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We investigate the ultrarelativistic boost of the five-dimensional Emparan-Reall nonrotating black ring.
Following the classical method of Aichelburg and Sexl, we determine the gravitational field generated by
a black ring moving ‘‘with the speed of light’’ in an arbitrary direction. In particular, we study in detail two
different boosts along axes orthogonal and parallel to the plane of the ring circle, respectively. In both
cases, after the limit one obtains a five-dimensional impulsive pp-wave propagating in Minkowski
spacetime. The curvature singularity of the original static spacetime becomes a singular source within the
wave front, in the shape of a ring or a rod according to the direction of the boost. In the case of an
orthogonal boost, the wave front contains also a remnant of the original disk-shaped membrane as a
component of the Ricci tensor (which is everywhere else vanishing). We also analyze the asymptotic
properties of the boosted black ring at large spatial distances from the singularity, and its behavior near the
sources. In the limit when the singularity shrinks to a point, one recovers the well-known five-dimensional
analogue of the Aichelburg-Sexl monopole solution.
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I. INTRODUCTION

The study of black holes in higher dimensions has been
for a long time motivated by unified theories, in particular,
string theory [1]. In the past few years, extra-dimension
models of TeV gravity have raised further interest in view
of possible black hole production at colliders [2–5]. Ac-
cording to [6,7], in semiclassical investigations of such
high energy phenomena one can represent the incoming
states with black hole metrics boosted ‘‘to the speed of
light.’’ In the case of the four-dimensional Schwarzschild
black hole, the corresponding ultrarelativistic gravitational
field is described by the Aichelburg-Sexl impulsive
pp-wave [8]. In the spirit of [2–5], however, one clearly
needs to consider higher dimensional settings. Indeed, the
boosting technique of [8] has been already applied to static
(charged) black holes in higher dimensions [9] (and
straightforwardly extended to the D � 4 Schwarzschild
black hole in an external magnetic field [10]). Recent
analyses of black hole production in high energy collisions
[11–13] thus employed the Aichelburg-Sexl solution (or
other impulsive waves) in D � 4 spacetime dimensions
(see [14] for a subtler discussion). The very recent work
[15] studied the more elaborate ultrarelativistic limit of the
Myers-Perry solution [1] (a generalization of the rotating
Kerr metric to arbitrary dimensions).

In fact, one of the most remarkable feature of general
relativity in D> 4 is the nonuniqueness of the Myers-
Perry spherical black holes. In five-dimensional vacuum
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gravity, there exist also asymptotically flat rotating black
rings with an event horizon of topology S1 � S2 [16]. It is
our purpose to investigate the gravitational field generated
by such rings when they move at the speed of light, in the
sense of the Aichelburg-Sexl limit. In the present paper we
will be focusing on the special subcase of zero angular
momentum, i.e. on the static black rings found in [17]. We
shall consider spinning rings in a separate subsequent work
[18].

The structure of the paper is as follows. In Sec. II we
briefly describe the static black ring of [17], which we
intend to Lorentz-boost subsequently. In Sec. III we split
the corresponding line element into flat space plus a term
that becomes ‘‘small’’ at asymptotic infinity. We also in-
troduce (asymptotically) Cartesian coordinates useful for
performing the ultrarelativistic boost. Sections IV, V, and
VI contain our main results. In Secs. IVand V we explicitly
calculate the metric of the black ring boosted along a
direction orthogonal and parallel to the plane of the ring
circle, respectively. This leads to two different impulsive
pp-waves that naturally ‘‘recall’’ the original curvature
and conical singularities of the static ring (in a sense to
be made clear later). We analyze several specific properties
of such solutions, in particular the Ricci and Weyl tensors,
and asymptotic expansions far from and close to the sin-
gularities, and near geometrically privileged axes and
planes. In Sec. VI we briefly discuss a boost along an
arbitrary direction. We again obtain an impulsive
pp-wave, whose singular source is described by an ellipse.
Our final remarks are presented in Sec. VII. Appendix A
summarizes the definitions and properties of the complete
elliptic integrals employed in Secs. IV and V, whereas
Appendix B provides the explicit tetrad components of
the Weyl tensor in the case of the orthogonal boost.
-1  2005 The American Physical Society
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II. THE STATIC BLACK RING

In this section we briefly summarize the basic properties
of the static black ring, referring to [17,19] for further
details. In the coordinates of [19],1 the line element reads

ds2 � �
F�y�
F�x�

dt2 �
L2

�x� y�2
F�x�

�
�y2 � 1�d 2

�
1

F�y�
dy2

y2 � 1
�

1

F�x�
dx2

1� x2
� �1� x2�d�2

�
; (1)

where

F��� �
1� ��
1� �

; 0 � � < 1: (2)

The parameter � is dimensionless, and for � � 0 (i.e.,
F � 1) the spacetime (1) is flat. The constant L> 0 rep-
resents a length related to the radius of the ‘‘central circle’’
of the ring. For a physical interpretation of the spacetime
(1), we take

y 2 ��1;�1�; x 2 ��1;�1�; (3)

and  and � as periodic angular coordinates (see below).
Now, y is an ‘‘area coordinate’’ that, loosely speaking,
parametrizes ‘‘distances’’ from the ring circle. Surfaces
of constant y have topology S1 � S2, and area which is
monotonically growing with y. The coordinate  runs
along the S1 factor, whereas �x;�� parametrize S2 (see
[17,19] for illustrative pictures). At y! �1 the spacetime
has a curvature singularity, y � �1=� is a horizon of
topology S1 � S2, and spatial infinity corresponds to
x; y! �1. To avoid conical singularities at the axes x �
�1 and y � �1, the angular coordinates must have the
standard periodicity

�� � 2� � � : (4)

With this choice, however, there is a conical singularity at
x � �1. This describes a disk-shaped membrane (with an
excess angle) inside the ring which prevents the ring from
collapsing under its self-gravity.2 Nevertheless, the space-
time (1) is asymptotically flat [17], and the black ring has
mass

M �
3�L2

4

�
1� �

: (5)
1More precisely, one has to multiply F��� by �1� ��, and to
divide  and� by

�������������
1� �

p
to obtain the corresponding quantities

of [19]. The original notation of [17] is recovered with the
transformations y � �y0 � ��=�1� �y0�, x � �x0 � ��=�1�
�x0�,  �  0=

�������������
1� �

p
, � � �0=

�������������
1� �

p
, L2 � �1� �2�=A2.

2Alternatively, one can require regularity at x � �1 and place
the conical singularity at x � �1, i.e., outside the ring [17]; we
will not consider this case because the singularity would extend
to infinity. There is no way to achieve regularity at both x � �1
and x � �1, unless the ring rotates [16].
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Except on the disk membrane at x � �1, the metric (1)
is a vacuum solution. It clearly admits three commuting
orthogonal Killing vector fields @t; @ ; @� and, in fact, it
belongs to the generalized Weyl class of [17]. Interestingly,
it has been proven recently [20] that vacuum black rings
(with or without rotation) differ from the five-dimensional
Myers-Perry black holes not only in the horizon topology,
but also in the algebraic type of the Weyl tensor: black
holes are of type D, whereas black rings are of the more
general type Ii (type II on the horizon), according to the
higher dimensional classification of [21].
III. SPLITTING OF THE METRIC AND
CONVENIENT COORDINATES

For our purposes, it is convenient to decompose the line
element (1) as

ds2 � ds20 � ��; (6)

in which ds20 is Minkowski spacetime [given by Eq. (1)
with � � 0, i.e., F�x� � 1 � F�y�], and

� �
x� y
1� �x

dt2 �
L2

�x� y�2

�
x� 1

1� �
�y2 � 1�d 2

�
x� y
1� �y

dy2

y2 � 1
�
x� 1

1� �
�1� x2�d�2

�
(7)

measures the deviation from flatness of the full black ring
metric (1). Asymptotically (x; y! �1), � becomes ‘‘neg-
ligible’’ (in the sense of the Minkowskian metric ds20).

A boost is now naturally defined with respect to the flat
background ds20 (as well as with respect to asymptotic
infinity), namely, by its isometries. We wish to visualize
this in standard Cartesian coordinates. In order to introduce
them, it is first convenient to replace the ‘‘C-metric’’
coordinates �y; x� with ��; �� via the substitution3

y � �
�2 � �2 � L2������������������������������������������������������

��2 � �2 � L2�2 � 4L2�2
p ;

x � �
�2 � �2 � L2������������������������������������������������������

��2 � �2 � L2�2 � 4L2�2
p :

(8)

The flat term ds20 in Eq. (6) then takes the form of
Minkowski space in double cylindrical coordinates

ds20 � �dt2 � d�2 � �2d�2 � d�2 � �2d 2; (9)

and the additional quantity � reads
3We have simply inverted the relations � � L
��������������
y2 � 1

p
=�x� y�

and � � L
��������������
1� x2

p
=�x� y� of [17].
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� �
2L2

��1� �x�
dt2

� 2L2 ���
2 � �2 � L2�d�� 2��d��2

�3�1� �y�

�
�� �2 � �2 � L2

��1� ��
��2d 2 � �2d�2�; (10)

where we have denoted

� �
������������������������������������������������������
��2 � �2 � L2�2 � 4L2�2

q
: (11)

In Eq. (10) we have kept an explicit simple dependence on
the old coordinates �y; x� for brevity and for later conve-
nience [but one can readily substitute Eq. (8) into Eq. (10)
if necessary].

Cartesian coordinates are finally given by

x1 � � cos�; y1 � � cos ;

x2 � � sin�; y2 � � sin ;
(12)

so that � �
����������������
x21 � x22

q
, � �

����������������
y21 � y22

q
, and the background

is ds20 � �dt2 � dx21 � dx22 � dy21 � dy22.
In principle, one could now study a boost along a general

direction. Since the original spacetime (1) is symmetric
under (separate) rotations in the �x1; x2� and �y1; y2� planes,
such a direction can be specified by a single parameter �,
namely, introducing the rotated axes

z1 � x1 cos�� y1 sin�; z2 � �x1 sin�� y1 cos�:

(13)

Defining suitable double null coordinates �u0; v0� by

t �
�u0 � v0���

2
p ; z1 �

u0 � v0���
2

p ; (14)

a Lorentz boost along z1 takes the simple form

u0 � !�1u; v0 � !v: (15)

The parameter ! > 0 is related to the standard Lorentz
factor via " � �!� !�1�=2.

In the following, we will study in detail two different
boosts of the black ring along the privileged axes x1 (� �
0) and y1 (� � �=2), which are, respectively, ‘‘orthogo-
nal’’ and ‘‘parallel’’ to the ring. But we will also discuss a

ULTRARELATIVISTIC BOOST OF THE BLACK RING
4Again, for convenience in Eq. (21) we have left some expression
depend on !. However, these terms will not contribute to the final r
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boost in a general direction. In particular, we will consider
‘‘ultrarelativistic’’ boosts to the speed of light, i.e. the
transformation (15) in the limit !! 0. Along with that,
we will perform the standard mass rescaling [8]

M � "�1p � 2!�1� !2��1p; (16)

which keeps the total energy finite (p > 0 is a constant).
From Eq. (5), in term of the dimensionless parameter � the
rescaling (16) becomes

� � �! � !
8p

3�L2 � !�8p� 3�L2!�
; (17)

so that when !! 0 then �! � !�8p=3�L2� ! 0.
IV. ORTHOGONAL BOOST: � � 0

A. Evaluation of the impulsive limit of the metric

For � � 0 in Eq. (13), Eq. (14) reduces to

t �
�u0 � v0���

2
p ; x1 �

u0 � v0���
2

p ; (18)

so that the transformation (15) describes a Lorentz boost
along the x1 axis, which lies in the 2-plane spanned by
��;�� [cf. Eq. (12)]. The latter is orthogonal to the 2-plane
��;  �, which contains the ring circle. We wish now to
evaluate how the black ring metric (1) [that is, Eq. (6)
with Eqs. (9) and (10)] transforms under the boost (15)
with � � 0. Since the coordinates � and  remain un-
changed in this case, it suffices to substitute only the first
column of Eq. (12) into Eqs. (9) and (10). Then, we put
Eq. (18) into the thus obtained expressions for ds20 and for
� (we omit the intermediate expressions, which are cum-
bersome and not of particular significance). Finally, we
perform the boost (15). This leaves ds20 invariant
(2du0dv0 � 2dudv), i.e.

ds20 � 2dudv� dx22 � d�2 � �2d 2; (19)

and makes � dependent parametrically on !. Using the
shortcut

z! �
1���
2

p �!�1u� !v�; (20)

one obtains4
�! �
L2�!�1du� !dv�2

�!�1� �!x�
�

2L2

�3
!�1� �!y�

�
��2 � z2! � x22 � L2�d�� 2�

�
1���
2

p z!�!�1du� !dv� � x2dx2

��
2

�
�! � z2! � x22 � �2 � L2

�!�1� �!�

�
�2d 2 �

1
2 �

���
2

p
z!dx2 � x2�!

�1du� !dv��2

z2! � x22

�
: (21)
s containing the old coordinates y and x [cf. Eq. (8)], which now
esult in the limit !! 0.
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Here, the quantity �! comes from the expression (11)
using the above described coordinate transformations and
the boost (15), and it can be rewritten as

�! �
���������������������������������������������������������������������������������������
�z2! � x22 � ��� L�2��z2! � x22 � ��� L�2�

q
: (22)

We are now interested in taking the ultrarelativistic limit
!! 0, i.e. in finding the resulting metric

ds2 � ds20 � lim
!!0

�!�!: (23)

Recalling Eq. (17), one easily sees that lim!!0��!�!� � 0
at any given spacetime point with u � 0 (and away from
the ring singularity y � �1). At u � 0 this limit diverges,
but in fact it represents a sound distribution supported on
u � 0. By inspecting the various quantities in Eq. (21), it
suffices to retain only the terms proportional to du2, as the
remaining ones become negligible for !! 0. Similarly, we
drop the factors 1� �!x, 1� �!y and 1� �!, since �! !
0 for !! 0. Using Eqs. (17), (20), and (21), for !� 0 we
can thus write

�!�! �
8p

3�L2

1

!
h?�z!�du

2; (24)

where

h?�z!� �
2L2 � x22

2�!
�

4L2�2z2!
�3
!

�
x22�L

2 � �2�

2�z2! � x22��!

�
x22

2�z2! � x22�
: (25)
124031
We have emphasized the dependence of h? on z! (which
gives the only dependence on !) because this is essential in
our limit (of course, h? depends on the coordinates x2 and
� as well). In taking the limit !! 0 of Eq. (24), we can
now apply the distributional identity [recall Eq. (20)]

lim
!!0

1

!
f�z!� �

���
2

p
%�u�

Z �1

�1
f�z�dz: (26)

With this, the final metric is [cf. Eqs. (19) and (23)]

ds2 � 2dudv� dx22 � d�2 � �2d 2

�H?�x2; ��%�u�du2; (27)

with a profile function given by

H?�x2; �� �
8

���
2

p
p

3�L2

�Z �1

�1
h?�z�dz

�
: (28)

It only remains to explicitly perform the integration in
Eq. (28), with h? given by Eq. (25) with Eq. (22). The
last term in Eq. (25) gives rise to the simple integralR
�1
�1�z

2 � x22�
�1dz � �jx2j�1. The first three terms lead

to the elliptic integrals (A13)–(A15) of Appendix A.
Combining the various quantities, we finally obtain
H?�x2; �� �
8

���
2

p
p

3�L2

��
3L2 � �2 � x22

�� L
�� L

�
K�k������������������������������

��� L�2 � x22
q �

�����������������������������
��� L�2 � x22

q
E�k�

�
�� L
�� L

��� L�2 � x22�����������������������������
��� L�2 � x22

q ��*0; k� �
�
2
jx2j

�
; (29)

with

k �

�����������������������������
4�L

��� L�2 � x22

s
; *0 � �

��� L�2

x22
: (30)

One can reexpress the elliptic integral ��*0; k� using identities (A4) and (A5) and obtain an alternative form ofH?, which
will be useful for subsequent discussions,

H?�x2; �� �
8

���
2

p
p

3�L2

�
3L2 � �2�����������������������������

��� L�2 � x22
q K�k� �

�����������������������������
��� L�2 � x22

q
E�k� �

�� L
�� L

x22�����������������������������
��� L�2 � x22

q ��*; k� � �jx2j��L� ��
�
;

(31)

where

* �
4�L

��� L�2
; (32)

and ��L� �� denotes the step function.
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Let us observe that no singular coordinate transforma-
tion of the type of [8] had to be performed in the calcu-
lation above, since all the required integrals are
convergent.

B. Properties of the solution

A static black ring boosted to the speed of light in a
direction orthogonal to the ring circle is thus described by
the metric (27), with H? given explicitly by Eq. (31). This
is evidently a five-dimensional impulsive pp-wave prop-
agating along the x1 direction [see Eq. (18)]. Such a space-
time is flat everywhere except on the null hyperplane
u � 0, which represents the impulsive wave front. In par-
ticular, the line element (27) is singular at the points
FIG. 1. The profile function H?�x2; �� given by Eq. (31). The
upper picture represents the values taken by H? over the plane
�x2; ��, whereas the lower one displays curves along whichH? is
constant. This is the case of a static black ring boosted to the
speed of light in a direction orthogonal to the plane ��;  �, which
contains the ring circle. The coordinates �x2; �;  � span spatial
sections of the impulsive wave front u � 0, cf. Eq. (27). Here the
coordinate  is suppressed, since it just describes the orbits of a
Killing vector field. The profile function H? diverges (only) at
the ring singularity x2 � 0, � � L, as indicated by the thick
point(s) in the pictures. In addition, there is a disk membrane
within the ring, i.e. at x2 � 0, � < L [cf. Eq. (34)], which
manifests itself as a jump in @H?=@x2. This is drawn above as
a thick line.

124031
satisfying u � 0 � x2 and � � L [k � 1 in Eq. (30)], i.e.
on a circle of radius L contained within the wave front.
This is a remnant of the curvature singularity (y � �1) of
the original static black ring (1). Since the boost performed
above was orthogonal to the ring circle, the latter has not
Lorentz-contracted. We have plotted the profile function
H? in Fig. 1.

1. Killing vectors

The pp-wave line element (27) and (31) is obviously
invariant under the transformations generated by the vector
fields @v and @ . It has been demonstrated in four space-
time dimensions [22] that impulsive pp-waves admit more
isometries than the same class of waves with a general
profile. Similarly, it is easy to see that, thanks to the
presence of %�u�, the line element (27) admits also the
three commuting Killing vectors

u@x2 � x2@v; u@y1 � y1@v; u@y2 � y2@v: (33)

[Recall the simple relation (12) between �y1; y2� and
��;  �.] These are generators of null rotations. In-
cidentally, we observe that impulsive waves in the four-
dimensional (anti-)de Sitter universe can be described as a
submanifold of five-dimensional impulsive pp-waves, and
they admit symmetries very similar to the above [23].

2. The Ricci tensor

The static ring (1) is a vacuum spacetime (R,- � 0)
everywhere except on the disk membrane x � �1 (and of
course on the ring singularity y � �1). Therefore, one
would expect also the ultrarelativistic boosted ring to be a
vacuum solution except at a possible remnant (after the
boost) of the original disk membrane. To check the results,
we have verified that the Ricci tensor associated to the
spacetime (27) and (31) is indeed zero everywhere but at
u � 0 � x2, � < L, i.e. inside a two-dimensional disk
lying on the wave front. Namely, using Eqs. (A6) one finds

Ruu � �
1

2
�H?%�u� � �

8
���
2

p
p

3L2 ��L� ��%�x2�%�u�

(34)

[the symbol � denotes the Laplace operator over the
transverse flat space �x2; �;  �]. This nonvanishing compo-
nent arises only due to the last term in Eq. (31), a typical
term associated to boosted conical singularities [24]. On
the disk rim u � 0 � x2, � � L the metric (27), (31) is
singular, and its exact structure may be not reflected cor-
rectly by Eq. (34).

3. The Weyl tensor

For any five-dimensional pp-wave written in the form
ds2 � 2dudv� dx22 � d�2 � �2d 2 �H?du2, in the
null/orthonormal frame
-5
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k � du; l � �dv�
1

2
H?du;

m�1� � d�; m�2� � �d ; m�3� � dx2;
(35)

the Weyl tensor is

C � �ij��k ^m�i�� � �k ^m�j��

� �k ^m�j�� � �k ^m�i���; (36)

where summation over i; j � 1; 2; 3 is understood. This is
the canonical form of type N spacetimes [21,25], and k is
the unique principal null direction. The symbols [25]

�ij �
1

2
C,-*/l

,m-
�i�l

*m/
�j�; i; j � 1; 2; 3 (37)

define a 3� 3 symmetric traceless matrix that expresses
the independent frame components of the Weyl tensor,
which are in general five in D � 5.5 In particular, this
demonstrates that in the ultrarelativistic boost studied
above the original type Ii [20] of the static ring (1) has
degenerated to the type N on the wave front of our specific
pp-wave (27), (31). Moreover, for such a solution the
symmetry under @ implies �12 � 0 � �23. One is thus
left with

�11 � �
1

2

�
1

2

@2H?

@�2
%�u� �

1

3
Ruu

�
;

�13 � �
1

4

@2H?

@�@x2
%�u�;

�22 � �
1

2

�
1

2�
@H?

@�
%�u� �

1

3
Ruu

�
;

�33 � �
1

2

�
1

2

@2H?

@x22
%�u� �

1

3
Ruu

�
:

(38)

The above components of the Weyl tensor confirm the
presence of an impulsive gravitational wave at u � 0.
For H? given by Eq. (31), the explicit form of the scalars
�ij is presented in Appendix B. There one can observe that
the elliptic integral ��*; k� disappears from such
expressions.

4. Asymptotic behavior

The spacetime (27) is flat everywhere except on the
wave front u � 0. If we restrict within the latter, it is
interesting to analyze how the gravitational field generated
by the boosted black ring behaves at a large spatial dis-
tance from the center of the ring singularity (given by � �
0 � x2). Spatial sections of the wave front are three-
dimensional spaces, in which we can introduce standard
spherical coordinates �r; 3;  � by
5The quantities �ij can be understood as a generalization of
the complex scalar �4, which fully characterizes type N space-
times in the well-known D � 4 theory.
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x2 � r cos3; � � r sin3: (39)

Since r is a radial coordinate from the center of the ring
(r2 � x22 � �2) and L is the radius of the ring, we consider
an expansion for small values of the dimensionless pa-
rameter L=r. This means considering Eq. (31) for k and
* approaching zero. Using Eqs. (A7)–(A9), we obtain

H? �
1���
2

p
8p
3L

�
3
L
r
�

7

8
�3cos23� 1�

L3

r3
�O

�
L5

r5

��
:

(40)

We recognize the standard multipole terms [indeed, for
� > L, H? is a solution of a three-dimensional Laplace
equation, cf. Eq. (34)]. Notice that the dipole term is
missing, due to the geometry of the source. In the limit
when the ring shrinks to a point, i.e. L! 0, the expansion
reduces just to the monopole term,

H0
? � lim

L!0
H? �

1���
2

p
8p
r
: (41)

This exhibits the ‘‘Newtonian’’ 1=r falloff in three-
dimensional space, with a ‘‘mass’’ proportional to p. The
metric (27) with a profile function given by H0

? coincides
with the five-dimensional analogue of the Aichelburg-Sexl
solution, obtained by boosting the Schwarzschild line ele-
ment to the speed of light [9] (cf. also, e.g., [10,11,13]).

In order to gain further physical insight, one can simi-
larly consider other expansions near ‘‘special places.’’ For
example, near the axis � � 0 we obtain

H? �
8

���
2

p
p

3L2

�
L2 � x22�����������������
L2 � x22

q � jx2j

�
3L2

4

L2 � x22����������������������
�L2 � x22�

5
q �2 �O��4�

�
:

(42)

Near the plane of the ring x2 � 0,

H? �
1���
2

p
8p

3�L2

�
2
3L2 � �2

L� �
K�~k� � 2�L� ��E�~k�

� 2�jx2j��L� �� �
�

1

L� �
K�~k�

�
5L2 � �2

�L� ��2�L� ��
E�~k�

�
x22 �O�x42�

�
; (43)

where ~k � k�x2 � 0� �
���������
4L�

p
=�L� ��.

If we introduce suitable coordinates ‘‘centered on the
ring’’

x2 � ~r sin~3; � � L� ~r cos~3; (44)

using Eqs. (A10)–(A12), the expansion [of Eq. (29)] near
the singular ring ~r � 0 is
-6
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H? �
1���
2

p
8p
3�L

�
�4

�
1� log

~r
8L

�
� 2~3 sin~3

~r
L

�
1

4

�
1� cos2~3

�
1� 3 log

~r
8L

��
~r2

L2 �O
�
~r3

L3

��
:

(45)

The ring-shaped singularity is explicitly visible in the first
logarithmic term.
V. PARALLEL BOOST: � � �=2

A. Evaluation of the impulsive limit of the metric

For � � �=2 in Eq. (13), Eq. (14) becomes

t �
�u0 � v0���

2
p ; y1 �

u0 � v0���
2

p ; (46)

so that the transformation (15) describes a boost in the y1
direction, i.e. in the 2-plane ��;  � [cf. Eq. (12)] containing
the ring circle. As for the previous orthogonal boost, we
need to calculate how the black ring metric (1) transforms
under the boost (15), and then take the limit !! 0. In the
present case (� � �=2) the coordinates � and � remain
unchanged, hence we substitute the second column of
Eq. (12) into Eqs. (9) and (10). Apart from this, we follow
the same steps as in Sec. IV, and the derivation here will be
therefore shortened in its straightforward parts. The flat,
boost-invariant part of the decomposition (6) can now be
written as

ds20 � 2dudv� dy22 � d�2 � �2d�2: (47)

For the additional term ��, as !� 0 we get an expression
analogous to Eq. (24), but with h?�z!� replaced by

hjj�z!� �
4L2 � y22

2�!
�

4L2�2z2!
�3
!

�
y22�L

2 � �2�

2�z2! � y22��!

�
y22

2�z2! � y22�
; (48)

and

�! �
�������������������������������������������������������������
z4! � 2�y22 � �2 � L2�z2! � a4

q
; (49)

with

a � ���2 � y22 � L2�2 � 4�2L2�1=4: (50)

Again employing identity (26), the final boosted metric is
now

ds2 � 2dudv� dy22 � d�2 � �2d�2

�Hjj�y2; ��%�u�du2; (51)

with a profile function

Hjj�y2; �� �
8

���
2

p
p

3�L2

�Z �1

�1
hjj�z�dz

�
: (52)
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We employ the elliptic integrals (A17)–(A19) of
Appendix A in order to perform the integration in
Eq. (52) [with hjj given by Eqs. (48) and (49)].
Combining all the terms, and using identity (A5) to reex-
press the elliptic integral � in a more convenient form, we
obtain

Hjj�y2; �� �
8

���
2

p
p

3�L2

�
5L2 � �2 � 2a2

2a
K�k� � 2aE�k�

�
�2 � L2

2a
a2 � y22
a2 � y22

��*; k�

� �jy2j��y22 � a2�
�
; (53)

where

k �
�a2 � �2 � y22 � L2�1=2���

2
p
a

;

* � �2y22
a2 � �2 � y22 � L2

�a2 � y22�
2 ;

(54)

and a as in Eq. (50).

B. Properties of the solution

A static black ring boosted to the speed of light in a
direction contained in the plane of the ring circle is thus
represented by the metric (51) and (53). As in the case of
the orthogonal boost of Sec. IV, this is a five-dimensional
impulsive pp-wave. It propagates along the y1 direction,
and it is singular at the points satisfying u � 0 � � and
jy2j � L [k � 1 in Eq. (54)], i.e. on a rod of length 2L
contained within the wave front. This is a remnant of the
curvature singularity of the original static black ring (1),
which has Lorentz-contracted because of the ultrarelativ-
istic boost in the plane of the ring. On the contrary, notice
that the apparent divergence of Hjj at y22 � a2 is only a
fictitious effect: the singular behavior of the coefficient of
� in Eq. (53) is compensated if one takes into account the
form of * [Eq. (54)] and the step function in the last term.
The profile function Hjj is plotted in Fig. 2.

The discussion of further properties of the solution (51)
and (53) is now shortened, since it follows the similar one
in Sec. IV. There exist isometries generated by the Killing
vector fields @v, @�, u@y2 � y2@v, u@x1 � x1@v and u@x2 �
x2@v [cf. Eq. (33)].

During the parallel boost, also the original disk mem-
brane has Lorentz contracted, and it is now located on the
singular region u � 0 � �, jy2j � L. We will not discuss
the behavior of the solution there. Except on this singular
rod, the Ricci tensor associated to the spacetime (51) and
(53) is vanishing, as we verified using identities (A6).

Similarly as in Sec. IV, one can cast the Weyl tensor in
the type N canonical form using the frame (35) with the
replacements �! �,  ! �, x2 ! y2 and, of course,
H? ! Hjj. Analogously, one obtains the corresponding
-7



FIG. 2. Plot of the profile function Hjj�y2; �� given by Eq. (53).
This is the case of a static black ring boosted to the speed of light
along a direction contained within the plane of the ring circle, i.e.
��;  �. The coordinates �y2; �;�� span spatial sections of the
impulsive wave front u � 0, cf. Eq. (51). The Killing coordinate
� is suppressed in the figures. The profile function Hjj diverges
(only) at the rod singularity � � 0, jy2j � L, as indicated by the
thick line in the pictures.
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Weyl components from Eq. (38). In this case, we omit the
explicit form of the scalars �ij, which is rather compli-
cated and does not provide any immediate physical insight.
We just notice that, again, the elliptic integral �
disappears.

Following the corresponding analysis of Sec. IV, we can
analyze how the gravitational field generated by the
boosted black ring (51) behaves at a large spatial distance
from the center of the rod singularity (given by � � 0 �
y2). With spherical coordinates defined on the wave front
by

y2 � r cos3; � � r sin3; (55)

we now obtain

Hjj �
1���
2

p
8p
3L

�
3
L
r
�

5

8
�3cos23� 1�

L3

r3
�O

�
L5

r5

��
: (56)

The monopole term coincides with that obtained in the
124031
case ofH?, cf. (40) and (41), and for L! 0 (i.e., when the
rod shrinks to a point) it gives rise to the five-dimensional
Aichelburg-Sexl solution. Again, there is no dipole, but the
quadrupole term is different from that of Eq. (40).

In addition, we can consider an expansion ofHjj near the
axis � � 0. The rod singularity lies exactly at � � 0, for
jy2j � L. Therefore, we have to study the two cases jy2j>
L and jy2j<L separately. For jy2j> L, one has

Hjj �
8

���
2

p
p

3L2

�
L2�����������������

y22 � L2
q � jy2j �

�����������������
y22 � L2

q

�
3

4

L2y22����������������������
�y22 � L2�5

q �2 �O��4�

�
: (57)

The case jy2j<L is more delicate and one has to employ
expansions (A10)–(A12). At the end,

Hjj �
8

���
2

p
p

3�L2

�
y22 � 2L2�����������������
L2 � y22

q log
L2�2

16�L2 � y22�
2 � 2

�����������������
L2 � y22

q

� jy2jarccot
L2 � 2y22

2jy2j
�����������������
L2 � y22

q �O��2�

�
; (58)

where ‘‘arccot’’ takes values in �0; ��. The first term carries
the singular behavior at the rod � � 0.
VI. GENERAL BOOST: AN ARBITRARY �

We finally consider the boost in a general direction z1,
which is characterized by the angular parameter �, see
Eqs. (13)–(15). We employ the method of the previous
sections, and after straightforward calculations we again
obtain an impulsive pp-wave

ds2 � 2dudv� dx22 � dy22 � dz22 �H�x2; y2; z2�%�u�du2:

(59)

Now the profile function

H�x2; y2; z2� �
8

���
2

p
p

3�L2

�Z �1

�1
h�z�dz

�
; (60)

is an integral of the function

h�z� �
L2

�
�
L2

�3

��
�2 � �2 � L2

�
y1
�

sin�� 2�x1 cos�
�
2

�
1

2

�
1�

�2 � �2 � L2

�

��
y22
�2

sin2��
x22
�2 cos�

�
:

(61)

Here the dependence on z is contained in

y1 � z sin�� z2 cos�; �2 � y21 � y22;

x1 � z cos�� z2 sin�; �2 � x21 � x22;
(62)

and in �, given by Eq. (11). In order to perform the above
-8



ULTRARELATIVISTIC BOOST OF THE BLACK RING PHYSICAL REVIEW D 71, 124031 (2005)
integration, it is convenient to factorize � as

� �
�����������������������������������������������������������������
��z� r1�

2 � s21���z� r1�
2 � s22�

q
; (63)

where the parameters s1 and s2 are defined by

s21 � r21 � A�
2B
r1
; s22 � r21 � A�

2B
r1
; (64)

and r1 by the equation (of third order in r21)

r61 � Ar41 �
1

4
�A2 � C�r21 � B2 � 0; (65)

with

A � x22 � y22 � z22 � L2 � 2L2cos2�;

B � L2z2 sin� cos�;

C � �x22 � y22 � z22 � L2�2 � 4L2�x22 � z22sin
2��:

(66)

Using Cardano’s formula we may write the root r21 as

r21 � �
A
3
�

����������������������
�
q
2
�

����
Q

p
3

r
�

����������������������
�
q
2
�

����
Q

p
3

r
; (67)

where

Q �

�
p
3

�
3
�

�
q
2

�
2
; p � �

1

3
A2 �

1

4
�A2 � C�;

q �
2

27
A3 �

1

12
A�A2 � C� � B2:

(68)

Notice that for the particular case of the orthogonal boost
FIG. 3 (color online). Plot of the profile function H�x2; y2; z2� giv
performed numerically. The coordinates �x2; y2; z2� span spatial sectio
corresponds to a boost in a general direction z1, the function H is no
the values taken by H over different sections of the three space �x2
shaped singularity, cf. Eq. (72).

124031
(� � 0) we obtain r1 � 0, s21 � x22 � ��� L�2, s22 � x22 �
��� L�2, which coincides with Eq. (22), while for the
parallel boost (� � �

2 ) one has 2r21 � a2 � y22 � �2 � L2

and 2s21 � 2s22 � a2 � y22 � �2 � L2, which is equivalent
to Eq. (49) [a is defined in Eq. (50)]. For any�, the integral
(60) could now be expressed using elliptic integrals, in
principle (because � is a square root of a fourth order
polynomial in z) [26,27]. For example, the simplest first
term in Eq. (61) leads to [27]Z �1

�1

dz
��z�

�
2�������������

s1s2k1
p K�k�; (69)

where

k2 �
k21 � 1

k21
; k1 �

���������������
D2 � 1

p
�D;

D �
4r21 � s21 � s22

2s1s2
:

(70)

We can investigate the location of the singularity of the
expression (69). This occurs when k � 1, i.e. for s1s2 � 0.
From (64) one gets s21s

2
2 � �3r41 � 2Ar21 � C, so that the

singularity is at r21 � � 1
3 �A�

������������������
A2 � 3C

p
�. This exactly

corresponds to the explicit expression (67) for Q � 0, i.e.
27q2 � �4p3. Using the relations (66) and (68), it is
straightforward (but somewhat lengthy) to demonstrate
that this polynomial condition is satisfied for

x2 � 0; z22 � �L2 � y22�cos
2�: (71)
en by Eqs. (60) and (61). The integration in Eq. (60) has been
ns of the impulsive wave front u � 0, cf. Eq. (59). Since this plot

t axially symmetry. We have thus depicted representative plots of
; y2; z2�. In the left figure, in particular, it is evident the ellipse-
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This singular behavior of the term (69) suggests that there
is a singular source located on the wave front (u � 0) of the
metric (59), precisely in the plane x2 � 0 on the ellipse�

y2
L

�
2
�

�
z2

L cos�

�
2
� 1: (72)

Of course the above argument is not conclusive.
Rigorously, we should integrate also all the other terms
in Eq. (61). This could in principle be done, but it would
lead to an involved expression without much practical use.
We rather prefer to integrate numerically the full function
(61), and display the thus obtained profile H in Fig. 3,
which indeed confirms the presence of a singular ellipse
within the wave front. This also corresponds to intuitive
expectations, since the original static circular source has
been boosted in a general direction. [Moreover, it agrees
with the following argument: the source of the black ring
(1) was located at y � �1, i.e. � � 0 and � � L. In view
of Eq. (62), these conditions become Eq. (71), which is
unchanged under the boost (15).]
VII. CONCLUSIONS

We have derived the gravitational field generated by a
five-dimensional static black ring moving ‘‘with the speed
of light.’’ More precisely, we have calculated how the
Emparan-Reall line element transforms under appropriate
boosts, and studied the ultrarelativistic limit when the
boost velocity approaches the speed of light. In particular,
we have studied in detail two complementary boosts along
privileged directions, namely, those orthogonal and paral-
lel to the plane containing the ring circle. The resulting line
elements represent impulsive pp-waves. These are exact
vacuum solutions everywhere except at singular points that
are a remnant of the original curvature singularity of the
static black ring. In addition, in the case of the orthogonal
boost, there is a disk-shaped membrane inside the ring
directly inherited from the conical singularity of the static
Emparan-Reall spacetime. [Notice that the profile func-
tions obtained via the boosting procedure ultimately pro-
vide solutions to equivalent problems of three-dimensional
electrostatics (or Newtonian gravity) with a disk or a
nonuniform rod source.] Further analysis of the solutions
has been supplemented via graphical plots and via suitable
expansions of the metric functions. We may also observe
here that, if necessary, one could introduce a coordinate
system in which the metric coefficients take a continuous
form, using the general transformation presented in [6].

It is also worth remarking that, in contradistinction to the
well-known situation in four dimensions [8], we did not
need to perform any infinite subtractions during our calcu-
lations. This is essentially due to the faster falloff of the
gravitational potential of a ‘‘monopole’’ in D> 4, which
ensures that all the required integrals are finite. The same
simplification occurred in previous investigations of ultra-
relativistic boosts in higher dimensions [9,10,15], as well
124031
as in the case of the boost of particles with multipole
moments in D � 4 (Weyl solutions) [28].

We have concentrated on a static ring containing a disk
membrane at x � �1, for which there is no conical singu-
larity at infinity. A generalization to the case of a ring with
a deficit membrane at x � �1 (which extends to infinity)
would be straightforward. It would be more interesting to
extend our results to the case of rotating black rings. Such
work is currently in progress [18].
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APPENDIX A: ELLIPTIC INTEGRALS

In this appendix we summarize the definitions and the
properties of the complete elliptic integrals employed in
the main text, following references [26,27].

1. Definitions

The complete elliptic integrals in trigonometric form are
defined by [26]

K�k� �
Z �=2

0

d��������������������������
1� k2sin2�

p ; (A1)
E�k� �
Z �=2

0

�������������������������
1� k2sin2�

p
d�; (A2)
��*; k� �
Z �=2

0

d�

�1� *sin2��
�������������������������
1� k2sin2�

p : (A3)
2. Useful identities

They satisfy the identities [27]

�k2 � *���*; k� � k2K�k� �
*�1� k2�
1� *

�
�
k2 � *
1� *

; k
�
;

(A4)
��*; k� � K�k� ��
�
k2

*
; k
�
�
�
2

���������������������������������
�*

�1� *��k2 � *�

s
;

with *�1� *��1�k2 � *��1 < 0: (A5)
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3. Differential relations

Derivatives of elliptic integrals lead to combinations of
the same integrals:

dK�k�
dk

�
E�k�

k�1� k2�
�
K�k�
k

;

dE�k�
dk

�
E�k� � K�k�

k
;

@��*; k�
@k

�
k

k2 � *

�
���*; k� �

E�k�

1� k2

�
;

@��*; k�
@*

�
1

2*�1� *�

�
k2 � *2

k2 � *
��*; k� � K�k�

�
*

k2 � *
E�k�

�
:

(A6)
4. Series representations

The behavior near k � 0 is given by

K�k� �
�
2

�
1�

1

4
k2 �

9

64
k4 �O�k6�

�
; (A7)

E�k� �
�
2

�
1�

1

4
k2 �

3

64
k4 �O�k6�

�
; (A8)

��*; k� �
�
2

X1
,�0

X,
-�0

�2,� 1�!!�2-� 1�!!

�2,�!!�2-�!!
k2-*,�-;

with j*j< 1: (A9)

Near the singular point k � 1 one has

K�k� � �
1

2
log

1� k2

16
�

1

8

�
2� log

1� k2

16

�
�1� k2�

�
9

128

�
7

3
� log

1� k2

16

�
�1� k2�2 �O��1� k2�3�;

(A10)

E�k� � 1�
1

4

�
1� log

1� k2

16

�
�1� k2�

�
3

32

�
13

6
� log

1� k2

16

�
�1� k2�2 �O��1� k2�3�;

(A11)

��*; k� �
1

1� *
log

4��������������
1� k2

p �

��������
�*

p

1� *
arctan

��������
�*

p

�O�1� k2�; with * < 0: (A12)
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5. Useful integrals: orthogonal boost

In Sec. IV we employed the following integrals:Z 1

0

dz��������������������������������������
�z2 � a2��z2 � b2�

p �
1

a
K�k�; (A13)

Z 1

0

z2dz������������������������������������������
�z2 � a2�3�z2 � b2�3

p �

a2 � b2

a�a2 � b2�2
K�k� �

2a

�a2 � b2�2
E�k�;

(A14)

Z 1

0

dz

�z2 � c2�
��������������������������������������
�z2 � a2��z2 � b2�

p
�

1

a�b2 � c2�

�
b2

c2
�
�
�
b2 � c2

c2
; k
�
� K�k�

�
; (A15)

where

k �

�����������������
a2 � b2

p

a
; a > b > 0; c � 0: (A16)
6. Useful integrals: parallel boost

The integrals used in Sec. V areZ 1

0

dz����������������������������������
z4 � 2b2z2 � a4

p �
1

a
K�k�; (A17)

Z 1

0

z2dz���������������������������������������
�z4 � 2b2z2 � a4�3

p �
a

a4 � b4
E�k�

�
1

2a�a2 � b2�
K�k�; (A18)

Z 1

0

dz

�z2 � c2�
����������������������������������
z4 � 2b2z2 � a4

p
�

1

a�a2 � c2�

�
a2 � c2

2c2
�
�
�
�a2 � c2�2

4c2a2
; k
�
� K�k�

�
;

(A19)

with

k�

����������������
a2 � b2

p

���
2

p
a

; a2>b2>�1; a2> 0; c � 0:

(A20)
APPENDIX B: THE WEYL TENSOR FOR H?

Here we present explicitly the frame components of the
Weyl tensor in the case of the metric (27) and (31) describ-
ing a black ring boosted in an orthogonal direction. Using
Eq. (A6), from Eq. (38) with Eq. (31) we obtain
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�11 �
2

���
2

p
p

3�L2

1

�2
�����������������������������������
���� L�2 � x22�

3
q �

��L6 � �x22 � 2�2�L4 � ��4 � x42 � 8�2x22�L
2 � x22�x

2
2 � �2�2�

K�k�

��� L�2 � x22

� �L8 � �2x22 � 7�2�L6 � �2�11�2 � 7x22�L
4 � �x22 � �2��2x42 � 13�2x22 � 5�4�L2 � x22�x

2
2 � �2�3�

�
E�k�

���� L�2 � x22�
2

�
%�u� �

1

6
Ruu; (B1)
�13 �
2

���
2

p
p

3�L2

x2

�
�����������������������������������
���� L�2 � x22�

3
q �

�
3L4 � 4�x22 � �2�L2 � ��2 � x22�

2

��� L�2 � x22
K�k�

� �3L6 � �11�2 � 7x22�L
4 � 5�x22 � 3�2��x22 � �2�L2 � �x22 � �2�3�

E�k�

���� L�2 � x22�
2

�
%�u�; (B2)
�22 �
4

���
2

p
p

3�L2

1

�
�����������������������������
��� L�2 � x22

q �
�L2 � �2 � x22�K�k� �

L4 � ��2 � x22�
2

��� L�2 � x22
E�k�

�
%�u� �

1

6
Ruu; (B3)
�33 � ���11 ��22�: (B4)

The last equation follows from the tracelessness of the Weyl tensor.
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