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Choptuik’s scaling in higher dimensions
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We extend Choptuik’s scaling phenomenon found in general relativistic critical gravitational collapse of
a massless scalar field to higher dimensions. We find that in the range 4 � D � 11 the behavior is
qualitatively similar to that discovered by Choptuik. In each dimension we obtain numerically the
universal numbers associated with the critical collapse: the scaling exponent � and the echoing period
�. The behavior of these numbers with increasing dimension seems to indicate that � reaches a maximum
and � a minimum value around 11 � D � 13. These results and their relation to the black hole–black
string system are discussed.
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I. INTRODUCTION

General relativity (GR) in higher dimensions (D> 4)
has been receiving increasing attention in recent years.
This is largely motivated by the phenomenological ‘‘brane-
world’’ and ‘‘large-extra-dimensions’’ scenarios that are
rooted in string theory, which is intrinsically higher dimen-
sional, involving 10 or 11 dimensions. But regardless, GR
in itself does not favor the 4D case especially; rather it is
independent of the dimension, and so without any addi-
tional reasons the dimension of spacetime may and should
be considered a parameter of the theory.

Adopting this point of view, one finds that certain prop-
erties and solutions of GR change qualitatively in higher
dimensions. In particular, black hole uniqueness breaks
down in D> 4. This implies the existence of black objects
with nonspherical horizon topologies. Examples include
the caged black hole/black string system in a spacetime
with compact extra dimensions, see [1] for a review, and
the rotating black hole/black ring configurations [2,3]. The
phase transitions between different horizon topologies
seem to lead to a compromise of cosmic censorship in
higher dimensions and to be accompanied by energy out-
bursts (see e.g. [4]). Moreover, there exist critical dimen-
sions above which the qualitative properties of the spoken
phase transition change [5–7].1

In this paper we study the critical collapse of a spheri-
cally symmetric massless scalar field in D-dimensional
spacetime, in search of similar nontrivial dimensional ef-
fects. The critical behavior of black hole formation is a
striking example of the surprising phenomena to be found
in gravitational physics. It is understood that in the dy-
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xample of the qualitative dependence of GR on
the chaotic behavior of the spacetime near a
ularity, discovered by Belinskii, Khalatnikov and
ifically, above the critical dimension DBKL 	 10,
comes nonchaotic, see the recent review [8].
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namical gravitational collapse of matter fields, initial con-
figurations with very low density will usually disperse to
infinity, while extremely dense clumps will collapse to
form a black hole. What happens in the intermediate case
between these two extremities is much less obvious. In
1992, Choptuik [9] studied this limiting case numerically,
modeling the collapsing matter as a spherically symmetric
configuration of massless scalar field coupled to gravity.
For each family of initial data (e.g. Gaussian, Lorentzian,
etc.), parameterized by an amplitude p, there is a critical
amplitude p�. If p > p� the final state is a black hole
(supercritical collapse), otherwise the field disperses leav-
ing behind empty flat space (subcritical collapse). The
following discoveries were made regarding the behavior
of this system near the threshold amplitude p� in 4D:
(i) I
-1
n supercritical collapse arbitrarily small black
holes are formed as p! p�. In this limit the black
hole mass M scales as M / �p� p��

�, with the
prefactor and p� characteristic of the specific fam-
ily of initial data. The exponent, however, is uni-
versal and independent of the shape of initial data.
Its numerical value is � ’ 0:374. Later it also was
discovered that in subcritical collapse the maximal
scalar curvature encountered before the field dis-
perses scales as Rmax / �p� � p��2� [10].
(ii) T
he critical solution itself is universal. Namely,
following a short transient stage, the spacetime
converges to a universal solution independent of
the initial data, remains such for a while, and then
either collapses or disperses, depending on whether
p > p� or not.
(iii) T
he critical solution is discretely self-similar.
Designating the critical solution (collectively for
the scalar field and the metric) by Z��r; t�, this
means that Z��r; t� 	 Z��re

�; te��, with the em-
pirically found � ’ 3:44. The field and metric
functions pulsate periodically with ever decreasing
temporal and spatial scales, until a singularity is
formed at the accumulation point, r 	 t 	 0.
 2005 The American Physical Society



TABLE I. The echoing period of the scalar field � and the
scaling exponent � in different dimensions. The error in �
represents the variation about the mean � measured on several
periods of oscillation. The error in � originates both from the
linear fitting and from the actual numerical errors in the mea-
sured scalar curvature. However it has been verified by conver-
gence analysis that the dominant error is in the fitting. The values
of � and � that we find forD 	 4; 6 agree well with the numbers
found in the literature.

D � �

4 3:37 � 2% 0:372 � 1%
5 3:19 � 2% 0:408 � 2%
6 3:01 � 2% 0:422 � 2%
7 2:83 � 2% 0:429 � 2%
8 2:70 � 3% 0:436 � 2%
9 2:61 � 3% 0:442 � 2%
10 2:55 � 3% 0:447 � 3%
11 2:51 � 3% 0:44 � 3%
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Similar results also were observed for other kinds of
matter and extensive literature has been written on the
subject. For a review see [11] and the references therein.2

There are several reasons why we find it interesting
to explore the critical phenomena in higher dimensions:
(i) The mysterious universal numbers that appear in critical
collapse, such as the scaling exponent and the echoing
period, are known only empirically. One may wonder if
it is possible to use the dimension as a probe that can
provide insights or hints into the origin of these numbers;
(ii) The Choptuik critical phenomena, or more precisely its
time-symmetric version, is related to the phase transition in
the black string/black hole system [14]. It might be pos-
sible to learn about the behavior of that system near the
merger point where the topology changes from that of a
black string to that of a black hole by better understanding
the higher-dimensional critical collapse scenario; (iii) The
massless scalar field collapse is probably the simplest
model of dynamical collapse in GR. It is worthwhile to
understand what kind of new features one can expect to
find there in higher dimensions.

To realize these goals we designed a numerical code that
evolves the spacetime and scalar field equations and allows
us to study the critical solution in different dimensions. As
is often the case in numerical analysis, we encountered
unexpected problems that demanded special treatment. In
addition to the familiar methods used in 4D like ‘‘con-
strained’’ evolution and mesh refinement, the code uses
analytical series expansion near the origin and ‘‘synthetic
friction’’ (or ‘‘smoothing’’) to handle the severe divergen-
ces appearing in higher dimensions. We employed this
code for 4 � D � 11.

In all our simulations we find that the near-critical
collapse proceeds in the discretely self-similar (DSS) man-
ner as in the 4D case. For each dimension we obtain the
(logarithmic) period of the pulsations � and the scaling
exponent �, which we define such that the dimension of
length is 
length� / jp� p�j

�. These results are summa-
rized in Table I. In the examined range of dimensions we
find that � decreases and � increases3 with D. While we
could not check this explicitly, since our numerical tools
did not take us further than D 	 11, we were tempted to
extrapolate our results beyond that. This extrapolation
seems to indicate that � reaches a minimum and � has a
maximum somewhere in between 11 � D � 13, see
Figs. 10 and 11. In any case, the dimensional dependence
of these variables is smooth (apparently lacking in diver-
gences). Moreover, � varies slowly with respect to D, and
2While a majority of authors do not go beyond 4D, Garfinkle
et al. [12] have obtained � and � in 6D and Birukou et al. [13]
got � in the critical scalar field collapse in 5D and 6D.

3There is some decrease in � for D 	 11 but we cannot
definitely determine if this reflects a physical behavior or is
caused by the escalation of numerical errors in higher
dimensions.
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the critical exponent for mass in D dimensions is �mass 	
�D� 3��, so as the dimension grows the mass of a black
hole forming above the threshold increases steeply with
p� p�.

In the next section we formulate our problem: we derive
the equations and define the variables. Then in Sec. III we
describe our numerical scheme. The results are presented
in Sec. IV. These and their relation to the black hole/black
string system is discussed in Sec. V. In the same section we
state some open questions.
II. EQUATIONS AND VARIABLES

We turn now to formulate the physical problem at hand.
In spherical symmetry, we describe the D dimensional
asymptotically flat spacetime in double-null coordinates
(u, v) by the metric:

ds2 	 ���u; v�2dudv
 r�u; v�2d�2
D�2; (1)

where d�2
D�2 is the metric on a unit SD�2 sphere and the

axis r 	 0 is chosen to be where u 	 v.
The action of the massless scalar field � minimally

coupled to gravity in D dimensions is given by

S 	
1

16�G

Z
R

�������
�g

p
dDx�

Z
gab@a�@b�

�������
�g

p
dDx:

(2)

The Einstein equations, Rab 	 8�G�;a�;b derived from
this action under the metric (1) are

r;uv 
 �D� 3�
r;ur;v 
 �2=4

r
	 0; (3)
-2
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�;uv
�

�
�;u�;v
�2 �

�D� 2��D� 3�

2

r;ur;v 
 �2=4

r2


 4�G�;u�;v 	 0; (4)

r;uu � 2
�;u
�
r;u 


8�G
D� 2

r�2
;u 	 0; (5)

r;vv � 2
�;v
�
r;v 


8�G
D� 2

r�2
;v 	 0; (6)

where the first two are hyperbolic equations of motion, and
the other two are constraints.

Variation of the action with respect to� yields the scalar
field equation of motion, �� 	 0, which expands to

�;uv 

D� 2

2

�;ur;v 
�;vr;u
r

	 0: (7)

Following Hamade and Stewart [15] we formulate the
problem as a set of coupled first order differential equa-
tions. Designating s �

����������
4�G

p
� we define

D1: w � s;u D2: z � s;v D3: f � r;u

D4: g � r;v D5: d �
�;v
�
:

(8)

Then the complete set of evolution equations is

E1: f;v 
 �D� 3�
fg
 �2=4

r
	 0;

E2: d;u �
�D� 2��D� 3�

2

fg
 �2=4

r2

 wz 	 0;

C1: f;u � 2
�;u
�
f


2

D� 2
rw2 	 0;

C2: g;v � 2dg

2

D� 2
rz2 	 0;

S1: z;u 

D� 2

2

fz
 gw
r

	 0;

S2: w;v 

D� 2

2

fz
 gw
r

	 0:

Some useful scalar quantities include the Ricci scalar
curvature, which is given by

R 	 �
8wz

�2 ; (9)

and the proper time of an observer at the axis,

T�u� 	
Z u

0
��u0; u0�du0: (10)

The supercritical collapse of a spherical distribution of
matter in D asymptotically flat dimensions results in the
formation of a D-dimensional Schwarzschild-Tangherlini
black hole, whose metric reads [16]

ds2 	 �f�r�dt2 
 f�r��1dr2 
 r2d�2
D�2;

f�r� 	 1 � �r0=r�
D�3:

(11)
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The ADM mass of the black hole is M 	 �D�
2�AD�2r

D�3
0 =�16�G� in terms of its Schwarzschild radius,

r0. AD�2 � 2�D=2�1=��D=2 � 1� is the area of a unit
SD�2 sphere and G is the D-dimensional Newton constant.

We define the critical exponent � such that jp� � pj�

has dimensions of length. Then it follows [10,12] that in D
dimensions the maximal curvature (having the dimension
of inverse length squared) achieved in a subcritical collapse
scales as Rmax / �p� � p��2� and the mass of the black
hole, forming in a supercritical collapse, behaves as �p�
p��

�mass where �mass � �D� 3��.

A. Initial data problem, gauge, and boundary
conditions

We specify the initial scalar field profile along an out-
going null surface u 	 ui 	 const, which we choose to be
ui 	 0. To complete formulation of the initial value prob-
lem we note that the choice of metric (1) is only unique up
to the redefinitions v0 	 $�v�, u0 	 %�u�. In order to fix
this residual gauge freedom we choose the area coordinate
r along the initial null surface u 	 0 as r 	 v=2 (this is
chosen to conform with the conventional definition of
characteristic coordinates in flat space, v 	 t
 r and u 	
t� r). In addition, we set � 	 1 at the axis on ui 	 v 	 0.
From here we can obtain all the other functions on the
initial hypersurface by integration from the origin.

Equations E1–E2 and S1–S2 are singular at the axis.
The physical solution is, however, perfectly regular there.
This enforces the following boundary conditions on the
scalar field and the metric functions along the axis r 	 0

g 	 �f 	
1

2
�; w 	 z; @rs 	 0; @r� 	 0:

(12)

The source terms which are singular at the axis are then
evaluated by applying l’Hospital’s rule.

The actual shape we choose for the initial configuration
of the scalar field is a Gaussian shell

s�v; u 	 0� 	 p exp
�
�

�
v� vc
'

�
2
�
; (13)

where vc and ' are constants and the amplitude p is the
aforementioned strength parameter of the initial data.
III. THE NUMERICAL SCHEME

Having laid out the framework, we proceed to describe
the numerical solution of the above equations. We con-
struct a grid in the u-v space as described in Fig. 1. The
primitive computational cell is square, with grid spacings
hv 	 hu 	 h. The initial ingoing wave is specified on an
outgoing hypersurface of constant u, which is stored as a
horizontal line in our grid, see Fig. 1 . Supposing we know
the solution along an outgoing hypersurface u� h then d
and z are propagated to u using the equations E2 and S1
-3
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FIG. 1 (color online). The domain of integration. At any mo-
ment, in addition to the current outgoing hypersurface L0, we
keep two preceding levels L1 and L2. Boundary conditions
involving @=@r are implemented using three-point derivatives
along the shown diagonal line. Mesh refinement is illustrated in
the topmost rows. The smoothing of z (or d) near the axis at a
point marked by a cross is done using the values of z (or d) at
points on the past light cone of that point marked with circles.

4Methods other than the trapezoidal rule can give another
factor, which is still proportional to D, so for large D’s the
difference between the discrete and the analytical formulas
increases anyway.
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correspondingly. Then we integrate the equations S2, E1,
C2, D2, D4, and D5 from the axis outward along u to get
w, f, g, s, r, and �, respectively. Note that we use what is
called ‘‘constrained evolution,’’ namely, the constraint C2
is used in the evolution. This algorithm is iterated until
either the domain of integration is entirely covered (in the
subcritical case) or a black hole forms (in a supercritical
collapse). The remaining equations are not used directly
(but are used to determine the boundary conditions) in this
scheme, but they must be satisfied by the solution. We
monitor the equations D3 and C1 and verify that they are
indeed satisfied to a prescribed precision during the
evolution.

We use the fourth order Runge-Kutta algorithm to solve
all equations. At every moment in addition to the solution
along the line currently being solved (L0 at u) we keep in
memory the solution on the two preceding levels: L1 at u�
h and L2 at u� 2h. Without being too memory consuming,
this makes the fourth order Runge-Kutta algorithm more
elegantly applicable and also helps us to implement the
axis boundary conditions as sketched in Fig. 1. The size of
the domain is chosen such that the vmax 	 umax point is
located just beyond the accumulation point.

A. Series expansion and smoothing near the axis

The basic scheme described above works well for col-
lapse in D 	 4; 5, but in higher dimensions the code be-
comes unstable. Moreover, for D> 5 this scheme is
unstable even in flat space, where only the wave equations
124005
S1 � S2 are solved (with constant g 	 �f 	 1=2). This
instability clearly arises near the axis where r is small and
the discretization errors in evaluating the sources are
amplified. To illustrate what happens near the origin let
us consider the wave equation S2 in flat space. Say we
are solving for w along a u 	 const ray at the grid
point, labeled 1, next to the axis, labeled 0. First we
rewrite the wave equation as w;v 
 
�D� 2�=2�wr;v=r 	

�D� 2�=4�z=r, where we used the flat space value
f 	 �1=2. Its formal solution is w�v1� 	 
�D�

2�=4�=rD=2�1
R
v1
v0
rD=2�2z�v0�dv0. Using e.g. trapezoidal

rule we get

w1 � w0 	
D� 2

8

h
r1
z1 � z0 
O�h3�; (14)

where we utilized the boundary condition (12), w0 	 z0.
Alternatively, approximating the integrand to linear order
in h by Taylor series about 0 we evaluate the integral
analytically to arrive at

w1 � w0 	
D� 2

D
�z1 � z0� 
O�h2�: (15)

Comparing (14) and (15) we learn that as D increases the
first term in the right-hand side of (14) (where r1 	 h=2 )
grows linearly and dominates while the right-hand side in
the analytical formula (15) barely varies. Hence the dis-
crete version (14) overestimates w1 by a factor4 propor-
tional to D, which clearly causes problems in higher
dimensions.

We employ the series expansion method around the axis
in equations S2 and E1 (the series expansion in E1 also
averts error amplification in E2) such that the sources in
these equations are evaluated at the axis. Then the propa-
gation of z and d in the u direction is executed as before but
with w and f obtained from the series expansion in all
evaluations of sources, required by the Runge-Kutta algo-
rithm. We determine the number of points near the origin
where the series expansion is required empirically for
every dimension. We found that optimally this number is
approximatelyD points. (For example inD 	 8 and for the
initial grid spacing of 10�3 this is done at nine grid points.)

Unfortunately it turns out that while the series expansion
prolongs the lifetime of the code before crashing, it is not
enough to render it completely stable. After trying several
other methods we ended up by adding an effective ‘‘fric-
tion’’ or smoothing in the u-propagated equations (E2 and
S1). Specifically, the value of the function z (or d) at a point
near the axis is mixed with values extrapolated from
neighboring points on the past light cone of that point
(see Fig. 1). Symbolically, the value of some function y
-4
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FIG. 2 (color online). D 	 6: Contours of the scalar field
profile in slightly subcritical collapse. After a short transient,
the field oscillates, approaches the accumulation point where the
curvature is maximal, and then disperses.

5For the exactly critical solution it coincides with the
singularity.
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at the point marked by a cross in Fig. 1 is updated accord-
ing to yx 	 
ye 
 3!

P3
i	1 yi�=�1 
 3!�, where ye is the

value obtained from the evolution equation at the crossed
point, and yi�u� 	 2y�u� h� � y�u� 2h� are the extrapo-
lated values along the three directions lying in the past light
cone, designated by circles on the figure, and ! are the
weights. The weights given to the values obtained from the
evolution and from the extrapolation depend onD, but they
are essentially comparable. (For the above D 	 8 example
the weights ’ 1.) This procedure is in principle equivalent
to adding a diffusive term in the evolution equations. The
smoothing is applied at the same mesh points as the series
expansion.

This series-smoothing symbiosis is a very stable method
that satisfies the constraints D3 and C1. Its convergence
rate, however, is less than quadratic but never below the
linear. This is not a serious problem though. The typical
run time of our code on a PC-class computer with satis-
factory precision is on the order of minutes in spite of this
relatively slow convergence. We use that series-smoothing
method to obtain all the results reported in this paper.

B. Mesh refinement

Close to the threshold amplitude the solution becomes
DSS, i.e. it is self-replicating on decreasing scales. In order
to resolve this solution the grid spacing must be smaller
than the smallest feature in the solution. A static grid with
the spacing necessary for resolving several echoing periods
will require a large amount of memory and computation
time. This is very inefficient, and moreover unnecessary,
because in the early stages the scales involved are still
relatively large, so a very dense grid is superfluous to
resolve them. This makes dynamical grid refinement im-
perative for a realistically feasible scheme. While there
exist completely general adaptive mesh refinement tech-
niques [17], we use a far simpler method proposed by
Garfinkle [18].

The scheme relies on the fact that when u is incremented
the grid point that lies on the axis [at �v 	 u�] enters the
region v < u and effectively leaves the causal past of the
domain (see Fig. 1). Physically the ingoing ray is reflected
from the origin and becomes an outgoing ray, but grid
points which were assigned to it are lost. Thus the active
part of the grid becomes smaller at large u, exactly when
more resolution is needed for resolving the small features
of the critical collapse. This unhappy situation can be
prevented by interpolating the remaining points at v > u
back into the original array of points, restoring the original
resolution. Following Garfinkle [18] we do this only when
half of the grid points cross the axis. Since v 	 u on the
axis, we get a linear increase in the grid density and a linear
decrease in h with u.

We use the code to calculate the spacetime near the
critical solution in dimensions 4 � D � 11. For each D
we empirically locate the threshold amplitude p� by a
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simple binary search until p� is found with the desired
accuracy, which is typically one part in 1010 � 1015 (the
lowest is for D 	 11). A typical grid has initially between
2000 and 8000 grid points in the initial outgoing surface.
After several mesh refinements the step size h, initially of
the order of 10�3 to 10�4, is reduced by an order of
magnitude or two.

IV. RESULTS

In all dimensions that we examined, the near-critical
collapse of the massless scalar field proceeds in a manner
qualitatively very similar to the familiar 4D critical col-
lapse. For p < p� the curvature along the axis grows,
reaching some maximal value and then diminishes. In the
strong curvature region the scalar field shows echoing on
decreasing scales and subsequently disperses, see Fig. 2. In
the supercritical collapse the field again rings but the
curvature finally diverges and a black hole forms (the
formation of an apparent horizon is signaled by e.g. the
change of sign of g, which indicates that outgoing null rays
are tilted back to smaller radii and do not escape to
infinity).

In subcritical collapse we can define the ‘‘accumulation
point’’ to be the location of maximal curvature.5 We also
label the proper time (10) of an on-axis observer at the
accumulation point by T�. In Fig. 3 we plot the scalar field
on the axis as a function of log�T� � T�. After an initial
transient the field becomes periodic in log�T� � T�, which
is the attribute of DSS behavior in T. We were typically
-5
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FIG. 3 (color online). D 	 5: The scalar field on the axis as a
function of log�T� � T�. The period of osculations is � ’ 3:19.
The actual data is designated by points. The distance between the
points increases close to T� indicating the decrease of resolution.
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FIG. 5 (color online). D 	 7: Behavior of the curvature as the
accumulation point T� is approached. The evolution of the
curvature, like other metric functions, is accompanied by oscil-
lations. After each pulsation log�1 � R� increases by �. The
period of the last six echoes is approximately constant and equal
to �=2 ’ 1:41. Similar behavior (with a different echoing pe-
riod) is observed for other D’s as well.
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able to observe about four full ringings of the scalar field in
4D and about three for higher D. From this data the
oscillation period is computed, and so we get ��D�.

Naturally, not only the scalar field is periodic, but other
metric functions exhibit oscillations as well. In Fig. 4 we
plot � at the axis. It shows twice the number of oscillation
of the scalar field and decreases sharply on approaching the
accumulation point. The evolution of the scalar curvature
(9) along the axis is shown in Fig. 5 to oscillate with the
same period as the scalar field. Since all variables are
periodic, the quantity � can be derived from any one of
them. We found that �’s obtained from the various metric
0 2 4 6 8 10 12 14
−6

−5

−4

−3

−2

−1

0

−log(T
*
−T)

(gol
α

sixa
)

FIG. 4 (color online). D 	 5: The metric function � on the
axis decays fast as the accumulation point T� is approached. Its
evolution is accompanied by oscillations whose period ( ’ 1:6)
is half the period of the scalar field ( ’ 3:19).
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functions are consistent, see Table I for the values of � in
the verified dimensions.

We evaluated the critical exponent � from the behavior
of the maximal curvature Rmax in subcritical collapse, and
−25 −20 −15 −10
10

15

20

25

log(p
*
−p)

R(gol
xa

m
)

 
log(R

max
) = − 0.744*log(p

*
−p) + 4.18

Data
 Linear fit

FIG. 6 (color online). D 	 4: The maximal curvature on the
axis as a function of log�p� � p�. The slope of the linear fit
yields � 	 0:372 which agrees well with the value cited in the
literature ( ’ 0:374).
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FIG. 7 (color online). The logarithm of the maximal curvature on the axis as a function of log�p� � p� for different p’s in various
dimensions. The slope of the linear fit yields �2�. Some wiggles, characteristic of the DSS solutions, occur about the linear fit.

6Recall, we define � such that jp� p�j
� has dimensions of

length.
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not directly from the black hole mass scaling in supercriti-
cal collapse. The reason is that it is easier numerically to
follow subcritical collapse than to estimate the black hole
mass in supercritical collapse, because of difficulties in
determining the position of the apparent horizon. (In addi-
tion, as we demonstrate below, it becomes increasingly
difficult to find near-critical black holes in higher
dimensions.)

For each dimension we examined the maximal curvature
on the axis in several subcritical simulations. The result for
D 	 4 is plotted in Fig. 6 and the results for other D’s are
summarized in Figs. 7 and 8. It is evident from these plots
that in all dimensions the maximal curvature has a domi-
nant power-law scaling in p� � p, with the exponent given
by the slope of the linear fit in the figures. The critical
124005
exponent � is then the minus half of value of the slope.6 �’s
for different dimensions are listed in Table I.

In addition to the dominant power-law scaling there are
some residual ‘‘wiggles’’ or fine structure in the curvature’s
behavior, as can be seen in the figures. This was predicted
for DSS solutions and explored in [19,20] where it was
concluded that the ‘‘wiggling’’ period is �=�2��. To illus-
trate this, we subtract from the measured Rmax the domi-
nant power-law dependence and plot the result for D 	 8
in Fig. 9. By reflection about the horizontal axis the data is
reorganized to have the doubled period. In all dimensions
-7
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FIG. 8 (color online). The logarithm of the maximal curvature
on the axis as a function of log�p� � p� in 11D. Because of small
number of wiggles and their large amplitude, the linear fitting
approach fails to accurately estimate the slope. In this case we
employ the fact that the period of wiggles ( ’ 2:85) is equal to
�=�2�� and use this to find � ’ 0:44 from the more accurate �.
This approach is seen in lower dimensions to be consistent with
the regular way to obtain �.

4 6 8 10 12 14
2.4

2.6

2.8

3

3.2

3.4

D

∆

FIG. 10 (color online). �, including the errorbars, vs the
spacetime dimension D. The solid line designates a second
degree polynomial fitting, the dotted lines show the 95% pre-
diction bounds. The speculative extrapolation to higher dimen-
sions suggests that � reaches a minimum at D ’ 12.
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we find the wiggling period to agree well with the theo-
retical prediction, �=�. This is a nontrivial test for the
numerically computed � and �. Alternatively, since usu-
ally we can get � with somewhat higher precision, � can
be computed from the wiggles period. This is what we do
in the D 	 11 case because in this case the linear fitting
approach does not yield a very accurate result, see Fig. 8.
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FIG. 9 (color online). D 	 8: Normalized plot of log�Rmax� 

2� log�p� � p� (stars) and a sine wave (solid line). The period of
wiggles is about 6.18 and it agrees well with theoretical pre-
diction �=� ’ 6:22.
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V. DISCUSSION

Let us now discuss the dimensional dependence of �
and �. We find that in the examined range of D’s the
echoing period ��D� is a decreasing function of dimen-
sion, as shown in Fig. 10. The observed dimensional de-
pendence is well behaved in the sense that nothing in this
plot forebodes that � will suddenly blow up. Assuming
that this regularity continues (otherwise, a discontinuity in
� will mark a phase transition) we add, in the same figure,
a second order polynomial fitting and continue it slightly
beyond the last data point. This extrapolation indicates that
� might have a minimum7 at about D ’ 12.

Our computed ��D� increases up toD � 10 but forD 	
11 it appears to decrease, although the errorbar is consis-
tent with a constant or even slightly increasing value (see
Fig. 11). This apparent decrease in �might be due to a loss
of numerical accuracy, but we are led to suspect the pos-
sibility that this is a true physical effect. This is suggested
by the behavior of �. Let us analyze these two possibilities
in more detail.

What could be the numerical cause for an underestima-
tion of �? In our scheme the threshold amplitude p� can be
obtained with somewhat decreasing accuracy as the dimen-
sion grows. Unfortunately our evaluation of � relies heav-
ily on the value of p�; the abscissa in Figs. 6–8 is
7We do not address the details of this fitting since it has
indicative aims only. Yet, one must bear in mind that the robust-
ness of fitting is judged by the allowed variation of the fitting
coefficients that still confines the fit within the errorbars. The
proposed (quadratic) fit is significantly better in that sense than
all other polynomial fits, making other behaviors than a mini-
mum in � possible but less favored.
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FIG. 11 (color online). � and �mass, with the errorbars, as a
function of the spacetime dimension D. The dominant dimen-
sional dependence of �mass 	 �D� 3�� is essentially linear
increase due to the factor D� 3, which masks the rather subtle
variation of �. The solid line designates a fourth order poly-
nomial fit based on the data points in the range 4 � D � 10 (the
� value for D 	 11 is not used). The dotted lines show the 95%
prediction bounds. The extrapolation for larger D’s indicates the
existence of a maximum somewhere in between 10 � D � 12.

8The critical dimensions in this system are (i) Dmerger 	 10,
above which the local geometry near the merger point argued to
be conelike, and below which this conelike behavior is sponta-
neously broken[5,21], and (ii) D�second order� 	 13 above which
the phase transition becomes of second order [6,7].

9We note, however, that it is still not quite clear how to relate
the Choptuik solution emerging in the collapse situation to its
time-symmetric version studied in [14].

10It is known that a uniform black string becomes unstable [22]
if ‘‘too thin.’’ (Actually the relevant parameter is the ratio
between the Schwarzschild radius of the string and the radius
of the compact circle).
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� log�p� � p�. Therefore, the quality of the linear fits in
these figures and hence � depends acutely on how well we
estimate p�. The effect is such that if the accuracy of p� is
lowered from one part in 1014 to one part in 1010 a few
percents decrease in � is induced. This might well be the
reason we observe a downturn in ��D� at D 	 11.

Having identified the possible cause for a numerical
error in � at D 	 11, we can try to estimate this value
independently of the numerical calculation at this dimen-
sion. To this end, we fit a polynomial (this time of fourth
order) to � using only data from 4 � D � 10. By extrap-
olating this fit beyond the last (D 	 10) data point
we again observe a change in the trend: � seems to reach
a maximum at about D 	 11 and then decreases.
Remarkably, the numerically computed � value at D 	
11 complies with this extrapolated behavior. We tend to
interpret this as a hint that the observed downturn in ��D�
reflects the physical behavior of the system. This, as well as
the behavior of ��D�, marks the appearance of interesting
and nontrivial dimensional dependence associated with
critical collapse. (One might call the dimension where
this occurs a ‘‘critical dimension.’’) If so, this intriguing
phenomena clearly deserves better understanding.

While we stress that the allusion to the existence of a
special dimension where the behavior of the echoing/scal-
ing exponents changes are based on extrapolation, the
phenomenon itself is not entirely unexpected. The
Choptuik scaling, albeit in somewhat different circumstan-
ces, is conjectured to appear [14] in the black string/black
124005
hole system which does exhibit critical dimensions.8 In
that system, one considers black objects in a higher-
dimensional spacetime with one compact dimension,
RD�2;1 � S1. The known solutions are divided to black
string solutions (whose horizon wraps the compact direc-
tion and so has the S1 � SD�3 topology), and black hole
solutions (with spherical, SD�2, horizon topology) local-
ized on the circle. Consider the space of static solutions in
this system. The different phases of solutions (black hole
and black strings) are distinguished by an order parameter
in this space, and the transition between these phases
denotes a change in the topology of the solution. The local
analysis [14] in the vicinity of the topology-changing (or
merger) point shows that the geometry of the spacetime
there should resemble a time-symmetric version of
Choptuik’s critical solution. Formally, the dilaton field gtt
plays the role of the scalar field in Choptuik’s case, and the
equations are the same. In both cases the problem is
essentially two dimensional.

The similarity between these two systems lends insight
into what happens near the merger point: the geometry
here, as speculated in [14], is DSS and it resembles the
Choptuik critical solution.9 However, we would much
prefer to have information on the dynamic solutions de-
scribing this phase transition. An attempt to trace the fate
of an unstable string10 in 5D was undertaken in [23,24],
where it was shown that before the simulation crashes the
black string becomes extremely nonuniform with a very
long and thin neck. The numerical solution in [23,24] did
not find any fine structure of the critical behavior near the
pinch-off point. We believe that an improved code will
discover that the behavior close to the pinching is similar
to what happens in the axisymmetric near-critical collapse.
In the latter case, evidence was given in [25] that a
nonspherical mode appears causing bifurcations of the
axisymmetric clumps of collapsing matter, which is remi-
niscent of the situation expected in the black string
pinching.

In summary: we have obtained ��D� and ��D� for 4 �
D � 11 and found clues to the existence of a critical
dimension where the behavior of these functions qualita-
tively changes. However, clues are still only that. It is
important and interesting to improve the numerics and
discover what really happens beyond D 	 11. If extrema
-9
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are present in the functions ��D� and ��D�, what are the
trends of these functions for even higher dimensions? Will
they be discontinuous at some dimension, indicating a
phase transition? Alternatively, if these functions are con-
tinuous will they tend towards some constant values?
Perhaps � blows up at a certain dimension signaling that
the solution ceases to be DSS and becomes continuously
self-similar (conelike) beyond that dimension? We leave
124005
these questions open for future work, that will shed more
light on this stimulating phenomenon.

ACKNOWLEDGMENTS

We thank Barak Kol for turning our attention to this
problem, for many helpful discussions, and for sharing the
results of his manuscript [14] prior to publication. E. S. is
supported in part by an ISF grant.
[1] B. Kol, hep-th/0411240.
[2] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).
[3] R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101 101

(2002).
[4] B. Kol, hep-ph/0207037.
[5] B. Kol, hep-th/0206220.
[6] E. Sorkin, Phys. Rev. Lett. 93, 031 601 (2004).
[7] B. Kol and E. Sorkin, Classical Quantum Gravity 21, 4793

(2004).
[8] T. Damour, M. Henneaux, and H. Nicolai, Classical

Quantum Gravity 20, R145 (2003).
[9] M. W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).

[10] D. Garfinkle and G. C. Duncan, Phys. Rev. D 58, 064024
(1998).

[11] C. Gundlach, Phys. Rep. 376, 339 (2003).
[12] D. Garfinkle, C. Cutler, and G. C. Duncan, Phys. Rev. D

60, 104007 (1999).
[13] M. Birukou, V. Husain, G. Kunstatter, E. Vaz, and

M. Olivier, Phys. Rev. D 65, 104036 (2002).
[14] B. Kol, hep-th/0502033.
[15] R. S. Hamade and J. M. Stewart, Classical Quantum

Gravity 13, 497 (1996).
[16] F. R. Tangherlini, Nuovo Cimento 27, 636 (1963).
[17] M. J. Berger and J. Oliger, J. Comput. Phys. 53, 484

(1984).
[18] D. Garfinkle, Phys. Rev. D 51, 5558 (1995).
[19] C. Gundlach, Phys. Rev. D 55, 695 (1997).
[20] S. Hod and T. Piran, Phys. Rev. D 55, R440 (1997).
[21] B. Kol and T. Wiseman, Classical Quantum Gravity 20,

3493 (2003).
[22] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837

(1993).
[23] M. W. Choptuik, L. Lehner, I. Olabarrieta, R. Petryk,

F. Pretorius, and H. Villegas, Phys. Rev. D 68, 044001
(2003).

[24] D. Garfinkle, L. Lehner, and F. Pretorius, Phys. Rev. D 71,
064009 (2005).

[25] M. W. Choptuik, E. W. Hirschmann, S. L. Liebling, and
F. Pretorius, Phys. Rev. D 68, 044007 (2003).
-10


