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Gauss-Bonnet dark energy
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We propose the Gauss-Bonnet dark energy model inspired by string/M-theory where standard gravity
with scalar contains additional scalar-dependent coupling with a Gauss-Bonnet invariant. It is demon-
strated that the effective phantom (or quintessence) phase of the late universe may occur in the presence of
such a term when the scalar is phantom or for nonzero potential (for canonical scalar). However, with the
increase of the curvature, the Gauss-Bonnet term may become dominant so that the phantom phase is
transient and the w � �1 barrier may be passed. Hence, the current acceleration of the universe may be
caused by a mixture of scalar phantom and/or potential or stringy effects. It is remarkable that scalar-
Gauss-Bonnet coupling acts against the big rip occurrence also in phantom cosmology.
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I. INTRODUCTION

It became clear recently that late-time dynamics of the
current accelerated universe is governed by the mysterious
dark energy. The interpretation of the astrophysical obser-
vations indicates that such dark energy fluid (if it is fluid) is
characterized by the negative pressure, and its equation of
state parameter w lies very close to �1 (most probably
below it). It is quite possible that it may be oscillating
around �1. It is extremely difficult to present the com-
pletely satisfactory theory of the dark energy (also due to
lack of all required astrophysical data), especially in the
case of (oscillating) w less than �1. (For instance, ther-
modynamics is quite strange there with possible negative
entropy [1].)

The successful dark energy theory may be searched in
string/M-theory. Indeed, it is quite possible that some
unusual gravity-matter couplings predicted by the funda-
mental theory may become important at the current, low-
curvature universe (being not essential in intermediate
epoch from strong to low curvature). For instance, in the
study of string-induced gravity near initial singularity, the
role of Gauss-Bonnet (GB) coupling with scalar was quite
important for the occurrence of nonsingular cosmology
[2,3] (for an account of dilaton and higher order correc-
tions near initial singularity, see also [4]). The present
paper is devoted to the study of the role of GB coupling
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with the scalar field to the late-time universe. It is explicitly
demonstrated that such a term itself cannot induce the
effective phantom late-time universe if the scalar is canoni-
cal in the absence of the potential term. It may produce the
effective quintessence (or phantom) era, explaining the
current acceleration only when the scalar is phantom or
when the scalar is canonical with nonzero potential. It is
interesting that it may also have the important impact to the
big rip singularity [5], similarly to quantum effects [6,7],
preventing it in the standard phantom cosmology. Note that
we concentrate mainly on the exponential scalar-GB cou-
pling and exponential scalar potential, while the consid-
eration of other types of such functions and their role in
late-time cosmology will be considered elsewhere.
II. THE ACCELERATED UNIVERSE FROM
SCALAR-GB GRAVITY

We consider a model of the scalar field � coupled with
gravity. As a stringy correction, the term proportional to
the GB invariant G is added:

G � R2 � 4R��R
�� � R����R

����: (1)

The starting action is given by

S �
Z
d4x

�������
�g

p
�
1

2�2
R�

�
2
@��@

��� V��� � f���G
�
:

(2)

Here � � �1. For the canonical scalar, � � 1 but at least
when the GB term is not included, the scalar behaves as
phantom only when � � �1 [8] showing in this case the
properties similar to a quantum field [9]. In analogy with
model [10] where also nontrivial coupling of a scalar
-1  2005 The American Physical Society
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Lagrangian with some power of curvature was considered, one may expect that such a GB coupling term may be relevant
for the explanation of dark energy dominance.

By the variation over �, we obtain
0 � �r2�� V 0��� � f0���G: (3)

On the other hand, the variation over the metric g�� gives

0 �
1

�2

�
�R�� �

1

2
g��R

�
� �

�
1

2
@��@���

1

4
g��@��@��

�
�

1

2
g����V��� � f���G� � 2f���RR��

� 2r�r��f���R� � 2g��r2�f���R� � 8f���R��R�� � 4r�r
��f���R��� � 4r�r

��f���R���

� 4r2�f���R��� � 4g��r�r��f���R��� � 2f���R����R���� � 4r�r��f���R�����: (4)

By using the identities obtained from the Bianchi identity

r�R���� � r�R�� �r�R��; r�R�� �
1

2
r�R; r�r�R

���� � r2R�� �
1

2
r�r�R� R����R�� � R

�
�R
��;

r�r
�R�� �r�r

�R�� �
1

2
�r�r�R�r�r�R� � 2R����R�� � 2R��R��; r�r�R�� �

1

2
�R; (5)

one can rewrite (4) as

0 �
1

�2

�
�R�� �

1

2
g��R

�
� �

�
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2
@��@���
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g��@��@��

�
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2
g����V��� � f���G� � 2f���RR��

� 4f���R��R
�� � 2f���R����R���� � 4f���R����R�� � 2�r�r�f����R� 2g���r2f����R

� 4�r�r
�f����R�� � 4�r�r

�f����R�� � 4�r2f����R�� � 4g���r�r�f����R�� � 4�r�r�f����R����: (6)

The above expression is valid in arbitrary spacetime dimensions. In four dimensions, the terms proportional to f���
without derivatives are canceled with each other and vanish since the GB invariant is a total derivative in four dimensions.

The starting Friedmann-Robertson-Walker universe metric is

ds2 � �dt2 � a�t�2
X3
i�1

�dxi�2; (7)

where

�tij � a
2H�ij; �ijt � �itj � H�

i
j; Ritjt � �� _H �H2��ij; Rijkl � a

4H2��ik�lj � �il�kj�;

Rtt � �3� _H �H2�; Rij � a2� _H � 3H2��ij; R � 6 _H � 12H2; other components � 0 (8)
(here the Hubble rateH is defined byH � _a=a). Assuming
� only depends on time, the ��; �� � �t; t� component in
(4) has the following simple form:

0 � �
3

�2
H2 �

�
2

_�2 � V��� � 24 _�f0���H3: (9)

On the other hand, Eq. (2) becomes

0 � ��� 
�� 3H _�� � V0��� � 24f0���� _HH2 �H4�:

(10)

We now consider the case that V��� and f��� are given as
exponents with the constant parameters V0, f0, and �0:

V � V0e�
�2��=�0�; f��� � f0e�2��=�0 : (11)

Assume that the scale factor behaves as a � a0th0 (power
law). In the case that h0 is negative, this scale factor does
not correspond to an expanding universe but it corresponds
to a shrinking one. If one changes the direction of time as
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t! �t, the expanding universe whose scale factor is given
by a � a0��t�h0 emerges. In this expression, however,
since h0 is not always an integer, t should be negative so
that the scale factor should be real. To avoid the apparent
difficulty, we may further shift the origin of the time as t!
�t! ts � t. Then the time t can be positive as long as t <
ts. Hence, we can propose

H �
h0
t
; � � �0 ln

t
t1
; (12)

when h0 > 0 or

H � �
h0
ts � t

; � � �0 ln
ts � t
t1
; (13)

when h0 < 0, with an undetermined constant t1. By the
assumption (12) or (13), one obtains
-2



FIG. 1. The qualitative behavior of �2
0 versus h0 from (20).
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0 � �
3h20
�2

�
��2

0

2
� V0t21 �

48f0h
3
0

t21
; (14)

from (9) and

0 � ��1� 3h0��
2
0 � 2V0t

2
1 �

48f0h30
t21

�h0 � 1�; (15)

from (10). Using (14) and (15), it follows

V0t21 � �
1

�2�1� h0�

�
3h20�1� h0� �

��2
0�

2�1� 5h0�
2

�
;

48f0h
2
0

t21
� �

6

�2�1� h0�

�
h0 �

��2
0�

2

2

�
: (16)

The second equation in (16) shows that if �1< h0 < 0 and
� � 1, f0 should be negative. Without the GB term, that is,
f0 � 0, a well known result follows:

h0 �
��2

0�
2

2
: (17)

Since the equation of state parameter w is given by

w � �1�
2

3h0
; (18)

if h0 < 0 (h0 > 0), w<�1 (w>�1). Equation (16) in-
dicates that even if � � 1, with the proper choice of
parameters h0 can be negative or w<�1. Even if � > 0
when h0 <�1, V0 is positive, which means that the po-
tential V��� is bounded below. As a special case, we
consider

�2
0 � �

6h20�1� h0�

��1� 5h0��
2 ; (19)

which gives V��� � 0. In order that �0 could be real, one
has

1

5
< h0 < 1 when � � 1;

or h0 >
1

5
or h0 
 1 when � � �1:

(20)

In the case of Eq. (19), the scalar field � is canonical (� �
1), and there is no potential V��� � 0. Even if we include
the term proportional to the GB invariant, we cannot obtain
the effective phantom cosmological solution with h0 < 0
or w<�1. Equation (16) tells, however, when � � 1 and
V0 > 0, even if V0 is arbitrarily small, if we choose f0
properly, we may obtain the effective phantom. The quali-
tative behavior of ��2

0 versus h0 when V0 � 0 is given in
Fig. 1. There is one positive solution, which may mimic the
effective matter with 1=5< h0 < 1 when � � 1. We also
find that, when � � �1, there are always three solutions
for h0 from (19): one is given by h0 < 0 and describes the
phantom cosmology; another is h0 > 1 and describes the
quintessence cosmology; the final one corresponds to the
matter with 0< h0 < 1=5. Then, even if � � �1, there
123509
appear the solutions describing nonphantom cosmology
corresponding to quintessence or matter.

As an example, we consider the case that

h0 � �
80

3
<�1; (21)

which gives, from (18),

w � �1:025: (22)

This is consistent with the observational bounds for effec-
tive w (for a recent discussion and a complete list of
references, see [11]). Then, from (16), one obtains

V0t21 �
1

�2

�
531 200

231
�

403

154
��0�2

�
;

f0
t21

� �
1

�2

�
9

49 280
�

27

7 884 800
��0�

2

�
:

(23)

Therefore even starting from the canonical scalar theory
with positive potential before introducing the term propor-
tional to the GB invariant, we may obtain a solution which
reproduces the observed value of w as in (22).

In the case of the model induced from the string theory
[2], we have V0 � 0 (V��� � 0) and

�2
0 �

2

�2
; (24)

in (11). Then Eq. (19) reduces as

3h30 � 3h20 � 5h0 � 1 � 0; (25)

which has only one real solution,

h0 � 0:223 223: (26)

The solution gives

w � 1:986 54: (27)

There is another solution of (9) and (10) with (11). In the
solution, � and H are constants,

� � ’0; H � H0; (28)
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what corresponds to de Sitter space. Using (9) and (10)
with (11), one finds

H2
0 � �

e�
�2’0�=�0�

8f0�
2 : (29)

Therefore in order for the solution to exist, we may require
f0 < 0. In (29), ’0 can be arbitrary. Hence, the Hubble rate
H � H0 might be determined by an initial condition.

In the case of the model (11), the term including the GB
invariant always gives the contribution in the same order
with those from other terms even if the curvature is small.
This is due to the factor f���, which enhances the contri-
bution when the curvature is small.
III. LATE-TIME ASYMPTOTIC COSMOLOGY IN
SCALAR-GB GRAVITY AND BIG RIP AVOIDANCE

In the following, another model, which is slightly differ-
ent from (11), may be considered:

V��� � V0e�
�2��=�0�;

f��� � f0e
�2��=�#�0�; �#> 1�:

(30)

Different from model (11), model (30) will not be solved
exactly. We can only find the asymptotic qualitative be-
havior of the solutions. Nevertheless, the asymptotic be-
havior suggests the existence of the cosmological solution,
where the value of w could vary with time (oscillation)
and/or could depend on the curvature.

Assuming the solution behaves as (12) or (13), when the
curvature is small, that is t in (12) or ts � t in (13) is large,
the GB term becomes small and could be neglected since it
behaves like 1=t��2=#��4 or 1=�ts � t���2=#��4. When the
curvature is small, the solution could be given by (17), then
the effective phantom phase with w<�1 could appear
only in case � � �1< 0. On the other hand, when the
curvature is large, that is t in (12) or ts � t in (13) is small,
the classical potential could be neglected. Without the
classical potential, by assuming, instead of (12)

H �
h0
t
; � � #�0 ln

t
t1
; (31)

when h0 > 0 or

H � �
h0
ts � t

; � � #�0 ln
ts � t
t1
; (32)

when h0 < 0, the following equations replace (14) and (15)

0 � �
3h20
�2

�
�#2�2

0

2
�

48f0h
3
0

t21
;

0 � ��1� 3h0�#2�2
0 �

48f0h
3
0

t21
�h0 � 1�:

(33)

By deleting f0 in the above two equations, one gets
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�2
0 � �

6h20�1� h0�

�#2�1� 5h0��2
; (34)

which corresponds to (19). Then when � � 1, the solutions
of (34) are not qualitatively changed from those of (19),
and there is only one solution, 1=5< h0 < 1. On the other
hand, when � � �1, since the sign of the right-hand side
of (19) is changed from the � � 1 case, as is clear from
Fig. 1, there are three solutions, corresponding to the
phantom h0 < 0 or w<�1, the quintessence h0 > 1 or
�1<w<�1=3, and the matter with 0< h0 < 1=5 or
w> 7=3. Then if the term proportional to the GB invariant
in the case � < 0 (which corresponds to a scalar phantom
solution without the GB term) is included, the effective w
becomes larger than �1 and the big rip singularity might
be avoided (see [6] for quantum effects account to the
escape of the big rip). That is, in the case � < 0, when
the curvature is small as in the current universe, the GB
term is negligible and the potential term dominates, which
gives the cosmic acceleration with w<�1. Then the
curvature increases gradually and the universe seems to
tend to the big rip singularity [5]. However, when the
curvature is large, the GB term becomes dominant and
might prevent the singularity. Hence, in the case � < 0,
the GB term may work against the big rip singularity
occurrence, like quantum effects [6]. After the GB term
dominates when � < 0, the curvature turns to become
smaller. Then the potential term dominates again. This
might tell that the behavior of the universe might approach
the de Sitter space withw � �1 by the damped oscillation.
In fact, even in the model (30), if (28) is assumed, there is a
de Sitter solution corresponding to (28):

H2
0 � �

e�
�2�0�=�#�0��

8f0�2
;

’0 �
#�0

2�1� #�
ln
�
�

8V0f0�2

3

�
:

(35)

In (30), we have assumed #> 1. If we consider the case
that V��� � V0e��2��=�0 and f��� � f0e
�2��=�#�0�� as in
(30) but 0<#< 1, there appears a solution where the
term including the GB invariant becomes dominant even
if the curvature is small. By assuming (31) or (32), Eq. (33)
is obtained again. Hence, when 0<#< 1, the solution
where h0 is positive or w>�1 even if � < 0 (scalar
phantom) appears.

On the other hand, if � > 0, there is no accelerated
universe solution with w<�1. The parameter w may
change with time but w is larger than �1=3.
IV. DISCUSSION

We considered essentially two models with exponential
couplings given by (11) and (30). The model (11) may be
considered as the special case corresponding to# � 1. The
main results can be summarized as follows:
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(1) #
 � 1 case: exactly solvable.
(a) V � 0 case: When � � 1, there is only one

solution, �1=3<w< 7=3. On the other
hand, when � � �1, there are three solu-
tions, corresponding to w<�1, �1<w<
�1=3, and w> 7=3.
(2) #
> 1 case: the potential term dominates for a small
curvature and the GB term for a large one.

(a) � > 0: The value of w may be time depen-
dent, but there is no solution describing the
acceleration of the universe.

(b) � < 0: There might appear the big rip singu-
larity, but there might be a solution asymp-
totically approaching the de Sitter space.
(3) 0
<#< 1 case: the potential term dominates for a
large curvature and the GB term for a small one.

(a) � > 0: There is no solution describing the
acceleration of the universe.

(b) � < 0: There appears the big rip singularity.

For the models (11) and (30), in case V0 � 0 (that is,

when the potential vanishes), by replacing #�0 with �0, it
follows that the two models are equivalent. Especially the
� � �1 case has been well studied and it has been shown
that there are always three effective cosmological phases
corresponding to the phantom with h0 < 0 or w<�1, the
quintessence with h0 > 1 or �1<w<�1=3, and the
matter with 0< h0 < 1=5 or w> 7=3. Even if V0 � 0,
the model (11) can be solved exactly and the solutions
where h0 and therefore w are constants may be found. On
the other hand, if V0 � 0, in the model (30) there exist the
solutions where the values of h0 and therefore ofw are time
dependent. There could emerge a cosmology, which be-
haves as a phantom one withw<�1 when the curvature is
small and as a usual matter dominated universe with w>
123509
�1 when the curvature is large. Moreover, big rip singu-
larity does not occur.

Our study indicates that current acceleration may be
caused by stringy/M-theory effects (terms) which some-
how became relevant quite recently (in a cosmological
sense). It remains a challenge to construct the consistent
dark energy universe model from string/M-theory.
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APPENDIX: STABILITY OF PHANTOM
COSMOLOGY

In this appendix, we check the stability of the above
solutions. The following quantities are convenient to in-
troduce:

X �
_�
H
; Z � H2f0���;

d
dN

� a
d
da

�
1

H
d
dt
:

(A1)

For simplicity, we also put �2 to be unity. Then by using (9)
and (10) with (11), one finds
dX
dN

�
�2�0X

3 � 2�X�8X2Z��0�3� 52XZ��� 4� 2V0f0�0Z
� 24V0f0X

�0
� 12Z��0 � 16�0XZ� 8X2Z��

2�0��� 6�XZ� 96Z2�
; (A2)

dZ
dN

�
Z�� �2�0X

2 � 16Z�2V0F0

�0Z
� 12��0 � X�Z� � 2��X� 16�0XZ��

�0��� 6�XZ� 96Z2�
: (A3)
For the solution (12) or (13), it follows

X � X0 �
�0

h0
; Z � Z0 �

2f0h20
�0t21

: (A4)

In terms of X0 and Z0, Eqs. (14) and (15) can be rewritten
as

0 � �
3

�2
�
�X2

0

2
�

2V0f0
�0Z0

� 24Z0X0; (A5)
0 � �X2
0 � 3�0�X0 �

4V0f0
�0Z0

� 24�0Z0 � 24Z0X0:

(A6)

For the solution (A4), by using (A5) and (A6), the right-
hand sides of Eqs. (A2) and (A3) vanish consistently. We
now consider the perturbation around the solution (A4):

X � X0 � �X; Y � Y0 � �Y: (A7)

We now check only the stability for V � 0 (V0 � 0) case.
Using (A2) and (A3), one obtains
-5
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d
dN

�X
�Y

� �
� M

�X
�Y

� �
; M �

~A ~B
~C ~D

 !
: (A8)

Here

~A �
3�2�0X

2
0 � 48�X2

0Z0 � 6��0 � 208��0X0Z0 � 768��0 � X0�Z
2
0

2�0��� 8�X0Z0 � 96Z20�
;

~B �
16�X3

0 � 104��0X2
0 � 48�0 � 1536�0X0Z0 � 768X2

0Z0
2�0��� 8�X0Z0 � 96Z20�

;

~C �
2Z0���

2�0X0 � 96Z20 � �� 16��0Z0�

�0��� 8�X0Z0 � 96Z20�
;

~D �
32Z0��12��0 � X0�Z0 � ��0X0�

�0��� 8�X0Z0 � 96Z20�
: (A9)

If the real parts of all the eigenvalues of the matrixM are negative, the perturbation becomes small and the system is stable.
Then the condition of the stability is given by

~A� ~D< 0; ~A ~D� ~B ~C>0: (A10)

By using (A4)–(A6), we find

X2
0 �

�2
0

h20
� �

6�h0 � 1�

��5h0 � 1�
; Z20 � �

��3h0 � 1�2

96�h0 � 1��5h0 � 1�
; X0Z0 � �

3h0 � 1

4�5h0 � 1�
: (A11)

In order that X2
0 and Z20 are positive, it follows

1

5
< h0 < 1; when � > 0; or h0 <

1

5
or h0 > 1; when � < 0 (A12)

By using (A11), ~A, ~B, ~C, and ~D in (A9) can be expressed in terms of h0:

~A �
�h0 � 1��9h20 � 4h0 � 1�

h0�5h20 � 4h0 � 1�
; ~B �

24�h0 � 1��3h20 � 2h0 � 1�

�h0�5h20 � 4h0 � 1�
;

~C �
��3h0 � 1��3h20 � 1�

12�h0 � 1��5h20 � 4h20 � 1�
; ~D � �

2�h0 � 1�2�3h0 � 1�

h0�5h20 � 4h0 � 1�
:

(A13)

Then we obtain very simple results:

~A� ~D � �
3�h0 � 1�

h0
; (A14)

~A ~D� ~B ~C �
2�1� 3h0�

h20
: (A15)

Therefore Eq. (A10) is satisfied and the system is stable if and only if

h0 < 0: (A16)

Then the case corresponding to phantom cosmology with h0 < 0 is stable.
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