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Entropy bounds applied to a system of N species of light quantum fields in thermal equilibrium at
temperature T are saturated in four dimensions at a maximal temperature Tmax � MPlanck=

�������
N

p
. We show

that the correct setup for understanding the reason for the saturation is a cosmological one, and that a
possible explanation is the copious production of black holes at this maximal temperature which prevents
any further rise in temperature. The proposed explanation implies, if correct, that N light fields cannot be
in thermal equilibrium in an ideal gas phase at temperatures T above Tmax. However, we have been unable
to identify a concrete mechanism that is efficient and quick enough to prevent the universe from exceeding
this limiting temperature. The same issues can be studied in the framework of AdS/CFT by using a brane
moving in a five dimensional AdS-Schwarzschild space to model a radiation dominated universe. In this
case we show that Tmax is the temperature at which the brane just reaches the horizon of the black hole,
and that entropy bounds and the generalized second law of thermodynamics seem to be violated when the
brane continues to fall into the black hole. We find, again, that the known physical mechanisms, including
black hole production, are not efficient enough to prevent the brane from falling into the black hole. We
propose several possible explanations for the apparent violation of entropy bounds, but none is a
conclusive one.
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I. INTRODUCTION

Entropy bounds seem to imply that N light quantum
fields cannot be in thermal equilibrium in an ideal gas
phase at an arbitrarily high temperature. In four dimensions
they are saturated at a temperature equal to Tmax �

MP=N 1=2 (here MP is the Planck mass). When entropy
bounds are saturated it is possible, in many cases, to
identify a physical mechanism that enforces them. The
prime candidate for such a mechanism is black hole
(BH) production. If many BH’s are produced, the system
goes into a kind of phase transition. In the new phase the
previous energy and entropy estimates are no longer valid.
Since BH’s are more efficient in storing entropy, the ratio
of entropy to energy saturates and the bounds are not
violated.

We seek a physical mechanism that places an upper
bound on the temperature, if such an upper bound indeed
exists. Since we wish to use semiclassical methods and
avoid the quantum regime, we focus on the limit of large
N since then Tmax � MP. As we will show, the correct
context for studying this issue is a cosmological context.

Previously, Bekenstein [1] argued that if the entropy of a
visible part of the universe obeys the usual entropy bound
from nearly flat space situations [2], then the temperature is
bounded and therefore certain cosmological singularities
are avoided. More recently, there have been several dis-
cussions following a similar logic. Veneziano [3] suggested
that since a BH larger than a cosmological horizon cannot
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form [4], the entropy of the universe is always bounded.
This suggestion is related, although not always equivalent,
to the application of the holographic principle [5] in cos-
mology [6–15]. In [16–18] it was argued that the Hubble
parameter H is bounded by entropy considerations, H �

Hmax �
MP�����
N

p . In a cosmological context this is equivalent to

T � Tmax.
The AdS/CFT correspondence [19,20] offers an alter-

native route and a new perspective for the study of a system
of a large number N of light fields in thermal equilibrium
in a cosmological setup by studying brane propagation in
an AdS-Schwarzschild background [21–25]. Branes mov-
ing in AdS-Schwarzschild space are expected to be dual to
finite temperature CFT’s in a cosmological background
[26,27]. However, the status of the conjecture is somewhat
weaker than the one relating to an AdS space without a
brane (see, for example, [28–30]). In this particular case
the branes in AdS-Schwarzschild are conjectured to be
dual to a radiation dominated FRW universe, which is
exactly the setup that we are interested in. As we will
show, the maximal temperature Tmax has a geometric 5D
interpretation: it corresponds to the brane ‘‘just’’ reaching
the BH horizon.

The conjectured duality between branes propagating in
AdS-Schwarzschild space and a radiation dominated FRW
universe offers a novel perspective for studying the satu-
ration of the entropy bounds at Tmax. The issue becomes
whether the brane can continue to fall into the BH and
continues to be dual to a CFT in a cosmological back-
ground at temperatures above Tmax.

A possible way of viewing the propagation of branes in
AdS-Schwarzschild is the following: a thermal system with
a known form of entropy is thrown into a BH, a process
-1  2005 The American Physical Society
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analogous to the Geroch process (See [31] for a review).
The original Geroch process is a thought experiment in
which a small thermodynamic system is moved from in-
finity into a BH. The small system is lowered slowly until it
is just outside the black hole horizon, and then falls in.
Here a 4D universe is thrown whole into a 5D BH, and so
issues concerning the generalized second law (GSL) and its
relation to entropy bounds can be addressed. As in the
standard case, it is then possible to compare the total
entropy of the system before and after and to discuss cases
in which a decrease in the total entropy is suspected. We do
indeed find that the GSL is violated as the brane falls into
the BH.

In Sec. II we explain the saturation of entropy bounds at
Tmax, and discuss possible physical mechanisms that may
lead to this saturation. In Sec. III we discuss the issue from
a 5D perspective, and discuss possible physical mecha-
nisms that may alter the propagation of branes with respect
to naive expectations. In Sec. IV we offer several possible
resolutions of the puzzle that we have posed in the previous
sections.

II. BLACK HOLE CREATION AND A MAXIMAL
TEMPERATURE IN FOUR DIMENSIONS

This section is concerned with studying under which
conditions a relativistic gas ceases to be in thermal equi-
librium due to gravitational effects.

In the first part of this section we will show by means of
simple scaling arguments, that this problem cannot be
addressed in a flat space-time-independent setup, rather it
has to be addressed in a cosmological setup. We apply
simple scaling arguments in flat space, and find that the
assumption that we can ignore the back reaction of the gas
on the geometry is incorrect. We then continue to study the
problem in a time-dependent setup in Sec. II B, where
some known results about entropy bounds will be inter-
preted in a way relevant to the problem at hand. We explain
how entropy bounds lead to the notion of a maximal
temperature, which, as we show, can be much lower than
the Planck energy.

We then, in the last subsection, look for an explanation
of the appearance of a maximal temperature as resulting
from some semiclassical physics that so to speak enforces
the entropy bounds. We perform a more quantitative analy-
sis of the candidate physical effects that could in principle
invalidate our picture, and find that they do not alter the
previous, more qualitative analysis. Our conclusion fol-
lows: that in the semiclassical domain it is not possible
to determine the principle that enforces the entropy
bounds.

A. Thermal equilibrium of a relativistic gas
in a rigid box

Consider a relativistic gas in thermal equilibrium at a
temperature T. We assume that the gas consists of N
124015
independent degrees of freedom in a box of macroscopic
linear size R, we further assume that R is larger than any
fundamental length scale in the system, and in particular R
is much larger than the Planck length R� lP. The volume
of the box is V � R3. Since the gas is in thermal equilib-
rium its energy density is 	 � N T4 and its entropy den-
sity is s � N T3 (here and in the following we
systematically neglect numerical factors). As explained
previously, we are interested in the limit of large N .

Under what conditions is this relativistic gas unstable to
the creation of BH’s? The simplest criterion which may be
used to determine whether an instability is present is a
comparison of the total energy in the box ETh � N T4R3

to the energy of a BH of the same size EBH � M2
PR. The

two energies are equal when T4 � 1=NM2
P=R

2. So ther-
mal radiation in a box has a lower energy than a BH of the
same size if

�TR�4 <
1

N
M2
PR

2: (1)

Another criterion that may help us to determine the pres-
ence of an instability to BH’s creation is to compare the
thermal entropy STh � N T3R3 to the entropy of the BH
SBH � M2

PR
2. They are equal when T3 � 1=NM2

P=R. So
thermal radiation in a box has a lower entropy than and a
BH of the same size if

�TR�3 < 1=NM2
PR

2: (2)

From Eqs. (1) and (2) it is possible to conclude the well
known fact that for fixed R and N , if the temperature is
low enough the average thermal free energy is not suffi-
cient to form BH’s. For low temperatures the thermal
fluctuations are weak and they do not alter the conclusion
qualitatively.

Here we are interested in the case RT > 1 which means
that the size of the box is larger than the thermal wave-
length 1=T. The case RT < 1 has been considered previ-
ously in [32]. In this case the temperature is not relevant.
Instead, the field theory cutoff � was shown to be the
relevant scale. In [32] we found a relationship between
�, MP and the number of fields N which is somewhat
different than what we find here between T, MP, and N .

Imagine raising the temperature of the radiation from
some low value for which condition (1) is not satisfied to
higher and higher values such that eventually condition (1)
is saturated. Note that since TR> 1 Eq. (1) is saturated
before Eq. (2). We assume that the size of the box R is fixed
during this process (the number of species N is also
fixed), and estimate the backreaction of the radiation en-
ergy density on the geometry of the box to determine
whether the assumption that the geometry of box is fixed
is consistent. To obtain a simple estimate we assume that
the box is spherical, homogeneous and isotropic. Then its
expansion or contraction rate is given by the Hubble pa-
rameter H � _R=R, which is determined by the 00 Einstein
-2
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equation H2M2
P � N T4. However, if Eq. (1) is satisfied

then 1
R2M2

P � N T4, and therefore HR	 1. The conclu-
sion is that if Eq. (1) is saturated then the gravitational time
scale is comparable to the light crossing time of the box,
and therefore it is inconsistent to assume that the box has a
fixed size which is independent of the energy density inside
it.

Thus we have shown that the assumption that it is
possible to ignore the back reaction of the gas on the
geometry is incorrect. The back reaction has to be taken
into account.

B. Thermal equilibrium of a relativistic gas
in a cosmological setup

The conclusion from the previous subsection is that the
hypothesis that copious BH production is responsible for
the appearance of a maximal temperature for a gas of
relativistic particles needs to be studied in a time-
dependent setting, namely, in a cosmological one.
Different asymptotic boundary conditions have to be
used where

H2M2
P � N T4: (3)

Entropy bounds such as the Hubble entropy bound
and others are saturated if STh � N T3H
3 � SBH �
M2
PH


2. From Eq. (3) we understand that this happens for

H � T; T � Tmax �
MP�������
N

p : (4)

Let us examine in more detail the physics of a radiation
dominated (RD) universe at temperatures near Tmax. If
H � T, the cosmological horizon size H
1 becomes com-
parable to the wavelength of a typical particle of the
relativistic gas, �	 T
1. If we go beyond this temperature,
the classical description of the particles that compose the
gas in terms of a homogeneous and isotropic fluid is no
longer appropriate, and thus neither is Eq. (3).
Alternatively, one can think of Tmax as the temperature at
which the Jeans length of a typical thermal fluctuation
becomes comparable to the thermal wavelength, thus sug-
gesting, again, that the approximation of the gas by a
homogeneous and isotropic fluid becomes inappropriate.
Yet another way to think about Tmax is as the temperature at
which the entropy within a thermal wavelength becomes
comparable to the entropy of a BH of the same size, thus
making BH entropically favored over single particle ex-
citations. Similarly, at T � Tmax the thermal energy inside
a ‘‘box’’ of sizeH
1, E � N T4H
3 is equal to the energy
of a BH of the same size, and also the free energies of both
states become comparable.

Our simple scaling arguments and qualitative consider-
ations indicate that a gas of particles cannot be in thermal
equilibrium in an ideal gas phase at temperatures above
Tmax � Mp=

�������
N

p
. It is also clear that at Tmax the assump-

tion that we can treat gravity as semiclassical, only provid-
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ing matter with a geometric background, is incorrect. All
these considerations are well known in the case N � 1;
but if N is a large number the relevant scale can be much
smaller than the Planck scale. Our conclusion will remain
the same also after a more quantitative examination pre-
sented below.

C. Additional quantitative tests

Let us first close some possible loopholes in our analy-
sis. One possible loophole could have been if thermal
fluctuations were too large, invalidating our simple scaling
arguments that implicitly assume that the fluctuations are
small. This is not the case. The ratio of the energy in
thermal fluctuations,

�E2

E2
�

1

N

1

T3R3 (5)

is small compared to the average value of the energy in this
regime and is much smaller than unity for RT > 1, and
N � 1. Another possible loophole could have been, as in
[32], a clash with the assumption that the semiclassical
treatment is valid. Since, in the case at hand, the energy is
dominated by the mean value of 	, and not by the fluctua-
tions, we do not have problems with black hole evapora-
tion: in fact it turns out that for

T � TC �

������������
640�
N

s
MP; (6)

BH’s can be treated classically and, as can be seen by
inserting the correct numerical factors into the definition
of Tmax, Tmax < TC.

We would like to estimate the time scale for the collapse
of perturbations which, if frequent and strong enough, will
lead to production of black holes. The perturbation equa-
tions which govern their evolution are well known [33]; we
present here the equation governing the dynamics of the
Bardeen potential �, in longitudinal gauge

6 �� � 24H _� � 12� _H �H 2�� 
 2�� � 0; (7)

with H � _R=R, the dot denoting the derivative with re-
spect to conformal time �, and � the spatial Laplacian
operator. The solution of the perturbation equations is quite
standard. First, by means of the spatial Fourier transform
the Laplacian operator is expressed in terms of the comov-
ing wavenumber k as � ! 
k2. Then one notices that,
since the background evolves as a power law in conformal
time, and, in particular, for a radiation dominated contract-
ing universe one has R��� 	 
�, with 
1<�< 0, the
solution for the mode �k can be expressed in terms of the
variable x � k� as

�k��� � AkF�x�; (8)

where F�x� (whose explicit form is not needed here) scales
-3
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as x
2 for x! 
1, diverges as x
3 for x! 0, and is of
order one for x	
1.

The factor Ak can be determined through the perturbed
Friedmann equation which gives a relation between the
Bardeen potential and the density perturbation:

�k��� �
3

2x2

�	k�x�
	

: (9)

We now observe that the thermal energy fluctuations are
dominated by the comoving wavenumber kT � RT since
the higher modes are exponentially suppressed in the
Boltzmann distribution, and that we can estimate them
via Eq. (5). We further observe that at the time �max

when the critical temperature Tmax is attained, one has x �

1 for the mode that dominates the fluctuations. By com-
bining all these elements we may express the Bardeen
potential at �max in terms of an initial thermal fluctuation
at some early time �i:

�kT ��max� �
3

2

1�������
N

p
�RT�3=2

1

x2
i F�xi�

F�
1�: (10)

The factor x2
i F�xi� is of order one, and so is F�
1�; this

leads us to the conclusion that the Bardeen potential is still
small at the critical time, due to the large factor�������
N

p
�RT�3=2 in the denominator.

To summarize, we have found that if the initial pertur-
bations are provided by thermal fluctuations, then their
initial amplitude is very small, and since they grow only
as a power law, they do not have enough time to become
large before the critical temperature is reached. We con-
clude that BH production from thermal perturbations is not
quick enough, so entropy bounds do seem to be violated.

At this point we cannot proceed further with semiclas-
sical methods and get a better idea on the state of a system
when the temperature is increased beyond Tmax, or even
whether this is possible at all.

III. FEEDING A 4D BRANEWORLD TO A 5D
BLACK HOLE

We can gain some insight about the meaning of Tmax,
and perhaps some further technical control by modelling a
4D RD universe as a brane moving in an
AdS5-Schwarzschild space-time.

For precision, we will take the following representation
for the bulk space-time

d s2 � 
H�R�dt2 �
1

H�R�
dR2 � R2d�2

3; (11)

where H�R� � 1 � R2

L2 

b4L2

R2 vanishes at the black hole

horizon RH and b � �
8G�5�

N
3�

M
L2�

1=4, M being the black hole
mass. L is related to the cosmological constant of the AdS
and also to the brane tension �, which is tuned in such a
way as to make a vanishing effective cosmological con-
stant on the brane. Note that the line element in Eq. (11)
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describes only the part of space-time outside the BH hori-
zon; this will become important and relevant shortly when
we discuss the fate of a brane that is about to fall into the
BH.

For the BH in AdS to be the dominant configuration over
an AdS space with some thermal radiation as required for
our analysis to be relevant, bmust be large b� 1 [26], that
is, the black hole must be large and hot compared to the
surrounding AdS5. In this limit the closed 4D universe can
be treated as flat, and we can write RH ’ bL, and b ’
�LT0, where T0 is the Hawking temperature of the black
hole.

The motion of the brane through the bulk space-time is
viewed by a brane observer as a cosmological evolution.
According to the prescription of the RS II model [34], the
4D brane is placed at the Z2 symmetric point of the orbi-
fold. On the other hand, in the so called mirage cosmology
[22], the brane is treated as a test object following a
geodesic motion. In both cases the evolution of the brane
in the AdS5-Schwarzschild bulk mimics a FRW radiation
dominated cosmology. Thus, both prescriptions are useful
for our purposes. We will keep them in mind in the follow-
ing discussion.

The brane can be described by its radial position as a
function of the proper time of the brane Rb�"�. The brane
proper time is analogous to the proper time of a freely
falling point particle in a 4D BH space-time. The evolution
of Rb�"� is determined by an effective Friedmann equation:

� _Rb
Rb

�
2
�
b4L2

R4
b



1

R2
b

; (12)

where the dot here stands for a derivative with respect to ".
Since, as we recall, b� 1, the curvature term is always
negligible in the range that we are interested, we will
therefore ignore this term in the following. Equation (12)
expresses the dynamics of the brane in terms of 5D quan-
tities; we now focus on the case of a contracting brane and
translate those quantities into 4D ones in order to be able to
compare Eq. (12) with Eq. (3).

The AdS/CFT correspondence tells us that the number
of species in the CFT is given by N � L3=G�5�

N , while the
4D and the 5D Newton’s constants are related by LG�4�

N �

G�5�
N (again, we consistently ignore numerical factors). As

can be seen from the line element in Eq. (11), the boundary
of space is a 3 sphere, so the CFT ‘‘lives’’ on S3. Now we
have enough information to make a comparison between
Eq. (12) and Eq. (3) and to obtain the temperature mea-
sured on the brane as T � b=Rb, which is also in accor-
dance with the AdS/CFT correspondence. In passing, we
notice that one should not confuse the temperature of the
boundary CFT that is dual to the AdS bulk theory with the
Hawking temperature of the AdS-BH as measured by a
bulk observer located at the coordinate R. The latter is
-4
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given by T0=
�����������
H�R�

p
and scales with R in a similar way to

the CFT temperature only in the asymptotic limit R! 1.
We now wish to see what happens in the 5D picture

when the limiting temperature is approached on the brane.

By expressing MP �
���������
G�4�
N

q
and N in terms of 5D quan-

tities we can see that Tmax ’ 1=L and, since the corre-
sponding value for R is b=Tmax, we find that

T ! Tmax ���! Rb ! RH: (13)

Tmax is reached exactly when the brane reaches the BH
horizon and is about to enter into the black hole.

From the point of view of the brane nothing special
seems to happen when it reaches the horizon (more on
this later), just as from the point of view of a freely falling
observer in a Schwarzschild geometry nothing special
happens when it reaches the horizon. However, the setup
that we have used for the AdS/CFT is only capable of
describing the brane outside the BH horizon. To find out
what happens to it as it crosses the horizon, the setup needs
to be changed, for example, in the way proposed by
Maldacena [35]. One needs to include the whole AdS-
Kruskal geometry that has two boundaries. The dual field
theory is therefore in a product space that consists of two
CFTs which have to be put in a specific entangled state.
The AdS/CFT correspondence is less well developed in
this different setup. It would be very interesting to study the
correct prescription of applying Maldacena’s proposal to
our problem. Our arguments suggest that some interesting
physics needs to take place as the brane approaches the
horizon.

One could perhaps avoid the need to go to the more
elaborate setup of the AdS/CFT correspondence to be able
to describe what happens when the brane reaches the BH
horizon by interpreting the brane motion according to the
‘‘mirage’’ prescription. In this case, the brane is a probe
brane moving through the fixed bulk background. A rea-
sonable interpretation of what transpires at horizon cross-
ing is that the 4D universe simply ends its existence and
disappears into the BH. The BH ‘‘eats’’ the 4D universe, its
mass increases and so does its size, and entropy. Therefore
the final state from a 5D point of view is simply an
AdS5-Schwarzschild space with a larger BH. Similarly,
from the original point of view of the AdS/CFT correspon-
dence this can also interpreted as a single probe brane
joining the N branes on which the CFT lives and are the
source of the AdS-BH space-time in the bulk. This inter-
pretation leads to the same conclusion: that the final state is
simply a larger BH in AdS.

We are thus in a situation similar to the one envisaged in
the Geroch process: the thought experiment in which a
thermodynamic system is absorbed by a black hole. The
aim is to design the process such that the energy absorbed
by the BH is minimal, and in such a way also the entropy
that the BH gains will be minimal, as both the energy and
the entropy of the BH depend only on its mass after the
124015
absorption. By carefully analyzing the entropy balance in
the Geroch process, and by requiring the validity of the
generalized second law of thermodynamics, Bekenstein
was able to state his universal entropy bound for compact
weakly gravitating systems, S � 2�ER [2]. In the case at
hand, the significant difference is that an entire universe is
thrown into the BH. Therefore we can look at the entropy
balance during the process and see under which conditions
the GSL is respected or not.

In order to have a vanishing effective cosmological
constant on the brane, one has G�5�

N � ’ L
1; this means
that at horizon crossing the total energy of the brane is

EjR�RH ’
b3L2

G�5�
N

: (14)

Comparing E to M ’ b4L2

G�5�
N

we see that for b� 1 the total

energy of the brane is much smaller than the BH mass E�
M.

The entropy of the 5D black hole is S � A�RH�=4G
�5�
N ,

with the area of the horizon given by A�RH� � 2�2R3
H.

When the brane falls into the BH, the entropy of the BH is
increased by the following amount:

�S ’
1

4G�5�
N

E
�A�RH�M��

�M
’
EL2

RH
’
EL
b
: (15)

For the GSL to hold, the total entropy of the system
should increase in the process

�S > Sb: (16)

Since Sb � 2�2R3
HN T3 ’ EL is the total entropy on the

brane when it is about to fall into the BH, we find that for
the total entropy to increase

b < 1: (17)

However, for the BH to be the dominant configuration b
has to be much larger than unity b� 1. If indeed b� 1,
then apparently the GSL is violated in this process. We
have thus found that a violation of the GSL in the 5D bulk
corresponds to a violation of the entropy bounds in the 4D
brane. The situation is completely analogous to the one
discussed in connection with the ordinary Geroch process
where the GSL is apparently violated if the falling object
does not satisfy the Bekenstein bound. This issue has a
long history (see, for example, [2], [36–41]) and is con-
troversial to some extent. We do not attempt to take sides in
the debate, but rather to simply point out the similarities.

We may try to use the 5D picture to understand in a more
quantitative way what is the physical mechanism that
renders Tmax a limiting temperature. Black hole creation
and the subsequent ‘‘breaking’’ of the brane seemed to be
one of the possibilities in the 4D picture. From the brane
world point of view this would correspond to the formation
of ‘‘blisters’’ on the brane. In fact, since the temperature of
the brane scales as 1=Rb, if a piece of brane is closer to the
-5
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BH with respect to the rest of the brane, then the local
temperature on that piece will be higher, as will its energy
density. A piece of the brane that has higher energy density
has a higher local magnitude of the Hubble parameter.
Therefore the speed at which it falls towards the BH is
increased, and we expect a ‘‘blister’’ to form on the brane.
Thus a local oscillation of the brane position would be seen
by a brane observer as a local density perturbation which is
further amplified as the brane falls towards the BH. This
mechanism can be studied by looking at perturbation
equations for the position of the brane. Since these are
coupled to the bulk metric perturbations of the AdS5, it
seems that the full set of perturbation equations must be
studied.

However, as it turns out, in our case one can study the
perturbations directly from the 4D brane point of view: it is
sufficient to write down the projected Einstein equations on
the brane as

G#$ � 
E#$; (18)

E#$ being the projected bulk Weyl tensor on the brane (see
[42]), and to perturb them. Equation (18) looks so simple
because there is no matter on the brane, just the tension
which is fine-tuned in order to cancel the bulk cosmologi-
cal constant, so that both disappear from the dynamics. The
only effective source term is then the projection of the bulk
Weyl tensor, which we parameterize as a fluid with energy
density 	% and pressure p% � 
	%=3 (E#$ is traceless).
Thus the system of perturbation equations is closed and can
be solved without reference to the 5D picture. Notice that
this happens because of the simplicity of the model at
hand: if we had some matter on the brane this would no
longer have been true.

In the end, the perturbation equations look exactly the
same as in the pure 4D scenario discussed in the previous
section and the same physical considerations about the
growth of perturbations are valid. So it seems that the
standard picture is confirmed: as R! RH, H ! T, and at
horizon crossing the typical modes in the thermal bath
become unstable. However their growth follows a power
law only, and thus there is not enough time for the insta-
bility to invalidate the whole picture.

Another possible 5D mechanism that could modify our
discussion and its conclusion about the saturation of the
entropy bounds is the interaction of the bulk Hawking
radiation with the brane. Since, as we have seen, the
temperature of the Hawking radiation diverges at the hori-
zon, one might have expected that at some point the
Hawking radiation pressure becomes so high that it pre-
vents the brane from falling into the BH. Perhaps the
Hawking radiation pressure could cause the brane to
bounce back and change its contraction into expansion or
cause it to float just above the horizon. We think that this is
unlikely. However, clearly the issue deserves further study,
especially in light of the fact that for b� 1 the tempera-
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ture of the Hawking radiation is also very large. For boxes
falling into BH’s the issue was debated extensively in the
context of the relationship between the GSL and entropy
bounds [36–41].

We would like to make a few observations about the
possible influence of the Hawking radiation on the motion
of the brane.

First, in AdS space the geometry provides a confining
environment for the radiation which is then in equilibrium
with the BH. Notice also that, unlike the pure
Schwarzschild case, here the equilibrium is stable. The
pressure on the brane results from the difference in the
force exerted on the two sides of the brane. If the system is
in thermal equilibrium and the brane is moving through the
radiation fluid, then the pressure on it depends on the
interaction of the brane with the radiation. If it is transpar-
ent, then the radiation does not exert any pressure on the
brane, and if it is opaque, then the radiation pressure can be
estimated by the pressure of a fluid at the Hawking
temperature.

The Hawking temperature at the position of the brane is
given by TH � T0=

�������������
H�Rb�

p
’ b
L

����������
H�Rb�

p . Substituting

H�Rb� � 1 �
R2
b

L2 �1 
 b4L4

R4
b
�, we see that as long as the dis-

tance of the brane from the horizon Rb 
 bL remains
finite, then TH 	 b=Rb 	 Tbrane. We then observe that the
Hawking radiation pressure is smaller by a factor of N
compared to the pressure on the brane, which in turn
determines the acceleration of the brane towards the BH.
We conclude that as long as the distance of the brane from
the horizon is not particularly small, the Hawking radiation
pressure is not likely to alter its motion significantly.

When the brane does get close to the BH it seems that
the Hawking radiation pressure can affect the motion of the
brane. However, it is not clear whether the fluid description
of the Hawking radiation is valid in the vicinity of the
horizon. The wavelength of a typical particle in thermal
bath at temperature T is �	 T
1, and the typical wave-
length of the Hawking radiation in our AdS-Schwarzschild
space-time is

�H�R� 	
�L
b

����������������������
R2

L2 

b4L2

R2

s
; (19)

where we have taken into account the behavior of the local
Hawking temperature as discussed above. On the other
hand the physical distance of a space-time point with radial
coordinate R from the horizon is

d�R� �
Z R

bL

��������������
gRR�x�

q
dx

�
L
2

log

"�
R
bL

�
2
�

������������������������
R
bL

�
4

 1

s #
: (20)

Notice that although gRR diverges near the horizon, d�R� is
always finite at finite R.
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Now observe that as one gets close to the horizon (i.e. for
R
 bL� bL), the following relation holds

�H�R� ! 2�d�R�; (21)

meaning that the typical wavelength �H becomes larger
than (or in any case, of the same order of magnitude as) the
physical distance from the horizon, thus implying that the
description of the Hawking radiation as a fluid becomes
inappropriate at this point. One could then argue that the
Hawking radiation forms mostly at distances d	 bL from
the black hole and larger, and that for smaller distances
there is no significant radiation pressure. This means that
Hawking radiation pressure cannot stop the brane from
falling into the BH as it approaches the horizon.

These issues were discussed in the context of falling
boxes most recently by Marolf and Sorkin [41], and pre-
viously by others. We conclude that the answer depends on
the detailed dynamics of the system.
IV. DISCUSSION AND POSSIBLE RESOLUTION

We have seen that a special value of the temperature
Tmax � MP=

�������
N

p
emerges in various contexts. We have

seen that such a value arises in four dimensional models as
the temperature at which entropy bounds are saturated, and
in five dimensional models as the effective induced tem-
perature on a brane propagating in AdS-Schwarzschild
space-time as it reaches the horizon of the bulk BH and
is about to disappear into it. We have also shown that in the
five dimensional picture the GSL is violated as the brane
falls into the BH.

We have presented some examples for the appearance of
this special value of the temperature, and have provided
arguments supporting its existence or that a change in the
description of equilibrium physics at this temperature is
required. We have not provided conclusive evidence as to
whether a specific physical mechanism is responsible for
enforcing such a maximal temperature, or whether one
exists at all. We have investigated several candidate effects,
but not been able to identify a single mechanism that is
efficient and quick enough to prevent the universe from
exceeding the limiting temperature nor to identify the
124015
required changes in the description of physics at this
temperature.

We list a few possibilities which we leave as unsolved
puzzles and interesting problems for future research:
(1) E
-7
ntropy bounds are wrong, and need to be modified
such that the limit on temperature disappears.
(2) T
he number of light fields N is fundamentally
limited, a fact which is well represented by entropy
bounds, and therefore considering the large N limit
N ! 1, as is done in the AdS/CFT correspon-
dence, is incorrect.
(3) E
ntropy bounds give the correct limiting tempera-
ture in their currently known form. Some enforcing
mechanism exists which is still unknown.
(4) T
he application of AdS/CFT correspondence in this
particular context is more complicated when the
brane approaches the horizon and falls into the
BH. When modified appropriately, for example, by
correctly taking into account the influence of the
Hawking radiation pressure or the growth of pertur-
bations or the effects of additional induced matter on
the brane, entropy bounds remain valid in their
currently known forms.
(5) B
oth the application of AdS/CFT correspondence in
this specific context and the currently known en-
tropy bounds need to be modified for temperatures
of about Tmax.
At this point in time we do not have a clear preference or
a clear indication from our calculations as to which of these
possibilities is correct. We hope that future research will
help to resolve the issues that we have discussed.
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