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The Newtonian theory of gravitation and electrostatics admits equilibrium configurations of charged
fluids where the charge density can be equal to the mass density, in appropriate units. The general
relativistic analog for charged dust stars was discovered by Majumdar and by Papapetrou. In the present
work we consider Einstein-Maxwell solutions in d-dimensional spacetimes and show that there are
Majumdar-Papapetrou type solutions for all d � 4. It is verified that the equilibrium is independent of the
shape of the distribution of the charged matter. It is also showed that for perfect fluid solutions satisfying
the Majumdar-Papapetrou condition with a boundary where the pressure is zero, the pressure vanishes
everywhere, and that the �d� 1�-dimensional spatial section of the spacetime is conformal to a Ricci-flat
space. The Weyl d-dimensional axisymmetric solutions are generalized to include electric field and
charged matter.
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I. INTRODUCTION

Objects formed by elementary components with electric
charge to mass ratio equal to one have been considered for
a long time now in general relativity, and in other theories
of gravity. It is clear that the Newtonian theory of gravita-
tion and Coulomb electrostatics conjointly admit equilib-
rium configurations for charged fluids where the electrical
charge density �e is equal to the mass density �, in
appropriate units. Such a neutral equilibrium is possible
owing to the exact balancing of the gravitational and
Coulombian electric forces on every fluid particle. Thus,
a static distribution of charged dust of any shape can in
principle be built. The general relativistic analog for such
extremal charged dust configurations was discovered by
Majumdar [1] and independently by Papapetrou [2]. First,
Weyl [3], while studying the electrostatic field in vacuum
Einstein-Maxwell theory in an axisymmetric static four-
dimensional spacetime, found that if the metric component
gtt � V�x

i� and the electric potential 	�xi� (where xi rep-
resent the spatial coordinates, i � 1; 2; 3) are related by a
functional form V � V�	�, then this function is given by

V � A� B	�	2; (1)

where A and B are arbitrary constants, and we use geomet-
rical units, G � 1, c � 1. Majumdar [1] extended this
result by showing that it holds for a large class of static
spacetimes with no particular spatial symmetry, axial or
otherwise, for which the metric can be written as

ds2 � �Vdt2 � hijdx
idxj; i; j � 1; 2; 3; (2)

where V and hij are functions of the spatial coordinates xi.
Moreover, by choosing B � �2

����
A

p
, in which case the
05=71(12)=124021(11)$23.00 124021
potential V assumes the form of a perfect square,

V � �
����
A

p
�	�2: (3)

Majumdar was able to show that the Einstein-Maxwell
equations in the presence of charged dust imply exactly
the same relation of the Newtonian theory

�e � ��; (4)

with both the gravitational potential V and the electric
potential 	 satisfying a Poisson-like equation. As in the
Newtonian case, the relativistic solutions are static con-
figurations of charged dust (a perfect fluid with zero pres-
sure) and need not have any spatial symmetry. Majumdar
[1] also showed that in the case V is a perfect square as in
Eq. (3) the metric of the three-space is conformal to a flat
metric whose conformal factor is given by 1=V, and in such
a case all the stresses in the charged matter vanish. Similar
results were found by Papapetrou [2], who assumed as
starting point a perfect square relation among V and 	.
Condition (3) is called the Majumdar-Papapetrou condi-
tion. We shall see that the condition (3) implies (4),
whereas the converse is not generally true. Solutions in
which conditions (3) and (4) hold are called Majumdar-
Papapetrou solutions.

After the works of Majumdar [1] and Papapetrou [2],
several authors have studied different aspects of static
spacetimes satisfying the Majumdar-Papapetrou condi-
tions. In vacuum the extreme Reissner-Nordström space-
time and the corresponding multi-black-hole solutions
were analyzed first by Hartle and Hawking [4] (see also
[5]). Other solutions in vacuum are the Israel-Wilson-
Perjés rotating solutions [6,7]. In matter, several authors
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have dealt with these solutions [8–27], showing new
analysis and results. An interesting result that concerns
us here was given by Das [9], where it was shown that in
the case of static charged incoherent matter distributions
the condition balance (4), �e � �, implies the Majumdar-
Papapetrou condition (3), V � �

����
A

p
�	�2. This analysis

was further developed in [20]. The other works dealt with a
large number of models of different charged bodies with
several types of shapes and mass density profiles which
obey the Majumdar-Papapetrou relation displaying new
analysis and results.

Now, the multi-black-hole Reissner-Nordström solu-
tions have the interesting property of being supersymmet-
ric [28], a result that can be extended to all solutions
belonging to the Majumdar-Papapetrou system [29].
These solutions saturate supersymmetric Bogomol’nyi
bounds, are stable, and may be considered as ground states
of the theory [30]. These Majumdar-Papapetrou solutions
can also be embedded in supergravities and superstring
theories with dimensions higher than four. This has been
done for vacuum solutions where generalized extreme
Reissner-Nordström single [31] and extreme multi-black-
holes [32] have been studied, as well as brane extensions to
higher dimensions [33,34]. The study of d-dimensional
solutions, with d � 4, in several theories is a hot topic.
The higher dimensional Kerr solutions were discussed in
[35]. Higher dimensional Weyl metrics were analyzed in
[36]. There is now a five-dimensional rotating black ring
solution [37] and its charged generalization [38] which
extreme case belongs to the Majumdar-Papapetrou class
in 5 dimensions (see also [39,40]). All the d-dimensional
solutions, with d � 4, mentioned above are vacuum solu-
tions. It is then, of course, important to analyze
d-dimensional, d � 4, Majumdar-Papapetrou type solu-
tions in matter, a subject which we pursue here. One can
ask whether lower dimensional theories, d < 4, admit
Majumdar-Papapetrou solutions or not. As will be seen,
d � 2 and d � 3 yield singular expressions (either give
zero or infinity) in our formulas for generic d Majumdar-
Papapetrou systems. This is no surprise. In d � 3 general
relativity the analogues of Majumdar-Papapetrou solutions
are pure point sources, since gravity does not propagate
[41]. General relativity in d � 2 does not exist and so there
is no analogue. On the other hand, for lower dimensional
theories of gravity, other than general relativity, with extra
fields such as a dilaton field, analogues of the Majumdar-
Papapetrou solutions might be found, see [42] for a d � 2
system. Because of their singular behavior we avoid treat-
ing the lower dimensional Majumdar-Papapetrou systems,
and work for the d � 4 systems only.

In line with the beautiful paper of Majumdar [1] we will
follow closely his analysis and render his results in four
dimensions into higher d dimensions. We will also incor-
porate the interesting developments of Guilfoyle [20]. The
plan of the present work is as follows: Starting with a
124021
charged perfect fluid in d dimensions, we impose a Weyl
type relation among the gravitational potential V and the
electrostatic potential 	, V � V�	�, obtain a relation
among the pressure and the charge and mass densities of
the fluid, and show that, for matter distributions that have a
boundary where the pressure is zero, only the case of
charged dust matter (zero pressure everywhere) has non-
singular solutions. This is done in Secs. II, III, IV, V, and
VI. In Sec. III solutions involving a relation between gtt
and 	 are analyzed. In Sec. IV we show that the �d�
1�-dimensional spacelike submanifold is conformal to a
Ricci-flat space only if the pressure vanishes. In Sec. V the
nature of the solutions is analyzed. In Sec. VI the vanishing
of the material stresses is analyzed, showing also that if it is
assumed that the �d� 1�-dimensional submanifold is con-
formal to a Ricci-flat space then the pressure vanishes. In
Sec. VII an examination of generalized Weyl’s axially
symmetric solutions in d-dimensional spacetimes is done
for electrovacuum and in presence of charged matter. In
Sec. VIII a brief analysis of boundary value problems is
made. Finally, in Sec. IX we present final comments and
conclusions.

II. THE FUNDAMENTAL EQUATIONS

We write the Einstein-Maxwell equations as (c � 1)

G�� � 8��T�� � E���; (5)

r�F
�� � 4�J�; (6)

where Greek indices �; �, etc., run from 0 to d� 1. We
have put Gd, the d-dimensional gravitational constant
equal to one, Gd � 1, as well as c � 1 throughout. Also,
g�� is the metric, G�� � R�� �

1
2g��R is the Einstein

tensor, with R�� being the Ricci tensor, and R the Ricci
scalar. E�� is the electromagnetic energy-momentum ten-
sor, given by

4�E�� � F��F�� �
1
4g��F��F

��; (7)

where the Maxwell tensor is

F�� � r�A� �r�A�; (8)

r� being the covariant derivative, and A� the electromag-
netic gauge field. In addition,

J� � �eU� (9)

is the current density, �e is the electric charge density in the
d-dimensional spacetime, andU� is the fluid four-velocity.
T�� is the material energy-momentum tensor given by

T�� � �mU�U� �M��; (10)

where �m is the fluid matter energy density in the
d-dimensional spacetime, and M�� is the stress tensor.
Following Guilfoyle [20] in our analysis we will use
mainly a perfect fluid, in which case M�� is given by
-2
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Mperfect fluid
�� � p�U�U� � g���: (11)

Note that Majumdar [1] uses mainly electrovacuum.
Since the gravitational constant Gd has dimensions of
�length��d�3� � �mass��1, and we have set it to one, Gd �
1, it implies that mass has dimensions of �length��d�3�,
while �m has dimensions of �length��2.

We assume the spacetime is static and that the metric can
be written in the form

ds2 � �Vdt2 � hijdx
idxj; i; j � 1; . . . ; d� 1;

(12)

a direct extension of Eq. (2) to extra dimensions. The gauge
field and four-velocity are then given by

A� � 	"0�; (13)

U� � �
����
V

p
"0�: (14)

The metric spatial tensor hij, the metric potential V and the
electrostatic potential 	 are functions of the spatial coor-
dinates xi alone.

Initially, we are interested in the equations determining
the metric potential V and the electric potential 	. These
are obtained, respectively, from the tt component of
Einstein equations (5) and from the t component of
Maxwell equations. These equations give

@i�
���
h

p
hij@jV� �

���
h

p

2V
hij@iV@jV � 4

d� 3

d� 2

���
h

p �
hij@i	@j	

� 4�V
�
�m �

d� 1

d� 3
p
��
; (15)

@i�
���
h

p
hij@j	� �

1

2V

���
h

p
hij@iV@j	� 4�

�������
hV

p
�e; (16)

where h stands for the determinant of the metric hij, and @i
denotes the partial derivative with respect to the coordinate
xi. Notice that Maxwell equations (6) imply just one
equation, the t component, riFti � 4�Jt, showed in (16).

Equations (15) and (16) determine the potentials V and
	 in terms of a set of unknown quantities. Namely, the
�d� 1��d� 2�=2 spatial metric coefficients hij, the fluid
variables, energy density �m and pressure p, and the
electric charge density �e. There are exactly �d� 1��d�
2�=2 additional equations that come from the Einstein
equations, which in principle determine the hij metric
components in terms of �m, p and �e. Hence, to complete
the system of equations it is necessary to provide the
energy and charge density functions, �m and �e, and also
to specify the pressure p or an equation of state for the
perfect fluid. In the present analysis, we will not need the
explicit form of the space metric hij and so the correspond-
ing Einstein equations will not be written here. Additional
equations that can be used are the conservation equations,
r�T�� � 0, which are sometimes useful in replacing a
124021
subset of Einstein’s equations. In the present case the
conservation equations yield

@ip�
1

2V
��m � p�@iV �

1����
V

p �e@i	 � 0: (17)

This is the relativistic analogous to the Euler equation, and
carries the information of how the pressure gradients bal-
ance the equilibrium of the system. In what follows we
investigate some particular cases of the above set of equa-
tions including electrovacuum, dust fluid, and a perfect
fluid.
III. SOLUTIONS INVOLVING A FUNCTIONAL
RELATION BETWEEN gtt � V AND �

A. The equations

We now assume the solutions of the d-dimensional
spacetime to be of Weyl type where the metric potential
gtt � V is a functional of the gauge potential 	, V �
V�	�. Hence, Eqs. (15) and (16) read, respectively,

@i�
���
h

p
hij@j	� �

���
h

p �
V 0

2V
�

4

V 0

d� 3

d� 2
�
V00

V 0

�
hij@i	@j	

� 16�
���
h

p V
V 0

�
d� 3

d� 2
�m �

d� 1

d� 2
p
�
;

(18)

@i�
���
h

p
hij@j	� �

1

2

V0

V

���
h

p
hij@i	@j	� 4�

�������
hV

p
�e; (19)

where we have defined V 0 � dV=d	 and V00 � d2V=d	2.
Using the last two equations we get�
4
d� 3

d� 2
� V00

�
hij@i	@j	� 4�V 0

����
V

p
�e

� 16�V
�
d� 3

d� 2
�m �

d� 1

d� 2
p
�
� 0: (20)

Note the singular behavior of the lower dimensional cases,
d � 2 and d � 3, which will not be treated here.
Substituting the functional relation V � V�	� into the
conservation Eqs. (17) it follows

@ip�
�
��m � p�

V 0

2V
�
�e����
V

p

�
@i	 � 0: (21)

From this equation it is possible to show that the pressure p
turns out to be a function of 	 alone, and depends only
indirectly on the matter and charge densities, see the
appendix. Hence, there is a relation of the form

p � p�	�; (22)

among the pressure p and the electric potential and 	,
or equivalently among p and the metric potential V,
p � p�V�. A particular case of this relation appears in
Sec. III C. The basic system of equations to be solved is
composed by Eqs. (19)–(21).
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B. Electrovacuum solutions

Here we generalize to d dimensions, first the Weyl form
and then the Majumdar-Papapetrou form of electrovacuum
solutions to d-dimensional spacetimes.

1. Weyl form

In vacuum one has �m � 0, �e � 0, and M�� � 0.
Using these in Eq. (20) and assuming hij@i	@j	 � 0, it
follows that 4�d� 3�=�d� 2� � V00 � 0, whose solution
is

V�	� � A� B	� 2
d� 3

d� 2
	2; (23)

where A and B are arbitrary constants. These are Weyl type
solutions generalized from four to higher dimensions. This
result holds for any spatial symmetry. Thus, it generalizes
Majumdar’s result, where he noticed that the function form
(23) with d � 4 would hold not only for the axial symme-
try imposed by Weyl [3], but also for any spatial symmetry.

2. Majumdar-Papapetrou form

The problem is further simplified by choosing V�	� in
the form of a perfect square, as done by Majumdar [1]. In
the higher dimensional case, this is accomplished by
choosing B � �2

���������������������������������������
2A�d� 3�=�d� 2�

p
. Therefore, the

metric potential V reads

V�	� �
� ����
A

p
�

����������������
2
d� 3

d� 2

s
	
�
2
: (24)

Equation (24) is the Majumdar-Papapetrou condition in d
dimensions for d � 4.

A word on the choice of the relation between the poten-
tials V and	 is in order. The constant A can be normalized
by some particular asymptotic condition on the metric, or
can be set to zero by a redefinition of the electric potential
	. This can be done since the Einstein-Maxwell equations,
Eqs. (5) and (6), depend upon 	 only through its deriva-
tives, so we may remove the additive constant A in Eq. (24)
by performing the transformation 	! 	� ��d�
2�=2�d� 3��A, and writing V � 2��d� 3�=�d� 2��	2.

C. Charged matter solutions

1. Weyl form

As mentioned above, the condition imposed on V�	� to
produce Weyl type solutions in vacuum is V00 �
4�d� 3�=�d� 2�, see Eq. (23). If the system has matter,
we see that, when the condition V00 � 4�d� 3�=�d� 2� is
satisfied, Eq. (20) holds only if

�e � 4

����
V

p

V 0

�
d� 3

d� 2
�m �

d� 1

d� 2
p
�
: (25)

This relation holds whether or not the potential V is a
perfect square in 	. This together with Eq. (23) are the
124021
Weyl type conditions valid for matter systems. Usually this
condition is not discussed in the literature, see however
[20] for the four-dimensional analysis.

As in the electrovacuum case, lower dimensional space-
times deserve special attention. The Weyl condition in
three dimensions follows by substituting d � 3 into
Eqs. (23) and (25), which gives

�e � 8

�����������������
A� B	

p

B
p:

This equation, together with Eqs. (17) and (19) indicates
that there can be found interesting Weyl type charged fluid
solutions in three-dimensional spacetimes.

2. Majumdar-Papapetrou form

Now, we want to specialize from Weyl type solutions in
matter to Majumdar-Papapetrou solutions in matter. We
then look for particular solutions of Eq. (20) by choosing
the metric potential V in the Majumdar-Papapetrou form,
i.e., in the form of a perfect square of the form (24).
Substituting such a potential V�	� into (25) it follows

�e � �

����������������
2
d� 3

d� 2

s �
�m �

d� 1

d� 3
p
�
; (26)

which is the generalized Majumdar-Papapetrou condition
for matter in spacetimes whose number of dimensions is
d � 4. The plus sign goes with positive electric charge and
the minus sign is chosen for negative electric charge. This
analysis is analogous to the four-dimensional case, see
[9,14,16,20]. The Majumdar-Papapetrou solution for V in
terms of 	 is then complete, while the solution for �e is
given, as a function of �m and p, by Eq. (26).

We now, following the interesting result of [20] in four
dimensions, show that the Majumdar-Papapetrou condi-
tions rule out d-dimensional perfect fluid solutions with
boundary surfaces on which p � 0, but p � 0 in the bulk.
In order to see that, we substitute Eqs. (24) and (26) into
(21) and obtain �d� 3�V@ip � p@iV. This equation can
easily be integrated giving

pd�3 � kV; (27)

where k is an integration constant. It follows from the last
equation that the surface of zero pressure is also a surface
where the gtt coefficient of the metric vanishes, implying a
metric singularity. In the static spacetimes we are consid-
ering here, the vanishing of gtt means infinite redshift, and
such a kind of surface is not allowed in the solution for a
self-gravitating perfect fluid. Suppose a localized object
such as a star, for instance. The surface of the star is usually
defined by imposing p � 0 as a boundary condition.
Equation (27) implies that the surface of the star would
be singular (an infinite redshift surface), and the solution
cannot represent a star. In cases like this, it is then neces-
sary to take k � 0, implying that pure Majumdar-
-4
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Papapetrou type stars do exist only for charged dust, i.e.,
for solutions in which p � 0 everywhere, which is the case
most treated in the literature [8–27]. Of course, Majumdar-
Papapetrou solutions without boundaries can have p � 0
throughout matter. Another possibility is to consider
Majumdar-Papapetrou solutions with some thin shell at
the surface.
IV. A CLASS OF EXACT SOLUTIONS

Here we show that the �d� 1�-dimensional spatial sec-
tion of the spacetime satisfying the Majumdar-Papapetrou
condition has Ricci tensor proportional to the pressure of
the fluid. If the pressure vanishes the subspace is conformal
to a Ricci-flat Riemannian space.

Let us then factor out a conformal factor in the �d�
1�-space metric as follows,

hijdx
idxj �

1

W
ĥijdx

idxj; (28)

where W and ĥij are functions of the space coordinates xi,
i � 1; 2; . . . ; d� 1. There is no loss of generality in the
above choice, since W and ĥij are arbitrary functions.

The next step is writing Einstein-Maxwell equations in
terms of the potentials V andW, and in terms of the tensors
in the conformal space. The convention adopted in the
following is that all quantities wearing hats belong to the
conformal space and are associated to the conformal metric
ĥij. For instance, the connection coefficients may be

written as �ijk � �̂ijk � �"ikr̂jW � "ijr̂kW �

ĥjkr̂
iW�=�2W�, where the connection coefficients �̂ijk,

and the covariant derivative r̂i, are built from the metric
ĥij.

Now, the explicit form of the Ricci tensor in terms of V,
W and �̂ijk is needed. After some algebra we obtain

Rtt � �
W
2
r̂2V �

W
4V

r̂V � r̂V �
d� 3

4
r̂V � r̂W; (29)

Rij � R̂ij �
1

4V2 �2Vr̂ir̂jV � r̂iVr̂jV�

�
1

4VW
�r̂iVr̂jW � r̂jVr̂iW � ĥijr̂V � r̂W�

�
d� 3

4W2

�
2Wr̂ir̂jW � r̂iWr̂jW

�
d� 1

d� 3
ĥijr̂W � r̂W �

2W
d� 3

ĥijr̂
2W

�
; (30)

where the dot stands for the scalar product with respect to
the metric ĥij. It is then seen that the expressions for the
components of the Ricci tensor are greatly simplified by
choosing V�d� 3�r̂W � Wr̂V, which means

W � V1=�d�3�: (31)
124021
As argued previously, this choice can be done without loss
of generality since the metric ĥij is arbitrary. Substituting
(31) into (29) and (30) it follows

Rtt � �
1

2
V1=�d�3�

�
r̂2V �

1

V
r̂V � r̂V

�
; (32)

Rij � R̂ij �
1

4

d� 2

d� 3

r̂iV
V

r̂jV

V

�
1

d� 3

ĥij
2V

�
r̂2V �

1

V
r̂V � r̂V

�
: (33)

Calculating the energy-momentum tensor it is found

Gtt �
gtt
d� 2

G � �2
d� 3

d� 2
V1=�d�3�r̂	 � r̂	

� 8�V
d� 3

d� 2

�
�m �

d� 1

d� 3
p
�
; (34)

Gij �
gij
d� 2

G � �2r̂i	r̂j	�
2

d� 2
ĥijr	 � r	

�
8�
d� 2

ĥij
V1=�d�3�

��m � p�: (35)

From the tt component of Einstein equations, and Eqs. (32)
and (34), we obtain the following equation for V:

r̂2V �
1

V
r̂V � r̂V � 4

d� 3

d� 2

1

V
r̂	 � r̂	

� 16�
d� 3

d� 2

1

V1=�d�3�

�

�
�m �

d� 1

d� 3
p
�
: (36)

Additionally, using Eqs. (33) and (35), and the Einstein
equations, it follows

R̂ij �
1

4

d� 2

d� 3

r̂iV
V

r̂jV

V

�
1

2

1

d� 3

ĥij
V

�
r̂2V �

1

V
r̂V � r̂V

�

� 2r̂i	r̂j	�
hij
d� 2

�
2r̂	 � r̂	

�
8�

V1=�d�3�
��m � p�

�
: (37)

Comparing the last two equations we get

R̂ij �
1

4

d� 2

d� 3

r̂iV
V

r̂jV

V
� 2r̂i	r̂j	

�
16�
d� 3

p

V1=�d�3�
ĥij: (38)

We also need to rewrite the Maxwell equation (16) under
the choices given by Eqs. (28) and (31). The resulting
-5
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equation for the electric potential 	 is then

r̂ 2	 �
r̂V
2V

� r̂	� 4�
1

V1=�d�2�
�e: (39)

Once the energy density, pressure and charge density are
specified, the system of equations formed by (36), (38), and
(39) supply all the equations needed to determine the
variables V, ĥij and 	. Equation (36) can be thought of
as the equation that furnishes V, and Eqs. (38) determine
the inner metric ĥij, while the Maxwell equation (39)
determines the electric potential 	.

If we assume the functional relation among V and 	 is
given by the Weyl type potential (23), then the number of
unknown variables is reduced by one. The same happens to
the number of equations because, in such a case, Eqs. (36)
and (39) become identical, and the fluid variables �m, p
and �e are connected by relation (25). If we further assume
that the relation between V and 	 is the Majumdar-
Papapetrou condition (24), Eqs. (38) read

R̂ ij � �16�
p

V1=�d�3�
ĥij: (40)

A further conformal transformation such that ĥij �
V1=�d�3� �hij=p leads to a new Ricci tensor �Rij �
�16� �hij, which is characteristic of a �d� 1�-space of
constant scalar curvature, �R � constant. The static space-
time fulfilled by a charged fluid whose fields satisfy the
Majumdar-Papapetrou condition has a �d�
1�-dimensional spacelike submanifold which is conformal
to a space of constant curvature. When the pressure van-
ishes, the curvature is zero and the submanifold is confor-
mal to a Ricci-flat space. These results are independent of
the spatial symmetry of the matter distribution.

Defining now

U �
1����
V

p ; (41)

the metric of the spacetime in the presence of a generic
charged fluid can be put into the form

ds2 � �U�2dt2 �U2=�d�3�ĥijdxidxj: (42)

Using this definition of U and Eq. (36), one obtains a
Poisson-like equation for U,

r̂ 2U � �8�
d� 3

d� 2
U�d�1�=�d�3�

�
�m �

d� 1

d� 3
p
�
: (43)

In the particular case of vacuum, the last equation reduces
to the Laplace equation, just as in four dimensions [1].
Moreover, using Eqs. (24), the relation between U and 	
results

U �
1����

A
p

�
�����������
2 d�3
d�2

q
	
: (44)
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A spacetime metric in the form (42) was used in Ref. [32],
as an ansatz, to study d-dimensional Majumdar-
Papapetrou vacuum solutions.

V. NATURE OF THE SOLUTIONS

The class of exact solutions discussed in the previous
section corresponds to static spacetimes whose metric
coefficient gtt is a special function of the electric potential
	, gtt � V � 1=U2 with U and 	 related by (44). Note,
however, that there is some arbitrariness on the choice of
the relation between the potentials U and 	. Two interest-
ing possibilities are worth mentioning here. First, the ad-
ditive constant A can be made equal to zero by performing
the transformation 	! 	� A

������������������������������������������������
�1=2���d� 2�=�d� 3��

p
,

and writing
����
V

p
� 1=U � 2��d� 3�=�d� 2��	2 (see

also the discussion at the end of Sec. IV). Second, if A �

0, a reparametrization of the time coordinate of the form
t! t=

����
A

p
transforms the gtt coefficient into the form gtt �

1=U2 � �1�
������������������������������������������
2A��d� 3�=�d� 2��

p
	�2: Furthermore,

since A is an arbitrary integration constant, it can then be
chosen appropriately according to the choice of the units of
electric charge. That is to say, one may choose A such that
2A�d� 3�=�d� 2� � 1, which implies 1=U � 1�	 in
appropriate units.

In the Newtonian limit one has U ’ 1� ’, and Eq. (43)
reduces to the Poisson equation for the gravitational
potential ’, r̂2’ � �8���d� 3��d� 2���eff , with the
effective Newtonian matter density given by �eff � �m �
��d� 1�=�d� 3��p. It also follows that ’ � �	. As in
four dimensions, the d-dimensional spacetime fulfilled
with a charged fluid satisfying the Majumdar-Papapetrou
condition is analogous to a d-dimensional Newtonian sys-
tem of charged self-gravitating fluid in static equilibrium.
In fact, the quantity �eff � �m � ��d� 1�=�d� 3��p is the
effective energy density acting as source of the gravita-
tional field, and it can be thought of as the Newtonian
matter density. The effect of the dimensionality of the
spacetime on the effective energy density is in the sense
of diminishing the weight of the pressure, as �eff varies
from �m � 3p for d � 4 to �m � p in the limit d! 1.
Additionally, the factor

���������������������������������������
2��d� 3�=�d� 2��

p
also depends

on the dimension of the spacetime. However, this factor
can be made equal to unity by choosing appropriate units.
In fact, by putting back the gravitational constant of gravi-
tation (Gd) into Eq. (26), the factor

���������������������������������������
2��d� 3�=�d� 2��

p
is

replaced by
���������������������������������������������
2��d� 3�=�d� 2��Gd

p
. Then, we may choose

units such that 2��d� 3�=�d� 2��Gd � 1, yielding
�e=�eff � �1 for all d > 3. This is in accordance to the
fact that what really matters for the balancing of the
gravitational and electromagnetic forces is the relation
between gtt and 	 being the same at every point of space-
time, as Eq. (24) shows. In other words, if the charge and
the effective energy densities bear the same constant of
proportionality, the system will be in static equilibrium
-6
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owing to the balancing of electric and gravitational forces.
The value of such a proportionality parameter depends on
the system of units one chooses, and this choice is, of
course, dependent upon the dimensionality of the
spacetime.

VI. VANISHING OF THE MATERIAL STRESSES
FOR A PROPER CHOICE OF THE INTERNAL

FIELD

In three dimensions the Ricci tensor is proportional to
the Riemann tensor, so the three-space Ricci tensor R̂ij is
proportional to the three-space Riemann tensor R̂ijkl. Now,
when p � 0, Eq. (40) shows that the spatial Ricci tensor is
zero, R̂ij � 0, so that the Riemann tensor is also zero, and
the inner spatial three-space is flat. The converse is also
true, i.e., if the inner three-space is flat then p � 0. This
was shown by Majumdar [1].

In higher dimensions, however, the proportionality be-
tween Ricci and Riemann tensors is not valid, so the
vanishing of the pressure does not imply a conformally
flat �d� 1�-space. On the other hand, if we assume that the
metric is of the form (42) and assume further that the
internal metric is Euclidean, ĥij � "ij, then R̂ij are identi-
cally zero and Eqs. (40) imply that the pressure vanishes.
This can also be done for more general material stresses
other than perfect fluid pressures, partially generalizing
thus Majumdar’s result for four dimensions.

VII. EXAMINATION OF GENERALIZED WEYL’S
AXIALLY SYMMETRIC SOLUTIONS IN HIGHER

DIMENSIONS

A further study appearing in Majumdar’s paper [1] is a
discussion and analysis of Weyl’s results [3] on axisym-
metric solutions. Majumdar showed that when the relation
between the metric potential and the electric potential is of
the form of Eq. (1), then there is no need of requiring axial
symmetry. The original works by Weyl [3] and Majumdar
[1] analyzed axisymmetric solutions mainly in electrovac-
uum case. The problem of pure gravitational field inside
uncharged matter (with no electromagnetic field) was con-
sidered by Majumdar without assuming any particular kind
of matter. The case inside charged matter was only touched
upon by Majumdar in Sec. VII B of his paper [1]. In the
spirit of the present work, we extend the analysis of axi-
symmetric Weyl solutions to the case of higher dimensions
both in vacuum and with charged matter. As a particular
case we discuss the four-dimensional case in charged
matter, somehow completing Majumdar’s discussion. The
main aim of this section is then to find the explicit form of
the equations for the metric potentials and for the electro-
static potential in the axisymmetric Weyl form. The special
cases where the metric potential V assumes, as function of
the electric potential 	, the Weyl and the Majumdar-
Papapetrou forms are depicted separately. This is, in cer-
124021
tain sense, an example of what was found in the previous
sections, particularized to the Weyl axisymmetric form of
the metric in a d-dimensional spacetime.

A. The equations

In four dimensions for the Weyl axisymmetric metric
one usually uses, instead of V in Eq. (2), the potential �0

such that the potential V appearing in Eq. (2) is V � e2�0

where �0 is a function of r and z (see also Sec. IV). There
are two other Weyl potentials, one is �1 which is usually
related to the Weyl radial coordinate r, as r � e2�1 , the
other is �which is generally a function of r and z. Then, the
four-dimensional metric in Weyl axisymmetric form is
written in terms of the functions �0, �1, and �, as ds2 �
e2�0��dt2 � e2�1d’2� � e2��dr2 � dz2�, or putting
e2�1 � r, as ds2 � e2�0��dt2 � r2d’2� � e2��dr2 �
dz2�, where �t; ’; r; z� are spacetime cylindrical type coor-
dinates. The Einstein field equations can then be obtained
and analyzed in terms of the Weyl coordinates.
Interestingly enough this can also be done in higher di-
mensions. The axisymmetric metric for higher dimensions
is given by Emparan and Reall [37] (see also [36] and
references therein for different higher dimensional gener-
alizations of Weyl axisymmetric solutions). They assumed
that the spacetime has d� 2 non-null Killing vectors in
which case the metric can be put into the form

ds2 � �e2�0dt2 � e��2�0=�d�3��
Xd�3

i�1

e2�i�dxi�2

� e2��dr2 � dz2�; (45)

where the functions �0, �i and � depend upon the coor-
dinates r and z only. The function �0 again plays the role
of the gravitational potential. The Latin index i runs from 1
to d� 3 and the coordinates xi label d� 3 spatial dimen-
sions of the spacetime, while the two remaining spatial
dimensions are labeled as xd�2 � r and xd�1 � z. The
metric (45) satisfies the constraint (see e.g. Ref. [40]),

exp

 Xd�3

i�1

�i

!
� r: (46)

Such a constraint implies that the function �, defined by
� �

Pd�3
i �i, is harmonic

r2
Xd�3

i�1

�i � 0; (47)

i.e., it satisfies a Laplace equation. It was found that, in
vacuum, Einstein equations imply that the functions �0

and �i satisfy a Laplace equation in a flat metric, r2�+ �
0, where r2 is the Laplacian operator in d dimensions, and
+ runs from 0 to d� 3, while � is given as a function of�0

and �i. Some particular solutions have been found in the
vacuum case for d � 5, and also in higher dimensions (see
[40] and references therein). Moreover, the black ring
-7
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solution of Emparan and Reall [37] was generalized to
include electric charge [38]. We then consider the gener-
alized d-dimensional static axisymmetric Weyl space-
times, whose metric is written as in Eq. (45), and
investigate the general properties of the solutions in the
presence of charged matter and in electrovacuum. We
assume the d-dimensional spacetime inside matter satisfies
the following conditions: (i) there exists a line element of
the form (45), where the functions �i satisfy the constraint
(46), (ii) the matter content is given by an energy-
momentum tensor of the form (10), with M�� given by
(11), (iii) the metric potential gtt � e2�0 is connected to the
electric potential 	 by (23). Then, using the metric in the
form (45) and the constraint (46), the Einstein equations
yield

r2�0 � 16�
d� 3

d� 2
e2�

�
�m �

�
d� 1

d� 3

�
p
�

� 4
d� 3

d� 2
e�2�0��@r	�2 � �@z	�2�; (48)

r2�i � 32�
e2�

d� 3
p; (49)

@r� � �
1

2r
�

1

d� 3
@r�0 �

r
2

Xd�3

i�1

��@r�i�2 � �@z�i�2�

�
r
2

�
d� 2

d� 3
��@r�0�

2 � �@z�0�
2�

� 2e�2�0��@r	�2 � �@z	�2�
�
; (50)

@z� � �
1

d� 3
@z�0 � r

Xd�3

i�1

@r�i@z�i

� r
�
d� 2

d� 3
@r�0@z�0 � 2e�2�0@r	@z	

�
; (51)

where the Latin index i runs from 1 to d� 3. The above
equations can also be obtained from Eqs. (38) and (43)
with the obvious identifications V � e2�0 , ĥij � e2�i for
i � 1 to d� 3, and for the other two spacelike coordinates,
x�d�2� � r and x�d�1�, ĥrr � ĥzz � e2����0=�d�3��. The
solely Maxwell equation is

r2	 � 4�e2���0�e � 2@r	@r�0 � 2@z	@z�0; (52)

which has exactly the same form as in four-dimensional
spacetime.

Note that the special form of the metric (45) implies that
the pressure vanishes. For adding Eq. (49) over i, from i �
1 to i � d� 3, one finds r2Pd�3

i�1 �i � 32�e2�p, and
comparing to (47) gives p � 0. This result is consistent
with what was shown in Sec. IV. The choice of the metric
of the d-dimensional spacetime in the axisymmetric form
(45) together with the Weyl condition (23) implies the
124021
vanishing of the pressure of the perfect fluid. It is straight-
forward to show that this is true for any kind of matter, not
only for a perfect fluid, i.e., in the present conditions, all
the material stresses Mij vanish. In the following we in-
vestigate some general properties of the solutions to the
above system of equations.

B. Electrovacuum solutions

Consider first the electrovacuum case. The equations
governing the metric and electric potentials are obtained
from the system (48)–(52) with �m � 0, p � 0, and �e �
0. Let us consider the Weyl and Majumdar-Papapetrou
cases separately.

1. Weyl form

In the d-dimensional case, the Weyl form of the relation
between the metric coefficient gtt and the electric potential
	 is [see also Eq. (23)] gtt � e2�0 � A� B	� 2��d�
3�=�d� 2��	2, with B � �2

������������������������������������������
2��d� 3�=�d� 2��A

p
.

Following Weyl [3], and defining an auxiliary function ,
by

, �
Z d	

A� B	� 2 d�3
d�2	

2

�
2��������������������������

B2 � 8 d�3
d�2A

q tanh�1

0B@ 4 d�3
d�2	� B��������������������������
B2 � 8 d�3

d�2A
q

1CA; (53)

it is possible to show that Eqs. (48) and (52) become
identical, and assume the Laplacian form i.e.,

r2, � 0: (54)

For d � 4, Eq. (53) reduces to the result presented
by Majumdar [3], , � �

R
fd	=�A� B	�	2�g �

2 tanh�1��2	� B�=
��������������������
B2 � 4A2

p
�=

��������������������
B2 � 4A2

p
. The proper-

ties of the other metric potential � are analyzed in detail by
Majumdar [1] and will not be considered here.

2. Majumdar-Papapetrou form

The particular Majumdar-Papapetrou form happens
when B � �2

������������������������������������������
2��d� 3�=�d� 2��A

p
, so that e2�0 �

�
����
A

p
�

���������������������������������������
2��d� 3�=�d� 2��

p
	�2. With this, the relation

among , and the electric potential 	 results very simple,

, �

����������������
1

2

d� 2

d� 3

s
1����

A
p

�
�����������
2 d�3
d�2

q
	
; (55)

with , satisfying the Laplace equation (54), which is
obtained from (48), or from (52). Notice that , is propor-
tional to the function U introduced in Sec. IV [see
Eq. (44)].

It is interesting to study here the four-dimensional case.
Substituting d � 4 into Eq. (55) gives , � 1=�

����
A

p
�	�.
-8
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Hence, in the four-dimensional Majumdar-Papapetrou
case, the potential , is connected to the metric potential
by the well known relation , � 1=

����
V

p
� e��0 , as found

by Majumdar [1] and Papapetrou [2]. Moreover, we find,
for instance, @r�0@z�o � e2�0�

����
A

p
�	�2@r	@z	, etc.

Therefore, imposing the Majumdar-Papapetrou condition
we get @r� � �@r�0 and @z� � �@z�0, which yields

� � ��0 � constant: (56)

The four-dimensional metric is then of the form ds2 �
e2�0dt2 � e�2�0�dr2 � r2d.2 � dz2�, where the spatial
section of the spacetime is conformal to a flat space. The
inner (three-dimensional) metric is Euclidean, in accor-
dance to the results of Sec. IV for spacetimes with matter
without stresses and satisfying the Majumdar-Papapetrou
condition. The stresses are zero here due to the a priori
chosen axial symmetry of the metric.

On the other hand, differently from the four-dimensional
case, in d dimensions there is no relation between � and�0

such as Eq. (56). This can be seen by substituting the
Majumdar-Papapetrou condition into Eqs. (50) and (51),
which gives

@r� � �
1

2r
�

1

d� 3
@r�0 �

r
2

Xd�3

i�1

��@r�i�2 � �@z�i�2�;

(57)
@z� � �
1

d� 3
@z�0 � r

Xd�3

i�1

@r�i@z�i: (58)

Therefore, in the general d-dimensional Weyl axisymmet-
ric spacetime, the Majumdar-Papapetrou condition (24)
does not imply any further special restriction to the space
metric other than the Weyl condition (23) does. This result
is related to the fact that in d-dimensional spacetimes the
Majumdar-Papapetrou condition does not imply that the
metric of the inner space, ĥij (see Sec. IV), for vanishing
matter stresses, is necessarily flat, as it does in the case of
four-dimensional spacetimes.

C. Charged matter solutions

The main properties of the solutions inside charged
matter are analyzed in this section.

1. Weyl form

As shown in Sec. III, if we impose the Weyl relation
e2�0 � A� B	� 2��d� 3�=�d� 2��	2, then Eq. (48)
becomes identical to (52) if the following equation holds
[see Eq. (25)]:
124021
�e � 2
d� 3

d� 2

e��0

�0
0

�m

� 2
d� 3

d� 2

�������������������������������������������
A� B	� 2 �d�3�

d�2 	
2

q
B� 4 �d�3�

d�2 	
�m; (59)

where the prime stands for the total derivative with respect

to 	. In d � 4 dimensions one obtains �e �

�2�
������������������������������
A� B	�	2

p
=�B� 2	���m. From Eq. (59) it is

obtained the resulting equation for the potential , defined
by (53). It is

r2, � �8�
d� 3

d� 2
e2�

�������������������������
B2
4 � 2 d�3

d�2A
q

tanh�
�������������������������
B2
4 � 2 d�3

d�2A
q

,�
�m: (60)

Thus, the general properties of the axisymmetric solution
satisfying the Weyl condition (23) are verified as expected.
The particular four-dimensional case considered by Weyl
[3] and Majumdar [1] follows from the above analysis by
choosing d � 4, and noting that the energy density func-
tion � used by Majumdar is related to the scalar invariant
energy density �m by

� �

��������������
B2
4 � A

q
e2�

tanh�
��������������
B2
4 � A

q
,�
�m:
2. Majumdar-Papapetrou form

The Majumdar-Papapetrou relation is now e�0 �

�
����
A

p
�

���������������������������������������
2��d� 3�=�d� 2��

p
	�, and it is straightforward

to show that Eq. (59) reduces to (26) but here with p �

0, i.e., �e �
���������������������������������������
2��d� 3�=�d� 2��

p
�m. As in the electrovac-

uum case, the potential , which satisfies the Majumdar-
Papapetrou condition given by (55) is proportional to U,
where U � e��0 is the potential defined in Eq. (44). In
addition, the resulting equation for V � e2�0 (or for 	),
obtained from (48) [or (52)], can be put into the form (43),
namely,

r2, � �8�
d� 3

d� 2
e2�,�m: (61)

Hence, the spacetime metric can be written in Majumdar-
Papapetrou form (42), in which the metric of the inner
space, ĥij, is the flat metric. In four dimensions we have
e2� � e�2�0 � ,2, and the potential , satisfies the equa-
tion r2, � �4�,3�m, as found in Refs. [1,2]. The same
comments with respect to the function �made at the end of
the section on the d-dimensional electrovacuum case hold
also here.
-9
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VIII. BOUNDARY VALUE PROBLEMS

We have shown above that if gtt and 	 are functionally
related, then every level surface of gtt is also a level surface
of 	. In the four-dimensional case, Majumdar also proved
the proposition that if there exists a surface S on which gtt
and	 are both constant, and if one of the two domains into
which such a surface divides the entire spacetime is free
from matter, then, in this domain, every level surface of gtt
will also be a level surface of 	, and therefore gtt and 	
will be functionally related by an equation like (1). Here
we prove that this theorem holds also in higher dimensions.
For we write Eq. (16) in the absence of electric charge

@i

� �������
�g

p

V
hij@j	

�
� 0; (62)

where g � �Vh is the determinant of the metric.
Moreover, Eq. (15) in the absence of matter can be cast
into the form

@i

� �������
�g

p

V
hij@jV

�
� 4

d� 3

d� 2

�������
�g

p

V
hij@i	@j	: (63)

Multiplying Eq. (62) by 4��d� 3�=�d� 2��	, subtracting
from (63) and rearranging, we have

@i

� �������
�g

p

V
hij@j

�
V � 2

d� 3

d� 2
	2

��
� 0; (64)

which has the same form of Eq. (58) of Ref. [1]. Now we
notice that an arbitrary constant can be added to the po-
tential 	 in Eq. (62) [and/or also to the function V �
2��d� 3�=�d� 2��	2 in Eq. (63)]. Hence, adding such a
constant and multiplying (62) by another constant B and
subtracting from (64) we find

@i

� �������
�g

p

V
hij@j

�
V � 2

d� 3

d� 2
	2 � B	� A

��
� 0; (65)

where A is a constant. The proof of the theorem is then
completed following exactly the same steps as done by
Majumdar. In particular, it follows that V and 	 are func-
tionally related by V � 2��d� 3�=�d� 2��	2 � B	�
A � 0.
IX. CONCLUSIONS

We have investigated here the main properties of
charged fluid distributions in higher dimensional
Einstein-Maxwell gravity, imposing Weyl type and
Majumdar-Papapetrou type conditions. Several properties
of such solutions in four-dimensional spacetime are shown
to hold also in d-dimensional spacetimes. At any dimen-
sion higher than three, a distribution of charged dust with
constant matter to charge densities ratio can be stable,
independently of the shape of the body. We also showed
here that for d > 4 the �d� 1�-space is conformal to a
Ricci-flat space (which can be nonflat). In d � 4, every
solution satisfying Majumdar-Papapetrou conditions has a
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three-dimensional spatial subspace conformal to a flat
space, because the three-dimensional Ricci tensor is pro-
portional to the Riemann tensor. There exists a vast litera-
ture in particular of Majumdar-Papapetrou type solutions
for charged dust in four-dimensional general relativity
[22], and also including dilaton or other scalar fields [5].
The study of analogous problems in d-dimensional space-
times is of course of interest.
APPENDIX: FUNCTIONAL RELATION p � p���

Equation (21) is of the form

@p
@xi

� f�xj�
@	
@xi
; (A1)

where xi, i � 1; 2; . . . ; d� 1, are spacelike coordinates in
the �d� 1�-dimensional space, and f�xj� � ��m �

p�V 0=2V � �e=
����
V

p
is a function of the coordinates.

Multiplying both sides of Eq. (A1) by dxi and adding
over i results in �@p=@xi�dxi � f�xj��@	=@xi�dxi, which
is equivalent to

dp � f�xi�d	: (A2)

The potential 	 is also a function of the coordinates, 	 �
	�xi�. Assuming that 	 is an invertible function of (at
least) one of the coordinates, x1, say, then we can write
x1 in terms of 	 and of the other coordinates xa, a �
2; 3; . . . ; d� 1. The pressure p is then a function of 	
and of the remaining spacelike coordinates xa, p �
p�	; xa�. Therefore, it follows

dp �

�
@p
@	

�
xa
d	�

�
@p
@xa

�
	
dxa; (A3)

where �@p=@	�xa means the derivative is done with xa held
constant, and �@p=@xa�	 means the derivative is done with
	 held constant. Comparing this last equation to Eq. (A2)
it follows �

@p
@	

�
xa
� f�	; xa�; (A4)

�
@p
@xa

�
	
� 0: (A5)

Equation (A4) gives the dependence of p on 	, while
Eq. (A5) says that for constant 	, the pressure p does
not depend on any one of the coordinates xa, a �
2; 3; . . . ; d� 1. Finally, by repeating the above procedure
with x1 replaced, e.g., by x2, it is also shown that
�@p=@x1�	 � 0. So, the partial derivatives of p with re-
spect to all the coordinates xi, with 	 held constant, are
zero, �

@p

@xi

�
	
� 0; i � 1; 2; . . . ; d� 1;

completing the proof.
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