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Phase transition patterns in relativistic and nonrelativistic multi-scalar-field models
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We discuss the phenomena of symmetry nonrestoration and inverse symmetry breaking in the context
of multi-scalar field theories at finite temperatures and present its consequences for the relativistic Higgs-
Kibble multi-field sector as well as for a nonrelativistic model of hard core spheres. For relativistic scalar
field models, it has been shown previously that temperature effects on the couplings do not alter,
qualitatively, the phase transition pattern. Here, we show that for the nonrelativistic analogue of these
models inverse symmetry breaking, as well as symmetry nonrestoration, cannot take place, at high
temperatures, when the temperature dependence of the two-body couplings is considered. However, the
temperature behavior in the nonrelativistic models allows for the appearance of reentrant phases.
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I. INTRODUCTION

The study of symmetry breaking (SB) and symmetry
restoration (SR) mechanisms have proved to be extremely
useful in the analysis of phenomena related to phase tran-
sitions in almost all branches of physics. Some topics of
current interest which make extensive use of SB/SR
mechanisms are topological defects formation in cosmol-
ogy, the Higgs-Kibble mechanism in the standard model of
elementary particles and the Bose-Einstein condensation
(BEC) in condensed matter physics. An almost general rule
that arises from those studies is that a symmetry which is
broken at zero temperature should get restored as the
temperature increases. Examples range from the traditional
ferromagnet to the more up to date chiral symmetry break-
ing/restoration in QCD, with the transition pattern being
the simplest one of going from the broken phase to the
symmetric one as temperature goes from below to above
some critical value and vice-versa.

However, a counter-intuitive example may happen in
multifield models, as first noticed by Weinberg [1] who
considered an O�N�� �O�N � invariant relativistic model
with two types of scalar fields (with N� and N compo-
nents) and different types of self and crossed interactions.
Using the one-loop approximation he has shown that it is
possible for the crossed coupling constant to be negative,
while the model is still bounded from below, leading, for
some parameter values, to an enhanced symmetry breaking
effect at high temperatures. This would predict that a
symmetry which is broken at T � 0 may not get restored
at high temperatures, a phenomenon known as symmetry
nonrestoration (SNR), or, in the opposite case, a symmetry
that is unbroken at T � 0 would become broken at high
temperatures, thus characterizing inverse symmetry break-
ing (ISB). Here, one could argue that SNR/ISB are perhaps
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just artifacts of the simple one-loop perturbative approxi-
mation and that the consideration of higher order terms and
effects like the temperature dependence of the couplings
could change the situation. To answer this question the
model has been reinvestigated by many other authors using
a variety of different methods with most results giving
further support to the idea (see, e.g., Ref. [2] for a short
review of SNR/ISB). For example, the SNR/ISB phe-
nomena were studied using the Wilson Renormalization
Group [3] and the explicit running of the (temperature
dependent) coupling constants has been taken into account,
showing that in fact the strength of all couplings increases
in approximately the same way with the temperature. This
analysis shows that once the couplings are set, at some
(temperature) scale, such as to make SNR/ISB possible, the
situation cannot be reversed at higher temperatures. Two of
the present authors have also treated the problem non-
perturbatively taking full account of the cumbersome
two-loop contributions [4]. The results obtained in
Ref. [4] were shown to be in good agreement with those
obtained using the renormalization group approach of
Ref. [3] and, therefore, also support the possibility of
SNR/ISB occurring in relativistic multiscalar field models
even at extremely high temperatures, where standard per-
turbation theory would break down.

The mechanisms of SNR/ISB have found a variety of
applications. For instance, in cosmology, where they have
been implemented in realistic models, their consequences
have been explored in connection with high temperature
phase transitions in the early Universe, with applications
covering problems involving CP violation and baryogen-
esis, topological defect formation, inflation, etc. [5,6]. For
example, the Kibble-Higgs sector of a SU�5� grand unified
theory can be mimicked by considering the case N� � 90
and N � 24 and has been used to treat the monopole
problem [5–7]. Setting N� � N � 1 the model becomes
invariant under the discrete transformation Z2 � Z2. The
latter version has been used in connection with the domain
wall problem [8]. Most applications are listed in Ref. [2]
-1  2005 The American Physical Society
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which gives an introduction to the subject discussing other
contexts in which SNR/ISB can take place in connection
with cosmology and condensed matter physics. These
interesting results from finite temperature quantum field
theory raise important questions regarding their possible
manifestation in condensed matter systems which can be
described by means of nonrelativistic scalar field theories
in the framework of the phenomenology of Ginzburg-
Landau potentials, like, for example, in homogeneous
Bose gases [9]. As far as these systems are concerned,
we are unaware of any applications or studies of analogue
SNR/ISB phenomena in the context of nonrelativistic sca-
lar field models.

In the context of condensed matter physics more exotic
transitions are well known to be possible and similar
phenomena to ISB/SNR have been observed in a large
variety of materials. One of the best known examples is
the symmetry pattern observed in potassium sodium tar-
trate tetrahydrate, KNa�C4H4O6�:4H2O, most commonly
known as the Rochelle salt, which goes [10], as the tem-
perature increases, from a more symmetric orthorhombic
crystalline structure to a less symmetric monoclinic struc-
ture at T ’ 255K. It then returns to be orthorhombic phase
at T ’ 297K, till it melts at T ’ 348K. It thus exhibits an
intermediary inverse symmetry breaking-like phenomenon
through a reentrant phase. Other materials which arose
great interest recently due to their potential applications
include, for example, the liquid crystals [11] and spin glass
materials [12], which exhibit analogous phenomena of
having less symmetric phases at intermediary temperature
ranges, known as nematic to smectic phases (ferro and
antiferro electric and magnetic like phases), and com-
pounds known as the manganites, e.g. �Pr;Ca;Sr�MnO3,
which can exhibit ferromagnetic like reentrant phases
above the Curie (critical) temperature [13]. Actually, in
the condensed matter literature we can find many other
examples of physical materials exhibiting analogue phe-
nomena of SNR/ISB. This same trend of the emergence of
reentrant phases also seems to include low dimensional
systems [14]. A discussion on these inverse like symmetry
breaking phenomena in condensed matter systems has
been recently summarized in Ref. [15]. Another motivation
for the present work is the growing interest in investigating
parallels between symmetry breaking in particle physics
(Cosmology) and condensed matter physics (the
Laboratory) as discussed by Rivers [16] in a recent review
related to the COSLAB programme. One of the most
exciting aspects of such investigation is due to the fact
that condensed matter allows for experiments which can, in
principle, test models and/or methods used in Cosmology.

Here, our aim is to analyze a nonrelativistic model
composed of two different types of multicomponent fields.
To investigate SNR/ISB we consider a model possessing an
U�1� �U�1� global symmetry, that is analogous to the
O�N�� �O�N � relativistic model studied in [1,3,4], for
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N� � N � 2, including both one and two-body interac-
tions in the potential. Further, by disregarding the bosonic
internal degrees of freedom, the model is considered as
representing a system of hard core spheres. In the analysis
that follows in the next sections we do not claim that this
simplified model described in terms of scalar fields with
local interactions will be simulating the phases behavior of
any of the condensed matter system cited in the previous
paragraph, but just that it suffices, as a toy model, to show
the generality of the possibility of emergence of reentrant
behavior in some simple condensed matter systems which
can be modeled by coupled multiscalar field models. The
chosen nonrelativistic model is also simple enough to show
the differences and analogies regarding the phenomena of
SNR/ISB which occurs on its relativistic counterpart.

We will show that, like in the relativistic case, SNR/ISB
can take place when thermal effects on the couplings are
neglected. We then consider these thermal effects by com-
puting the first one-loop contributions to the couplings
finding that, contrary to the relativistic case, SNR/ISB
cannot persist indefinitely at higher temperatures when
all symmetries are restored. In summary, the possible phase
transition patterns seem to be completely different for the
relativistic and nonrelativistic cases when the important
thermal effects on the couplings are taken into account.
This paper is divided as follows. In Sec. II we review the
original relativistic prototype model. In Sec. III we present
a similar nonrelativistic model of hard core spheres with
quadratic and quartic interactions. We show how SNR/ISB
cannot occur for such a system when the temperature
effects on the couplings are considered, but they can only
manifest through reentrant like phases, with symmetry
restoration always happening at high enough temperatures.
Our conclusions and final remarks are presented in Sec. IV.
An appendix is included to show some technical details of
the calculations.
II. THE EMERGENCE OF SNR/ISB PHENOMENA
IN THE RELATIVISTIC MODEL

At finite temperature the relativistic multiscalar field
theory was first studied by Weinberg [1] who found evi-
dence of SNR/ISB taking place at finite temperatures. On
his work, he considered a prototype model composed of
two types of scalar fields, � and  with N� and N 
components, respectively, which is invariant under the
O�N�� �O�N � transformation. Such a model has a
Lagrangian density which can then be written as
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The self-coupling constants �� and � and the cross-
coupling � in Eq. (2.1) are traditionally considered as all
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positive. However, it is still possible to consider � negative
in (2.1) provided the potential is kept bounded from below.
It is easily seen in this case that the boundness condition for
the model (2.1) requires that the couplings satisfy

�� > 0; � > 0; ��� > 9�2: (2.2)

The fact that the cross-coupling, �, is allowed to be
negative has interesting consequences as is seen from the
one-loop thermal mass evaluation. As usual, the tempera-
ture effects on the zero temperature mass parameters m2

i
(where i � � or  ) can be computed from the (thermal)
self-energy corrections �i�T� from which the thermal
masses, M2

i �T� � m2
i �0� � �i�T� are obtained. The ther-

mal masses have been first calculated with the one-loop
approximation [1] which, using the usual rules of finite
temperature quantum field theory (see e.g. [1,17]) and in
the high temperature approximation, m�=T;m =T � 1,
leads to the results
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where we kept only the leading order relevant thermal
contributions in the high temperature expansion of �i�T�,
which will be enough for the analysis that follows. Note
also that the zero temperature quantum corrections to both
masses and coupling constants are divergent quantities and
so require renormalization. This is done the standard way
by adding the appropriate counterterms of renormalization
in (2.1) (see also [4]). We are only interested in the thermal
quantities (that are finite) since the zero temperature quan-
tum corrections to masses and couplings can be regarded as
negligible as compared to the finite temperature contribu-
tions. In Eqs. (2.3) and (2.4), as well as in the relations
below, the mass parameters m� and m and couplings
��; �� and � are just to be interpreted here as the renor-
malized quantities instead of the bare ones. It is obvious,
from the potential term in the Lagrangian density (2.1), that
if one of the mass parameters m2

i is negative the O�Ni�
symmetry related to that sector is broken at T � 0:
O�Ni� ! O�Ni � 1�. Thermal effects tend to restore that
symmetry at a certain critical temperature, upon using
Eqs. (2.3) and (2.4), given by

Tc;i �
�
�12m2

i

�
�i

1

2

�
Ni � 2

3

�
� �

Nj
2

�
�1
�
1=2
: (2.5)

However, if m2
i < 0, Eq. (2.5) shows that for a negative

cross-coupling constant, � < 0, and for j�j> �i�Ni �
2�=�3Nj�, Tc;i cannot be real. In other words, the broken
symmetry is never restored (SNR). At the same time if
m2
i > 0 (unbroken O�Ni� symmetry at T � 0), but � < 0
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and j�j> �i�Ni � 2�=�3Nj� then from Eqs. (2.3), (2.4), and
(2.5), we can predict that, as the temperature is increased,
the symmetry will be broken at Tc, instead of being re-
stored (ISB). For example, let us suppose that � < 0 and

j�j>
��
N 

�N� � 2

3

�
: (2.6)

In this case the boundness condition assures that j�j<
� �N � 2�=�3N��. Then, if m2

 < 0 one has broken
O�N�� symmetry at T � 0, but M2

 �T� will eventually
become positive at the corresponding Tc; , given by
Eq. (2.5), restoring the symmetry. If m2

 > 0, then
M2
 �T�> 0 for all values of T and the model is always

symmetric underO�N �. On the other hand, ifm2
� < 0, our

choice of parameters predicts that the O�N�� symmetry is
broken at T � 0 and that it does not get restored at high
temperatures, a clear manifestation of SNR. At the same
time, if m2

� > 0, the O�N�� symmetry, which is unbroken
at T � 0, becomes broken at a T � Tc;�, which is a
manifestation of ISB. Obviously, which field will suffer
SNR or ISB depends on our initial arbitrary choice of
parameter values. Note that when � � 0 the theory decou-
ples and SNR/ISB cannot take place. In this case one
observes the usual SR which happens in the simple O�N�
scalar model.

An issue that arises, concerning the results discussed
above, is that the coupling constants are scale dependent in
accordance with the renormalization group equations.
Therefore, at high temperatures not only the masses get
dressed by thermal corrections but also the coupling con-
stants, so we must answer whether the intriguing phase
transitions patterns discussed above, for � < 0, can hold in
terms of the equivalent running coupling constants. This
issue was analyzed by Roos [3], who used the Wilson
Renormalization Group (WRG) to evaluate the �i�T� and
��T�. His calculations revealed that the strength of all
couplings increase, at high T, in a way which excludes
the possibility of SR in cases where SNR/ISB happen. He
also showed that the running of coupling constants with
temperature as predicted by the one-loop approximation,
as adopted in the present work, is robust up to very large
scales. In addition to that, the two-loop nonperturbative
calculations performed in Ref. [4] also support, from a
qualitative point of view, Weinberg’s one-loop results.

As one notices from the equations which describe the
thermal masses, Eqs. (2.3) and (2.4), the appearance of
SNR/ISB is directly related to the relation among the
different couplings when � < 0. It is then useful to define
the quantity

�i � �i
1

2

�
Ni � 2

3

�
� �

Nj
2
; (2.7)

which takes those relations into account. Then, in terms of
temperature independent couplings, the critical tempera-
-3



FIG. 1. The diagrammatic representation for the effective
coupling ���T� up to the one-loop level. The continuous lines
stand for the � propagators, while the dashed lines represent  .

(a)

(b)

FIG. 2. The diagrammatic representation for the effective
coupling � �T� up to the one-loop level.
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ture, Eq. (2.5), can be written as

Tc;i �
�
�12M2

i

�i

�
1=2
: (2.8)

One can easily see that SNR/ISB may occur when one1 of
the �i is negative.

Let us now check the robustness of SNR/ISB when the
effective, temperature dependent couplings are considered.
The thermal effects on all the three couplings, at the one-
loop order, are considered in terms of the corrections to the
four-point 1PI Green’s functions. All diagrams at the one-
loop level contributing to the effective couplings ���T�,
� �T� and ��T� are shown in Figs. 1–3, respectively. These
diagrams, with zero external momenta,2 are easily com-
puted at finite temperature (see for instance Refs. [3,18]).
Using again the high temperature approximation at leading
order, one obtains
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and
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where M0 is a regularization scale. In writing the above
equations we are once again assuming that the tree-level
1One of the main results of Ref. [4] states that SNR/ISB can
occur in both sectors, for some parameter values, a situation
which is not allowed at the one-loop level.

2Recall that those are contributions to the effective potential,
which generates all 1PI Green’s function with zero external
momenta.
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couplings in Eqs. (2.9), (2.10), and (2.11) are the renormal-
ized ones and we also are only showing the relevant high
temperature corrections. The same expressions were also
obtained by Roos in [3] (note however that different nor-
malizations for the tree-level potential as well as M0 �

T0; N� � N � 1 were used in that reference). In [3], the
numerical solution of the one-loop Wilson renormalization
group equations was also compared to the usual flow
equations for the constants obtained from the one-loop
(c)

FIG. 3. Diagrams contributing up to the one-loop level to the
effective cross-coupling ��T�. For convenience we have identi-
fied the processes: (a) � ! � , (b) ��!   and (c)   !
��.
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beta-functions and shown to agree well with each other up
to very high scales. The flow equations referring to the
perturbative effective coupling constants Eqs. (2.9), (2.10),
and (2.11) are expressed in term of the dimensionless scale
T=M0 [18] as

d���t�

dt
�
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8�2

�
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�N� � 8
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2
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; (2.12)
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and
123519
d��t�
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where t � ln�T=M0� was used. The solutions of the flow
Eqs. (2.12), (2.13), and (2.14), with initial conditions given
by the renormalized tree-level coupling constants, can also
be easily seen to be equivalent to the solutions for the set of
linear coupled equations,
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FIG. 4. The boundness condition, Eq. (2.2), expressed in terms
of the effective couplings, is shown in the vertical axis as the
ratio R�T� � ���T�� �T�=�3��T�

2. The temperature is shown
in units of the regularization scale M0 while N� � N � 2. The
tree-level values �� � 7 � 10�5, � � 5 � 10�4 and � �

�6 � 10�5 were considered.
The results obtained from the flow equations given
above, or equivalently from the solutions of coupled set
of Eqs. (2.15), are standard ways of nonperturbatively
resumming the leading order corrections (in this case the
leading log temperature dependent corrections) to the cou-
pling constants. For instance, Eq. (2.15) is exactly the
analogous procedure used for the one-field case for sum-
ming all ladder (1-loop or bubble) contributions to the
effective coupling constant. For the multifield case, the
perturbative approximation for (2.15) is again given by
Eqs. (2.9), (2.10), and (2.11), at the one-loop level. In our
case, these equations are useful to test how robust is the
phenomena of SNR/ISB and will be used below in our
analysis. Later, in the next section for the nonrelativistic
limit of Eq. (2.1), we will also construct the analogous of
these nonperturbative equations for the temperature depen-
dent effective couplings.

In terms of the effective temperature dependent cou-
plings, ���T�, � �T� and ��T� the quantity analogous to
Eq. (2.7) becomes

�i�T� � �i�T�
1

2

�
Ni � 2

3

�
� ��T�

Nj
2
; (2.16)

or, more explicitly, using Eqs. (2.9), (2.10), and (2.11),

�i�T���i

�
Ni�2
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�
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Nj
2
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i
�Ni�8��Ni�2�

288�2 ln
�
T
M0

�

��Nj
�Ni�2��i��Nj�2��j

96�2 ln
�
T
M0

�

��2
Nj�Ni�6�

32�2 ln
�
T
M0

�
: (2.17)

It is clear from the expressions for the effective couplings,
Eqs. (2.9), (2.10), (2.11), and (2.17), that for perturbative
values for the tree-level coupling parameters the predicted
results for SNR/ISB are very stable even for very large
temperatures (in units of the regularization scale M0)
which is due to the slow logarithmic change with the
temperature. As an illustration, consider, for example, the
tree-level coupling parameters that satisfy the boundness
condition Eq. (2.2), �� � 7 � 10�5, � � 5 � 10�4 and
� � �6 � 10�5 and N� � N � 2. For these values of
-5
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FIG. 5. The quantity ���T� as a function of the temperature
for the same values of parameters considered in Fig. 4.
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parameters Eq. (2.6) is satisfied and the one-loop equations
for the effective masses predict ISB or SNR, along the �
direction, for m2

� > 0 or m2
� < 0, respectively. Figure 4

shows that the boundness condition also holds true for the
effective temperature dependent couplings. Figure 5 shows
the quantity ���T�, defined by Eq. (2.16), which remains
negative for the whole range of temperatures considered,
thus predicting SNR/ISB along the � direction, in accor-
dance with the WRG results [3]. At the same time, � �T�,
shown in Fig. 6, remains always positive.

Note that the apparent almost constancy in a wide range
of temperatures seen from the Figs. 4–6, is only a conse-
quence of the effective couplings be only logarithmically
dependent on T and the very small values for the tree-level
couplings that we have considered. Had we taken larger
10-3 10-2 10-1 1 101 102 103
2.7331

2.7332
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2.7335

2.7336
 

∆ ψ
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) 
x 

10
4

T/M
0

FIG. 6. The quantity � �T� as a function of the temperature
for the same values of parameters considered in Fig. 4.
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values for the tree-level couplings, obviously would lead to
a much larger variation with increasing temperature.

Given the results shown above for the relativistic case,
we can conclude, therefore, that the inclusion of thermal
effects on the couplings does not exclude the possibility of
SNR/ISB occurring at high temperatures. We recall that
although the results were obtained with the one-loop ap-
proximation this feature does not seem to be an artifact of
perturbation theory as confirmed by the results produced
by nonperturbative methods, such as the Wilson
Renormalization Group procedure used in Ref. [3], as
well as the optimized perturbation theory used in
Ref. [4], where not only thermal corrections to the cou-
plings are accounted for but also to the masses (like in the
Schwinger-Dyson or gap equations for the masses).
III. SEARCHING FOR SNR/ISB PATTERNS IN THE
NON-RELATIVISTIC CASE

We now turn our attention to the analysis of similar
SNR/ISB phenomena displayed by the relativistic model,
given by the Lagrangian density, Eq. (2.1), in the case of its
nonrelativistic counterpart. Let us first recall some funda-
mental differences between relativistic and nonrelativistic
theories that will be important in our analysis. First, the
obvious reduction from Lorentz to Galilean invariance.
Second, it should be noted that in the nonrelativistic de-
scription particle number is conserved and so, only com-
plex fields are allowed. This second point will be
particularly important to us since, for the processes enter-
ing in the effective couplings shown in Figs. 1–3, only
those that do not change particle number (the elastic pro-
cesses) will be allowed (e.g. this selects the processes
(a) shown in Fig. 3 but not the (b) and (c), inelastic,
ones). Another important difference between relativistic
and nonrelativistic models concerns the structure of the
respective propagators. While the relativistic propagator
allows for both forward and backward particle propagation
(which is associated to particles and antiparticles, respec-
tively), the nonrelativistic propagator of scalar theories at
T � 0 only has forward propagation (see e.g. the discus-
sion in Ref. [19]). Note however that the structure of the
propagators (or two-point Green’s function) in a thermal
bath includes both backward and forward propagation [20],
which can be interpreted in terms of excitations to and
from the thermal bath (or, equivalently, emission and ab-
sorption of particle to and from the thermal bath [21]).

We should also say that, alternatively to the derivation of
the nonrelativistic analog of (2.1), we could as well con-
sider the relevant equations leading e.g. to the derived
effective couplings in the previous section and take the
appropriate low-energy limit for those equations. However
it is more practical, and indeed it is the procedure usually
adopted in atomic and low-energy nuclear physics, to start
directly from the nonrelativistic Hamiltonian or
Lagrangian densities. This is a one step procedure leading,
-6
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say, to the Feynman rules that can be applied to any other
quantity that we may be interested in computing, without
having first to compute the corresponding relativistic ex-
pressions and then working out the corresponding non-
relativistic. So, let us now initially consider the
nonrelativistic limit of the Lagrangian density given by
Eq. (2.1). This can be obtained by first expressing the fields
� and  in terms of (complex) nonrelativistic fields � and
� as [19,22,23]

�� ~x; t� �
1����������

2m�
p �exp��im�t��� ~x; t�

� exp�im�t���� ~x; t�; (3.1)
3Note that for equal masses there is the possibility of an
additional symmetric interaction term of the form ������2 �
�����2 in (3.3), however this term will not be relevant for our
analysis and conclusions since it can be absorbed in a redefini-
tion of the cross-coupling constant �, especially when we work
with densities, or averages of the fields, like in an effective
potential calculation.

123519
and

 � ~x; t� �
1����������
2m 

p �exp��im t��� ~x; t�

� exp�im t���� ~x; t�; (3.2)

where it is assumed that the fields � and � oscillate in time
much more slowly than exp�im�t� and exp�im t�, respec-
tively. By substituting (3.1) and (3.2) in (2.1) and taking the
nonrelativistic limit of large masses, the oscillatory terms
with frequencies m� andm can be dropped. The resulting
Lagrangian density in terms of �, � and complex con-
jugate fields becomes
L���;�;��;�� �
1

2m�
��im��@t���� � im����@t�� � jr�j2 � j@t�j2 �

��
16m2

�

�����2 �
1

2m�
��im �@t����

� im �
��@t�� � jr�j2 � j@t�j2 �

� 
16m2

 

�����2 �
�

4m�m 
����������; (3.3)
where we have assumed for simplicity, in the derivation of
the last term in (3.3), the cross-fields interaction term, that
m� � m .3 By further considering

j@t�j2 � 2m�Im��@t���;

j@t�j2 � 2m Im��@t�
��;

(3.4)

we can omit the terms with two time derivatives in
Eq. (3.3). So the Lorentz invariance in (3.3) is lost and
the nonrelativistic analogue of (2.1) is obtained. The inter-
action terms in Eq. (3.3) are the same as those obtained by
approximating the usual nonrelativistic two-body interac-
tion potentials by hard core (delta) potentials, e.g.,Z

d3x���x; t���x; t�V��x� x0����x0; t���x0; t�

! g���
��x; t���x; t�2;Z

d3x���x; t���x; t�V��x� x0����x0; t���x0; t�

! g���
��x; t���x; t�2;Z

d3x���x; t���x; t�V���x� x0����x0; t���x0; t�

! g����
��x; t���x; t�����x; t���x; t�:

(3.5)

The approximation of the two-body potential interac-
tions like in (3.5) is also commonly adopted in the descrip-
tion of cold dilute atomic systems, where only binary type
interactions at low energy are relevant. In that case, the
local coupling parameters g�; g� and g�� are also asso-
ciated to the s-wave scattering lengths ai [9], e.g., gi �
2�ai=mi. For nonrelativistic systems in general, besides
the two-body interaction terms like (3.5) (in the hard core
approximation) we can also include additional one-body
like interaction terms, e.g., "����, etc. This is the case
when we submit the system to an external potential (for
example a magnetic field). It can also represent an internal
energy term (like the internal molecular energy relative to
free atoms in which case the fields in the Lagrangian would
be related to molecular dimers). In models of supercon-
ductivity a constant one-body like interaction term repre-
sents the opening of an explicit gap of energy in the system.
In the grand-canonical formulation "i can represent chemi-
cal potentials included in the action formulation, so that
one can also describe density effects (in addition to those
from the temperature). In order to retain the symmetry
breaking analogies to the previous relativistic model
(2.1), and since our intention here is to keep the analysis
as general as possible, we shall also consider additional
one-body interaction terms for � and � while their precise
interpretation is left as open and will depend on the par-
ticular system Eq. (3.3) is intended to represent.

With the considerations assumed above, we therefore
take the following nonrelativistic Lagrangian model, that is
analogue to the relativistic model Eq. (2.1),

L���;�;��;�����

�
i@t�

1

2m�
r2

�
��"����

�
g�
3!

�����2���

�
i@t�

1

2m�
r2

�
�

�"�����
g 
3!

�����2

�g����������; (3.6)
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where we have expressed the derivative terms in their more
common form (by doing an integration by parts in the
action context). The numerical factors and signs in the
one and two-body potential terms in (3.6) have been chosen
in such a way so that the potential in (3.6) are analogous to
the one considered in (2.1). The coupling constants shown
in (3.6) are related to those in (3.3) by gi � 3�i=�8m

2
i �

(with i � �;�) and g � �=�4m�m�� while m� and m�

represent the (atomic) masses. In addition, notice that for
the nonrelativistic limit which leads to Eq. (3.6) to be valid,
one must keep T � mi. Since for nonrelativistic systems
in general, the masses mi are of order of typical atomic
masses, mi �O�1–100�GeV, and the typical temperatures
in condensed matter systems are at most of order of a few
eV, this condition will always hold for the ranges of
temperature we will be interested in below.

For multicomponent fields, Eq. (3.6) is the nonrelativ-
istic multiscalar model with symmetry U�N�� �U�N��
that is the analogue of the original relativistic model
Eq. (2.1). For simplicity, in the following we assume the
simplest version of (3.6) where N� � N� � 1, corre-
sponding to an U�1� �U�1� symmetric model. In this
case, by writing the complex fields in terms of real com-
ponents,

� �
1���
2

p ��1 � i�2�; � �
1���
2

p � 1 � i 2�; (3.7)

we see that the Lagrangian model (3.6) falls in the same
class of universality as that of Eq. (2.1) for the case of the
O�2� �O�2� symmetry. The extension to higher symme-
tries can be done starting from (3.6) but the case of simplest
symmetry involving the coupling of complex scalar fields
will already be sufficient for our study (physically, this
system may, for example, describe the coupling of Bose
atoms or molecules in an atomic dilute gas system).

Just like in the relativistic case, in the current application
we consider the "i, that appears in Eq. (3.6), as simple
temperature independent parameters for which thermal
corrections arise from the evaluation of the corresponding
field self-energies. Now, to make contact with the analo-
gous potential used in the prototype relativistic models for
SNR/ISB, we take the overall potential as being repulsive,
bounded from below. This requirement imposes a con-
straint condition analogous to the one found in the relativ-
istic case, g� > 0, g� > 0 and g�g� > 9g2. At a given
temperature, the phase structure of the model is then given
by the sign of "i�T� � "i � �i, where �i is the field
temperature dependent self-energy. In the broken phase
"i�T�< 0, while in the symmetric phase "i�T�> 0. The
phase transition occurs at "i�T � Tic� � 0. At the one-loop
level the diagrams contributing to the field self-energies are
the same as those in the relativistic case. The main differ-
ence is that the momentum integrals in the loops are now
given in terms of the nonrelativistic propagators for � and
�,
123519
Di�!n;q� �
1

�i!n �!i�q�
; (3.8)

where !n � 2�nT (n � 0;�1;�2; . . . ) are the bosonic
Matsubara frequencies and !i�q� � q2=�2mi� � "i. At the
one-loop level we then obtain (see appendix)

�i�T� � T
X�1

n��1

Z d3q

�2��3

�
2gi=3

�i!n �!i�q�

�
g

�i!n �!j�q�

�
; (3.9)

The sum in Eq. (3.9) can be easily performed and the
resulting momentum integrals lead to well-known Bose
integrals (see e.g. Ref. [24] and also the appendix for the
derivations of these equations). We then obtain the results

"��T� � "� �
2g�

3

�
m�T
2�

�
3=2

Li3=2�exp��"�=T�

� g
�
m�T
2�

�
3=2

Li3=2�exp��"�=T�; (3.10)

and

"��T� � "� �
2g�

3

�
m�T
2�

�
3=2

Li3=2�exp��"�=T�

� g
�
m�T
2�

�
3=2

Li3=2�exp��"�=T�; (3.11)

where Lin�zi� is the polylogarithmic function. Like in the
relativistic effective mass terms, in Eqs. (3.10) and (3.11)
we have once again limited to showing the temperature
dependent corrections coming from �i, omitting the diver-
gent (zero-point energy terms) contributions to the effec-
tive one-body terms (so the tree-level parameters in
Eqs. (3.10) and (3.11) are assumed to be already the
renormalized ones). Let us now consider the high tempera-
ture approximation, which in the nonrelativistic case is
valid as long as "i � T � mi. Then, one is allowed to
consider the approximation for the polylogarithmic func-
tions in Eqs. (3.10) and (3.11), Li3=2�exp��"i=T� �
(�3=2�, where (�x� is the Riemann zeta function and
(�3=2� ’ 2:6124. One can then write the two Eqs. (3.10)
and (3.11) in the high temperature approximation more
compactly, as

"i�T� ’ "i �
�
T
2�

�
3=2
(�3=2��NR

i ; (3.12)

where we defined the quantity �NR
i analogous to that of the

relativistic case,

�NR
i �

2

3
gim

3=2
i � gm3=2

j ; (3.13)

in terms of which we obtain the critical temperature for
symmetry restoration/breaking analogous to the relativistic
-8
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expression,

TNR
c;i � 2�

�
�"i

�NR
i (�3=2�

�
2=3
: (3.14)

Equation (3.14) shows that there are three interesting
cases which depend on the sign and magnitude of the cross-
coupling g. Taking "i < 0 and g > 0 one observes a shift in
the critical temperatures indicating that the transition oc-
curs at lower temperatures compared to the decoupled case
(g � 0). If g < 0 but jgj< �2=3�gi�mi=mj�

3=2 then the
transition occurs at higher temperatures. Despite these
quantitative differences symmetry restoration does take
place in both cases. Now consider for instance the case,
with "� < 0, where g < 0 but jgj> �2=3�g��m�=m��

3=2

(in this case, and assuming m� �m�, the boundness
condition assures that jgj< �2=3�g�). Under these condi-
tions, for the � field we have a similar situation as that for
the corresponding relativistic case studied in Sec. II,
where, Eq. (3.14) does not give a finite, positive real
quantity. This is a manifestation of ISB (for "� < 0, or
SNR, for "� > 0) within our two-field complex nonrela-
tivistic model being analogous to what is seen in the
relativistic case. At the same time the field � suffers the
expected phase transition at a higher Tc compared to the
g � 0 case. As in the relativistic case, which field will
suffer SNR/ISB depends on our initial choice of parame-
ters in the tree-level potential, so it is model dependent.
The SNR/ISB result as seen above in this nonrelativistic
model is however misleading, as we next show by consid-
ering the same phenomenon in terms of the effective,
temperature dependent, coupling parameters.

Physically, the possibility of SNR/ISB occurring at high
temperatures as predicted by the naive perturbative ap-
proximation, Eq. (3.12), is much harder to be accepted in
the nonrelativistic case (condensed matter) than in the
relativistic case (cosmology), which already seems to in-
dicate that the results here should be different when the
simple perturbative calculations are improved.

Following the analogy with the relativistic model calcu-
lation done in Sec. II, we next evaluate the temperature
effects on the nonrelativistic couplings.

The diagrams contributing to the effective self-
couplings g��T� and g��T�, at the one-loop level, are those
shown in Figs. 1 and 2, respectively, except that the s-
channel ones with internal propagators for fields different
from those in the external legs (the second one-loop dia-
grams in Figs. 1 and 2 made of vertices nonconserving
particles) are absent. For the effective cross-coupling g�T�,
as discussed at the beginning of this section, the diagrams
contributing at the one-loop level are the ones shown in
Fig. 3(a), corresponding to the particle number preserving
processes. Using (3.8) for the nonrelativistic field propa-
gators, the explicit expressions for the effective couplings
at one-loop order are found to be (see also the appendix)
123519
g��T� � g� �
g2

�

3

Z d3q
�2��3

1

2!��q�
f1 � 2n�!��

� 8)!�n�!���1 � n�!��g

� 3g2
Z d3q

�2��3
)n�!���1 � n�!��; (3.15)

g��T� � g� �
g2

�

3

Z d3q
�2��3

1

2!��q�
f1 � 2n�!��

� 8)!�n�!���1 � n�!��g

� 3g2
Z d3q

�2��3
)n�!���1 � n�!��; (3.16)

and

g�T� � g�
2g
3

Z d3q
�2��3

)fg�n�!���1 � n�!��

� g�n�!���1 � n�!��g

� g2
Z d3q

�2��3
f

!�

!2
� �!2

�

�1 � 2n�!��

�
!�

!2
� �!2

�

�1 � 2n�!��g: (3.17)

The numerical factors in Eqs. (3.15), (3.16), and (3.17) are
due to the symmetries of the diagrams and normalizations
chosen in Eq. (3.6). In the above equations, n�!� is the
Bose-Einstein distribution

The zero temperature contributions in Eqs. (3.15),
(3.16), and (3.17) are divergent and require proper renor-
malization. This is mostly simply done by performing the
momentum integrals in d � 3 � * dimensions and the
resulting integrals are all found to be finite in dimensional
regularization (when taking *! 0 at the end). The mo-
mentum integrals for the finite temperature contributions in
Eqs. (3.15), (3.16), and (3.17) can again be performed with
the help of the Bose integrals given in the appendix. We
can further simplify the equations by considering parame-
ters such as m� ’ m� � m, "� ’ "� � " and tempera-
tures satisfying "� T � m in which case the zero
temperature corrections to the couplings are negligible
compared to the finite temperature ones and can safely
be neglected. At leading order, in T, we then obtain the
results

g��T� ’ g� �
mT
12�

�������
2m
"

s
�5g2

� � 9g2� �O�"=T�; (3.18)

g��T� ’ g� �
mT
12�

�������
2m
"

s
�5g2

� � 9g2� �O�"=T�; (3.19)

and

g�T� ’ g�
mT
4�

�������
2m
"

s
g�g�

2g�

3
�

2g�

3
� �O�"=T�:

(3.20)
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Note from Eqs. (3.18), (3.19), and (3.20) that the effective
couplings in the nonrelativistic theory have a much
stronger dependence with the temperature than in those
in the equivalent relativistic theory, Eqs. (2.9), (2.10), and
(2.11). We therefore expect to see larger deviations at high
temperatures for the effective couplings as compared with
the same case in the relativistic problem (by high tempera-
ture we mean here temperatures larger than the typical one-
body potential coefficients in (3.6), but much less than the
particle masses, see above). It is also evident from the
analysis of higher loop corrections to the effective cou-
plings in the nonrelativistic model that all bubble-like
corrections contribute with the same power in temperature
as the one-loop terms, which can easily be checked by
simple power-counting in the momentum. A side effect of
this is the breakdown, at high temperatures, of the simple
one-loop perturbation theory applied here. Another symp-
tom is the apparent running of the effective self-couplings,
1 10 100
-1.0x10-18

-5.0x10-19

0.0

5.0x10-19

1.0x10-18

1.5x10-18

2.0x10-18
 

T (eV)

 g
Φ
(T)

 g
Ψ
(T)

 g(T)

FIG. 7. The nonrelativistic effective couplings as a function of
temperature (shown in units of eV).
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shown above, to negative values for sufficiently high tem-

peratures given by T * Tbreak � min�12�
���������������������
"=�2m3=2�

q
g�=

�5g2
� � 9g2�; 12�

���������������������
"=�2m3=2�

q
g�=�5g2

� � 9g2��. Never-
theless, it is easy to check that (for the parameters adopted
below) the results obtained by just plugging Eqs. (3.18),
(3.19), and (3.20) above into Eqs. (3.12) already show a
drastic qualitative difference between this simple improved
approximation and the naive perturbative evaluation given
by Eq. (3.12). It looks that for the nonrelativistic case SNR/
ISB is a mere artifact of perturbation theory. Intuitively,
this is already a rather satisfactory result which, as we will
show below, will be confirmed by a nonperturbative re-
summation of the bubble-like corrections. The resumming
of all leading order bubble corrections to the couplings can
again be done by solving the set of homogeneous linear
equations for g��T�; g��T� and g�T�,
g��T� � g� � g��T�
g�

3
I1�)"�� � 3g�T�gI2�)"��; g��T� � g� � g��T�

g�

3
I1�)"�� � 3g�T�gI2�)"��;

g�T� � g� g�T�
2g�

6
I2�)"�� � g�T�

2g�

6
I2�)"��g��T�

2g
6
I2�)"�� � g��T�

2g
6
I2�)"�� � g�T�gI3�)"�; )"��;

(3.21)

where we have defined the functions

I1�)"i� �
Z d3q

�2��3
1

2!i�q�
f1 � 2n�!i� � 8)!in�!i��1 � n�!i�g; I2�)"i� �

Z d3q
�2��3

)n�!i��1 � n�!i�;

I3�)"i; )"j� �
Z d3q

�2��3

� !j

!2
j �!2

i

�1 � 2n�!i� �
!i

!2
j �!2

i

�1 � 2n�!j�

�
:

(3.22)
One is now in position to investigate how thermal effects
on the effective nonrelativistic couplings manifest them-
selves in phenomena similar to SNR/ISB. First we show in
Fig. 7 some representative results for the effective inter-
actions obtained from the solutions of Eq. (3.21). The tree-
level parameters considered here are: g� � 2 �
10�15 eV�2, g� � 10�16 eV�2, g � �10�16 eV�2,m� ’
m� � 1 GeV and "� � "� � 1 neV. We note that all
couplings tend to evolve to zero at very high temperatures
as T gets closer tom. So, the apparent instability caused by
the fact that g��T� as well as g��T� could become negative
beyond some temperature, Tbreak, as suggested by
Eqs. (3.18) and (3.19), has disappeared completely when
the nonperturbative flow of the couplings are considered
(using the tree-level parameters given above and from
Eqs. (3.18) and (3.19), one would get Tbreak � 0:019 eV
(or �220K).

It is tempting, by looking at Fig. 7, to associate this to a
free model at high energies, however we must recall that
the nonrelativistic model, Eq. (3.6), will eventually no
longer be valid for such high values of temperature, in
which case it should be replaced by the original relativistic
model (in any case the model Eq. (3.6) should of course be
regarded as an effective model valid at low-energy scales
only).

In Fig. 8 we show the equivalent of Eq. (3.13) for the �
and � fields, �NR

� �T� and �NR
� �T�, respectively, given in

terms of the temperature dependent bubble resummed
-10
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couplings for the same tree-level parameters considered
above. We note that for the parameters considered �NR

� �T�
is initially negative and reverse sign at some temperature,
indicating that symmetry breaking at high temperatures
tends to happen in the � field direction, while the potential
in the � direction remains unbroken (actually, the tem-
perature where �NR

� �T� crosses zero, is close to the point of
a reentrant transition for �). �NR

� �T� however always
remains positive, which then points to no transition in the
� direction. These aspects are also clearly seen in the plot,
shown in Fig. 9, for the effective one-body term "��T�,
expressed in terms of the effective nonperturbative cou-
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FIG. 9. The nonperturbative effective one-body term "��T� as
a function of the temperature for the same values of parameters
used in Fig. 7. Both quantities are expressed in units of eV. The
arrows indicate the points of SB and SR, with an intermediary
ISB phase happening between the temperatures TSB

c < T < TSR
c .
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plings. In terms of the parameters considered, symmetry
breaking is seen to happen at a temperature T�SB�

c;� ’ 3:4 �

10�4eV (or �4K) while the reentrant phase (symmetry
restoration) happens at a temperature T�SR�

c;� ’ 1:4 �

10�2 eV (or �161K). In between these two temperatures
we see a manifestation of an ISB phase. In the � direction
there is no symmetry breaking or reentrant phases at any
temperature for the parameters considered.

In Fig. 10 we show a phase diagram for the system as a
function of the tree-level coupling g� and the temperature.
The thin horizontal line at g� � 10�16eV�2 illustrates the
reentrant transition (through an inverse symmetry break-
ing) shown in Fig. 9. All other parameters are the same as
considered above. Note that the condition of stability,
g�g� > 9g2, expressed in terms of the nonperturbative
and temperature dependent couplings, is always satisfied
at any temperature for the parameters considered for the
previous figures (the effective couplings g� and g� also
remain always positive, as is clear from Fig. 7 and previous
discussion).
IV. CONCLUSIONS

We have reviewed how symmetry nonrestoration and
inverse symmetry breaking may take place, at arbitrarily
large temperatures, in multifield scalar relativistic and
nonrelativistic theories. These counterintuitive phenomena
appear due to the fact that the crossed interaction can be
negative while the models are still bounded from below.
We have recalled that, in the relativistic case, SNR/ISB are
-11
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not a mere artifact of calculational approximations. We
have then set to investigate the possible SNR/ISB mani-
festation and consequences in a nonrelativistic U�N�� �
U�N�� scalar model of hard core spheres by considering
the simplest case, N� � N� � 1, which may be relevant
for condensed matter systems of bosonic atoms or
molecules.

Performing a naive perturbative one-loop calculation,
which includes only the first thermal contribution to the
self-energy, we have shown that, for negative values of the
crossed coupling, SNR/ISB can take place like in the
relativistic case. However, the manifestation of SNR/ISB
in condensed matter systems of hard core spheres seems to
be more counterintuitive than in the relativistic case where
the model may represent, e.g., the Higgs sector. With this
in mind we have investigated the explicit (temperature)
running of the nonrelativistic couplings. One first improve-
ment was to evaluate the perturbative one-loop thermal
corrections to the couplings which already indicate that
SNR/ISB do not seem to happen, at high temperatures, for
the nonrelativistic case. Next, we have resummed the
bubble-like contributions in a nonperturbative fashion.
This procedure fixed the instability problem related to the
possibility of gi�T� becoming negative as observed in the
calculation which considered only the simplest one-loop
corrections to the couplings. Our nonperturbative calcula-
tion also showed that the phase transitions happening in the
nonrelativistic case includes a continuous SB/SR pattern
characterized, at intermediate temperatures, by a reentrant,
continuous transition. Therefore, we can state as our major
result that, contrary to the relativistic case, SNR/ISB does
not seem to occur in the nonrelativistic model of hard core
spheres. Instead, reentrant like phenomena become pos-
sible, as our results have indicated.

Finally, it would be interesting to investigate SNR/ISB
in connection with the Bose-Einstein condensation prob-
lem and the present work gives some of the ideas and tools
needed for this task that we hope to pursue and report in a
future publication.
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APPENDIX: TEMPERATURE DEPENDENT
CORRECTIONS FOR THE NONRELATIVISTIC

MODEL

Here we give the main steps used in the evaluation of the
thermal masses and couplings for the nonrelativistic
model. Similar derivations for the relativistic model can
be found e.g. in Refs. [3,4,18].

The effective one-body terms "i�T� and the effective
couplings (two-body terms) for the nonrelativistic model
are most easily obtained directly from a computation of the
one-loop effective potential for the model Lagrangian
(3.6). The effective one and two-body terms will then be
identified with the appropriate derivatives of the effective
potential.

As usual in the computation of the one-loop potential,
we start by decomposing the fields � and � in (3.6) in
terms of (constant) background fields (which, without loss
of generality, can be taken as real fields) �0 and  0,
respectively, and fluctuations � and  , which in terms of
real components, become

� �
1���
2

p ��0 ��1 � i�2�; (A1)
� �
1���
2

p � 0 �  1 � i 2�: (A2)

When substituting Eqs. (A1) and (A2) in (3.6) we only
need keep the quadratic terms in the fluctuation fields for
the computation of the one-loop potential for the back-
ground fields �0 and  0. We then obtain the (Euclidean)
Lagrangian density in terms of �0 and  0,
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2
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2
 2

0�
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4!
 4
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g
4
�2

0 
2
0

�
1

2
- �M̂ �-�cubic and quartic interaction terms;

(A3)

where we have defined the vector - � ��1; �2;  1;  2� and
M̂ is the matrix operator for the quadratic terms in the
fluctuations,
M̂ �

�r2

2m�
� "� � g�

2 �
2
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g
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2
0 i@. g�0 0 0

�i@.
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2
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2
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2
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2
0

0BBBBB@

1CCCCCA:

(A4)

The partial time derivative in (A4) is over Euclidean time: @. � @=@., . � it. By performing the functional integration in
the quadratic fluctuations -, the one-loop effective potential Veff��0;  0� obtained from Eq. (A3) is given by
-12
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Veff��0;  0� �
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1

2
lndetM̂; (A5)

where the last term on the right-hand side of (A5) comes
from the functional integral over the components of -,
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and V is the volume of space. Expressing Eqs. (A6) and
(A4) in the space-time momentum Fourier transform form,
we then also obtain
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and
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From Veff��0;  0�, Eq. (A5), we now define the effective
one-body terms as

"��T� �
@2Veff��0;  0�

@�2
0

���������0�0; 0�0
; (A10)
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@ 2
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which then gives
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and
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The Eqs. (A12) and (A13) can also easily be expressed
in terms of the free nonrelativistic propagators D��!n;q�
andD��!n;q�. The sum over the Matsubara frequencies in
(A12) and (A13) are easily performed by using the identity
[17],
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; (A14)

where n�!� is the Bose-Einstein distribution,
n�!� �
1

e)! � 1
: (A15)

The momentum integrals in Eqs. (A12) and (A13) can be
expressed in terms of standard Bose integrals as follows
(see for example [24]). Consider the integral (where ! �
q2=�2m� � " and 0 � )")
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where we used the definition for the polylogarithmic func-
tion,

Li 2�z� �
X1
l�1

zl

l2
: (A17)

Another useful momentum integral that also can be ob-
tained from (A16) isZ d3q

�2��3
n�!��1 � n�!� �

�
m

2�)

�
3=2

Li1=2�e�)"�:

(A18)

We also have the results obtained from the polylogarithmic
functions in the high temperature approximation, "� T,
and that are used in the text,

Li 3=2�e
�)"� � (�3=2� � 2

��������
�
"
T

r
�O�"=T�; (A19)
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and

Li 1=2�e
�)"� �

��������
�
T
"

s
� (�1=2� �O�"=T�: (A20)

Using (A16) in Eqs. (A12) and (A13) we obtain the
results quoted in the text, Eqs. (3.10) and (3.11).

The two-body effective terms are also defined analo-
gously as

g��T� �
@4Veff��0;  0�

@�4
0
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; (A21)
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and
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From Eqs. (A5) and (A7) we then obtain for Eqs. (A21)–
(A23) the results
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; (A24)
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and
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The Eqs. (A24)–(A26) again can be expressed in terms
of the free nonrelativistic propagators D��!n;q� and
D��!n;q�, which can then be identified with the corre-
sponding one-loop diagrams that contribute here, depicted
in Figs. 1, 2, and 3(a). All sums over the Matsubara
frequencies in (A24)–(A26) are again evaluated with the
help of the identity (A14), from which we obtain the results
shown in Eqs. (3.15), (3.16), and (3.17).
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