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Fermion absorption cross section of a Schwarzschild black hole
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We study the absorption of massive spin-half particles by a small Schwarzschild black hole by
numerically solving the single-particle Dirac equation in Painlevé-Gullstrand coordinates. We calculate
the absorption cross section � over a range of gravitational couplings Mm=mP

2 and incident particle
energies E. At high couplings, where the Schwarzschild radius RS is much greater than the particle
wavelength 	, we find that ��E� approaches the classical result for a point particle. At intermediate
couplings, where RS � 	, we find oscillations around the classical limit whose precise form depends on
the particle mass. At low couplings, where RS � 	, we demonstrate that the minimum-possible cross
section approaches 
RS

2=2. For high incident particle energies, the cross section converges on the
geometric-optics value of 27
RS

2=4. At low particle energies we find agreement with an approximation
derived by Unruh.
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I. INTRODUCTION

It is widely accepted that general relativity and quantum
mechanics are incompatible in their current form, yet a
theory reconciling the two remains elusive. Despite this
problem, it is only at the smallest length scales (l < lP), or
highest energies, that we expect substantial modification to
existing theory. At low energies, away from spacetime
singularities, the propagation of quantum fields on gravi-
tational backgrounds is well understood (see the books by
Birrell and Davies [1] or Chandrasekhar [2]).

Interest in the absorption of quantum waves by black
holes was reignited in the 1970s, following Hawking’s
discovery that black holes can emit, as well as scatter
and absorb, radiation [3]. Hawking showed that the evapo-
ration rate is proportional to the total absorption cross
section. More recently, absorption cross sections (or
‘‘gray body factors’’) have been of interest in the context
of higher-dimensional string theories.

In a series of papers [4–6] Sanchez considered the
scattering and absorption of massless scalar particles by
an uncharged, spherically symmetric (Schwarzschild)
black hole. Using numerical methods she showed that the
total absorption cross section (as a function of incident
frequency) exhibits oscillations around the geometric-
optics limit characteristic of diffraction patterns. Unruh
[7] studied the absorption of massive spin-half particles
by piecing together analytic solutions to the Dirac equation
across three regions. He showed that, in the low-energy
limit, the scattering cross section for the fermion is exactly
1=8 of that for the scalar particle. He also derived an
approximation to the total cross section valid at low ener-
gies, which we revisit in Sec. V.
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In this paper we return to the massive fermion absorption
problem studied by Unruh. We employ a different coordi-
nate system, but retain equivalent ingoing boundary
conditions at the horizon. Instead of using analytical ap-
proximations we numerically integrate the Dirac equation
to calculate the absorption cross section over a range of
energies and gravitational couplings. We compare our
results with the classical cross section for a massive parti-
cle, and with Unruh’s low-energy approximation.

The natural dimensionless parameter to describe the
strength of the gravitational coupling between a black
hole (of mass M) and a quantum particle (of mass m) is
given by


 �
GMm
�hc

�
Mm

mP
2 �


RS
	C

(1)

where RS is the Schwarzschild radius of the hole, 	C is the
Compton wavelength of the quantum particle, and mP is
the Planck mass. We use the symbol 
 because it has an
analogous role in gravitation to the fine-structure constant
in electromagnetism. We expect quantum effects to be
important when 
� 1, whereas in the high-
 limit classi-
cal effects should dominate.

In first-quantized theory the capture of light and matter
by a black hole is a one-way process. The direction of time
implied by this process is not revealed in Schwarzschild
coordinates, however, as these are manifestly time-reverse
symmetric and are invalid at the horizon. Time-asymmetric
coordinates, such as Eddington-Finkelstein coordinates,
allow the continuation of the metric across the horizon
and allow us to correctly study the properties of wave
functions [8–10]. We then find that ingoing states corre-
spond precisely to those that are regular at the horizon.

Here, rather than using Eddington-Finkelstein coordi-
nates, we prefer to work with the coordinates first intro-
duced by Painlevé [11] and Gullstrand [12]. In these
coordinates the metric becomes
-1  2005 The American Physical Society
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ds2 �
�
1�

2M
r

�
dt2 �

��������
8M
r

s
dtdr� dr2 � r2d�2: (2)

The utility of this form of the Schwarzschild solution has
recently been highlighted by Martel and Poisson [13] and
others [9]. For black holes (as opposed to white holes) the
negative sign for the crossterm dtdr is the correct choice,
as this guarantees that all particles fall in across the horizon
in a finite coordinate time. This sign is also uniquely picked
out by models in which the black hole is formed by a
collapse process [8]. One advantage of this system is that
the time coordinate has a natural interpretation as the
proper time measured by an observer in free fall starting
from rest at infinity.

According to general relativity the classical absorption
cross section of a Schwarzschild black hole is given by

�abs �

M2

2u4
�8u4 � 20u2 � 1� �1� 8u2�3=2� (3)

where u is the velocity of the particle [7]. In accordance
with the equivalence principle, the classical cross section is
independent of the particle mass m. We expect that the
quantum cross section will approach this value in the limit

	 1 (that is, RS 	 	).

We start with the radial separation of the Dirac equation
in Painlevé-Gullstrand coordinates. We then study the
properties of solutions around the horizon, identifying the
physical branch of regular solutions. For unbound states
E>mc2 we find that the physical solutions are composed
of ingoing and outgoing waves at infinity. By numerically
finding the ratios of these waves in any given angular mode
we are able to compute the absorption spectrum. We use
natural coordinates G � �h � c � 1, except in cases where
inclusion of the factors adds clarity.

II. THE DIRAC EQUATION

We let f�0; �1; �2; �3g denote the gamma matrices in the
Dirac-Pauli representation, and introduce spherical polar
coordinates �r; �;��. From these we define the unit polar
matrices

�r � sin��cos��1 � sin��2� � cos��3

�� � cos��cos��1 � sin��2� � sin��3

�� � � sin��1 � cos��2:

(4)

In terms of these we define four position-dependent matri-
ces fgt; gr; g�; g�g by

gt � �0 �

��������
2M
r

s
�r g� � r��

gr � �r g� � r sin���:
(5)

These satisfy the anticommutation relations

fg�; g�g � 2g��I
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where g�� is the Painlevé-Gullstrand metric of Eq. (2). The
reciprocal matrices fgt; gr; g�; g�g are defined by the equa-
tion

fg�; g�g � 2!�� I; (6)

and both sets are well-defined everywhere except at the
origin.

The Dirac equation for a spin-half particle of mass m is

ig�r� � m ; (7)

where

r� �

�
@� �

i
2
�
%� �
%

�
 ; �
% �

i
4

�
; �%�:

(8)

The components of the spin connection are found in the
standard way [14] and are particularly simple in the
Painlevé-Gullstrand gauge [10],

g�
i
2
�
%� �
% � �

3

4r

��������
2M
r

s
�0: (9)

An advantage of our choice of metric is that the Dirac
equation can now be written in a manifestly Hamiltonian
form

i@6  � i�0

�
2M
r

�
1=2
�
@
@r

�
3

4r

�
 � m ; (10)

where @6 is the Dirac operator in flat Minkowski spacetime.
The interaction term is non-Hermitian, as the singularity
acts as a sink for probability density, making absorption
possible.

The Dirac equation is clearly separable in time, so has
solutions that go as exp��iEt�. The energy E conjugate to
time translation is independent of the chosen coordinate
system, and has a physical definition in terms of the Killing
time [10]. We can further exploit the spherical symmetry to
separate the spinor into

 �
e�iEt

r
u1�r�'

�
( ��;��

u2�r��r'
�
( ��;��

� �
(11)

where

�r � sin��cos��1 � sin��2� � cos��3: (12)

The angular eigenmodes are labeled by (, which is a
positive or negative nonzero integer, and �, which is the
total angular momentum in the � � 0 direction. Our con-
vention for these eigenmodes is that

�� � L� �h�'�( � ( �h'�( ;

( � ��j� 1=2� � . . . ;�2;�1; 1; 2; . . . :
(13)

The positive and negative ( modes are related by

�r'
�
( � '��( (14)
-2
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and are normalized so that Z
d�

Z
d� sin�'�( ��;��y'

�0

(0 ��;�� � !((0!��0 : (15)

The trial function (11) results in a pair of coupled first-order equations

�1� 2M=r�
d
dr

u1
u2

� �
�

1
������������
2M=r

p������������
2M=r

p
1

 !
(=r i�E�m� � �2M=r�1=2�4r��1

i�E�m� � �2M=r�1=2�4r��1 �(=r

 !
u1
u2

� �
:

(16)
The equations have regular singular points at the origin and
horizon, as well as an irregular singular point at r � 1. As
far as we are aware, the special function theory required to
deal with such equations has not been developed. Instead
we use series solutions around the singular points as initial
data for a numerical integration scheme.

III. SERIES SOLUTIONS AND
BOUNDARY CONDITIONS

As is clear from (16), there is a regular singular point in
the coupled equations at the horizon, r � 2M. We look for
series solutions

U �
u1
u2

� �
� �r� 2M�s

X1
n�0

an
bn

� �
�r� 2M�n (17)

where s is the lowest power in the series, and an, bn are
coefficients to be determined. On substituting into (16) and
setting r � 2M we obtain an eigenvalue equation for s,
which has solutions

s � 0 and s � �1
2 � 4iME: (18)

The regular root s � 0 ensures that we can construct
solutions which are finite and continuous at the horizon.
We will see later that regular solutions automatically have
an ingoing current at the horizon. The singular branch
gives rise to discontinuous, unnormalizable solutions
with an outgoing current at the horizon [8]. We therefore
restrict attention to the regular, physically admissable so-
lutions. The eigenvector for the regular solution has

a0
b0

� �
�

(� 2iM�E�m� � 1=4
(� 2iM�E�m� � 1=4

� �
: (19)

In order to expand about infinity we need to take care of
the irregular singularity present there. There are two sets of
solutions, U�out� and U�in�, which asymptotically resemble
outgoing and ingoing radial waves with additional radially
dependent phase factors. To lowest order,

U�out� � eiprei��1��2�
1

p=�E�m�

 !

U�in� � e�iprei��1��2�
1

�p=�E�m�

 ! (20)

where the phase factors �1�r�; �2�r� are given by
124020
�1�r� � E
����������
8Mr

p
; �2�r� �

M
p
�m2 � 2p2� ln�pr�

(21)

and the momentum p is defined in the usual way, p2 �
E2 �m2. The general (regular) solution as r! 1 is a
superposition of the ingoing and outgoing waves,

U�r! 1� � 
(U�in� � %(U�out� (22)

for each angular mode. The magnitudes of 
( and %(
determine the amount of scattered and absorbed radiation
present.

IV. ABSORPTION

The spatial probability current is conserved for states
with real energy, E>m. For each angular eigenmode we
obtain a conserved Wronskian W(

W( � �u1u
y
2 � uy1u2� �

������������
2M=r

p
�u1u

y
1 � u2u

y
2 � (23)

which measures the total outward flux over a surface of
radius r. At the horizon

W( � �ju1 � u2j2 / �ja0 � b0j2 (24)

so the flux is inwards for all regular solutions. On substi-
tuting the asymptotic forms of Eqs. (20) and (22) into
Eq. (23) we find an expression for the Wronskian in the
large-r limit,

W( � �
2p

E�m
�j
(j2 � j%(j2�: (25)

The coefficients 
( and %( can be determined (up to an
overall magnitude and phase) by matching the ingoing
(regular) solution at the horizon to the asymptotic form
in the large-r limit. We choose the normalization of each
angular mode so thatW( � �1, and write the most general
solution to the wave equation as

 �
X
(�0

c( ( (26)

where  ( are spinors of the trial form with u1; u2 as given
by (20) and (22), and c( are complex coefficients. The total
absorbed flux is then just

Wtot �
X
(�0

jc(j
2: (27)
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FIG. 1. Classical and quantum absorption cross section. The
plot compares the absorption cross section for the Dirac wave
[solid curve] with the classical prediction for a point particle
[dotted curve], for a gravitational coupling of 
 � Mm=mP

2 �
0:2. The cross section is plotted in units of �GM=c2�2 (propor-
tional to the event horizon area), and the energy in units of the
rest mass energy mc2.
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We now employ a partial wave analysis to derive a
simple expression for the absorbed cross section. We write
the asymptotic behavior of  as the sum of a plane wave
(propagating in the � � 0 direction) and an outgoing scat-
tered wave,

 �

�
eipr cos��1 �

f���
r
eipr�2

�
exp��iEt� (28)

where �1;�2 are spinors. The plane wave can be decom-
posed into ingoing and outgoing radial waves in the large-r
limit. We equate the ingoing part of the plane wave with the
ingoing part of the asymptotic wave (22). Normalizing the
plane wave to 2E particles per unit volume we find

c(
(ei��1��2� � i��1�(�1

������������������������
4
�E�m�

p
2p

(������
j(j

p (29)

for each angular mode. The total absorption cross section
�abs is the ratio of the ingoing flux (27) to the incident flux
of the plane wave (2p),

�abs �



2p�E�m�

X
(�0

j(j

j
(j2
: (30)

At low energies, the j(j � 1 states dominate the absorp-
tion, but at higher energies we need to sum over a range of
(.
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FIG. 2. Partial wave cross sections at 
 � 0:2. This plot
shows the contribution from each partial wave [labeled by
angular momentum ( � ��j� 1=2�] to the total cross section
�tot, for a gravitational coupling of 
 � Mm=mP

2 � 0:2. The
cross section is plotted in units of �GM=c2�2 (proportional to the
event horizon area), and the incident particle energy in units of
the rest mass energy mc2.
V. RESULTS

We determine the coefficients 
( required for (30) by
matching the ingoing solution at the horizon to the asymp-
totic form (22) at infinity. In a similar calculation, Unruh
[7] used analytic approximations to the radial functions to
find the leading contributions to the cross section. Here, we
use numerical integration of the wave function out from the
horizon to match the solutions, and compare our results
with the analytic approach.

Figure 1 compares the result of our matching calculation
at 
 � 0:2 with the classical cross section of a point
particle (3) over a range of energies. We see that the
quantum absorption cross section oscillates around the
classical value, as found by Sanchez [4,5] for the massless
scalar wave. For a given 
 we find the period of these
oscillations is approximately constant, but the amplitude
decays as E! 1. As 
 is increased we find that the
magnitude and period of the oscillations decrease. In the

	 1 limit we recover the classical cross section.

The oscillations in the total cross section can be under-
stood by decomposing ��E� into the sum of the cross
sections of partial waves, ��E� �

P
�(�E�. Figure 2

shows the contribution from each partial wave at 
 �
0:2. As might be expected from classical considerations,
the divergence in ��E� at E � 1 is due to the ( � 1 (l �
0; j � 1=2) partial wave. At low incident energies, the
higher partial waves can be neglected. However, as the
energy is increased, we see that states of successively
124020
larger angular momentum make a contribution. It is clear
that each maximum in the oscillation of the total cross
section is linked to the maximum of a particular partial
wave.

Figure 3 illustrates that the precise form of the oscilla-
tion depends on 
, and therefore on the mass of the
quantum particle. This demonstrates that the equivalence
principle does not apply when RS � 	C. At sufficiently
high energies, we see that all cross sections tend to the
-4
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FIG. 4. Quantum absorption cross sections in the 	C 	 RS
limit. The plot shows the absorption cross section as a function of
energy, for small couplings, 
 � Mm=mP

2 � 1. In the low-
energy region plotted here, the wavelength of the Dirac particle
is large compared to the black hole event horizon. Absorption is
dominated by the lowest j � 1=2 angular momentum states
(( � 1;�1 states), and the low-energy approximation of
Unruh [7] is valid (see text). As 
! 0, the minimum of the
cross section approaches 2
 (dotted line). In the high-energy
limit, all cross sections return to the photon limit, 27
.
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FIG. 3. Quantum absorption cross section for a range of
couplings. The plot shows the cross section at a range of
gravitational couplings, 0:05 � Mm=mP

2 � 0:2. The horizontal
line is the photon limit.
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photon limit of �abs � 27
�GMc�2�2. As noted by Unruh,
all particles traveling close enough to light speed, u � 1,
see a black hole of roughly the same size, regardless of
particle mass or spin.

Unruh also showed that in the low-energy limit, the
Dirac cross section is 1=8 of the scalar cross section, and
absorption is dominated by the lowest angular momentum
modes, j(j � 1. In this limit he showed
�abs

�GMc�2�2
�

4
2�1� u2�


u2�1� u2�1=2f1� exp��2

�1� u2�=u�1� u2�1=2�g
: (31)
This proves to be an excellent fit to the numerical cross
sections in the low-energy regime, such as those shown in
Fig. 4. A minimum-possible cross section can be found by
considering the 
� 0 limit of Eq. (31), which reduces to

�abs

�GMc�2�2
�

2

u
: (32)

The minimum value of this occurs in the u � 1 limit, and
Fig. 4 confirms that the minimum cross section approaches
2
 at low couplings.

VI. DISCUSSION

We have shown that the absorption cross section for a
Dirac wave in a classical Schwarzschild background can be
calculated by matching ingoing solutions at the horizon to
appropriate asymptotic forms at infinity. The analysis
proved particularly simple in the Painlevé-Gullstrand met-
ric, though we stress that the cross sections calculated here
do not depend on the particular choice of gauge.
Antiparticle solutions can be generated from particle solu-
124020
tions by the transformation

�u1; u2; E; (� � �u�1; u
�
2;�E

�;�(�: (33)

It follows that the absorption cross section is invariant
under charge conjugation.

In the large-
 limit (RS 	 	) we find that the cross
section approaches the classical prediction of Eq. (3).
When 
� 1 (RS � 	) we observe energy-dependent os-
cillations about the classical value in the �-vs-E plot
(Fig. 1). Oscillations of this nature were previously found
by Sanchez for the massless scalar wave. The form of the
oscillations depends on m, which demonstrates that the
equivalence principle is not applicable in this regime
(Fig. 3).

In the low-energy limit, the j � 1=2 cross section (31)
given by Unruh is an excellent fit to our numerical results.
In the 
! 0 (RS � 	) limit we see that the minimum-
possible cross section approaches 2
�GMc�2�2. In the
high-energy limit, all cross sections eventually converge
on the photon limit of 27
�GMc�2�2.
-5
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