonic with source).
For 4D gravity, � � �8pG ln�, and

ds2 � �dudv� 4pG ln�2!�u�du2 	 dx2 	 dy2 (2.10)

in the notation of [29] (�2 � x2 	 y2), but the result is
easily generalizable to any dimension d higher than four:

� �
16�G

�d�3�d� 4�
p

�d�4
; d > 4: (2.11)

Particles following geodesics in the A-S metric are subject
to two effects [29]:

It is found that geodesics going along u at fixed v are
straight except at u � 0 where there is a discontinuity

�v � � � �4Gp ln
�2

l2Pl
; (2.12)

where the Planck constant lPl in the ln is conventional (only
relative shifts, �v1 � �v2, have physical meaning). That
means that one basically has two portions of flat space
glued together along u � 0 with a �v shift. The shift can
-2
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be easily understood by the fact that, after a singular
coordinate transformation, defined later in (3.4), the metric
becomes continuous. So geodesics are continuous in �u; v�
coordinates, which means they are discontinuous in � �u; �v�
coordinates, with the above �v.

The second effect is a ‘‘refraction’’ (or gravitational
deflection, rather), where the angles � and � made by
the incoming and outgoing waves with the plane u � 0
at an impact parameter � � b from the origin in transverse
space satisfy

cot�	 cot� �
4Gp
b

(2.13)

(here p is the momentum of the photon creating the A-S
wave), and at small deflection angles (near normal to the
plane of the wave) we have

�' ’
4Gp
b

: (2.14)

We can understand this also by using the singular coordi-
nate transformation in (3.4), as

�
�
@ ��
@ �u

�
� �

�
@�
@u

�
	
@��

2
(2.15)

and ��@�@u� � 0 [no refraction in ��; u; v� coordinates], so

�
�
@ ��
@ �u

�
�
@��

2
: (2.16)

One can then describe the scattering of two massless
particles of very high energy [20] (m1;2 � MP;Gs� 1, yet
Gs < 1) by saying that particle two creates a massless
shock wave of momentum p�2�

� and particle one follows a
massless geodesic in that metric. In covariant notation
(v � x0 � x1 � x�; ~x2 � �2 � x2 	 y2),

�x� � �2Gp�2�
� log�~x2=C�: (2.17)

Then particle one comes in with a free wave function,

 �1�
���

� ei~p
�1�~x	ip�1�

� v	ip
�1�
	 u; (2.18)

and becomes (at u � 0, just after the shock wave)

 �1�
�	�

� ei~p
�1�~x	ip�1�

� �v�4Gp�2� log�~x2=C��: (2.19)

Then by definition the scattering amplitude is the Fourier
transform of this wave function

A�k�; ~k� �
1

�2��3
Z
d2~xdve�i~k

�1�~x�ik�1�� v �1�
�	�

� !�k�1�� � p�1�
� �

Z d2~x

�2��2
ei~x�~p

�1��~k�1���iGs log~x2

� �i!�k�1�� � p�1�
� �

Z d2 ~b

�2��2
ei ~q ~bei!�b;s�; (2.20)

where we have expressed A�s; t� via an impact parameter
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transform to an eikonal form, with !�b; s� � p�1�
	 �v �

�Gs logb2 and after doing the d2 ~b � bdbd' integration
one gets ’t Hooft’s result:

A �
1

4�
!�k�1�� � p�1�

� �

�1� iGs�

�iGs�

�
4

�~p� ~k�2

�
1�iGs

:

(2.21)

But

4Gp�1�
	 p

�2� � Gs and �~p� ~k�2 � �t;

A�k	; ~k� � !�k�1�	 � p�1�
	 �U�s; t�;

(2.22)

and then we get the differential cross section,

U�s; t� �
1

4�

�
4

�t

�
1�iGs 
�1� iGs�


�iGs�

d2�

d2k
�
4

s
d�
d�

� 4�2jU�s; t�j2 �
4

t2
�Gs�2;

(2.23)

which is like Rutherford scattering, as if a single graviton is
exchanged (with the effective gravitational coupling Gs
replacing � � e2=4� of QED).

The argument is that graviton exchange dominates the
amplitude in this limit, for massive particles it takes an
infinite time to interact. Indeed, at large impact parameter
there is the natural exponential decay of the massive inter-
actions, whereas at small impact parameter the harmonic
function ��r� diverges, and as the time shift �v is propor-
tional to�, it diverges as well. Other massless particles can
be introduced easily: for example, Maxwell interactions
are taken into account just by having a shift (such that at
Gs � 0 we recover Rutherford scattering of QED):

Gs! Gs	 q�1�q�2�=4�: (2.24)

For trans-Planckian scattering, Gs� 1, one should take
both particles as creating shock waves, and these shock
waves should interact and create a black hole.

The generalization to higher dimensions is now pretty
straightforward. Let us first notice, as Amati and Klimcik
did also [24], that a shock wave metric

ds2 � �dudv	��x�!�u�du2 	 d~x2 (2.25)

would shift the geodesics at u � 0 by �v � � and the S
matrix was described by ’t Hooft by the Fourier transform
of the shifted wave function, giving essentially

S � eipv�v � eip��: (2.26)

What we mean is that we can perform an impact parameter
transform as in D � 4 and get

iA �
Z dD�2 ~b

�2��D�2
ei ~q ~b�ei!�b;s� � 1� (2.27)

with (� �
���
s

p
=2 � p � photon energy and p�1�

� � � also)
-3



KYUNGSIK KANG AND HORATIU NASTASE PHYSICAL REVIEW D 71, 124035 (2005)
!�b; s� � p�1�
� ��b� �

aGs

bD�4
;

��b� �
16�G�

�D�3�D� 4�bD�4
;

(2.28)

so a � 4�=��D�3�D� 4��. Then one obtains (with q2 �
t)

iA�
�D�4
�

D�3
2 �

����
�

p
2�D�4�=2

�2��D�2qD�2

�
Z 1

0
dzz�D�2�=2�ei�=z

D�4
�1�J�D�4�=2�z�

�
A

qD�2
Z 1

0
dzz�D�2�=2�ei�=z

D�4
�1�J�D�4�=2�z�; (2.29)

where the q dependence of the integral comes from � �

aGsqD�4 � aGst�D�4�=2 and z � qb, and the exponential
is ei! in general, so for small ! the bracket in the integral is
i!. The integral can also be rewritten asZ 1

0

du
4�D

u�f�3D�8�=�2�D�4��g�ei�u�1�J�D�4�=2�u
��1=�D�4���;

(2.30)

but we can find no analytic expression for it. At most one
can make an expansion in � which gives for the integral
� i�c; c � 2�6�D�=2=
��D� 4�=2�, and so

A ’
Gs
t

�ac�D�4
�
D�3
2 �

����
�

p
2�D�4�=2

�2��D�2

�
�
Gs
�t

1

�2��D�4
:

(2.31)

But this is an expansion in Gst�D�4�=2 and so inD � 10 we
have Gst3 � 1, or gs��0s���0t�3 � 1, certainly satisfied.
Note also that this result matches in D � 4 what one
obtains by expanding in Gs.
III. BLACK HOLE PRODUCTION VIA
AICHELBURG-SEXL WAVE SCATTERING

Let us now analyze black hole production in the high
energy collision of particles (Gs� 1). We will analyze the
collision of two massless particles in flat space, in D � 4
and D> 4, first reviewing the treatment of Eardley and
Giddings [11]. As noted by ’t Hooft and analyzed by [11],
in this regime we have to take into account the gravitational
field created by both particles, so one has to analyze the
scattering of two A-S waves. For an estimate of the gravi-
tational energy being radiated away in the high energy
collision, see [30].

As one can imagine, in general, the collision of two
gravitational waves is a highly nonlinear and nontrivial
process, and as such it is hard to say anything about the
collision region. If we denote by I the region u < 0; v < 0
before the collision, by II the region u > 0; v < 0 (after the
wave at u � 0 has passed), III for u < 0; v > 0 (after the
wave at v � 0 has passed), and IV for u > 0; v > 0 (the
124035
interacting region, after both waves have passed), the
solution in region IV was calculated in [21] only perturba-
tively in the distance away from the interaction point u �
v � 0.

In the case of sourceless waves (pure gravitational
waves), Khan and Penrose [31] and Szekeres [32] have
found complete interacting solutions, but they do not rep-
resent the collision of photons. We will discuss them in a
next subsection. A general treatment of collision of pure
gravitational waves can be found in [33], as well as in
[34,35]

A. Review

Coming back to the case of the collision of two A-S
waves, there is an observation, first due to Penrose and
extended by Eardley and Giddings, which permits one to
say that there will be a black hole in the future of the
collision without actually calculating the gravitational
field. One can prove the existence of a trapped surface,
and then one knows that the future of the solution will
involve a black hole whose horizon will be outside the
trapped surface.

An apparent horizon is the outermost marginally trapped
surface. The existence of a marginally trapped surface thus
implies an apparent horizon outside it. A marginally
trapped surface is defined as a closed spacelike D� 2
surface, the outer null normals (in both future-directed
directions) of which have zero convergence. In physical
terms, what this means is that there is a closed surface
whose normal null geodesics (light rays) do not diverge, so
are trapped by gravity. For a Schwarzschild black hole, the
marginally trapped surface is a sphere around the singu-
larity, that happens to coincide with the horizon.

Convergence is easier to define in the case of a congru-
ence of timelike geodesics. For a congruence of timelike
geodesics characterized by the tangent vector 4a; 4a4a �
�1, defining Bab � rb4a and the projector onto the sub-
space orthogonal to 4a, hab � gab 	 4a4b (induced met-
ric), the convergence is ' � Babhab.

But we need the case of null geodesics, which is more
involved. We have to first define the affine parameter 7
along the curve C such that

D
d7

�
@
@7

�
C
�
D
d7

4a � 4a;b4
b � 0: (3.1)

Then we define a (‘‘pseudo-orthonormal’’) basis for the
tangent space, E1; E2; E3; E4, such that Ea4 � 4a, and Ea3 �
La is another null vector: E3 � E3 � E4 � E4 � 0; E1 �
E1 � E2 � E2 � 1 and E1;2 orthogonal to E3;4, but
Ea34

bgab � �1. If m; n takes the values 1,2 in the above
basis, then ' � 4m;ngmn. If the geodesics are null, one
cannot find an orthonormal basis (as in the timelike
case), one can only find this pseudo-orthonormal basis.
Also note that, by definition, the null geodesics defined
-4
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by 4a are normal to the 2D surface spanned by E1; E2, and
we are taking the derivative of 4 just in those directions.

So to calculate the existence of a marginally trapped
surface, we first need to find the null geodesics normal to
the surface, and then impose that their convergence is zero.

To calculate the convergence, take the approach from
[36]. The convergence is

' � habDa4b; 4 � 4a@a �
dxa

d7
@a (3.2)

for a congruence of null geodesics 4� normal to the surface
B, and hab is the induced metric on B. B is spanned by the
E1; E2 of before, and contracting with the induced metric is
equivalent to contracting with gmn in the above basis.

We see that we need to get the form of the geodesics
xa�7� to proceed. We can impose the fact that the geodesics
are null, so �4; 4� � 0, normal to the generators of the
surface, Ki, so �4;Ki� � 0, and also the normalization
�4; @t� � �E (which can be chosen to be � �1 for sim-
plicity). Note that in [36] B is a sphere, so the generators
are @<i

. Then one calculates xa�7� and then 4�7�xa�� �
4�xa�, and then hmn � @mXa@nXbgab (where Xa are coor-
dinates on the surface B), and finally ' � hmnDm4n.

Let us apply this procedure to the metric of two colliding
general shock waves (without specifying for the moment
the Aichelburg-Sexl solution for �i), one moving in the u
direction, and the other in the v direction.

ds2 � �d �ud �v	 d �xi2 	�1� �x�!� �u�d �u2 	�2� �x�!� �v�d �v2:

(3.3)

After the coordinate transformation,

�u � u	�2'�v� 	 v'�v�
�r�2�

2

4

�v � v	�1'�u� 	 u'�u�
�r�1�

2

4

�xi � xi 	
u
2
@i�1�x�'�u� 	

v
2
@i�2�x�'�v�;

(3.4)

it becomes

ds2 � �dudv	 �H�1�
ik H

�1�
jk 	H�2�

ik H
�2�
jk � !ij�dx

idxj;

(3.5)

where

H�1�
ij � !ij 	

1

2
@i@j��1�u'�u�

H�2�
ij � !ij 	

1

2
@i@j��2�v'�v�:

(3.6)

At zero impact parameter (b � 0), and for A-S shock
waves in D � 4, we have

�1 � �2 � �8G� ln ��; �� �
��������
�xi �xi

p
: (3.7)

In generalD, but for an A-Swave at b � 0, there is aD� 2
124035
dimensional trapped surface consisting of two disks (balls),
parametrized by �x, of radius �c in ��.

In complete generality, the surface S is defined as fol-
lows. Take the union of the two null hypersurfaces v �
0; u � 0 and u � 0; v � 0 with a D� 2 dimensional in-
tersection u � v � 0, that intersects on its turn S on aD�
3 surface C (a priori, two D� 2 surfaces intersect on a
D� 4 surface though, more on that later). Then S is
composed of
d

-5
isk 1—fv � ��1� ~x�; u � 0g, (�1 � 0 on C),

d
isk 2—fu � ��2� ~x�; v � 0g (�2 � 0 on C).

As we will show, the condition of zero convergence implies
that

r2��1 ��1� � 0 (3.8)

interior toC. We will see that in the b � 0 A-S case, we can
actually choose �1 � �1;�2 � �2 which, with the defi-
nition '�0� � 1, means that both disks correspond to �u �
�v � 0. So we would not see the topology in the bar
coordinates, we need to go to the unbarred ones to get
explicit formulas.

On the first disk, we have

ds2 � �dudv	 d~x2 	
1

2
u'�u��@i@j��dxidxj

	
u2

4
'�u�@i@k�@j@k�dx

idxj

� �dudv	 dxidxjgij (3.9)

and the null geodesics through fv � ��� ~x�; u � 0g are
defined by

4 � _u
@
@u

	 _v
@
@v

	 _xi@i: (3.10)

The tangent generators of the surface are

K�
j �

@X�

@xj
; (3.11)

where xi are the coordinates on S and X� the coordinates
on the space, but we choose xi � Xi and so

K�
j � �0;�@j�; !

i
j� ! K�

j @� � �@j�@v 	 @j: (3.12)

We have to impose the condition that 4 is null �4; 4� � 0,
transverse to all the generators: �4; Ki� � 0, and we have to
define the time direction [in [36], that was �4; @t� � �E,
where E can be scaled to 1], in this case �4; @v� � �1.

These conditions together fix

_u � 2; _xi � �gij@j�; _v �
1

2
@i�@j�g

ij;

(3.13)

and then we calculate

4 � �dv�
1

4
gij@i�@j�du� @i�dx

i (3.14)
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and thus

'ju�0 � �r2����� (3.15)

as advertised.
Actually, what we have found is that by imposing

�41; @v� � �1, we get

41 � �dv�
1

4
�r�1�

2du� @i�1dx
i; (3.16)

but similarly, if we impose instead �401; @u� � �1, we get

401 � �du�
4

�r�1�
2 dv� 4

@i�1
�r�1�

2 dx
i: (3.17)

Then on disk 2, �42; @u� � �1 implies

42 � �du�
1

4
�r�2�

2dv� @i�2dxi: (3.18)

These two surfaces intersect on C, thus the normal, 4, has
to be continuous across C. This means that for the A-S
wave at b � 0, when �1 � �2 implying �1 � �2, we
need to have

�r�1�
2 � �r�2�

2 � 4: (3.19)

Then in D � 4, replacing the explicit form of < we get

� � � � �8G� ln�=�c ) �c � 4G� � rh; (3.20)

whereas for D> 4

� �
16�G�

�D�3�D� 4��D�4
) �c �

�
8�G�
�D�3

�
1=�D�3�

:

(3.21)

In the bar coordinates, both disks correspond as we said
to �u � �v � 0 and �xi � xi. But this surface in the bar
coordinates is just flat (on it, the metric is Minkowski),
so the area (volume of balls) is just the area of two flat balls
of radius ��c � �c. The area (volume) of a flat unit D
dimensional ball is Vball;D � �D�1=D, so the total area
of the trapped surface in D spacetime dimensions (two flat
balls) is

Amin�S� � 2Vball;D�2�D�2c �
2

D� 2
�D�3�D�2c ; (3.22)

whereas, from the explicit form of the Schwarzschild
solution in D dimensions the horizon radius of a black
hole of mass

���
s

p
� 2� is

rh �
�

32�G�
�D� 2��D�2

�
1=�D�3�

; (3.23)

so that the horizon area of the mass �
���
s

p
black hole is

ASch � �D�2r
D�2
h )

Amin�S�
ASch

�
1

2

�
�D� 2��D�2

4�D�3

�
1=�D�3�

�
�
2
: (3.24)

The area of the trapped surface is smaller than the horizon
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area of the black hole to form (since the horizon is by
definition outside the trapped surface), and we can express
the area of the disks (balls) as the area of horizon spheres
that will form, so r � rh, where r is defined by Area�S� �
�D�2rD�2, implying that the mass of the formed black
hole satisfies

16�GMBH

�D� 2��D�2
� rD�3h � rD�3 �

�
Area�S�
�D�2

�
�D�3�=�D�2�

)
MBH���
s

p �
1

2

�
�D� 2��D�2

2�D�3

�
1=�D�2�

(3.25)

(we have put in the explicit form of Area�S� and of �c in
terms of� �

���
s

p
=2). Both Amin�S�

ASch
and MBH��

s
p match the explicit

numbers in [11].

B. Extension

In the previous discussion we have already set up the
formalism so that it is valid for any function �� ~x� charac-
terizing the shock wave. We will be applying this later for
different �’s.

Let us now try to extend this for the case of nonzero b in
any dimension. For the b � 0, D � 4 A-S wave we had

� � � � �8G� ln�=�c; (3.26)

meaning that�> 0 for � < �c. For b � 0,D> 4we have

� � ����� � �c�; � �
16�G�

�D�3�D� 4��D�4

(3.27)

and again �> 0 for � < �c.
For b > 0,D � 4 now, we would need both  1 and  2 to

be zero on the same surface (curve, for D � 4) C, not on
two surfaces C1 and C2, since then the intersection of C1
and C2 would have D� 4 dimensions (points, for D � 4).
So we cannot use in D � 4 for instance

�i � �i � �8G� ln
j�� �0ij

�c
: (3.28)

That would define two disks in �x � x with the centers
displaced by b, and while each of the disk boundaries
would be a circle, the two circles will intersect in two
points, so C would be composed of these two points.

The correct solution, which was explored in [11] using a
self-consistent approach (which does not guarantee finding
ALL solutions) is that �i � �i, just

r2�i � r2�i / !� ~x� ~x0i�; (3.29)

which means that�1;�2 are Green’s functions for sources
at ~x01; ~x02 which both are zero on the same curve C
enclosing ~x01 and ~x02. Then one imposes the condition
for continuity of the null normal 4 which gives

r�1 � r�2 � 4; (3.30)
-6
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which fixes (together with the previous conditions) the
form of C.

Clearly for very small b (much smaller than �c), we
have that C is well approximated by the boundary (enve-
lope) of the union of the two disks. We will assume that in
D � 4 the two points C1 and C2 (intersection of the two
circles � boundaries of disks) are still part of the curve C
even at b large, which seems like a reasonable assumption,
though not well justified. Let us see what we can deduce
out of it. Clearly the two sources will be inside C, so we
will therefore assume that the curve C is outside the
parallelogram made from C1; C2; x01; x02. We still call the
distance betweenC1;2 and x01; x02 (radius of the circles) �c,
and if we then impose (3.30) on �1 � �1 and �2 � �2
(which are still good Green’s functions for the circles that
both pass through the two points C1; C2, even if they are

not for the whole curve C), we get the equation ( cos'=2 �����������������������
�2c � b2=4

p
=�c)								r�12

								�
								r

�2
2

								cos'�1)R2s
�2c

�
1�

b2

2�2c

�
�1 (3.31)

(where Rs � 4�G) which gives the value of �c as

�2c �
R2s
2

�
1	

�����������������
1�

2b2

R2s

s �
: (3.32)

We can check that if b � 0 we reproduce the known result
of �c � Rs. This formula means that the maximum impact
parameter for which we can have a black hole forming
within this approximate formalism is bmax � Rs=

���
2

p
�

4G�=
���
2

p
and the minimum radius is �c;min � �c�bmax� �

Rs=
���
2

p
� bmax, and the area of the trapped surface satisfies

S�

���������������������
b2�2c�

b4

4

s
�
b���
2

p

������������������������������������������������
R2s

�
1	

����������������
1�
2b2

R2s

s �
�
b2

2

vuut
�Smin

(3.33)

so that Smin at the maximum b is Smin � R2s
���
3

p
=4 �

4
���
3

p
��G�2.

Comparing now with the results of [11] we have that
bmax � 4G�=

���
2

p
’ 2:83G� is smaller than their result of

3:219G�. Since bmax <Rs it is even physically acceptable
(we would have a problem if it would be bigger). As for the
estimate of the area of the trapped surface, Smin �
4

���
3

p
��G�2, it is sensibly smaller than the result of [11]

which can be found to be (replacing the value of their
parameter amax in the formula for the area) 40:852��G�2,
so we have a much more conservative estimate.

But the advantage is that this procedure can be now
easily extended in higher dimensions.

Indeed, in D> 4,

~r� � �
16��G
�D�3

~x

�D�2
; (3.34)
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and so the condition ~r�1 � ~r�2 � 4 implies�
�Rs
�c

�
2D�6

�
1�

b2

2�2c

�
� 1; (3.35)

where Rs � rh is the horizon radius of the black hole, � is
defined in (3.24), and this equation can be rewritten as

f�x� � 4xD�2 � 4�x	 2b2� � 0; (3.36)

where x � �2c and � � ��Rs�
2D�6. We can easily find the

maximum value of the impact parameter b from it. Since
�c �

���
x

p
is the biggest of the solutions to Eq. (3.36), we

impose that f�x0� � 0, where x0 is the highest root of
f0�x0� � 0. This condition implies

b2 � 2
�

�
D� 2

�
1=�D�3�D� 3

D� 2

�
2��Rs�

2

�D� 2��D�2�=�D�3�
�D� 3�: (3.37)

We can check that indeed in D � 4 we recover the result
bmax � Rs=

���
2

p
, since then � � 1. In D � 5, that means

b � 0:9523Rs < Rs. We can also calculate the lower limit
on the area of the trapped surface as before, except that
now the area of the parallelogram C1; C2; x01; x02 is re-
placed by the volume of a ‘‘surface of revolution’’ inD� 4
transverse directions around the axis x01; x02. The geome-
try in higher dimensions is more complicated, but for D �
5 this is just two cones glued on their bases, of height h �
b=2 and base radius �c cos'=2, and so ‘‘Smin’’ (volume of
the cones) is

2
S0h
3

�
�b
3

�
�2c �

b2

4

�
: (3.38)

In conclusion, we have set up a formalism for shock
waves in which we can calculate trapped surfaces at b � 0
and to some degree at nonzero b, for a general shock wave
form.

C. Collision of sourceless waves

We have seen that for A-S–type waves colliding, in
general we get a trapped surface in the future of the
collision, which indicates a black hole horizon being
formed. From this, we conclude that a black hole is formed
in the high energy collision of two high energy photons
(massless particles, with an energy-momentum source).

But what happens if two sourceless waves (gravitational
solutions to the pure Einstein’s equations) collide? We
would expect to be able to associate this phenomenon
with the collision of two gravitons, in which case we would
expect to create a black hole in the collision. It is in fact
true that there is a theorem stating that a singularity will
form in the future of a collision of two sourceless waves
[34,35]. It is also a theorem that, for Einstein gravity in flat
space, a singularity cannot be naked, so we would expect to
-7
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be able to find a trapped surface, indicating the formation
of a horizon in a sourceless wave collision.

Unfortunately, we will see that this is not so, and we will
speculate on why, after we see the problem.

Khan and Penrose found a solution [31] describing the
(head-on, zero impact parameter) collision of two source-
free gravitational pp waves of the type

ds2 � �dU�2dV 	 �X2 � Y2�h�U�dU� 	 dX2 	 dY2;

(3.39)

with h�U� � !�U� (the function � defined before satisfies
the source-free equation @2i� � 0 solved by � � �X2 	
Y2). After the coordinate transformation

U � u; V � v	 x2=2FF0 	 y2=2GG0;

X � xF; Y � yG;
(3.40)

with F00 � �Fh;G00 � Gh, solved by F � 1�
u'�u�; G � 1	 u'�u� [F0 � '�u�, as u!�u� � 0, and
thus also F!�u� � !�u�], we get the wave in the form

ds2 � �2dudv	 F2dx2 	G2dy2: (3.41)

The collision will involve two such waves, one in u and the
124035
other in v, at zero impact parameter (b). Thus the colliding
wave solution of Khan and Penrose is

ds2 � �
2t3dudv

rw�pq	 rw�2
	 t2

�
r	 q
r� q

��
w	 p
w� p

�
dx2

	 t2
�
r� q
r	 q

��
w� p
w	 p

�
dy2; (3.42)

where

p � u'�u�; q � v'�v�; r �
���������������
1� p2

q
;

w �
��������������
1� q2

q
; t �

��������������������������
1� p2 � q2

q
:

(3.43)

In the region u � 0; v < 0 (before the coming of the
second wave), we can check that the Khan-Penrose solu-
tion becomes

ds2 � �2dudv	 �1	 p�2dx2 	 �1� p�2dy2; (3.44)

that is, of the sourceless wave form (3.41), and we see that
there is a coordinate singularity at u � 1. Then in the
collision region u > 0; v > 0 we have
ds2 � �2

�����������������������������������
1� u2 � v2

�1� u2��1� v2�

s
�
�����������������������������������
�1� u2��1� v2�

p
� uv�

�
�����������������������������������
�1� u2��1� v2�

p
	 uv�

dudv

	
�

��������������
1� u2

p
	 v�2�

��������������
1� v2

p
	 u�2dx2 	 �

��������������
1� u2

p
� v�2�

��������������
1� v2

p
� u�2dy2

1� u2 � v2
: (3.45)
Putting v � 0 we get back to the sourceless wave solution
(3.41). Kahn and Penrose [31] found that, in the collision
region, the line u2 	 v2 � 1 has a scalar curvature singu-
larity. We can calculate that for u2 	 v2 � 1� � the met-
ric is

ds2 � �
� ���
�

p
du2

2u2v4
	

�
4uv
�

�
2
dx2 	

�
�
4uv

�
2
dy2

�
; (3.46)

so clearly the metric is singular, but there does not seem to
be any good way to define a finite area of the singularity.
Indeed, at u � fixed, v � fixed,

dS � dsx � dsy � �dxdy: (3.47)

So we cannot calculate this way a minimum on a horizon
area of a black hole that would probably form.

We can still try to apply the formalism of Eardley and
Giddings and calculate the area of a trapped surface that we
assume will (should) form. Indeed, the individual gravita-
tional waves that collide are still of the general form used
in the previous subsection. The only difference is that
instead of � � �8G� ln�=�c we have

� � �
X2 � Y2

�c
; ��c � 4G��; (3.48)
where we have rescaled U and V to introduce the dimen-
sionful parameter �c describing the strength of the wave.
The problem is though that, in order to be able to choose
� � � like we did for the b � 0 A-S wave collision, �
would have to be zero on the curve C at its boundary, so
that � � �c as we shall see. But � � 0 for X � �Y (we
could shift � by a constant, and then C would be a
hyperbola), so that we cannot actually choose � � �.

Thus we could only use the above function for X � �Y,
and these are four points (X � ��c=

���
2

p
; X � �Y) that

would presumably lie on the curve C if there would be
such a curve.

However, the correct treatment would involve solving
the 2D Green’s function (‘‘electric potential’’) for the
Laplace equation r2� � 0 with Dirichlet boundary con-
ditions � � 0 on a curve C where r� (the ‘‘electric
field’’) has unit norm, and this is impossible.

Thus we seem to have proven that the assumption of a
trapped surface is in fact wrong!

So there really seems to be no way of obtaining a trapped
surface in the Khan-Penrose solution, even though we do
obtain a singularity.

This is a most bizarre situation in itself, which could be
perhaps saved by the fact that in such singular spacetimes
the usual censorship theorems do not apply, but correlated
-8
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with the expectation that the Khan-Penrose solution should
describe graviton-graviton scattering, this is really
puzzling.

One could perhaps think that the Khan-Penrose metric is
not the correct sourceless wave to describe graviton-
graviton scattering. After all, there is a plethora of source-
less wave scattering solutions, as reviewed to a certain
extent in [33].

One can analyze their behavior though (we will not do it
here explicitly) and convince oneself that these solutions
do not describe graviton scattering. The simplest of them is
the Szekeres solution in [32], which has the same singu-
larity structure as the Khan-Penrose solution, but is de-
scribed by a function � of the type ��~u� � f�~u�'�~u� as
opposed to the delta function profile ��~u� � !�~u� of the
incoming waves in the Khan-Penrose solution. The rest of
the possible solutions are even more complicated, and they
really describe the collision of realistic gravitational
waves, as opposed to the idealized delta function waves
of the Khan-Penrose solution. Therefore the Khan-Penrose
solution is the only one that can claim to represent the
collision of two (idealized) gravitons.

Of course, all these solutions were in 4D general
relativity.

Gutperle and Pioline [37] set out to generalize these
solutions to 2n	 2 dimensions and to add p-form field
strength to it, the ultimate goal being to scatter 2 maxi-
mally SUSY pp waves of IIB, or rather a shock wave
generalization of it. They fall kind of short of the goal. The
first try at the generalization gives exact solutions which
however do not satisfy appropriate boundary conditions:
the incoming waves are different from the Khan-Penrose
and Szekeres profiles.

A perturbative attempt near the light cone (or for the
strength of a wave much smaller than the other) produces a
higher dimensional solution, as well as the p-form
generalization.

Then, Chen et al. [38] also produce some generalizations
of this type (see also [39,40]), with better singularity
structure, but they do not analyze the incoming waves in
Brinkman form, so it is not clear what they correspond to.

In conclusion, the Khan-Penrose solution is the only one
that has a chance of describing the collision of two ideal-
ized gravitons, and we seem to obtain the existence of a
naked singularity (no black hole) in the future of the
collision. A good explanation of this paradox is still
lacking.
IV. STRING CORRECTIONS

We will now try to apply the previously derived formal-
ism to shock wave metrics that incorporate string correc-
tions to the high energy scattering of two photons.

There are two such formalisms. One is due to Amati and
Klimcik [24], and the other due to Amati, Ciafaloni, and
Veneziano [23] (see also [41–43]).
124035
The approach by [23] involves writing down an effective
shock wave metric from which one can calculate an S
matrix, which then is matched with a string-corrected S
matrix (string calculation).

The S matrix is defined as exp�iS= �h� where the action is
a function of the classical effective metric, with a source
coupling to an external T��. Namely, the S matrix is

Seff�b; E� � heiA�h���= �hitree � eiA�h
��
cl �= �h; (4.1)

where

A�h��� �
Z
d4x�Leff�h��� 	 T��h��� (4.2)

is the action evaluated on its classical solution with sources
given by two shock waves at x � 0 and x � b,

T�� � kE!�x��!2� ~x�; T		 � kE!�x	�!2� ~x� ~b�;

(4.3)

and Leff is an effective Lagrangian by Lipatov [44]. Amati
et al. [23] showed as we mentioned that this calculation
reproduces the result for the string correction to the scat-
tering matrix S.

The string-corrected A-S–type metric obtained in [23]
for D � 4 can be expressed in terms of a � of the form

� � ��0��A� S� 	��1�

� kE
�
�
1

2�
log

jzj2

L2
	 R2sa�1��z�

�
; (4.4)

where

a�1��z� �
1

4�

�
1

jzj2

								1� z
b

								2log
								1� z

b

								2
	
1

bz
	
1

bz�
�
1

b2
log
L2

b2

�
; (4.5)

and kE � 8�G� (k � 8�G;E � �), so the coefficient of
the log term in��0� is �Rs. Here z � x1 	 ix2 are complex
transverse coordinates so that jb� zj2 � �b� x1�

2 	 x22,
etc.

Then

@1��1� �
R3s

b�x21 	 x22�
2

�
�x21 � x22 � bx1� log

�b� x1�
2 	 x22

b2

	
x1
b
�x21 	 x22 � 2bx1�

�

@2��1� �
R3sx2

b�x21 	 x22�
2

�
�2x1 � b� log

�b� x1�
2 	 x22

b2

	
1

b
�x21 	 x22 � 2bx1�

�
: (4.6)

But the problem is that the string-corrected metric is only
valid for b > Rs (when no black hole forms yet), whereas
we want to have a perturbation in b small.
-9
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We have tried to just plug in this metric in the continuity
condition ~r�1 � ~r�2 � 4, and treat it perturbatively in
Rs=b as in [23], but one gets corrections of the order
R2s=�2c, and then in a perturbative solution, when �c is
replaced by the first order solution which is of o�Rs�, the
corrections are of order one. Thus this perturbation is
useless.

But one can still do a small calculation, namely, to take
the corrected metric (with b nonzero and moreover >Rs)
and see what it does to the continuity condition for the
collision at b � 0 of two uncorrected metrics, namely
�r��2 � 4, now with

@i� � �2Rs
xi
�2

	 @i�
�1� (4.7)

and expand in R2s=b2. This will not be very relevant (since
the corrections disappear in the b! 1 limit, which is not
what we want), but just to see what kind of effect string
corrections have. We obtain

�2c � R2s

�
1�

R2s
b�2c

A	
R4s
b2�4c

�
��2c � x21�

� log2
�
�2c � 2bx1 	 b2

b2

�
	 A

��

A �

�
�2c � 2bx1

b
	 �x1 � b� log

�2c � 2bx1 	 b2

b2

�
;

(4.8)

where we should have x21 	 x22 � �2c, but obviously since
we have used an asymmetric solution (where b is a distance
on the x1 axis), the solution we get for �c�Rs� also depends
on our choice for x1; x2, so �c � �c�x1; x2�.

The above solution is exact, but we only need to expand
in �c=b. Expanding to the first two nontrivial orders we get
(after some algebra)

�2c ’ R
2
s

�
1	

x1
b3

�
x21
3
	 x22

�

	
1

2b4

�
8x21x

2
2 � R4s 	 4x21R

2
s �

8

3
x41

�
. . .

�
: (4.9)

The first correction is proportional to x1 (times a positive
quantity), so when we calculate the area of the curve
�c�x1; x2�, the positive contribution for x1 > 0 will cancel
against the negative one for x1 < 0. So we need to turn to
the next correction to see whether or not the area increases.

Defining

f�x21� � 8x21x
2
2 � R4s 	 4x21R

2
s �

8

3
x41

’ 12x21R
2
s �

32

3
x41 � R4s (4.10)

for y � x21=R
2
s between 0 and 1, we can check that the

function is positive for y > 0:09 (most of the domain), so a
124035
simple estimate shows that the area of the trapped surface
will indeed increase.

But after so many approximations it is not clear this still
is relevant.

We turn instead to the approach of Amati and Klimcik
[24].

Amati and Klimcik [24] first generalize the ’t Hooft and
Dray and ’t Hooft calculation, as we explained in Sec. II. A
shock wave metric

ds2 � �dudv	��x�!�u�du2 	 dx2 (4.11)

would shift the geodesics at u � 0 by �v � � and the S
matrix was described by ’t Hooft by the Fourier transform
of the shifted wave function, giving essentially

S � eipv�v: (4.12)

In string theory, the ’t Hooft scattering in the shock wave
background gives (for an open string ! photon)

�v �
1

�

Z �

0
��X��; 0��d� (4.13)

and the S matrix is defined as acting on creation/annihila-
tion operators as S	ainS � aout. Then

S � e��ipv�=��
R
�

0
d���Xu��;0��: (4.14)

This matches the resummed string calculation of [42] if

��y� � �qv
Z �

0

4

s
: atree�s; y� Xd��d; 0�� :

d�d
�

; (4.15)

where 2pvqv

s � �1; b � xu � xd, and X̂u; X̂d are nonzero
modes. Here the indices u; d refer to ‘‘up’’ and ‘‘down,’’
necessary when we evaluate ��X��; 0��.

We note that here b refers just to a parameter in the
calculation of the shape of one modified A-S metric. We
have not reached the scattering of two A-S–type waves yet.
In that case, we will denote the impact parameter of the two
waves by B, to avoid confusion.

Then we match with the S matrix obtained by resum-
ming string diagrams,

S � exp
�
2i
Z �

0
: atree�s; b	 X̂u��u; 0�

� X̂��d; 0�� :
d�ud�d
�2

�
; (4.16)

and the tree amplitude is

atree�s; b� �
GNs

2�D=2�2
b4�D

Z b2=�Y�i�=2�=4

0
dte�ttD=2�3

(4.17)
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(Y � �0 logs). Then��y� becomes the function for the A-S
wave at y�

����
Y

p
�

���������������
�0 logs

p
. So S is dominated by gravi-

ton exchange at large b (Aichelburg-Sexl) and by absorp-
tion at small b.

As a first approximation, we can neglect all string os-
cillators in ��y� and obtain

��x� � �
4qv

s
atree�s; x�; (4.18)

where atree�s; x� is atree�s; b� (impact parameter space), and
becomes equal to the A-S result at large b. We can rewrite it
also as (g � gauge coupling)
124035
atree�b; s� �
�0g2s
16�

1

�4� �Y�D=2�2

Z 1

0
d��D=2�3e��b2=�4 �Y���

�
g2s�0

16�
1

�D=2�2bD�4

Z b2=�4 �Y�

0
dte�ttD=2�3;

(4.19)

where �Y � �0 log��is� � Y � i��0=2. We are only inter-
ested in the real part of atree, as it is the only one that we can
use in the classical gravitational wave scattering calcula-
tion. It is obtained just by replacing �Y with Y. For b2 � Y,
we obtain
Re atree�s; b� ’
g2s
16�

�0

�D=2�2bD�4
�
�D=2� 2� � e��b2=�4 �Y��

�
b2

4Y

�
D=2�3

�
1	 �D=2� 3�

4Y

b2

�
	 � � �

�

�
g2s�0

16�

�
2

�D�5bD�4
	 � � �

�
; (4.20)
whereas for b2 � Y we get

Re atree�s; b� ’
g2s�0

16�
2

�4Y�D=2�2

�

�
1

D� 4
�

b2

4Y�D� 2�
	 � � �

�
: (4.21)

One need just repeat the Eardley-Giddings–type calcula-
tion now, as we have set it up in the previous section.

The regime we are working in is small g, large GNs �
g2�0s=�8��. Since R2s � 4G2Ns � g4�02s=�4��2 and Y �
�0 log��0s�,

R2s
Y

�
g2

log��0s�
g2�0s

�4��2
(4.22)

can still be arbitrary, in particular, it can be very large.
Since to first order bmax � �c � Rs (for Aichelburg-Sexl),
and at large b the metric is A-S plus corrections, in the
regime R2s=Y � 1 we can use the large b (b2=Y � 1)
expansion of ��b�.

Then inD � 4we get, with puqv � s) qv �
���
s

p
(with

the choice pu � qv due to center of mass scattering, with
equal strength shock waves scattering)

��b� � �
g2

���
s

p

4�
�0

�
2 log

b
Rs

� e��b2=�4Y��
�
b2

4Y

�
�1

	 � � �

�

� �Rs

�
2 log

b
Rs

� e��b2=�4Y��
�
b2

4Y

�
�1

	 � � �

�
: (4.23)

Then the condition for the trapped surface appearing in the
scattering of two Amati-Klimcik waves at zero impact
parameter, �r��2 � 4, gives

bmax � �c ’ Rs

�
1	

�
1	

4Y

R2s

�
e��R2s=�4Y��

�
(4.24)

(for b2=Y � 1, soR2s=Y � 1) thus increases, so the area of
the formed black hole also increases (since the black hole
area is proportional to �2c). The area of the trapped surface
giving the bound on the horizon area is Smin � 2��2c �
4�r2h and rh � 2MbhG, so

Mbh �
�c
2

���
2

p
G

(4.25)

also increases.
At nonzero impact parameter of the two Amati-Klimcik

waves, parameter denoted by B as we mentioned (to avoid
confusion with the b that was used previously), applying
the same approximation for finding �c as was used in the
flat space A-S case, the normal continuity condition is
@i�1 � @i�2 � 4, so @i�� ~x� ~x1� � @i�� ~x� ~x2� � 4, so
we only get an extra factor of

cos 2' � 1�
B2

2�2c
(4.26)

to the condition, which thus gets modified to

�c
Rs

�

�����������������
1�

B2

2�2c

s
�1	 e���2c=�4Y�� 	 � � �� (4.27)

solved perturbatively by

�2c�Rs;B�

R2s
�
1

2

0@1	
����������������������������������������������������������������������
1�
2B2

R2s
	8

�
y0�

B2

2R2s

�
e��R2s=�4Y��y0

s 1A
	��� ;

y0�
1	

��������������
1� 2B2

R2s

q
2

;

(4.28)

which means that Bmax � Rs=
���
2

p
�1	 e�R

2
s=�8Y��.

Finally, let us see what happens if R2s=Y � 1. At first,
we would guess that we can use the small b expansion of
the metric b2=Y � 1, for which
-11
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��b� � �2Rs

�
1

D� 4
�

b2

4Y�D� 2�
	 � � �

�
: (4.29)

But if we plug it into the continuity equation for getting �c,
�r��2 � 4, we would get �c � 4Y=Rs to first order, mean-
ing that �2c=�4Y� � 4Y=R2s , that is we would seem to be in
the opposite regime, so the perturbation expansion used
was invalid. The solution is of course that R2s=Y � 1 will
correspond to �2c=Y � 1, so we would need to use the full
solution, which however is difficult to handle.

But in any case we can say that, for R2s=Y � 1, classi-
cally (A-S wave) we have �c � Rs, but in string theory we
get �c �

����
Y

p
� Rs, so we have a great increase in the area

of the black hole formed, thus it is natural to assume the
cross section will also increase.

V. RANDALL-SUNDRUM–TYPE MODELS

The next application of the black hole creation formal-
ism is to see what kind of corrections appear if we have the
black hole being created in a physical setting, namely, for a
Randall-Sundrum scenario for low Planck scale. Emparan
[45] found an A-S–type wave in the background of the
one-brane Randall-Sundrum (RS) scenario (shock wave on
the UV brane), and analyzed the scattering à la ’t Hooft in
this wave.

KYUNGSIK KANG AND HORATIU NASTASE
124035
We will not be interested in the ’t Hooft analysis for the
scattering and its phenomenological consequences, which
was the main focus of [45]. Instead, we will try to see how
the addition of the RS background affects the Eardley-
Giddings calculation for the flat space black hole creation.
We will keep the wave on the brane, as in the Emparan
calculation.

A. A first attempt—applying the formalism

The solution for an A-S–type wave in the RS back-
ground is

ds2 � dy2 	 e�2jyj=l��dudv	 dxidxi

	 huu�u; x
i; y�du2�; (5.1)

where

huu �
4Gd	1

�2���d�4�=2
p!�u�

edjyj=�2l�

r�d�4�=2

�
Z 1

0
dqq�d�4�=2J�d�4�=2�qr�

Kd=2�e
jyj=llq�

Kd=2�1�lq�
; (5.2)

which is a solution of Einstein’s equation with tuu �
2�p!�q0 	 q1�. Yet another form for the metric is
e�2jyj=lhuu�u; r; y� � �4G4p!�u�
�
e�2jyj=l log

r2

l2
�
2l
�

Z 1

0
dmK0�mr�

Y1�ml�J2�mle
jyj=l� � J1�ml�Y2�mle

jyj=l�

J21�ml� 	 Y21�ml�

�
; (5.3)
which means that on the brane (y � 0)

huu�u; r; y � 0� � �4G4p!�u�
�
log
r2

l2
�
4

�2

�
Z 1

0

dm
m

K0�mr�

J21�ml� 	 Y21�ml�

�
: (5.4)

The Einstein tensor for this solution is linear in huu, and
thus even though this is found as a solution to the linearized
equations of motion, it is also an exact solution.

At large distances, r� l,

huu�u; r; y � 0� � �4G4p!�u�
�
log
r2

l2
�
l2

r2
	
2l4

r4

�

�
log
r2

l2
� 1

�
	 � � �

�
; (5.5)

whereas at small distances r� l,

huu�u;r;y�0���4G4p!�u�
�
�
l
r
	
3

2
log
r
l
	
3r
8l
	���

�
:

(5.6)

We can use the formalism developed previously, since
the solution can also be expressed as just a modification of
the � function. Now we can at least calculate the zero
impact parameter (b) values of Smin (the area of the trapped
surface) and the mass of the corresponding black hole. We
can also estimate the nonzero b parameter values of
�c�Rs�; bmax; Smin.

The new function � is now

��u; �; y � 0�

� �Rs

�
log
�2

l2
�
4

�2
Z 1

0

dm
m

K0�m��

J21�ml� 	 Y21�ml�

�
;

(5.7)

which means that

@i� � �Rs
xi
�

�
2

�
�
4

�2
Z 1

0
dm

K0
0�m��

J21�ml� 	 Y21�ml�

�
(5.8)

and thus imposing the continuity of the normal condition
�@i��2 � 4 and rescaling the variables by Rs we get the
integral equation for �c:

�c
Rs

� 1�
2�c=Rs
�2

Z 1

0
dy

K0
0�y�c=Rs�

J21�yl=Rs� 	 Y21�yl=Rs�
: (5.9)

As before, the area of the trapped surface is the area of
two disks, so it is

Smin � 2��2c � 4�r2h; (5.10)

where rh is the horizon radius of the formed black hole, and
-12
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rh � 2GMbh, so

Mbh �
�c
2

���
2

p
G
: (5.11)

We can use the expansion for �� l and �� l to
calculate the form of �c from Eq. (5.9), for Rs � l and
Rs � l. For Rs � l we have

� � ��0� 	��1�;

��1� ’ Rs

�
l2

�2
�
2l4

�4
�ln

�2

l2
� 1� 	 � � �

�
;

(5.12)

and thus imposing �@i��2 � 4 we get

�2c ’ R
2
s

�
1	

2l2

R2s
�
l4

R4s

�
8 ln

R2s
l2

� 13
��
: (5.13)

For Rs � l we get

� � �Rs

�
�
l
�
	
3

2
ln
�
l
	
3�
8l

	 � � �

�
(5.14)

and then

�c ’

�������������������������������������������������������������������
lRs
2

0@1	 3
2

������
Rs
2l

s
	
3

2

Rs
2l

	 � � �

1A:
vuuut (5.15)

Note that �c � Rs is what one gets in flat 4 dimensions,
whereas �c �

�������������
2G5�

p
�

������������
Rsl=2

p
is what one gets in flat 5

dimensions, so the formula is correct to zeroth order.
So the mass of the black hole is

Mbh ’

���
s

p���
2

p

�
1	

l2

R2s
	 � � �

�
l� Rs

Mbh ’

���
s

p

2

������
l
Rs

s �
1	

3

4

������
Rs
2l

s
	 � � �

�
l� Rs:

(5.16)

Notice that the limit of small l is the limit in which the
space is very four-dimensional (large exponential warping
in the extra dimension), so the four-dimensional result
should hold, and we find that ( just small corrections to
the usual 4D result). The limit of large l is when the
background space is approximately flat 5D space, so we
have to modify the results to account for the creation of a
5D black hole. The condition �r��2 � 4 is independent of
dimension, but it becomes �@i��2 	 �@y��2 � 4 in a gen-
eral dimension (with y being the transverse dimensions),
and it will be modified for a general background.

Thus in the general case the trapped surface is something
in between two disks and 2 balls, so 2 fat disks, or flattened
balls. In the 2 limiting cases, the trapped surface can be
approximated by 2 disks or 2 balls, respectively. One can
still define the black hole projected onto 4 dimensions.

We will come back to the correct treatment in the next
subsection, and we will see that, whereas the zeroth order
formulas are correct, the first order corrections get
modified.
124035
At nonzero b, applying the same approximation for
finding �c as was used in the flat case, the normal con-
tinuity condition @i�1 � @i�2 � 4 becomes @i�� ~x� ~x1� �
@i�� ~x� ~x2� � 4, so we only get an extra factor of

cos' � 1�
b2

2�2c
(5.17)

to the condition, so that now

�c
Rs

�

�����������������
1�

b2

2�2c

s �
1�

2�c=Rs
�

�
Z 1

0
dy

K0
0�y�c=Rs�

J2a�yl=Rs� 	 Y21�yl=Rs�

�
; (5.18)

whereas the expression for the (very conservative) estimate
of the trapped area, Smin, remains the same as a function of
�c and b,

Smin �

����������������������
b2�2c �

b4

4

s
: (5.19)

Expanding in the l� Rs regime we get

�2c
R2s

�

�
1�

b2

2�2c

��
1	

2l2

�2c
�
l4

�4c

�
8 ln

�2c
l2

� 13
�
	 � � �

�
;

(5.20)

so that

�2c
R2s

�
1

2

0@1	
����������������������������������������������������������������������������
1�

2b2

R2s
	
8l2

R2s

�
1�

b2

2R2sy0

�
	 o

�
l4

R4s

�s 1A
(5.21)

[so that b2max ’ R2s=2�1	 4l2=R2s�].
In the l� Rs regime we have

�2c �
lRs
2

�����������������
1�

b2

4�2c

s �
1	

3

2

�c
l
	
3

8

�2c
l2

	 � � �

�
: (5.22)

The first term gives the equation

x3 � a2
�
x�

b2

4

�
; x � �2c; a �

lRs
2
: (5.23)

Solving this equation and selecting the solution that gives
x � a in the limit of b � 0, we get (also calculating the
first two corrections)

2�2c
lRs

�
x
a
� �

0@1	 3
2

���������
Rs�
2l

s
	
3

8

Rs�
2l

	 � � �

1A; (5.24)

where

� �
1���
3

p

�
�	

1

�

�
; � �

�
��	

�������������������
�1	 �2

q �
1=3
;

� �
9b2

4
���
3

p
lRs

:
(5.25)
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If � � 1, then � is real and is

� �
cos'=3���
3

p
=2
; where cos' � ��) � � ei'=3:

(5.26)

If �> 1, the solution is complex, thus

b2max �
4

���
3

p
lRs
9

: (5.27)
B. Correct treatment: generalizing the formalism to
curved higher dimensional background

Let us try to understand what happens to the black hole
area when we have a curved spacetime background of the
RS type:

ds2 � e�2jyj=l��dudv	 dx2i � 	 dy2: (5.28)

Let us denote e�2jyj=l � A and gij � A �gij represents the
metric in both x and y coordinates (transverse). Then a
straightforward calculation along the lines of the flat space
case finds the vector normal to the surface is

4 � �
1

4
�gij@i�@j�du� dv� @i�dxi; (5.29)

and so similarly to the flat case the continuity condition for
the normal is

�g ij@i�@j� � 4) �r��2 	 A�@y��2 � 4 (5.30)

(the relation fixing the boundary of the trapped surface, or
its radius)

For these and the next relations it is necessary to calcu-
late the coordinate transformation from the coordinate
system

ds2 � e�2j �yj=l��d �ud �v	 d~x2 	 h!� �u�d �u2� 	 d �y2 (5.31)

to the coordinate system without delta function disconti-
nuities, up to order u (near u � 0). The calculation is a
straightforward but tedious generalization of the flat space
case, and one finds after the coordinate transformation

�u�u �v�v	h'�u�	
u'�u�
4

�@ih@jh �gij	A�@yh�2�

�xi�xi	
u'�u�
2

�gij@jh �y�y	
u'�u�
2

A@yh
(5.32)

that

ds2 � A��dudv	 dx2i 	 u'�u�@i@jhdx
idxj�

	 dy2�1	 u'�u�A@2yh� 	 dydxiu'�u�A@i@yh

	 dydAu'�u�@yh	 o�u2�; (5.33)
124035
where

A � e�2j �yj=l 	 o�u�2 ) Aju�0 � e�2jyj=l;

dAju�0 � �
2

l
A
�
dy	

A
2
@yhdu

�
:

(5.34)

The convergence of the normals ' � gijDi4j is now
again

' � �r2��� h�; (5.35)

where huu � h!�u��� �!�u�� and

r2 �
1

A
r2x 	 @2y �

d
l
sgn�y�@y: (5.36)

Therefore we write

� � �	 E ; r2E � 0: (5.37)

So now the trapped surface is a surface f��; y� � 0
defined by both � � C (const) and by �gij@i�@j� � 4.
In the flat case the first implied � � �0 and the second
�0 � Rs. But we also saw that the nonzero b case had the
same problem as we have now: find a surface C and a
function E that satisfies both� � const and r2� � 4with
� � �	 E .

In general it is a hard problem, but at least perturbatively,
in the two limits l! 0 and l! 1 we expect to find
approximate disks and approximate balls, respectively
(and fat disks in between). We would also expect that in
the l! 0 the surface is the same disk � � Rs as for flat 4D
space.

The formula for� (h) at nonzero y is (in [45], it is not�
but �e�2jyj=l), so

� � �Rs

�
log
r2

l2
�
2l
�
e2jyj=l

Z 1

0
dmK0�mr�

�
Y1�ml�J2�mle

jyj=l� � J1�ml�Y2�mle
jyj=l�

J21�ml� 	 Y21�ml�

�
(5.38)

(and actually, this is defined up to a constant, so the
logr2=l2 is conventional, we could have logr2=r20).

Then we have

@y�jy�0 �
2Rs
�

�
�
4

l�

Z 1

0

d�ml�
ml

K0�mr�

J21�ml� 	 Y21�ml�

	
2

l

Z 1

0
d�ml�K0�mr�

�
Y1�ml�J2�ml� � J1�ml�Y2�ml�

J21�ml� 	 Y21�ml�

�
� 0! (5.39)

where we have used that Y��x�J0�	1�x� � J�Y
0
�	1�x� �

�2��	 1�=�x2, which we can easily deduce from the
Bessel function properties.
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Then we find

@2y�jy�0�
2Rs
�2

�
�
8

l2
Z 1

0

d�ml�
ml

K0�mr�

J21�ml�	Y
2
1�ml�

	�@2y
Z 1

0
d�ml�K0�mr�

�
Y1�ml�J2�mle

jyj=l��J1�ml�Y2�mle
jyj=l�

J21�ml�	Y
2
1�ml�

�								y�0
:

(5.40)
Let us now analyze the perturbation in l=r (the space is

approximately flat 4D).
Using the relation

Y��x�J
00
�	1�x� � J��x�Y

00
�	1�x� �

2

�x

�
6

x2
� 1

�
(5.41)

which can be easily derived, and also the expansion

J1�x� � x=2; �Y1�x� � �
2

x
	 x log

x
2
	 � � � ; (5.42)

we find

@2y�jy�0 � �
4Rsl

2

r4
	 o�l4=r4�: (5.43)

We also have

�jy�0 � �2Rs log
r
l
	 Rs

l2

r2
	 � � � : (5.44)
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Let us expand E near y � 0 as

E � E0�r� 	 E1�r�y	
y2

2
E2�r�: (5.45)

Then at y � 0 r2E � 0 implies

@2xE0�r� 	 E2�r� �
d
l
E1�r� � 0; (5.46)

and we do not want to upset the flat space solution, so we
will take E0 � 0 [otherwise the continuity condition
�r��2 � 4 implies a different radius for the trapped
disks]. So E2 �

d
l E1.

From

�@i��2 	 e�2jyj=l�@y��2 � 4; (5.47)

we see that if @y� has a y-independent piece, we will
change the continuity equation at y � 0, and we do not
want that to happen to leading order in l. As @�jy�0 � 0
already, we must put E1 � 0 to leading order, so at least
E1 � o�l�, which implies E2 � o�1� as well.

Then

� � f	 ay	
y2

2
g	 � � � ; (5.48)

where
f � �jy�0 � �2Rs logr=l	 Rsl2=r2 	 � � � ; a � E1

g � @2y�jy�0 	
d
l
E1 � �

4Rsl
2

r4
	 o�l4=r4� 	

d
l
E1 � g0 	

d
l
E1 	 � � � :

(5.49)
We have to check now that the two surfaces in �r; y� defined
by � � const and the normal continuity are the same to
first nontrivial order in y and l.

� � C � f	 ay	
y2

2
g	 � � � (5.50)

and the other

C0 � 4�
�
f0 	 ya0 	

y2

2
g0 	 � � �

�
2

	

�
1�

2y
l
	 2

y2

l2
	�� �

�
�a	 yg	�� ��2

� f02	a2	 y
�
2a0f0 � 2

a2

l
	 2ag

�
	�� � ; (5.51)

if a is nonzero and

C0 � 4 � f02 	 y2�f0g0 	 g2� 	 � � � ; (5.52)

if a � 0. If a � 0, we get to order y2 (first nontrivial) for
� � C
2Rs log
r
r0

� Rs
l2

r2
	 � � � � y2

�
�
2Rsl

2

r4

�
(5.53)

(we have traded C for r0) and for the continuity equation

�4� f02 � a2 ��4� 4
R2s
r2

�
1	 2

l2

r2

�
� a2

� y2�g2 	 f0g0� � y2
�
�4
8R2sl2

r6

�
: (5.54)

Notice that at l � 0 the left-hand side of the two equations
would be 2Rs!r=r0 and 8!r=Rs, respectively, so with r0 �
Rs (from y � 0) the two equations are not the same. So we
have to put a nonzero E1.

Also note that since the constant C (and hence r0) is
an arbitrary constant, at y � 0 but l nonzero we do not need
to have the same l dependence in the two equations, we can
absorb the unwanted l dependence in the redefinition of
r0. The l dependence of the radius rmax is deduced from
-15
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the continuity equation (which does not have a free
parameter).

Also note that a priori one could check the values for �
and its y derivatives by using the alternative solution for�
in [45]. We have tried to use perturbation theory on the
alternate form (integral of ratio of K function) of�, but as
Emparan noted, it is much harder to do so. In particular,
one has to use the freedom to add an arbitrary constant to h
(this is related to a rescaling of u and v).

If now we put a � E1 � 0 (and so g � g0 	
4a
l ), the first

order in y is linear, and by requiring that at l � 0we get the
same y dependence in both equations, we get the condition
124035
a ’
Rs
4

�
2ag0 	

6a2

l
�
4Rs
r
a0
�
: (5.55)

Thus if we put

a �
�Rsl

r2
(5.56)

at l � 0 and r � rmax � Rs and since g0 � o�l2� is negli-
gible, we get 3=2� � �1, or � � �2=3.

Then at y � 0; l � 0 the condition � � C is irrelevant
as we said, since we can redefine the constant C. Then from
the second (continuity) equation we get
�
2Rs
rmax

�
2
�
1	

2l2

r2
	
�2l2

4r2
	 � � �

�
� 4) r2max � �2c � R2s

�
1	

19

9

l2

r2
	 � � �

�
) Mbh ’

���
s

p

2

�
1	

19

18

l2

r2
	 � � �

�
; (5.57)
and in the treatment of the previous subsection we had thus
neglected the �2 term, the equation needed to be modified,
but the sign of the correction is the same.

We can now also correct the calculation at nonzero b, by
just putting the familiar cos' term

�2c
R2s

�

�
1�

b2

2�2c

��
1	

l2

�2c

�
1	

�2

8

�
	 � � �

�
(5.58)

from which we get

�2c
R2s

�
1

2

0@1	
����������������������������������������������������������������������������������
1�
2b2

R2s
	
8l2

R2s

�
1	

�2

8

��
1�

b2

2R2sy0

�
	���

s 1A:
(5.59)

The maximum impact parameter (and thus the scattering
cross section � � �b2max) gets also modified:

b2max ’
R2s
2

�
1	

4l2

R2s

�
1	

�2

8

��
: (5.60)

The perturbation for l� r (around flat 5D) will be left for
future work.

VI. AICHELBURG-SEXL SOLUTION IN ADS
BACKGROUND AND SCATTERING ANALYSIS

In this section we will analyze the case of an A-Swave in
AdS (for future application to the gauge-gravity duality).
First, we have to derive the solution for the A-Swave inside
AdS.

A. Aichelburg-Sexl solution in AdS background

Let us notice that [29] analyzed putting A-S shock waves
in more general backgrounds, of the type

ds2 � 2A�u; v�dudv	 g�u; v�hij�x
i�dxidxj: (6.1)

The calculation of the A-S solution in this background,
with a source � massless photon at u � 0; � � 0 was
done as in the flat background, just by gluing two regions
at u � 0with a shift�v � f � f�xi�. In [29], it was found
that the Einstein equations are satisfied if

A;v � 0 � g;v
A
g
�f�

g;uv
g
f � 32�pGA2!���:

(6.2)

Indeed, in Minkowski background (A � �1=2, g � 1)
one finds the Aichelburg-Sexl solution, �f �

�16�pG!�2����. Notice that, if the equations are not
satisfied, it just means that one cannot find a solution for
the ansatz taken. For example, spherical sourceless (p �
0) waves of this type in flat space are excluded [A �
�1=2; g � r2 � �u� v�2=4 does not satisfy the condi-
tions], but Penrose found another type of solution.

The authors of [29] were able to find such shock waves
in the Schwarzschild solution in Kruskal-Szekeres coordi-
nates,

ds2 � �32
m3

r
e�r=2mdudv	 r2�d'2 	 sin2'd<2�

uv � ��r=2m� 1�er=2m;

(6.3)

namely,

f�';<� � k
Z 1

0

��������
1=2

p
cos�

���
3

p
s=2�

�coshs� cos'�1=2
ds: (6.4)

Notice that if one would like to put AdS in the form in
(6.1), one cannot: For a shock wave moving on the brane,
the AdS background would be written as

ds2 �
1

z2
�dudv	 d~x22 	 dz2�; (6.5)

which is not of the desired form, whereas for a wave
moving in the z direction

ds2 �
dudv	 d~x23
�u� v�2

; (6.6)

which does not satisfy the conditions. But there could still
be a solution of a different type.
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Note that neither the previous metric nor the global AdS
form,

ds2 � l2��dt2cosh2�	 d�2 	 sinh2�d�23�; (6.7)

nor the other forms,

ds2 �
l2

cos2'
��dt2 	 d'2 	 sin2'd�23� (6.8)

or (with r=l � sinh� � tan')

ds2 � �dF2
�
1	

r2

l2

�
	

dr2

1	 r2

l2

	 r2d�23; (6.9)

help us in putting AdS into the form desired by [29], so we
do need something else.

Indeed, we will see that instead we can follow closely
the calculation of Emparan [45], so we will describe it,
modifying it for our purposes.

Emparan [45] uses the metric of the one-brane RS
model, perturbed with a general gravitational wave, in
the form

ds2 � e�2jyj=l��dudv	 d~x2 	 huu�u; xi; y�du2� 	 dy2:

(6.10)

But all we have to do in order to go to AdS is to replace
jyj ! y. Then, under the coordinate transformation

y=l � lnz=l; (6.11)

we would get

ds2 �
l2

z2
��dudv	 d~x2 	 huu�u; xi; y�du2 	 dz2�;

(6.12)

which is the form that we wanted to obtain using the [29]
formalism.

But [45] gives the Einstein tensor for the RS metric
(6.10) as

Gyy �
d�d� 1�

2l2
gyy

G�� �

�
d�d� 1�

2l2
�
2�d� 1�

l
!�y�

�
g��

�
1

2
@�u@�u

�
e�2jyj=l

�
@2y � sgn�y�

d
l
@y

�
	r2x

�
huu;

(6.13)

where we have actually corrected the [45] result by putting
the sgn�y� function. In the AdS case however, the sgn�y� is
absent (since it came from @yjyj).

The RS equations in the absence of huu are

GAB � 0gAB 	 7!�y�g��!
��
AB (6.14)

(cosmological constant 0 in the bulk and on the brane 7 �
brane tension) and can be seen to be satisfied, we could
124035
read out what 0 and 7 are. Then note that the equation for
huu is linear.

In our case, adding the energy-momentum tensor of a
photon of momentum p (which will generate the A-S
metric), traveling at fixed xi and fixed radial position in
AdS, y0,

tAB � p!�u�!d�2�xi�!�y� y0�!
uu
AB; (6.15)

we get an equation, with huu � �!�u�,

�
1

2

�
e�2y=l

�
@2y �

d
l
@y

�
	r2x

�
�

� 8�Gd	1p!
d�2�xi�!�y� y0�: (6.16)

Note that the flat space limit l! 1 gives the correct result,
�1=2@2i h � 8�Gd	1p!d�1�x�.

Going to 4D Fourier space

��q; y� �
Z
dd�2xe�iq�x��x; y� (6.17)

and similarly for tuu, one obtains

��q; y�00 �
d
l
��q; y�0 � q2e2y=l��q; y�

� �16�pGd	1!�y� y0�: (6.18)

Going back to Emparan’s case [45], the previous equa-
tion would have d=l sgn�y� and e2jyj=l. The solution to that
equation in Emparan’s case is

Ae�djyj�=�2l�Kd=2�e
jyj=llq�; (6.19)

where the Bessel function K was chosen among the 2
solutions to the Bessel equation because of the boundary
conditions: one wanted that at y! 1 the solution dies off,
not blows up (Id=2, the other solution, blows up exponen-
tially at infinity). The jyj in edjyj=2l was because of the
sgn�y� in the equation, and the jyj in the ejyj=l argument was
due to the e2jyj=l in the equation. Then both at y � 1 and
�1 we need the behavior of K��x� for x! 1.

Finally, the constant is fixed by normalizing the coeffi-
cient of the delta function

A
�
d
2l
Kd=2�lq� 	 qK0

d=2�lq�
�
� �8�Gd	1p; (6.20)

and using an identity for Bessel functions A can be put to a
simpler form. Also using a more general energy-
momentum tensor for the momentum space wave,
tuu�q�!�y� one has

huu�q; y� � 8�Gtuu�q�e
�djyj�=�2l� Kd=2�e

jyj=llq�

qKd=2�1�lq�
: (6.21)

For the photon energy-momentum tensor, going back to x
space and making the angular integrations, using
-17



PHYSICAL REVIEW D 71, 124035 (2005)
Z
d�d�3e

iqr cos' � �d�4

Z �

0
d'sind�4'd'eiqr cos'

� �2���d�2�=2
J�d�4�=2�qr�

�qr��d�4�=2
; (6.22)

one gets

huu�u; r; y� �
4Gd	1

�2���d�4�=2
p!�u�

e�djyj�=�2l�

r�d�4�=2

�
Z 1

0
dqq�d�4�=2J�d�4�=2�qr�

Kd=2�e
jyj=llq�

Kd=2�1�lq�
:

(6.23)

In our case, the generalization is very simple. There are
no jyj in the Eq. (6.18), so none in the solution. Again the
solution at y! 1 has to decay, so we choose the Bessel
function K for y > y0. But now for y0 > y! �1 we get
the exponent of the Bessel function becoming K�x�, x! 0,
for which K��x� blows up as x��. Instead, the Bessel
function I��x� behaves smoothly, as x�. So the solution
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for y < y0 is with Id=2 instead of Kd=2. The normalization
of the delta function is also different.

The solution is now of the type

� � A1e�dy�=�2l�Kd=2�ey=llq� y > y0

� A2e
�dy�=�2l�Id=2�e

y=llq� y < y0: (6.24)

Continuity at y0 gives

A1
A2

�
Id=2�ey0=llq�

Kd=2�ey0=llq�
; (6.25)

and the jump in the derivative gives the delta function
normalization [���0�y0�� � �16�Gd	1pe

2y0=l]. Using
the Bessel function relations

zI0��z� 	 �I��z� � zI��1�z�

zK0
��z� 	 �K��z� � �zK��1�z�

I��z�K�	1�z� 	 I�	1�z�K��z� �
1

z
; (6.26)

we finally get
huu�q; y� � 8�Gd	1tuu�q�e�dy�=�2l�e��4�d�=�2l��y0Kd=2�ey=llq�2lId=2�ey0=llq� y > y0

� 8�Gd	1tuu�q�e
�dy�=�2l�e��4�d�=�2l��y0Id=2�e

y=llq�2lKd=2�e
y0=llq� y < y0: (6.27)

So now going in x space, taking the usual photon energy-momentum tensor, and making the angular integrations, we get

huu�u; r; y� �
8Gd	1l

�2���d�4�=2
p!�u�

e�dy�=�2l�e��4�d�=�2l��y0

r�d�4�=2

Z 1

0
dqq�d�2�=2J�d�4�=2�qr�Kd=2�e

y=llq�Id=2�e
y0=llq� y > y0

�
8Gd	1l

�2���d�4�=2
p!�u�

e�dy�=�2l�e��4�d�=�2l��y0

r�d�4�=2

Z 1

0
dqq�d�2�=2J�d�4�=2�qr�Id=2�e

y=llq�Kd=2�e
y0=llq� y < y0: (6.28)
Again, the last integration cannot be done, except on a
certain hypersurface. Indeed, we have the relation

Z 1

0
dxx�	1K��ax�I��bx�J��cx�

�
�ab����1c�e���	1=2��iQ�	1=2

��1=2����������
2�

p
��2 � 1��=2	1=4

(6.29)

[where Q�
��z� is the associated Legendre function of the

second kind], that is of the desired form, which is however
valid only if Re�a�> jRe�b�j 	 jIm�c�j, Re���>�1,
Re��	 ��>�1 (all satisfied), and 2ab� � a2 	 b2 	
c2, which imposes a constraint.

Thus we obtain

huu�u; r; y� � C
8Gd	1l

�2���d�4�=2
p!�u�e�y�y0�=ll2�de��4�d�=l�y0 ;

C �
i�3�d�=2Q�d�3�=2

�d�1�=2�
d
2��������

2�
p

�d
2

4 � 1�
�d�3�=4

(6.30)
(for both y < y0 and y > y0) on the hypersurface

r2 � l2e2y0=l�de�y�y0�=l � 1� e�2�y�y0��=l�: (6.31)

One could presumably check this by the Aichelburg-
Sexl procedure, namely, of boosting the AdS black hole
and then taking the limit where the mass of the black hole
goes to zero as the boost goes to infinity. It is however quite
difficult in practice.

B. Scattering analysis

Let us look now at the AdS scattering. Let us first obtain
the limits of AdS–A-S wave. Defining as before huu �
�!�u�, we get

� � �C
e�dy�=�2l�

rd�2
e��4�d�=�2l��y0

Z 1

0
dzz�d=2��1J�d�4�=2�z�Kd=2

�

�
ey=l

lz
r

�
Id=2

�
ey0=l

lz
r

�
; (6.32)

with �C � 8Gd	1lp=�2���D�4�=2. As we can see, for r� l
the integral is dominated by the region of small argument
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of I and K and we can use

I��x� �
�
x
2

�
� 1


��	 1�
;

K��x� �
�

2 sin��
�x=2���


���	 1�
) Kn�x� �

1

2
�n� 1�!

�
x
2

�
�n
:

(6.33)

But

Z 1

0
dxx2n	1J0�x� � 0; (6.34)

so we need to expand I2�bx�K2�ax� up to the first term that
is not of x2n type. We find

I2�bx�K2�ax� �
b2

4a2
	 constx2 	 constx4

�
1

64
a2b2x4 log�x� 	 o�x5�; (6.35)

and using

Z 1

0
dxx5 log�x�J0�x� � �64; (6.36)

we get

� �
�Cl4

r6
e�2=l��2y	y0�: (6.37)

Instead, when r� l (actually, for ey=ll=r� 1), we can use
the large argument expansion of I and K,

I��x� �
ex���������
�2x

p ; K��x� �
�����
�
2x

r
e�x (6.38)

and obtain (for d � 4)

� ’
�Ce�3y�y0�=�2l�

2l
1�������������������������������������������

r2 	 l2�ey=l � ey0=l�2
q (6.39)

and so if we also have y=l; y0=l� 1we obtain as expected
the 5D result

� ’
C

2l
������������������������������
r2 	 �y� y0�2

p : (6.40)

Note that the result in (6.39) can be obtained also if r=l�
1; ey=l � 1, which means y=l� a few (not too large).

Another particular case of interest is y � y0. Then we
can do the integral at all values of r and obtain ( �C � 2Rsl2,
Rs is 4D the Schwarzschild radius)
124035
� � 2Rs

24�1	
r2

2l2
e�2y0=l

0@�1	
���������������������������
1	

4l2

r2e�2y0=l

s 1A

	
l2

r2e�2y0=l
1�����������������������

1	 4l2

r2e�2y0=l

q
35; (6.41)

and we can check that for r� l (and y0=l� 1 or � 1) we
get

� ’
2Rsl6

r6e�6y0=l
; (6.42)

the same as the result that we obtain in this limit from the
above answer for all y ( � y0).

We can also check that at ey0=ll=r� 1 we have

� ’ lRs
ey0=l

r
; (6.43)

as we obtained from the formula at arbitrary y.
Finally, let us now look at ’t Hooft scattering in AdS5 in

the two limits. For r� l or l=r� 1; ey=l � 1 (so that
lq� 1 or lq� 1; ey=l � 1)

� ’
�C
2l

e�3y�y0�=�2l��������������������������������������������
r2 	 l2�ey=l � ey0=l�2

q ; (6.44)

and hence (since ! � p�1�
� �, and going to z � qb � qr

variables and using p�1�
� p�2� � s=4)

!�b; s� �
G5se�3y�y0�=�2l�q������������������������������������������������

z2 	 l2q2�ey=l � ey0=l�2
q ; (6.45)

and thus if ! is small the amplitude is

A ’
AG5se

�3y�y0�=�2l�

q

�
Z 1

0
dzz

1������������������������������������������������
z2 	 l2q2�ey=l � ey0=l�2

q J0�z�

�
G5
2�

s��
t

p e�3y�y0�=�2l� exp���
��
t

p
l�ey=l � ey0=l���; (6.46)

where the exponent is therefore large.
However, !� 1 means either y � y0 and

G4se
3�y�y0�=�2l� � 1 or y ’ y0 and G4s

l
r e

y0=l � 1, so the
only possibility is y � y0 < l, r� l,G4s� 1, but we still
want G4s� 1, but <1 for ’t Hooft scattering, so it is not
clear that there is a good regime in between.

For r� l (or rather lq� 1), we obtain in D � 4

!�b; s� ’ 2
G5sl

5e2�2y	y0�=lq6

z6
; (6.47)

and therefore now ! is always small, so
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A ’
A

qD�2
Z 1

0
dzzD=2�1JD=2�2�z�!�z�: (6.48)

Unfortunately, the result for A inD � 4 is infinite; hence,
we need to regularize by removing an infinite constant
piece and keeping only the t-dependent piece from the
integral. To obtain the finite t-dependent piece we would
need to get ! at generalD, which seems to be quite difficult
to do, but we can at least say that the result in D � 4	 2�
will change as �q=z�6 ) �q=z�6	m� and so the result will be

A�D � 4� �
G4sl6t2

2�27
e�2=l��2y	y0�

m� 2

3�m
lnt

/ G4sl
6t2 lnte�2=l��2y	y0�: (6.49)

VII. CONCLUSIONS

In this paper we have reanalyzed the question of black
hole formation in the high energy collision of two particles
via the classical scattering of two shock waves.

We have found that string corrections increase the hori-
zon area. For the effective shock wave metric in [23], we
have found that if we scatter head-on (at b � 0) two such
waves, each characterized by an impact parameter b > Rs,
we obtain trapped surfaces which are deformed disks of
area higher than the area obtained from A-S wave scatter-
ing. For the effective shock wave metric in [24], in the case
of R2S=Y � 1 [Y � �0 log��0s�], we get an increase of the
area of the black hole formed, as well as of the classical
scattering cross section, � � �b2max, while in the R2s=Y �
1 we get that the area of the formed black hole is of the
order of Y (modified string scale), not R2s , so much larger.

For higher dimensions, we have found a conservative
approximation scheme for the area of the horizon formed
which gives us a maximum impact parameter (indicative of
the scattering cross section, as we expect that � � �b2max).
We have thus obtained that in D � 4, bmax � Rs=

���
2

p
, and
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in D � 5 for instance bmax ’ 0:9523Rs, which is again a
more conservative estimate as the one in [11].

What was more surprising was the fact that, although
graviton-graviton scattering should be described by the
collision of two ideal sourceless waves, given in the
Khan-Penrose solution, there does not seem to be a horizon
forming even at zero impact parameter. There is a theorem
that a singularity will form in the future of any sourceless
wave collision, yet we cannot find a trapped surface,
namely, the usual trapped surface calculation does not
have a solution. We have speculated that maybe the grav-
itons cannot be described by sourceless waves at all, or
maybe trapped surfaces are inherently different from the
[11] case, namely, that the surfaces form only in the
interacting region u > 0; v > 0, not at the border (u � 0,
v � 0) as in the photon scattering case.

We have extended the formalism to curved backgrounds.
For more realistic scenarios, involving possible creation of
black hole at accelerators for low fundamental scale, we
have chosen the one-brane Randall-Sundrum case. In the
case that the 5th direction is highly curved, we have
obtained just corrections to the flat 4D case, whereas for
a weakly curved 5th direction, we have corrections about
the 5D flat space black hole creation.

Finally, we have found a solution for an Aichelburg-Sexl
wave inside an AdS background, and we have calculated
the scattering amplitude for ’t Hooft scattering in such a
wave, at small and large distances r. This was done for later
use [17] for analysis of the gravity dual of QCD high
energy scattering.
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