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We obtain the equations of motion for cosmic strings in extensions of the 3 � 1 Friedmann-Robertson-
Walker (FRW) model with extra dimensions. From these we derive a generalization of the velocity-
dependent one-scale model for cosmic string network evolution which we apply, first, to a higher-
dimensional isotropic D� 1 FRW model and, second, to a 3 � 1 FRW model with static flat extra
dimensions. In the former case the string network does not achieve a scaling regime because of the
diminishing rate of string intersections (D> 3), but this can be avoided in the latter case by considering
compact, small extra dimensions, for which there is a reduced but still appreciable string intercommuting
probability. We note that the velocity components lying in the three expanding dimensions are Hubble
damped, whereas those in the static extra dimensions are only very weakly damped. This leads to the
pathological possibility, in principle, that string motion in the three infinite dimensions can come to a halt
preventing the strings from intersecting, with the result that scaling is not achieved and the strings
irreversibly dominate the early universe. We note criteria by which this can be avoided, notably if the
spatial structure of the network becomes essentially three-dimensional, as is expected for string networks
produced in brane inflation. Applying our model to a brane inflation setting, we find scaling solutions in
which the effective 3D string motion does not necessarily stop, but it is slowed down because of the
excitations trapped in the extra dimensions. These effects are likely to influence cosmic string network
evolution for a long period after formation and we discuss their more general implications.
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I. INTRODUCTION

There has been a recent resurgence of interest in cosmic
strings for both theoretical and observational reasons. Of
particular interest is the generic possibility that cosmic
strings can be produced at the end of an inflationary phase
in models of brane inflation [1,2]. The evolution of the
network of the strings created in these models can be very
different from the standard field theory case, thus providing
a potential observational window on superstring physics
[3–5]. On the observational side, there are perennial cases
of astrophysical phenomena for which cosmic strings have
been invoked as an explanation in the absence of some
more orthodox mechanism; recent examples are two pecu-
liar gravitational lensing events [6–9] but which need
further independent follow-up. However, expected im-
provements in observational data, particularly from high
resolution cosmic microwave background (CMB) experi-
ments and gravitational wave detectors, present us with the
very real prospect of detecting or constraining cosmic
strings over a wide range of predicted energy scales (see,
for example, [2,10]). Further theoretical motivation has
come from a recent phenomenological study of supersym-
metric grand unified theory (SUSY GUT) models [11],
which again found generic cosmic string production (for
all cases which solve the monopole problem).

It is the recent work on cosmic strings appearing in
higher-dimensional theories, such as brane inflation, which
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primarily motivates our present study. For spacetime di-
mension greater than four, strings no longer generically
collide, so that loop production will be highly suppressed.
Loops radiate away energy from the long string network,
so this suppression will result in a much higher density of
cosmic strings than in the usual 3 � 1-dimensional case.
Jones, Stoica and Tye [3] have estimated this enhancement
by using a three-dimensional one-scale model and intro-
ducing an intercommuting probability P< 1 to account for
the fact that strings generically miss each other due to the
presence of extra dimensions. They suggest that the en-
hancement on the energy density of the string network is of
order P�2, which can be orders of magnitude different than
the usual case.

This approach however does not take into account string
velocities in the extra dimensions. In general, cosmic
strings are subject to the constraint that the average veloc-
ity squared of string segments must be less than 1=2. Thus
the fact that strings are moving in the extra dimensions will
slow down their apparent three-dimensional motion. One
might naively expect that velocities in the infinite dimen-
sions will be redshifted by the expansion, while velocities
in the compact dimensions will not if these dimensions are
static. Hence there is the cosmologically dangerous possi-
bility that velocities in the extra dimensions will accumu-
late and dominate while string motion in the three infinite
dimensions will come to a halt. This can occur before
SUSY breaking, when the fields corresponding to the string
position in the extra dimensions are expected to become
massive. However, if 3D string motion stops for long
enough in the early universe, then the strings would irre-
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versibly dominate the energy density of the universe mak-
ing a subsequent hot big bang model impossible. Thus we
need to go beyond the simple analysis presented to date in
order to gain a better quantitative understanding of cosmic
string evolution in higher-dimensional spacetimes, notably
taking into account the important role of velocities in the
extra dimensions.

String evolution in three spatial dimensions has been
studied by various authors. Kibble [12] described string
networks by a single length scale, the ‘‘correlation length,’’
and showed that it evolves towards a scaling solution in
which it stays constant with respect to the horizon size.
Bennett [13,14] later modified this ‘‘one-scale’’ model
with similar conclusions, subject to a condition on the
efficiency of small loop production. The existence and
stability of this scaling solution was verified by numerical
simulations [15,16]. These studies also revealed new phys-
ics at smaller scales, in particular, the accumulation of
significant small-scale structure on strings, which results
in loop production at much smaller scales than initially
thought.

To try to incorporate small-scale structure in analytic
models, a number of different approaches have been at-
tempted. These include a ‘‘kink-counting’’ model [17,18],
a functional approach [19], a ‘‘three-scale’’ model [20] and
a ‘‘wiggly’’ model [21]. Including small-scale structure
in analytical models comes with the cost of introducing
several extra parameters, which need to be fixed by
simulations.

However, the large-scale properties of string networks
can be quantitatively described by the velocity-dependent
one-scale (VOS) model [22–24], which does not suffer
from this problem. By introducing a variable rms string
velocity, the VOS model extends its validity from the
friction dominated regime at early times, through the
matter-radiation transition to � domination at late times,
thus describing the complete cosmological history of string
networks. Though it does not directly model small-scale
structure, it provides a ‘‘thermodynamic’’ large-scale de-
scription of cosmic string evolution, which agrees remark-
ably well with high resolution numerical simulations.

The purpose of this paper is to extend the VOS model to
spacetimes of higher dimension. Although strong motiva-
tion is provided by brane inflation, where the extra dimen-
sions are small and stabilized, we intend to keep the
discussion as general as possible to include time-varying
extra dimensions, as, for example, in a �D� 1�-
dimensional Friedmann-Robertson-Walker (FRW)
universe.

The paper is organized as follows. In Sec. II we discuss
cosmic string dynamics in a FRW spacetime with isotropic
and flat (but possibly expanding) extra dimensions.
Starting from the Nambu-Goto action in this spacetime
we derive the equations of motion as well as an expression
for the energy of a cosmic string network. In Sec. III we
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derive the averaged equations describing the evolution of
cosmic strings in that �D� 1�-dimensional spacetime.
After we briefly review the 3 � 1 VOS model, we extend
it to D� 1 dimensions and comment on some qualitative
features of solutions. In Sec. IV we consider possible
application of this extradimensional VOS (EDVOS) model
to the case of brane inflation and discuss the dependence of
the results on various parameters as, for example, the in-
tercommuting probability of strings. We conclude in
Sec. V. Finally, there is an appendix where we derive
approximate formulas for the momentum parameters of
the �D� 1�-dimensional VOS model.
II. COSMIC STRING DYNAMICS IN HIGHER
DIMENSIONS

We consider a cosmic string propagating in a D�
1-dimensional spacetime with metric g�� ��; � � 0;
1; 2; . . . ; D�. In the limit that its thickness is much smaller
than its radius of curvature, the string can be regarded as a
one-dimensional object with a world history described by a
two-dimensional spacetime surface, the string world sheet

x� � x�����; � � 0; 1: (1)

The dynamics is given by the Nambu-Goto action

S � ��
Z ��������

��
p

d2� (2)

where � is the string tension and � is the determinant of
��� � g��@�x�@�x�, the pullback metric on the world
sheet.

The equations of motion for the fields x� obtained from
this action are given by

r2x� � �����
��@�x

�@�x
� � 0 (3)

where ���� is the (D� 1)-dimensional Christoffel symbol

���� � 1
2g
���@�g�� � @�g�� � @�g��� (4)

and r2x� the covariant Laplacian of the world sheet fields
x� given by

r2x� �
1��������
��

p @��
��������
��

p
���@�x��: (5)

By varying the action with respect to the background
metric g�� we obtain a spacetime energy-momentum ten-
sor

T���
1�������
�g

p �
Z
d2�

��������
��

p
���@�x

�@�x
���4��x��x������:

(6)

We wish to study the evolution of cosmic strings in a
FRW universe withD� 3 extra dimensions. For simplicity
we choose the following metric, allowing toroidal compac-
tification of the extra dimensions:
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ds2 � N�t�2dt2 � a�t�2dx2 � b�t�2dl2 (7)

where t � x0, x � xi with i � 1; 2; 3 and l � x‘ with ‘ �
4; 5; :::; D. The lapse function N�t� allows us to switch from
cosmic [N�t� � 1] to conformal time by simply setting
N�t� � a�t�. For stabilized compact extra dimensions,
b�t� is set to a constant and the coordinates l are periodi-
cally identified. Alternatively, the scale factor b�t� of the
‘‘‘ space’’ can be set to a�t� for a generalized �D�
1�-dimensional FRW universe or even more generally be
allowed to evolve independently of a�t�.

The action (2) is invariant under world sheet reparamet-
rizations, which we can use to choose a gauge. In flat space
either the ‘‘light-cone’’ ��0 � t; �1 � z� t� or the ‘‘con-
formal’’ gauge � _x 	 x0 � 0; _x2 � x02 � 0� is usually chosen
but for cosmological backgrounds it is convenient to work
in the gauge

�0 � t; _x 	 x0 � 0 (8)

where dots and primes denote derivatives with respect to
the timelike and spacelike world sheet coordinates �0 and
�1, respectively. By choosing this gauge we identify space-
time and world sheet times, while we impose that the
vector _x is perpendicular to the string tangent, thus repre-
senting the physically observable velocity.

In this gauge the equations of motion (3) in the space-
time (7) are

_� � �N�2�
�
N _N � a _a

�
_x2 �

�
x0

�

�
2
�
� b _b

�
_l2 �

�
l0

�

�
2
��
(9)

�x�

�
2 _a
a

� N�2

�
N _N � a _a

�
_x2 �

�
x0

�

�
2
�

� b _b
�
_l2 �

�
l0

�

�
2
���

_x �

�
x0

�

�
0

��1 (10)

�l�
�
2 _b
b

� N�2

�
N _N � a _a

�
_x2 �

�
x0

�

�
2
�

� b _b
�
_l2 �

�
l0

�

�
2
���

_l �
�
l0

�

�
0

��1 (11)

where � is a scalar, the energy per unit coordinate length,
defined by

� �
�x02��������
��

p �

�
a2x02 � b2l02

N2 � a2 _x2 � b2 _l2

�
1=2
: (12)

The energy-momentum tensor (6) for the metric (7) in the
same gauge becomes

T�� �
1

Na3bD�3�
Z
d��� _x� _x� � ��1x0�x0��

� ��D��x� x��; t�; l� l��; t�� (13)

where we have defined � � �1.
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The energy of the cosmic string can be defined from T��

as

E �
Z
t�const

���
h

p
n�n�T

��d3xdD�3l (14)

where n� � �N; 0� is the normal covector to the spacelike
D-dimensional surface t � const and h is the determinant
of the metric on that surface related to the volume element
by

1

D!

������
jgj

q
���1�2...�D

n�dx�1 ^ dx�2 ^ . . .dx�D

�
���
h

p
d3xdD�3l: (15)

With Eq. (13) the energy becomes

E�t� � N�t��
Z
�d�: (16)

Note that when l � 0 andN�t� � a�t�, Eqs. (9)–(11) and
(16) reduce to the usual equations of motion and energy
definition for a string in an FRW universe written in
conformal time [25]. These have been used to study cosmic
string evolution in an expanding �3 � 1�-dimensional uni-
verse. In the next section we discuss cosmic string evolu-
tion in higher dimensions, based on Eqs. (9)–(11) and (16).
III. COSMIC STRING EVOLUTION

In this section we discuss the cosmological evolution of
strings. After reviewing some basic methods and results in
three dimensions, we derive the equations describing the
evolution of cosmic strings in a higher-dimensional space-
time with metric (7), giving particular attention to the case
of an isotropic, (D� 1)-dimensional FRW universe
[b�t� � a�t�], and that of stabilized extra dimensions
b�t� � const. Starting from Eqs. (9)–(11) and (16) we
write down a higher-dimensional extension of the VOS
model [24], which has been successfully used to provide an
analytic ‘‘thermodynamical’’ description of the basic prop-
erties of evolving cosmic string networks. Application to
cosmologically interesting cases is also discussed.

A. Basics: Evolution in 3� 1 dimensions

Monte Carlo simulations of cosmic string formation
after symmetry breaking phase transitions suggest that to
a good approximation the strings have the shapes of ran-
dom walks at the time of formation. Such ‘‘Brownian’’
strings can be described by a characteristic length L, which
determines both the typical radius of curvature of strings
and the typical distance between nearby string segments in
the network. On average there is a string segment of length
L in each volume L3 and thus the density of the cosmic
string network at formation is

$ �
�L

L3 �
�

L2 : (17)
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A heuristic picture of the evolution of the density of the
string network can be obtained as follows. Assuming that
the strings are simply stretched by the cosmological ex-
pansion we have $� a�t��2. This decays slower than both
the matter and radiation energy densities and so such non-
interacting strings will soon dominate the universe.

This picture changes when the effect of interactions is
taken into account. As the network evolves, the strings
collide or curl back on themselves creating small loops,
which oscillate and radiatively decay. Via these interac-
tions energy is lost from the network so that string domi-
nation can be avoided. Each string segment travels on
average a distance L before encountering another nearby
segment in a volume L3. Assuming relativistic motion and
that the produced loops have an average size L, the corre-
sponding energy loss is given by _$loops � L�4�L. The
energy loss rate equation becomes

_$ � �2
_a
a
$�

$
L
: (18)

Cosmic string networks are known to evolve towards a
‘‘scaling’’ regime in which the characteristic length L stays
constant relative to the horizon dH � t [12]. To see this we
set L � ��t�t and substitute (17) into (18) to obtain

_�
�

�
1

2t

�
2��� 1� �

1

�

�
: (19)

The parameter � is related to the scale factor a�t� by a�t� /
t� and is equal to 1=2 and 2=3 in the radiation and matter
eras, respectively. Equation (19) has a scaling solution

� � �2�1 � ����1 (20)

(which depends on cosmology through the expansion ex-
ponent �) demonstrating that the characteristic length
scales at a value L� t. If we start with a high density of
strings, intercommuting will produce loops reducing the
energy of the network, whereas if the initial density is low
then there will not be enough intercommuting and � will
decrease. Given enough time, the two competing effects of
stretching and fragmentation will always reach a steady
state and the scaling regime will be approached.

Equation (19) was derived on physical grounds and it
only captures the basic processes involved in string evolu-
tion, namely, the stretching and intercommuting of strings.
It does not take into account other effects like the red-
shifting of string velocities due to Hubble expansion.
However we can derive a more accurate evolution equation
for the string energy density based on the Nambu-Goto
action. By differentiating the energy (16) with respect to
time for the case of a 3 � 1 FRW universe and setting E /
$a3 we find

_$ � �

�
2

_a
a
� 2N�2a _ah _x2i

�
$ (21)

where we have defined
123513
h _x2i �

R
_x2�d�R
�d�

: (22)

We also introduce a phenomenological term to account for
energy loss through loop production

_$ loops � �
~cv$
L

(23)

where ~c is the loop production parameter, related to the
integral of an appropriate loop production function over all
relevant loop sizes [see Eq. (37) and the discussion above
it], and v the average velocity of intercommuting string
segments.

Using (17) and setting L � ��t�t as before, we obtain
the following equation, expressed in physical time t:

��1 d�
dt

�
1

2t

�
2��1 � v2� � 2 �

~cv
�

�
: (24)

Here we defined v, the average velocity of string segments,
by

v2 �

�
dx2

d(

�
�

R dx2

d( �d�R
�d�

(25)

with ( the conformal time [N�(� � a�(�].
Equation (24) is of the same form as (19) but has an extra

correction term �v2 accounting for redshifting of veloc-
ities due to cosmological expansion. It also includes the
parameter ~c, the value of which can be extracted from
numerical simulations and it is of order unity [23,25].

To solve (24) we also need an evolution equation for v.
This can be obtained by differentiating (25) with respect to
( and using the three-dimensional version of the equation
of motion for x (10). The result (expressed in physical time
t) is [22]

dv
dt

� �1 � v2�

�
k
R
� 2Hv

�
(26)

where H is the Hubble parameter _a=a � �t�1, R the
average radius of curvature of strings in the network and
k the momentum parameter (first introduced in [22]) de-
fined by

kv�1 � v2�

R
� h _x 	 u�1 � _x2�i (27)

u being the curvature vector defined by

d2x
ads2

� u �
1

R
û (28)

with ds �
������
x02

p
d� . For a Brownian network (and within

the VOS assumptions) the average radius of curvature R is
equal to the correlation length L � �t.

Equation (26) has a clear physical meaning: velocities of
string segments are produced by string curvature and
damped by the cosmological expansion. Together with
(24) it constitutes the VOS model, which has been dem-
-4
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onstrated to be in very good agreement with numerical
simulations [26]. It has the scaling solution

�2 �
k�k� ~c�

4��1 � ��
v2 �

k�1 � ��
��k� ~c�

(29)

in terms of the expansion exponent �, the loop production
parameter ~c and the momentum parameter k.

The momentum parameter is a measure of the angle
between the curvature vector and the velocity of string
segments and thus is related to the smoothness of the
strings. Slowly moving strings are smooth so the velocity
is more or less parallel to the curvature vector, resulting in a
value of k of order unity. As v increases towards relativistic
values the accumulation of small-scale structure renders
the strings wiggly. Velocities become uncorrelated to cur-
vature and k decreases. In particular it can be shown
analytically that for flat space, where v2 � 1=2, the mo-
mentum parameter vanishes for a wide range of known
solutions [21,23].

An accurate ansatz for the momentum parameter k has
been proposed in [24]

k � k�v� �
2
���
2

p

+
1 � 8v6

1 � 8v6
(30)

satisfying k�1=
���
2

p
� � 0.

Note the fact that v � 1=
���
2

p
in flat spacetime can be

shown analytically for closed loops only, but for long
strings it is observed in numerical simulations [25]. For
expanding or contracting spacetimes, v is less or greater
than 1=

���
2

p
, respectively. Hence for an expanding universe,

string velocities are subject to the constraint

v2 � 1
2: (31)

This fact will be important for our discussion of extra
dimensions.

B. Evolution in higher dimensions

We now proceed to derive macroscopic evolution equa-
tions for string networks in higher dimensions, based on
Eqs. (9)–(11) and (16), derived in Sec. II. The result is the
EDVOS model.

1. Evolution equation for �

We start by differentiating the energy equation (16) with
respect to time and using the equation of motion (9) for �.
This gives

_E � �
1

N�t�2

"
a _a

 
h _x2iE��N�t�

Z
��1x02d�

!

� b _b

 
h _l2iE��N�t�

Z
��1l02d�

!#
(32)

where we have defined the average of a function f along
the string as
123513
hfi �

R
�fd�R
�d�

: (33)

We then use E / $a3bD�3 and definition (12) for � to
obtain an evolution equation for the energy density of the
string network

�
_$
$
�

_a
a

�
2 � 2N�2a2h _x2i � N�2b2h _l2i

� N�2

�
b2l02

a2x02 � b2l02
�N2 � a2 _x2 � b2 _l2�

��

�
_b
b

�
�D� 4� � 2N�2b2h _l2i � N�2a2h _x2i

� N�2

�
a2x02

a2x02 � b2l02
�N2 � a2 _x2 � b2 _l2�

��
: (34)

We would normally proceed by assuming that the string
network at formation is Brownian with a characteristic
length L and writing

$ �
�L
LD

�
�

LD�1 : (35)

Unfortunately, since the metric we are considering is not in
general isotropic, we do not expect this Brownian structure
to be preserved by the evolution. The amount by which
string segments are stretched will depend on their orienta-
tion and as time passes, the random walk shape of strings
will be distorted by the anisotropic expansion. However,
there are two interesting special cases in which the strings
can remain Brownian. First, the case of isotropic expansion
[a�t� � b�t�], corresponding to a generalized �D� 1�-
dimensional FRW universe, and second, a situation where
the formation of the string network is localized on an
isotropic slice. The latter is the case, for example, in brane
inflation [27–31] where string formation takes place es-
sentially on a brane and there is an effective three-
dimensional description of the evolution. We will consider
both cases below.

(i) Isotropic case.—Starting with the isotropic case, we
set b�t� � a�t� in Eq. (34) to obtain an evolution equation
for the energy density of a noninteracting string network in
a (D� 1)-dimensional FRW universe

_$ � �
_a
a
��D� 1� � 2N�2a2h _x2i � 2N�2a2h _l2i�$:

(36)

As in the usual VOS model we can treat string interactions
by introducing a phenomenological loop production term.
In the three-dimensional case a string segment of size L,
the correlation length, is expected to travel a distance L
before encountering another segment and interacting with
it in a volume L�3. If the probability of such an interaction
producing a loop of length between ‘ and ‘� d‘ is given
by the scale invariant function f�‘=L� then the energy loss
due to loop production is [25]
-5
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_$loops � �
�v

L3

Z 1

0

d‘
L
f�‘=L� � �

v$
L

Z 1

0

d‘
L
f�‘=L�

� �
~cv$
L

: (37)

When the number of spatial dimensions D> 3, the string
segments will generically not interact after moving a dis-
tance L. In particular, if the strings have a thickness or
capture radius � (quantifying how close they need to be in
order to interact), then the probability of interacting after
moving a distance L (in time �t) per volume LD is

v�t
L

1

LD

�
�
L

�
D�3

: (38)

Note that this suppression is essentially the intercommut-
ing probability P which we shall further discuss later,
though here it is time dependent. The loop production
term is then

_$loops � �
�v
LD

�
�
L

�
D�3 Z 1

0

d‘
L
f�‘=L� � �

~cv$
L

�
�
L

�
D�3

� �
v$
L

~cD (39)

where we have defined

~c D � ~c
�
�
L

�
D�3

: (40)

Including this loop production term in Eq. (36) and setting
as in the three-dimensional case L � ��t�t, where t is the
physical time [N�t� � 1] we obtain

��1 d�
dt

�
1

�D� 1�t

�
���D� 1� � 2v2� �

v~cD
�

� �D� 1�
�
:

(41)

Here v2 � v2
x � v2

‘ where vx and v‘, the rms peculiar
velocities of string segments in the x and the ‘ directions,
respectively, are defined by

v2
x �

�
a2

N2
_x2

�
and v2

‘ �

�
b2

N2
_l2
�
�

�
a2

N2
_l2
�

(42)

since b�t� � a�t� in the isotropic case.
Note that since ~cD is proportional to L��D�3� �

��t���D�3�, the loop production term v~cD=� is explicitly
time dependent and no scaling solution � � const exists.
In particular, as time increases the loop production term
becomes smaller and smaller, reflecting the fact that strings
cannot find each other and interact in more than three
spatial dimensions. String evolution in this isotropic D�
1-dimensional case will be discussed further in Sec. III B 4.

(ii) Anisotropic case.—We now consider the case where
b�t� � a�t� in (7) but the string network is produced on a
FRW slice (the x space) of the spacetime. If the extra
123513
dimensions are larger than the correlation length and the
strings are allowed to move in the bulk after formation,
then the anisotropic expansion will distort their Brownian
structure and they will be more difficult to characterize
analytically. We leave this case for subsequent discussion
(see the final section). The situation is more straightfor-
ward if the extra dimensions are compactified at a size
smaller than the correlation length which we shall assume
from now on. We can then have an effective three-
dimensional description in which the strings will remain
Brownian due to isotropy in the three-dimensional FRW
space. The presence of the extra dimensions will reduce
the intercommuting probability in the effective three-
dimensional description, but we shall assume it is nonzero.
In principle, we can also have time-varying extra dimen-
sions, as long as their size remains much smaller than the
correlation length at all times. However, for simplicity we
only consider static extra dimensions and set b�t� � 1,
assuming stabilization by some unspecified mechanism.

For such cases we can substitute (17) in Eq. (34) to
obtain an effective three-dimensional evolution equation
for the energy density, which however takes into account
velocities in all D spatial dimensions. As before we also
introduce a loop production term �~cvx$=L and set L �
��t�t where t is the physical time [N�t� � 1]. We thus
obtain an effective evolution equation for ��t�

��1 d�
dt

�
1

2t

�
���2 � w2

‘� � �2 � w2
‘�v

2
x � �1 � w2

‘�v
2
‘�

� 2 �
~cvx
�

�
: (43)

In deriving this expression, we have assumed�
l02

a2x02 � l02
�N2 � a2 _x2 � _l2�

�

’

�
l02

a2x02 � l02

�
h�N2 � a2 _x2 � _l2�i (44)

and we have defined an orientation parameter

w‘ �

�����������������������������
l02

a2x02 � l02

�s
(45)

which quantifies the degree to which the strings lie in the
extra ‘ dimensions.

Note the differences between (43) and the analogous
equation for a 3 � 1 FRW universe (24). Comparing (43) to
(24) we see that the coefficients of dilution and x-velocity
redshift are modified by w2

‘, while there is an additional
term accounting for the redshifting of velocities in the
static ‘ space. We interpret this term as arising from the
conservation of momentum: an expanding string segment
which is transverse to the ‘ space and moves in the ‘
directions is slowed down because its effective mass in-
creases as the string is stretched in the x direction.
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Another important difference with the three-
dimensional case is that the loop production parameter ~c
is now suppressed by a factor of order ��=R‘��D�3�, where
R‘ is the compactification scale. If R‘ was greater than the
correlation length L, then the suppression factor would
instead be ��=L��D�3�, which is time dependent. Thus there
would be no scaling solution initially, as in the �D�
1�-dimensional FRW case we discussed above (see later
discussion for the asymptotic evolution in this case). Here
however, we assumed the compactification scale is much
less than the correlation length and so the suppression
factor can be treated as a constant intercommuting proba-
123513
bility. For a string-theoretic calculation of this probability
see Ref. [5].
2. Evolution equations for vx and v‘
As in the three-dimensional case we also need to know

how the average velocities of string segments evolve in
time. We begin by considering the case of static extra
dimensions b�t� � 1. Working in conformal time (
[N�(� � a�(�], we start by differentiating v2

x �R
_x2�d�=

R
�d� with respect to ( and using the equation

of motion (10) for the fields x. We obtain
vx _vx �
1

2

�
2

_a
a
�h _x2i2 � h _x4i� �

_a

a3 �h _x2i2h _l2i2 � h _x2 _l2i� �
_a

a3 h�h _x2i � _x2�l02��2i

�
� a

�
_x 	 u

�
1 � _x2 �

_l2

a2

��

� 2
_a
a
h _x2i � 2

_a
a
h _x4i �

_a

a3 h
_l2 _x2i �

_a
a

�
l02

a2x02 � l02

�
1 � _x2 �

_l2

a2

�
_x2

�
�

�
_x 	 x0

_x 	 _x0 � _l 	 _l0=a2

x02 � l02=a2

�
(46)
where u is the curvature vector defined by

d2�ax; l�
a2ds2

� u �
1

R
û (47)

with ds �
����������������������������
�x02 � l02=a2�

p
d� andR the radius of curvature,

equal to the correlation length L � �t for a VOS model
Brownian network.

The first three terms in Eq. (46) can be neglected be-
cause their only effect is to slightly modify the coefficients
of all the remaining terms in the expression (but for the
last). Numerical confirmation of the smallness of such
terms (in particular the first term in the case of conven-
tional FRW) was presented in [23]. The remaining terms
(again except the last one) are of the same form as in the
�3 � 1�-dimensional FRW case but now they also
include terms dependent on the velocity in the ‘ space
and an extra term which gives corrections of order
hl02=�a2x02 � l02�i.

The last term arises from the artificial splitting of the
D-dimensional velocity into an x and an ‘ part. It is absent
in the usual �3 � 1�-dimensional case because of the gauge
condition _x 	 x0 � 0. Here the gauge condition is _x 	 x0 �
_l 	 l0=a2 � 0 and thus _x 	 x0 does not identically vanish.
However, we expect its value along the string to change
sign randomly with no large-scale correlations. Hence,
averaged over the whole string network, _x 	 x0 is expected
to vanish so that we can neglect the last term of (46). This
was tested numerically for a three-dimensional FRW
model, splitting v into a xy and a z part and neglecting
the corresponding terms in the xy- and z-velocity equa-
tions. The evolution of the system using these equations
was found numerically to be very close to the correspond-
ing evolution using the full three-dimensional velocity
equation, with the scaling values of v and � agreeing to
three significant figures.
Again using the approximation (44) and switching to
physical time t, we can write (46) in a much more elegant
and useful form,

vx
dvx
dt

�
kxvx
R

�1 � v2� � �2 � w2
‘�Hv

2
x�1 � v2�

�Hv2
xv2

‘ (48)

where w‘ is given in (45) and kx is defined by

kxvx�1 � v2�

R
�

�
_x 	 u

�
1 � _x2 �

_l2

a2

��
: (49)

Similarly the evolution equation for v‘ reads

v‘
dv‘
dt

�
k‘v‘
R

�1 � v2� � �1 � w2
‘�Hv

2
‘�1 � v2�

�Hv2
‘v

2
x (50)

with k‘ defined in analogy to kx

k‘v‘�1 � v2�

R
�

� _l
a
	 u
�
1 � _x2 �

_l2

a2

��
: (51)

We see that, as may have been anticipated from (34), the vx
damping term is very different from that of v‘. To demon-
strate this we neglect w2

‘ corrections and note that Hv2
x in

(48) comes with a factor of �2 � 2v2
x � v2

‘� butHv2
‘ in (50)

has a factor of only �1 � 2v2
x � v2

‘� (which can cancel
almost to zero). This result will be important for the dis-
cussion in the next section.

We can also write down an evolution equation for the
total velocity v, by differentiating v2 � h� _x2; _l2=a2�i. The
result is simply the sum of (48) and (50) with

kxvx � k‘v‘ � kv (52)

where k has a similar definition to (49) and (51) involving
the dot product of � _x; _l=a2� with the curvature vector u.
-7
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Equation (52) follows from the linearity of the dot product
and the integral.

The momentum parameter k, as in the �3 � 1�-
dimensional case measures the angle between the curva-
ture vector and the velocity of string segments, thus pro-
viding a measure of the smoothness of the strings. For
smooth strings (the nonrelativistic limit) the velocity of
string segments is expected to be more or less parallel to
the curvature vector u corresponding to k of order unity.
For relativistic velocities however, small-scale structure
accumulates and the strings become wiggly. The parameter
k is then expected to approach zero.

Similarly, kx and kl provide a measure of the angle
between the curvature vector and the x velocity or the ‘
velocity, respectively. Therefore they encode two effects:
the wiggliness of the strings and the extent to which the
curvature vector u lies in the x or ‘ subspace.

Following [24] we split v � � _x; _l=a� into a ‘‘curvature’’
component vc produced during the last correlation time
and a ‘‘leftover’’ component vp, coming from previous
accelerations. We can then derive the following approxi-
mate formulae for k; kx and k‘, valid in the relativistic
regime (see the appendix)

k ’
1 � 8v6

�1 � 8v6�1=2�1 � 8�D� 2�v6�1=2
(53)

kx ’
vxc
vc

1 � 8v6

�1 � 8v6�1=2�1 � 8�D� 2�v6�1=2
(54)

k‘ ’
v‘c
vc

1 � 8v6

�1 � 8v6�1=2�1 � 8�D� 2�v6�1=2
: (55)

Note that for flat spacetime, the condition v2 � 1=2 still
holds and so k�1=

���
2

p
� � 0. For an expanding universe the

velocities of string segments are subject to the constraint

v2 � v2
x � v2

‘ �
1
2: (56)

Finally, we note that the velocity evolution equation in
the case of an isotropic (D� 1)-dimensional FRW uni-
verse [b�t� � a�t�] can be similarly found

dv
dt

� �1 � v2�

�
k
R
� 2Hv

�
: (57)

Note that this equation does not depend onw‘. However, in
the case b�t� � 1 [Eqs. (48) and (50)] there is an explicit
dependence on w‘, so we need to know how it evolves.
Unfortunately, the search for an evolution equation for w‘
is problematic as we discuss below.

3. The w‘ equation and higher order terms

Equations (43), (48), and (50) depend on the orientation
parameter w‘. We interpret this as the degree to which the
strings lie in the extra dimensions, that is, a hidden small-
123513
scale structure parameter. To make a fully closed system of
equations we also need an evolution equation for w‘.

In analogy to our treatment of string velocities, we can
try to obtain an evolution equation forw‘ by differentiating
its definition (45) with respect to (. Unfortunately this
produces terms of the form

_a
a
�hx02ih _x2i � hx02 _x2i�;

_a
a
�hx02i2 � hx04i�;

_a
a
�h _x2ihl02=a2i � h _x2l02=a2i�; etc:

(58)

These purely statistical terms are higher order and cannot
be easily determined. We found terms of similar kind in the
x-velocity equation (46), but in that case their only effect
was to ‘‘renormalize’’ the coefficients of other terms in the
equation. Here, however, there are no such terms to be
renormalized and the small differences between these un-
determined statistical terms contribute at leading order.

However, there are special cases in which an evolution
equation for w‘ is not needed. For example, the evolution
of a string network in a higher-dimensional FRW universe
is described by Eqs. (41) and (57), which do not depend on
w‘. In particular, isotropy suggests that string segments
would have equal probability of moving in any direction
and one would expect w‘ to be a constant, namely, the
square root of the ratio of the number of extra dimensions,
D� 3, over the total number of spatial dimensions D.

For the case of small w‘ we note that since it appears in
our equations only through factors of �1 � w2

‘� and �2 �

w2
‘� modifying various coefficients, its evolution in time

can be ignored as long as it stays small at all times. This is
conceivable in cases of FRW universes with static extra
dimensions, where the Hubble expansion of the three FRW
dimensions will tend to reduce the value of w‘.

Finally, in cases that none of the above are applicable, it
may be possible to find an ansatz forw‘ as a function of the
different velocity components, based on physical argu-
ments. We shall consider all three possibilities in the
following discussion.

4. General features of solutions

(i) Isotropic case.—We begin by considering the iso-
tropic case b�t� � a�t� corresponding to a �D�
1�-dimensional FRW universe. The energy density evolu-
tion is described by Eq. (41). Comparing this to the corre-
sponding equation in 3 � 1 dimensions (24) we see that the
effect of extra FRW dimensions is to modify two of the
terms in (24) by a factor of 2=�D� 1�. This reflects the fact
that in three spatial dimensions, the density of the network
is inversely proportional to the square of the correlation
length L [Eq. (17)], whereas in D> 3 dimensions it is
inversely proportional to the �D� 1�th power of L
[Eq. (35)]. The energy density in the higher-dimensional
case decreases faster, as there are more expanding dimen-
sions [also see Eq. (36)]. Of course there is a second, more
-8
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dramatic, effect related to string interactions. As noted in
III B 1, the loop production parameter ~cD in the higher-
dimensional case is much smaller, since it is harder for two
strings to find each other and intercommute in D> 4. In
fact, ~cD is proportional to ��t���D�3� and as a result
Eq. (41) does not have a scaling solution of the form � �
const. In particular, the loop production term becomes
smaller as time increases and � will always decrease, so
that strings will dominate the energy density of the uni-
verse. This can be seen in Fig. 1 where Eqs. (41) and (57)
with ~cD given by (40) have been solved numerically for
D � 4.

The asymptotic solution for L in a D-dimensional iso-
tropic model can be easily found to be

L
Lo

�

�
t
to

�
�D=�D�1�

�

�
a
ao

�
D=�D�1�

; v �
1���
2

p : (59)

Contrast this EDVOS model result with simple conformal
stretching of the string network L / a, obtained by assum-
ing v � 0. In the EDVOS model if we start with v� 1 we
still find L / a, but we also discover that v increases
according to v / t1��. Thus, conformal stretching is only
a transient solution, which will be followed by one with
–5

–4.5

–4

–3.5

–3

–2.5

–2

log(gamma)

–2 0 2 4 6

log(t)

FIG. 1. Evolution of � in a log-log plot for a string network
evolving in a �4 � 1�-dimensional FRW universe. The capture
radius � of the strings has been assumed to be equal to the initial
correlation length and the exponent parameter � has been set to
1=2. There is no scaling solution and at late times log��� has a
constant slope of �1=3, in agreement with our asymptotic
solution (59).
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non-negligible v. The corresponding scaling result is

L / t���D�2v2�1�=�D�1�� / a�D�2v2�1�=�D�1�;

v � const:
(60)

In flat space v2 cannot exceed 1=2 but in an expanding
space this upper value is somewhat reduced. Since the
horizon is expanding linearly in time, the correlation length
quickly falls behind and the cosmological expansion be-
comes irrelevant so that v2 ! 1=2. Equation (60) then
implies (59) asymptotically.

Note that (60) means that the string energy density
scales as $s / L��D�1� / a�D�1�2v2

, which decays slower
than radiation $rad / a��D�1�. Therefore, if this regime
persists for long enough, the strings will eventually domi-
nate the universe. The Friedmann equation for a string
dominated D� 1 FRW universe yields

a / t2=�D�2v2�1� � t�: (61)

Substituting in (60) we finally obtain

L / t2=�D�1�: (62)

The above reproduces and generalizes the recent findings
of Ref. [32] for D � 3. In particular, we recover noninter-
commuting strings in the linear scaling solution L / t (i.e.
setting P � 0 and D � 3).

In a situation where the extra dimensions are compacti-
fied, but expanding isotropically with scale factor a�t�, the
solution (59) implies that the correlation length will even-
tually catch up with the size of the extra dimension R‘ and
so the string network will become effectively three-
dimensional with ~cD � ~c��=R‘�

D�3 where L > R‘ / a.
Unlike the case of static compact dimensions, which we
will discuss, this change is insufficient to prevent string
domination over ordinary matter and radiation.

(ii) Anisotropic case.—We now turn to the case b�t� �
1. The relevant equations are (43) and (48)–(50) with kx
and kl approximately given by (54) and (55). To demon-
strate the general features of solutions, we can keep w‘ as a
constant parameter (in the range 0 � w‘ � 1), whose only
effect is to modify the coefficients of damping terms in
(43), (48), and (50). We will later consider a simplified
version of the EDVOS model, wherew‘ is not constant, but
is given by a physically motivated ansatz, which is a
function of v‘ and vx.

If the string network at formation is Brownian in D
dimensions, then the curvature vector u explores the x
space as well as the ‘ space and kx; k‘ are comparable.
Equation (48) for vx and (50) for v‘ have comparable
source terms but v‘ has a much weaker damping term.
Therefore, we expect v‘ to become much greater than vx
and eventually to drive vx to zero, because of the constraint
v2
x � v2

‘ � 1=2. We conclude that expansion of the x space
together with the fact that the ‘ space is not expanding will
halt string motion in the x space. This can be verified
-9
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FIG. 2. Velocity evolution for a Brownian network in D spatial
dimensions, three of which are expanding. The expansion
strongly redshifts the velocities in the expanding dimensions
(vx), resulting in domination of the extradimensional velocities
(v‘). The strings will stop moving in the expanding dimensions.
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FIG. 3. Velocity evolution for a Brownian network formed on a
FRW slice. The curvature vector lies in the space of the three
expanding dimensions, so there is no source for the extradimen-
sional velocities v‘. They are given by their initial condition,
redshifted weakly by the expansion. The three-dimensional
velocity vx will not vanish but it can be significantly smaller
than in the purely three-dimensional case v ’ 0:7.
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numerically (Fig. 2) by solving (48) and (50) with the
approximations vxc=vc ’ vx=v and v‘c=vc ’ v‘=v in
(54) and (55). These are valid approximations in both the
nonrelativistic and relativistic limits, as long as the curva-
ture vector explores all D spatial dimensions. Thus the
strings in this case will soon become noninteracting and,
if this regime were to last long enough, dominate the
universe irreversibly. However, there are two important
caveats in this case, namely, that anisotropic expansion
would soon distort the simple Brownian network structure
and that the intercommuting probability for a string net-
work in D spatial dimensions would be small and decreas-
ing (as discussed above). For compact extra dimensions,
this regime will end when the correlation length becomes
larger than the compact dimension L > R‘, after which
point the evolution becomes effectively three-dimensional
(we will return to this point later).

The situation is different if the curvature vector effec-
tively lies in the x space, as may be the case in brane
inflation (see next section) where the formation of the
string network is constrained on an effectively �3 �
1�-dimensional FRW slice. In this case the dot product u 	
_l is negligible and thus k‘ is much smaller than kx.
Equation (50) has essentially no source term. We expect
to see vx > v‘ with v‘ given by its initial condition,
weakly damped according to Eq. (50). This was verified
numerically (Fig. 3) by setting vxc=vc ’ vx=v, as before,
and v‘c=vc � 1. The effect of increasing v‘c=vc was also
considered. It was found that there is a critical value of
v‘c=vc ’ 0:15 for which the scaling values of vx and v‘
become equal. Above this critical value v‘ eventually
dominates and we return to the previous regime, with k‘
123513
and kx comparable. In particular, for v‘c=vc ’ 0:5, v‘ soon
reaches a ‘‘relativistic’’ value, driving vx to zero. It may
seem that if the strings are free to explore the extra dimen-
sions after formation we may run into the same problems
we had before, namely, a practically zero intercommuting
probability and the loss of the Brownian structure of the
string network. However, the extra dimensions can be
small and compact, in which case the probability of inter-
commuting can still be appreciable and the network is to a
good approximation Brownian in three dimensions.

Finally we consider the effect of varying the parameter
w‘. We find that � is insensitive to changes inw2

‘ between 0
and 0:2 but is reduced by approximately 20% forw2

‘ � 0:5.
On the other hand v‘ depends on w‘ more strongly. In
particular, changingw2

‘ from 0 to 0:01 increases the scaling
value of v‘ by approximately 0:5% but a further increase of
w2
‘ to 0:1 increases v‘ typically by 30% (this does not

strongly affect vx, which is approximately equal to��������������������
1=2 � v2

‘

q
). As a result, the effective three-dimensional

behavior of the evolving network is insensitive to the value
of w2

‘, at least when it is smaller than 0.1 or so. There is a
critical value of about 0.2 above which the sign of the
damping term in Eq. (50) becomes positive and v‘ begins
to increase. This apparently unphysical effect signifies the
fact that the constant w‘ approximation breaks down for
relatively large values of w‘. In the following we discuss a
simplified version of the extradimensional VOS model
with w‘ given by a function of v‘ and vx, where this
unphysical behavior does not occur.
-10
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5. A simplified model

We can obtain a simplified version of Eqs. (43), (48), and
(50) by expressing w‘ as a function of v‘ and vx. String
gradients in one direction are produced by velocities in the
same direction so one would expect the network to achieve
a sort of equipartition between velocities and gradients in
the extra dimensions. This motivates the ansatz

w2
‘ �

v2
‘

v2 (63)

which mathematically corresponds to� _l2

a2 _x2 � _l2

�
�

�
l02

a2x02 � l02

�
: (64)

With this substitution, Eqs. (43) and (48)–(50) become

��1 d�
dt

�
1

2t

�
�
�
2 � 2v2

x �
v2
‘

v2

�
� 2 �

~cvx
�

�
(65)

vx
dvx
dt

�
1

t

�
kxvx
�

�1 � v2� �

�
2 � 2v2

x �
v2
‘

v2

�
�v2

x

�
(66)

v‘
dv‘
dt

�
1

t

�
k‘v‘
�

�1 � v2� �

�
1 �

v2
‘

v2

�
�1 � 2v2��v2

‘

�
:

(67)

These three equations describe the macroscopic evolution
of a Brownian network of strings, produced in a three-
dimensional FRW slice, which are then free to explore the
extra dimensions. In order for the Brownian structure to be
maintained [so that Eq. (65) is valid] the extra dimensions
need to be compactified at a size smaller than the initial
correlation length at the time of formation.

Note that the unphysical behavior leading to the change
of sign of the damping terms in the v‘ evolution equation
(which is a result of the fact that the constant w‘ approxi-
mation is not valid for large w‘) is now absent from
Eq. (67). The only way the damping terms can change
sign is if v2 exceeds 1=2, which is not allowed by the
constraint (56). Similarly the damping terms in Eq. (66)
cannot change sign either.

We can now solve (65)–(67) together with (54) and (55)
for kx and k‘. Since we are considering the case where the
structure of the network at formation is essentially three-
dimensional, the curvature vector lies mainly in the x
space, so that k‘ � kx [equivalently v‘c=vc � 1 in
Eq. (55)]. The solutions are qualitatively the same as the
corresponding constant w‘ solutions mentioned above.
This is because w2

‘ � v2
‘=v

2 is small (and decreasing
with time) so its effect in Eqs. (65)–(67) is only to slightly
modify coefficients of order unity. We will discuss these
solutions in more detail in the next section where we will
apply the model to brane inflation.
123513
IV. APPLICATION TO BRANE INFLATION

Recently there has been much activity in trying to derive
models of cosmological inflation from string theory [27–
31,33–40], in which there are a large number of scalar
fields that can potentially serve as inflatons. One of the
most interesting scenarios (especially from the point of
view of cosmic string production) is brane inflation [27–
31], where the role of the inflaton field is played by the
distance between two branes or a brane and an antibrane.
The branes are initially relatively displaced and move
towards each other due to an attractive potential arising
from the exchange of bulk Neveu-Schwarz–Neveu-
Schwarz and Ramond-Ramond modes. As they come
closer together, open string modes stretching between
them start contributing more strongly to the inflaton po-
tential. At a critical distance of order the inverse super-
string scale M�1

s such modes become tachyonic and
inflation ends in a hybrid-inflation-type exit.

Brane stacks carry Chan-Paton gauge groups and hence
the tachyonic instability appearing at brane collision cor-
responds to a symmetry breaking process. This allows the
formation of topological defects as lower-dimensional
branes if the vacuum manifold is nontrivial [41]. For two
brane stacks of N branes each, the vacuum manifold is
isomorphic to U�N�, whose only nontrivial homotopy
groups are the odd ones, +2k�1. Thus the topologically
allowed defects have even codimension 2k.

We need to make sure that cosmologically dangerous
defects like monopoles or domain walls are not produced.
This is fortunately the case (but see [42]) as can be seen by
the following argument given in Ref. [1]. In order to
describe our �3 � 1�-dimensional universe the branes
must have three infinite spatial dimensions. They can either
be D3-branes or Dp-branes with �p� 3� dimensions com-
pactified at a size smaller than the horizon [27]. Thus the
Kibble mechanism can only take place in the three infinite
dimensions so the codimension of the defects must lie in
these dimensions (hence it can only be 1, 2 or 3). Since the
codimension is even, the defects that are produced have
codimension 2, that is they are D�p� 2�-branes wrapping
the same compact space as the original Dp-branes. These
objects will appear as cosmic strings to a three-
dimensional observer.

Alternative string production mechanisms (bulk preheat-
ing, resonant string formation) have been discussed in [4],
resulting in both D-string and F-string networks, or even
an interacting �F-D�-string network (also see [43]). String
stability was studied in [44]. Various possible cosmologi-
cally relevant metastable strings were found in many mod-
els, including �p; q� strings that is, bound states of p F
strings and q D strings. For string stability also see [45].

Given these possibilities, cosmic string production can
be considered as a generic prediction of brane inflation
(though models with no cosmic strings have been con-
structed [46]). It is then natural to ask what the evolution
-11
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of the string network would be in these models and whether
it is distinctly different from the standard cosmic string
evolution, thus providing a potential observational window
into superstring physics. We consider this question below.

A. Basics

We have seen that in the context of brane inflation, D
strings are in general D�p� 2�-branes wrapping the same
�p� 3�-dimensional compactified space as the initial
Dp-branes. Their production is localized on the plane of
brane collision, but later they are free to explore the
�9 � p� compact dimensions transverse to the brane.

For two strings to collide their world sheets must inter-
sect. In the 3 � 1 case the number of spacetime dimensions
equals the sum of the dimensions of the two world sheets
and hence strings will generally collide [47]. For a higher-
dimensional spacetime, however, this is no longer the case
so strings will generally miss. One then expects to be able
to model cosmic string evolution in the context of brane
inflation by simply introducing an intercommuting proba-
bility P in the usual �3 � 1�-dimensional evolution
equations.

This was done in [3] where an intercommuting proba-
bility P (�=�0 in the original paper) was introduced in
Eq. (19). The new scaling solution is � ’ P (cf. �� 1 in
three dimensions), corresponding to an enhancement in the
scaling energy density of strings by a factor of P�2.
This can be orders of magnitude different than the usual
3D case [5].

There are at least two effects which could significantly
alter the above result. The first is related to the small-scale
structure of the strings. If they are wiggly, they may have
more than one opportunity to intercommute during each
crossing time. One expects that a probability of 1=3 or so
should have no impact in the scaling of �, and thus,
contrary to what is sometimes suggested in the literature,
strings with such large P could not be observationally
distinguished from standard field theory strings. On the
other hand, for P� 1 the scaling value of � should depend
more strongly on P. The dependence of � on P, taking into
account small-scale wiggles can only be modeled numeri-
cally. Simulations in flat space suggest a scaling � ’

����
P

p
in

the range 0:05<P< 0:3 [4,48,49]. To deal with this
uncertainty we will introduce an effective intercommuting
probability Peff � f�P� as a multiplicative parameter,
modifying the phenomenological loop production term of
Eq. (65). A numerical study of the functional dependence
of Peff on P in an expanding universe will be presented
in [50].

The second possibility arises from the observation that
the velocities in the three infinite dimensions and in the
compact ones, vx and v‘, respectively, satisfy the con-
straint v2

x � v2
‘ � 1=2. Together with the fact that v‘ is

very weakly damped compared to vx (Sec. III B 4), this will
slow down the motion of the strings in the three infinite
123513
dimensions. It is even possible that string motion in these
dimensions can completely stop, in which case the strings
will no longer be able to intercommute. We study this
effect in more detail below.

B. Applying the EDVOS model

As we have seen, the spatial structure of the string net-
work at formation is essentially three-dimensional, but the
strings evolve in 9 � p� 4 spacetime dimensions with
9 � p of them compactified. The compactification radius
is assumed to be stabilized at a size smaller than the
horizon [27]. Thus we can model the evolution of the string
density using an effective three-dimensional description,
where we introduce an intercommuting probability P to
account for the fact that strings can ‘‘miss’’ when they
evolve in higher than 4 spacetime dimensions. As an
evolution equation for � we therefore use (43) and replace
the loop production term ~cvx�

�1 by Peff ~cvx�
�1, where an

effective intercommuting probability Peff � f�P� has been
used to implicitly take into account the effect of string
wiggliness on the scaling dependence on P. We also need
to include both vx and v‘, the velocities in the �3 �
1�-dimensional FRW x space and the �9 �
p�-dimensional compact ‘ space, respectively, which we
evolve using Eqs. (48) and (50). The parameters kx and k‘
are given by (54) and (55) for D � 9 � p� 3 with
vxc=vc ’ vx=v and v‘c=vc � 1 (see Sec. III B 4).

The formation of the network takes place on the plane of
the colliding branes, which has a finite thickness. One may
worry that this fuzziness will translate to an uncertainty in
the position of the strings in the extra dimensions, which
may give rise to a significant structure in the ‘ space just
after the strings are formed. This could spoil the assump-
tion that the initial structure of the network can be consid-
ered three-dimensional, in which case Eq. (43) would not
be valid. Fortunately this thickness is of the order of the
inverse superstring scale M�1

s , which is approximately
104 times smaller than the correlation length at formation
(see below). The network is to a very good approximation
three-dimensional even at the time of formation. This
justifies the assumption k‘ � kx or equivalently v‘c=vc �
1 at early times.

The correlation length at formation, estimated by study-
ing the tachyon potential, is of the same order of magnitude
as the expected horizon size at that time [1]

L0 �H�1 � 104M�1
s ; (68)

where the superstring scale is set by CMB data to a low
GUT scale

Ms � 1014 GeV: (69)

After the strings are formed, the correlation length
grows because of the Hubble expansion. On the other
hand the dimensions transverse to the brane are compacti-
fied at a size a few times the inverse superstring scale,
-12
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which is some 103 times smaller than the correlation
length. Thus, if the initial long string network is
Brownian, it will remain so (as in the usual three-
dimensional case) and Eq. (43) will be valid at all times.

To simplify the equations we can use the ansatz w2
‘ �

v2
‘=v

2 (Sec. III B 5). Equations (43), (48), and (50) are then
replaced by

��1 d�
dt

�
1

2t

�
�
�
2 � 2v2

x �
v2
‘

v2

�
� 2 �

Peff ~cvx
�

�
(70)

vx
dvx
dt

�
1

t

�
kxvx
�

�1 � v2� �

�
2 � 2v2

x �
v2
‘

v2

�
�v2

x

�
(71)
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FIG. 4. Velocity evolution in arbitrary time units with initial condi
have assumed equipartition of kinetic energies at t � 0 and that the nu
three-dimensional velocities scale to a value close to the purely three
vx can be significantly less than 0:6.
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v‘
dv‘
dt

�
1

t

�
k‘v‘
�

�1 � v2� � �1 � 2v2�

�
1 �

v2
‘

v2

�
�v2

‘

�
(72)

where we have explicitly written the loop production pa-
rameter in terms of the effective intercommuting probabil-
ity Peff , that is, we have set

~c! Peff ~c: (73)

Below we discuss numerical solutions of Eqs. (70)–(72)
with different initial conditions for vx, v‘ as well as differ-
ent values for the effective intercommuting probability Peff

in the range between 10�3 and 1. For an illustration we first
consider the case Peff ’ 0:1. As in Sec. III B 4 we have that
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10

p
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3
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p
. We

mber of dimensions transverse to the brane is 2. For small v‘0 the
-dimensional result v ’ 0:7. However for v‘0 > 0:4 the value of
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since v‘c=vc is small, there is essentially no source term
for v‘ in (72) and thus v‘ is just given by its initial
condition slowly damped by the expansion. On the other
hand vx is sourced by the string curvature R� L and
although it is more strongly damped it dominates v‘.
There is a critical value of v‘c=vc ’ 0:15 above which
the curvature (source) term for v‘ becomes large enough
for v‘ to dominate. This value is too large to be relevant in
the context of brane inflation: it corresponds to a situation
where more than one-tenth of the velocity developed dur-
ing the last correlation time is in the ‘ dimensions, which
would require the curvature vector to have a significant
component in the ‘ space. As explained above the corre-
lation length (the typical radius of curvature of strings) at
formation is of order 103 times the size of the extra
dimensions and further grows with the expansion, so
v‘c=vc is expected to be much less than this critical value.
Thus, string propagation in the x space will not stop, but it
can be significantly slowed down if the strings are created
with enough momentum in the extra dimensions.

Indeed we expect that some of the energy associated
with the brane collision will be converted to kinetic energy
of string segments in the dimensions transverse to the
brane, so the slowing down of string motion in the infinite
dimensions could be a significant effect. In Fig. 4 we plot
vx and v‘ as functions of time, assuming equipartition of
kinetic energies at formation. This assumption is not nec-
essary, and even if vx � v‘ initially, vx will increase very
fast (Fig. 5) because of the curvature source term in
Eq. (71). As long as the constraint v2 � 1=2 is satisfied,
the important initial condition is v‘ at the time of string
formation. From Fig. 4 we see that for initial values of v‘
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FIG. 5. Velocity evolution in arbitrary time units for vx � v‘
at t � 0. Here, vx rapidly increases and reaches the same
equilibrium value as in the case vx � v‘ at t � 0. This shows
that the assumption of equipartition of kinetic energies at string
formation is not necessary. The important initial condition is v‘.
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smaller than 0.4 the scaling value of vx is less than a few
percent different from the purely three-dimensional result
v ’ 0:7. However for v‘ initially greater than this value,
the slowing down of strings in the three infinite dimensions
is significant. In particular if v‘ has a value close to the
maximum allowed (v‘ ’ 1=

���
2

p
) then vx will approach a

very small value vx ’
��������������������
1=2 � v2

‘

q
(Fig. 6). Such a dramatic

reduction of the three-dimensional speed of the strings also
has a significant effect on the scaling value of � (Fig. 7)
because the loop production term is proportional to vx:
slowly moving strings will intercommute less often so the
final density of the network will be higher, corresponding
to a smaller �.

It is interesting to compare our results with the discus-
sion of Jones, Stoica and Tye [3]. As a first approximation
they used a simple one-scale model and assumed a rela-
tivistic, constant speed of strings. They found that the
scaling value of the energy density of the network is P�2

times greater than in the purely three-dimensional case.
The leading correction to this result comes from allowing
the velocity of strings to be a variable, that is using a VOS
model rather than a simple one-scale model. This is equiva-
lent to setting v‘ � 0 in our extradimensional EDVOS
model. The effect of this variable velocity is to reduce
the density by a factor of 10 or so. We then include
velocities in the extra dimensions v‘ � 0. If v‘ < 0:4 there
is no additional observable effect. If v‘ > 0:4 but consid-
erably smaller than 1=

���
2

p
then these extradimensional

velocities have no significant effect on the energy density,
though they may lead to a substantial reduction of the
three-dimensional string velocities. Finally, if v‘ ’ 1=

���
2

p

the strings will be moving very slowly in the three infinite
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value of about 0:2. Such a low velocity also affects the string
density (Fig. 7).
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dimensions so that the number of intercommutings will be
further reduced. This results in a substantial increase of the
energy density of the string network.

Finally we study the effect of varying the intercommut-
ing probability P. For networks of the same type (F- or
D-string networks), P is expected to be in the range
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10�3 <P< 1 (in particular 10�3 <P< 1 for F strings
and 0:1<P< 1 for D strings [5]). However, since the
strings can develop significant small-scale structure and
become wiggly, they may have more than one opportunity
for reconnection in each crossing time. Our one-scale
model does not fully take into account such wiggly effects,
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but we have done so implicitly by using the effective
intercommuting probability Peff � f�P�>P, as we have
discussed above. The effect of small-scale wiggles can
only be accounted for numerically and the results of such
studies in an expanding space will be presented in [50]. For
the present discussion we take Peff in the range 10�3 �
P � 1 and study how the model is affected by changes in
Peff . In Fig. 8 we show the behavior of � for different
values of Peff in that range assuming a moderate v‘ ’ 0:36
at formation. Reducing Peff leads to less intercommutings
and therefore greater string energy density, corresponding
to a smaller �.
V. SUMMARY AND DISCUSSION

We have presented an extension of the VOS model that
can be used to study the macroscopic evolution of a
Brownian network of Nambu-Goto cosmic strings in cos-
mological spacetimes with extra dimensions (EDVOS
model). In order for the Brownian structure of the network
to be preserved by time evolution either the spacetime must
be isotropic or, in the case of anisotropic expansion, the
network must be formed on an isotropic slice of the space-
time. If the strings are not confined on this slice after their
formation then the extra dimensions must be compactified
at a size smaller than the correlation length, as is the case in
models of brane inflation. The evolution has then an effec-
tive, three-dimensional description, in which the effect of
possible velocities in the extra dimensions can be taken
into account. This is a significant factor because extradi-
mensional velocities will act to slow down string motion in
the infinite dimensions, reducing the number of string
intercommutings while also changing the strings’ effective
3D energy per unit length.

First, we applied the model to the case of an isotropic
(D� 1)-dimensional FRW universe and found the generic
behavior (for D> 3) in which L / aD=�D�1� (in contrast to
the naive conformal stretching obtained without the
EDVOS model L / a). Obviously, these strings do not
scale because they find it increasingly difficult to find
each other and intercommute, and so they would quickly
dominate the energy density of such a universe. However,
even if the additional dimensions were compact, this evo-
lution might pertain at early times, as long as the expansion
remained isotropic. In this case, the network correlation
length L would continue to expand until it inevitably
catches up with R‘ / a, the scale of the expanding com-
pact dimension. Thereafter, the network would become
effectively three-dimensional and, if the compact dimen-
sions were then stabilized, the evolution would turn over
towards the alternative FRW 3-brane scenario we dis-
cussed earlier. We point out therefore, in the case of static
compact extra dimensions that, even if we begin with an
initial correlation length smaller than the compact dimen-
sion L0 <R‘, the correlation length will grow until L>
R‘, at which point the evolution becomes effectively three-
123513
dimensional. Hence, we conclude that the usual assump-
tion L0 � R‘ is not actually necessary for achieving
asymptotically 3D scaling evolution.

The most pertinent application of our model is to a
situation where the string network is formed on a FRW
3-brane with the dimensions transverse to it compact and
small (we have only considered flat extra dimensions). We
have allowed the strings to be able to explore the bulk after
formation, as is the case in models of brane inflation. We
find that the density of the network in our VOS model (after
scaling has been achieved) can be up to a factor of 10
smaller than previous estimates [3]. This correction comes
from quantitatively accounting for the role of the string 3D
velocity, allowing it to be a variable rather than a constant
as in the simplest one-scale models. We also found addi-
tional effects arising from the fact that the strings can also
move in the extra dimensions. Standard field theory strings
can be shown numerically to approach an average velocity
of about 1=

���
2

p
(on length scales �� H�1). This is also the

case in our extradimensional VOS model but now a sig-
nificant amount of this velocity can be trapped in the extra
dimensions, with the result that the observable 3D velocity
is reduced. Since only the three FRW dimensions are
expanding while the size of the extra dimensions is stabi-
lized, there will only be a very weak redshifting of the
extradimensional velocities. Thus, if the strings are created
with significant velocities in the extra dimensions, these
could survive for a long time and result in a slowing down
of string motion in the three large dimensions.

One could argue that after reheating, the strings would
enter a damping regime where velocities would slow down
due to the damping force from a high radiation background
density. This could damp velocities in the extra dimensions
more strongly than Hubble expansion, in particular, elim-
inating v‘. However, we note that reheating only takes
place on the brane (the bulk remains cold and empty
[27]) and it is only the small portion of the string network
intersecting the brane which feels this damping. As the
strings move, they briefly encounter the brane and pass
through it, feeling a damping force, but at any time most of
the length of the network is in the bulk, where no friction is
felt. There are only a finite number of such brief encounters
before cosmological expansion on the brane cools it suffi-
ciently for the friction force to become negligible. The
strings also might be oriented such as to intersect and
remain in contact with the 3-brane in the longer term, but
this only implies that the string will be ‘‘pinned’’ at one
point. Taking into account these geometrical effects, it
appears that the usual 3D frictional damping terms will
be suppressed by factors of order the intercommuting
probability P (for both v‘ and vx). The network in higher
dimensions will approach its relativistic scaling regime
much more quickly than its 3 � 1 FRW counterpart,
though a more quantitative investigation is certainly
warranted.
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Gravitational backreaction can also be expected to re-
duce the extradimensional velocities. The effect of gravi-
tational backreaction can be incorporated in the VOS
model by including a term 8�G�v6 in the evolution equa-
tion for the correlation length L [24], where for long strings
� is a constant of order 10 [24,51]. Even if G� has a value
close to the upper limit 10�6, this term is small compared
to the loop production term P~cv so it has little direct
influence on the network density. However, its effect on
the extradimensional velocity v‘ could be more dramatic
since gravitational radiation tends to act to eliminate small-
scale structure below a certain length scale �. This length
scale was previously thought to be �� �G�t, but closer
investigation has suggested that it was in fact considerably
smaller �� ��G��7t with 7 � 3=2 in the radiation era
and 7 � 5=2 in the matter era [52]. The reanalysis dem-
onstrated that only modes of comparable wavelength in-
teract efficiently, a fact which may be relevant in the case
with extra dimensions. Here, we could envisage the small-
scale modes trapped in the extra dimensions essentially
decoupling from the effective 3D evolution. Damping of
the velocity v‘ then would be primarily through self-
interactions between the trapped modes which tend toward
slow power law, rather than exponential, suppression.
Whatever the outcome of a closer examination of this issue
in higher dimensions, it is clear that the extradimensional
velocity v‘ will have a long lifetime and will influence the
network evolution over long time scales. Note however that
since the string position in the compact dimensions is
described by (world sheet) scalar fields, one expects
some stabilization mechanism for these moduli to kick in
at low energies. This would render these excitations mas-
sive, effectively localizing the string in the extra dimen-
sions [44]. Given the large hierarchy between the preferred
inflationary and SUSY breaking scales in brane inflation
models (GUT and TeV, respectively), the extradimensional
effects we have considered are likely to be relevant for
many orders of magnitude in time.

While our EDVOS model can characterize the effect of
the velocity v‘ on the overall large-scale 3D network
properties, uncertainties remain as to its magnitude at net-
work formation, the subsequent (weak) rate of damping,
and whether it can be sourced in any way during the
subsequent evolution. Given the brane collision out of
which the string network forms, it seems plausible that
the string network will be released from the brane with a
significant velocity v‘ with which to traverse the extra bulk
dimensions. If v‘ is relativistic, then the average 3D ve-
locity vx will be smaller and the network density will be
higher than previously expected. However, this presumes
the absence of any significant source terms for v‘, for
example, due to string reconnections or other dynamical
effects. By including such source terms, we have demon-
strated that there is, in principle, the pathological possibil-
ity that the Hubble-damped 3D velocity vx becomes
123513
negligible because of continuous contributions to the un-
damped v‘. In this case the string network would dominate
over radiation in the early universe. But we have also
shown that there is a threshold (k‘ � 0:1kx) below which
this does not happen. For brane inflation scenarios in which
the string curvature is predominantly three-dimensional at
formation, we expect this criteria to be fulfilled, with the
EDVOS model predicting a scaling solution in which L �
�t and �� Peff . We stress that the statement L / P should
not be taken as a prediction of our model. Instead, we have
used an effective intercommuting probability Peff , which is
a phenomenological parameter of the model, to be deter-
mined by string network simulations or a deeper statistical
analysis. The functional dependence of Peff � f�P� on the
actual intercommuting probability P will be the subject of
a forthcoming publication [50].

Another interesting issue which we can use our EDVOS
model to investigate is the evolution of closed strings
(loops), and, in particular, the possibility that such loops
could wrap around the compact dimensions [4]. If the
compact manifold admits nontrivial one-cycles, this would
give rise to stable monopolelike objects (from the 3D point
of view) which could dominate the universe or even pro-
vide a dark matter candidate. We denote these objects
cycloops, that is, loops wrapping around nontrivial cycles.
We leave the study of the formation, properties and con-
sequences of cycloops for a different publication [53].

The purpose of the present paper was not to exhaustively
explore all possible avenues or to investigate specific brane
inflation models, but rather to provide a broad picture of
the key dynamical effects which will influence a cosmic
string network emerging from a higher-dimensional the-
ory. We believe the generalized VOS model we have
presented here is an important step in developing a more
quantitative description of cosmic string evolution in brane
inflation and other contexts. There are a host of further
issues to explore. We have, for example, only considered
the ‘‘Abelian’’ case where there is only one particular type
of string, which simply exchanges partners and reconnects
when it meets another (albeit with a reduced probability for
such an encounter). Similar methods can be applied to the
richer structures created by F and D strings in more com-
plex (true) string networks (see Ref. [32]) and this deserves
further investigation.
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APPENDIX: APPROXIMATE FORMULAS FOR k,
kx AND k‘

Defining _y � � _x; _l=a� we split the velocity _y into a
‘‘curvature’’ component _yc produced during the last corre-
lation time and a leftover component _yp (coming from
previous accelerations) by writing _y � _yc � _yp. We inter-
pret the first as the velocity induced on large scales by the
present correlation length of the string, whereas the second
is the velocity remaining from previous correlation times,
generally on small scales. These two components are un-
correlated so we have h _yc 	 _ypi � 0. We also have the
gauge condition _y 	 y0 � 0 and we assume that both com-
ponents _yc and _yp separately satisfy this, i.e. we have _yc 	
y0 � 0 and _yp 	 y0 � 0.

Hence, since the curvature vector u is normal to the
tangent y0 we have

û � A _̂yc � B _̂yp �
XD�2

i�1

Ciŷi (A1)

where _̂yc, _̂yp are the unit vectors in the direction of _yc, _yp,
respectively, and ŷi are unit vectors spanning the �D�
3�-dimensional subspace normal to _yc, _yp and y0. Dotting
with _y and taking the average along the string we have

hû 	 _yi � hAj _ycj � Bj _ypji

�

�
Aj _ycj

�
1 �

B
A

j _ypj
j _ycj

� �����
_y2

q
� _y2
c � _y2

p�
�1=2

�

�

* �����
_y2

q A�1 � B
A

j _ypj
j _ycj

�

�1 �
_y2
p

_y2
c
�1=2

+
: (A2)

Taking the modulus of (A1) gives 1 � A�1 � �B2=A2� �PD�3
i�1 �C2

i =A
2��1=2, which we use to substitute for A in (A2).

Remembering that kv ’ hû 	 _yi we find

k ’
1 � B

A
vp
vc

�1 �
v2
p

v2
c
�1=2�1 � B2

A2 �
PD�3
i�1

C2
i

A2�
1=2
: (A3)

For small velocities �v� 1� we have that v ’ vc and
the ratio vp=vc is much less than unity. However, as the
123513
velocity tends to relativistic values, the vp contribution
becomes more and more significant. Assuming that this
relative contribution is proportional to some power of the
total velocity, we set vp=vc � fv� with f, � constants
(clearly �> 1). Similarly in the low velocity limit, the
curvature vector u is parallel to _yc so B=A;Ci=A� 1 but
as v increases, B and Ci become comparable to A.
Assuming a power law dependence we set B=A � Ci=A �
gv�. Equation (A3) becomes

k ’
1 � fgv���

�1 � f2v2��1=2�1 � �D� 2�g2v2��1=2
: (A4)

Comparison with the helicoidal string solution in D � 3
flat space gives �� � � 3 [24]. The limit k�1=

���
2

p
� � 0

(which can be shown to hold analytically [21,23]) gives
fg � 8. Then, comparison with the three-dimensional case
(30) suggests f � g, � � �. The approximate formula for
k is therefore

k ’
1 � 8v6

�1 � 8v6�1=2�1 � 8�D� 2�v6�1=2
: (A5)

For kx we form hû 	 _xi and work as above to find

kx ’
vxc
vc

1 � B
A
v2
xp

v2
xc

vc
vp

�1 �
v2
xp

v2
xc
�1=2�1 � B2

A2 �
PD�3
i�1

C2
i

A2�
1=2

(A6)

where we have used that h _̂yc 	 _xi � h�1=j _ycj� _yc 	 _xi �
h�1=j _ycj� _xc 	 _xi � hj _xcj2=j _ycji.

Assuming that vxp=vxc has the same velocity depen-
dence as vp=vc we obtain the following approximate
formula for kx

kx ’
vxc
vc

1 � 8v6

�1 � 8v6�1=2�1 � 8�D� 2�v6�1=2
: (A7)

The corresponding equation for k‘ is

k‘ ’
v‘c
vc

1 � 8v6

�1 � 8v6�1=2�1 � 8�D� 2�v6�1=2
: (A8)

Equations (A5), (A7), and (A8) are indeed the approxi-
mate formulas (53)–(55) given in Sec. III.
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