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Non-Gaussianity from the second-order cosmological perturbation
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Several conserved and/or gauge-invariant quantities described as the second-order curvature perturba-
tion have been given in the literature. We revisit various scenarios for the generation of second-order non-
Gaussianity in the primordial curvature perturbation � , employing for the first time a unified notation and
focusing on the normalization fNL of the bispectrum. When � first appears a few Hubble times after
horizon exit, jfNLj is much less than 1 and is, therefore, negligible. Thereafter � (and hence fNL) is
conserved as long as the pressure is a unique function of energy density (adiabatic pressure). Nonadiabatic
pressure comes presumably only from the effect of fields, other than the one pointing along the
inflationary trajectory, which are light during inflation (‘‘light noninflaton fields’’). During single-
component inflation fNL is constant, but multicomponent inflation might generate jfNLj � 1 or bigger.
Preheating can affect fNL only in atypical scenarios where it involves light noninflaton fields. The simplest
curvaton scenario typically gives fNL � �1 or fNL � �5=4. The inhomogeneous reheating scenario can
give a wide range of values for fNL. Unless there is a detection, observation can eventually provide a limit
jfNLj & 1, at which level it will be crucial to calculate the precise observational limit using second-order
theory.
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I. INTRODUCTION

Cosmological scales leave the horizon during inflation
and reenter it after big bang nucleosynthesis. Throughout
the superhorizon era it is very useful to define a primordial
cosmological curvature perturbation, which is conserved if
and only if pressure throughout the Universe is a unique
function of energy density (the adiabatic pressure condi-
tion) [1–7]. Observation directly constrains the curvature
perturbation at the very end of the superhorizon era, a few
Hubble times before cosmological scales start to enter the
horizon, when it apparently sets the initial condition for the
subsequent evolution of all cosmological perturbations.
The observed curvature perturbation is almost Gaussian
with an almost scale-invariant spectrum.

Cosmological perturbation theory expands the exact
equations in powers of the perturbations and keeps terms
only up to the nth order. Since the observed curvature
perturbation is of order 10�5, one might think that first-
order perturbation theory will be adequate for all compari-
sons with observation. That may not be the case, however,
because the PLANCK satellite [8] and its successors may
be sensitive to non-Gaussianity of the curvature perturba-
tion at the level of second-order perturbation theory [9].

Several authors have treated the non-Gaussianity of the
primordial curvature perturbation in the context of second-
order perturbation theory. They have adopted different
definitions of the curvature perturbation and obtained re-
sults for a variety of situations. In this paper we revisit the
calculations, using a single definition of the curvature
address: d.lyth@lancaster.ac.uk
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perturbation which we denote by � . In some cases we
disagree with the findings of the original authors.

The outline of this paper is the following: in Sec. II we
review two definitions of the curvature perturbation found
in the literature, which are valid during and after inflation,
and establish definite relationships between them; in
Sec. III we review a third curvature perturbation definition,
which applies only during inflation, and study it in models
of inflation of the slow-roll variety; in Sec. IV we describe
the present framework for thinking about the origin and
evolution of the curvature perturbation; in Sec. V we see
how non-Gaussianity is defined and constrained by obser-
vation; in Sec. VI we study the initial non-Gaussianity of
the curvature perturbation, a few Hubble times after hori-
zon exit; in Sec. VII we study its subsequent evolution
according to some different models. The conclusions are
summarized in Sec. VIII.

We shall denote unperturbed quantities by a subscript 0
and generally work with conformal time � defined by the
unperturbed line element

ds2 � a2�����d�2 � 	ijdxidxj�: (1)

Here a is the scale factor whose present value is taken to be
1, and a prime denotes d=d�. Sometimes though we revert
to physical time t, with a dot meaning d=dt defined by
d=dt 	 a�1d=d�. We shall adopt the convention that a
generic perturbation g is split into a first- and second-order
part according to the formula

g � g1 �
1

2
g2: (2)
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II. TWO DEFINITIONS OF THE CURVATURE
PERTURBATION

A. Preliminaries

Cosmological perturbations describe small departures of
the actual Universe, away from some perfect homogeneous
and isotropic universe with the line element Eq. (1). For a
generic perturbation it is convenient to make the Fourier
expansion

g�x; �� �
1

�2��3=2

Z
d3kg�k; ��eik
x; (3)

where the spacetime coordinates are those of the unper-
turbed Universe. The inverse of the comoving wave num-
ber k�1 is often referred to as the scale.

A given scale is said to be outside the horizon during the
era aH � k, where H 	 _a=a is the Hubble parameter.
Except where otherwise stated, our discussion applies
only to this superhorizon regime.

When evaluating an observable quantity only a limited
range of scales will be involved. The largest scale, relevant
for the low multipoles of the cosmic microwave back-
ground anisotropy, is k�1 �H�1

0 where H0 is the present
Hubble parameter. The smallest scale usually considered is
the one enclosing matter with mass �106M�, which cor-
responds to k�1 � 10�2 Mpc� 10�6H�1

0 . The cosmologi-
cal range of scales therefore extends over only six decades
or so.

To define cosmological perturbations in general, one has
to introduce in the perturbed Universe a coordinate system
�t; xi�, which defines a slicing of spacetime (fixed t) and a
threading (fixed xi). To define the curvature perturbation it
is enough to define the slicing [7].

B. Two definitions of the curvature perturbation

In this paper we take as our definition of � the following
expression for the spatial metric [4,7,10–14] which applies
nonperturbatively:

gij � a2���~�ije
2� : (4)

Here ~�ij has unit determinant, and the time slicing is one of
uniform energy density.1

It has been shown under weak assumptions [7] that this
defines � uniquely, and that � is conserved as long as the
pressure is a unique function of energy density. Also, it has
been shown that the uniform-density slicing practically
coincides with the comoving slicing (orthogonal to the
flow of energy), and with the uniform Hubble slicing
(corresponding to uniform proper expansion, that expan-
1It is proved in Ref. [7] that this definition of � coincides with
that of Lyth and Wands [15], provided that their slices of uniform
coordinate expansion are taken to correspond to those on which
the line element has the form Eq. (4) without the factor e2� (this
makes the slices practically flat if ~�ij ’ 	ij).
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sion being practically independent of the threading which
defines it) [7]. The coincidence of these slicings is impor-
tant since all three have been invoked by different authors.

Since the matrix ~� has unit determinant it can be written
~� � Ieh, where I is the unit matrix and h is traceless [7].
Assuming that the initial condition is set by inflation, h
corresponds to a tensor perturbation (gravitational wave
amplitude) which will be negligible unless the scale of
inflation is very high. As we shall see later (see footnote 10),
the results we are going to present are valid even if h is not
negligible, but to simplify the presentation we drop h from
the equations. Accordingly, the space part of the metric in
the superhorizon regime is supposed to be well approxi-
mated by

gij � a2���	ije
2� : (5)

At first order, Eq. (5) corresponds to

gij � a2���	ij�1� 2��: (6)

Up to a sign, this is the definition of the first-order curva-
ture perturbation adopted by all authors. There is no uni-
versally agreed convention for the sign of � . Ours coincides
with the convention of most of the papers to which we
refer, and we have checked carefully that the signs in our
own set of equations are correct.

At second order we have

gij � a2���	ij�1� 2� � 2�2�: (7)

This is our definition of � at second order.
Malik and Wands [16] instead defined � by Eq. (6) even

at second order. Denoting their definition by a subscript
MW,

�MW � � � �2; (8)

or equivalently

�MW
2 � �2 � 2��1�

2; (9)

where �1 is the first-order quantity whose definition Eq. (6)
is agreed by all authors.

To make contact with calculations of the curvature
perturbation during inflation, we need some gauge-
invariant expressions for the curvature perturbation.
‘‘Gauge-invariant’’ means that the definition is valid for
any choice of the coordinate system which defines the
slicing and threading.2

We shall write gauge-invariant expressions in terms of �
and �MW. First we consider a quantity  MW, defined even
at second order by

gij � a2���	ij�1� 2 MW�: (10)

This definition, which is written in analogy to Eq. (6),
2In the unperturbed limit the slicing has to be the one on which
all quantities are uniform and the threading has to be orthogonal
to it.
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applies to a generic slicing. Analogously to Eq. (5) we can
consider a quantity  , valid also in a generic slicing,
defined by

gij � a2���	ije
�2 : (11)

On uniform-density slices,  1 �  MW
1 � ��1,  MW

2 �
��MW

2 , and  2 � ��2. We shall also need the energy
density perturbation 	�, defined on the generic slicing,
as well as the unperturbed energy density �0.

At first order, the gauge-invariant expression for � has
the well-known form

�1 � � 1 �H
	�1

�0
0

; (12)

where H � a0=a, and the unperturbed energy density
satisfies �0

0 � �3H ��0 � P0� with P0 being the unper-
turbed pressure. This expression obviously is correct for
the uniform-density slicing, and it is correct for all slicings
because the changes in the first and second terms induced
by a change in the slicing cancel [1–3,17,18].

At second order, Malik and Wands show that [16]

�MW
2 � � MW

2 �H
	�2

�0
0

� 2H
	�1

�0
0

	�0
1

�0
0

� 2
	�1

�0
0

� 0
1 � 2H 1�

�

�
H

	�1

�0
0

�
2
�
�00
0

H�0
0

�
H 0

H 2
� 2

�
; (13)

which is, again and for the same reason as before, obvi-
ously correct for all the slices. Accordingly, from Eq. (9),
we can write a gauge-invariant definition for our second-
order � :3

�2 � � 2 �H
	�2

�0
0

� 2H
	�1

�0
0

	�0
1

�0
0

� 2
	�1

�0
0

 0
1

�

�
H

	�1

�0
0

�
2
�
�00
0

H�0
0

�
H 0

H 2

�
; (14)

where the relation

 MW
2 �  2 � 2� 1�

2; (15)

coming from Eqs. (10) and (11) has been used.

III. SLOW-ROLL INFLATION AND A THIRD
DEFINITION

Now we specialize to the era of slow-roll inflation. We
consider single-component inflation, during which the cur-
vature perturbation � is conserved, and multicomponent
inflation during which it varies. After defining both para-
3This relation has recently been confirmed in Ref. [19] using a
nonlinear coordinate-free approach.
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digms, we give a third definition of the curvature perturba-
tion which applies only during inflation.

A. Single-component inflation

In a single-component inflation model [20,21] the in-
flaton trajectory is by definition essentially unique. The
inflaton field ’ parameterizes the distance along the in-
flaton trajectory. In terms of the field variation, slow-roll
inflation is characterized by the slow-roll conditions �� 1
and j�Vj � 1 [20,21], where

� 	 � _H=H2; (16)
�V � � 	 �
�’
H _’

: (17)
The inflaton field can be taken to be canonically normal-
ized, in which case these definitions are equivalent to
conditions on the potential V

� 	
M2

P

2V2

�
@V
@’

�
2
; (18)
�V 	
M2

P

V
@2V

@’2 ; (19)
which, together with the slow-roll approximation, lead to
the slow-roll behavior

3H _’ � �
dV
d’

: (20)
Here MP is the reduced Planck mass [MP 	 �8�GN�
�1].

Even without the slow-roll approximation, slices of
uniform ’ correspond to comoving slices because a spatial
gradient of’would give nonvanishing momentum density.
Since comoving slices coincide with slices of uniform
energy density, the slices of uniform ’ coincide also with
the latter. Also, since ’ is a Lorentz scalar, its gauge
transformation is the same as that of �. It follows [22]
that we can replace � by ’ in the above expressions:

�1 � � 1 �H
	’1

’0
0

; (21)
-3
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FIG. 1. Two different procedures for defining the fields in two-component inflation. The fields are denoted by ’ and $. (a) The field
’ parameterizes the distance along the inflaton trajectories, with uniform ’ corresponding to the equipotential lines. The field $
parameterizes the distance along the equipotentials. (b) The fields ’ and $ are the components in a fixed orthonormal basis, aligned
with the inflationary trajectory at a certain point in field space. The value of ’ is now the displacement along the tangent vector and the
value of $ is the displacement along the orthogonal vector. Working to second order in these displacements, the equipotentials no
longer coincide with the lines of uniform ’.
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�MW
2 � � MW

2 �H
	’2

’0
0

� 2H
	’1

’0
0

	’0
1

’0
0

� 2
	’1

’0
0

� 0
1 � 2H 1�

�

�
H

	’1

’0
0

�
2
�
’00

0

H’0
0

�
H 0

H 2
� 2

�
; (22)

�2 � � 2 �H
	’2

’0
0

� 2H
	’1

’0
0

	’0
1

’0
0

� 2
	’1

’0
0

 0
1

�

�
H

	’1

’0
0

�
2
�
’00

0

H’0
0

�
H 0

H 2

�
: (23)
B. Multicomponent inflation

Now consider the case of multicomponent inflation,
where there is a family of inequivalent inflationary trajec-
tories lying in an N-dimensional manifold of field space. If
the relevant part of the manifold is not too big it will be a
good approximation to take the fields to be canonically
normalized. Then the inequivalent trajectories will be
curved in field space.4 To define the trajectories one can
choose a fixed basis in field space corresponding to fields
"1; 
 
 
 ; "N .

Assuming canonical normalization, multicomponent
slow-roll inflation is characterized by the conditions
4More generally they will be nongeodesics, the geodesics
being the trajectories which the background fields could follow
if there was no potential term in the scalar Lagrangian [23].
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M2
P

2V2

�
@V
@"n

�
2
� 1; (24)

M2
P

V

�������� @2V
@"n@"m

��������� 1; (25)

3H _"n � �
@V
@"n

: (26)

The procedure of choosing a fixed basis is quite conve-
nient for calculations, but a different procedure leads to a
perhaps simpler theoretical description. This is to take ’ to
parameterize the distance along the inflaton trajectories,
just as in single-component inflation, but now with the
proviso that uniform ’ corresponds to uniform field po-
tential (since we work in the slow-roll approximation, this
means that the slices in field space of uniform ’ are
orthogonal to the trajectories). Then, in the slow-roll ap-
proximation, slices of spacetime with uniform ’will again
coincide with slices of uniform density [see Fig. 1(a)].
Since ’ is a scalar, Eqs. (21) and (22) will then be valid.
This is the simplest form of the gauge-invariant expression,
though for a practical calculation it may be better to write it
in terms of a fixed basis.

There is a subtlety here. For the first-order case we could
define ’ in a different way; around a given point on the
unperturbed trajectory we could choose a fixed field basis,
with one of the basis vectors pointing along the trajectory,
and define ’ as the corresponding field component. Then
we could choose ’ to be canonically normalized in the
vicinity of the chosen point in field space. That would not
work at second order though, because at that order it makes
a difference whether ’ is the appropriate parameterization
-4
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of the distance along the trajectories (our adopted defini-
tion) or the distance along a tangent vector to the trajectory
(the alternative definition) [see Fig. 1(b)]. Only our
adopted one will make Eqs. (22) and (23) valid.

C. A third definition of the curvature perturbation

The third definition in the literature applies only during
inflation. It was given originally by Acquaviva et al. [24]
for the single-component case, and the generalization to
the multicomponent case was noted by Rigopoulos [23].
We shall denote this definition by �A.

The definition of Acquaviva et al. and Rigopoulos is

�A2 � � MW
2 �H

	’2

’0
0

�
� 0

1 � 2H 1 �H	’0
1=’

0
0�

2

H 0 � 2H 2 �H’00
0=’

0
0

: (27)

This is gauge invariant by construction, with ’ defined as
in Fig. 1(a).

It was pointed out by Vernizzi [22] (actually in the
context of single-component inflation) that comparing
this definition with Eq. (13) gives simply

�A2 � �MW
2 �

4H 2��1�
2

H 0 � 2H 2 �H’00=’0
: (28)

In the limit of slow-roll the denominator of the last term
becomes just 2H 2, and then

�A2 � �2: (29)

In other words, this third definition coincides with our
adopted one in the slow-roll limit.

Making use of the slow-roll parameters defined in
Eqs. (16) and (17), the expression in Eq. (28) gives to first
order in the slow-roll approximation

�A2 � �2 � �2�� �V���1�
2: (30)

IV. THE EVOLUTION OF THE CURVATURE
PERTURBATION

The simplest possibility for the origin of the observed
curvature perturbation is that it comes from the vacuum
fluctuation of the inflaton field in a single-component
model. More recently other possibilities were recognized
and we summarize the situation now. Although the dis-
cussion is usually applied to the magnitude of the curvature
perturbation, it applies equally to the non-Gaussianity.

A. Heavy, light, and ultralight fields

On each scale the initial epoch, as far as classical
perturbations are concerned, should be taken to be a few
Hubble times after horizon exit during inflation. The rea-
123508
son is that all such perturbations are supposed to originate
from the vacuum fluctuation of one or more light scalar
fields, the fluctuation on each scale being promoted to a
classical perturbation around the time of horizon exit.

Considering a fixed basis with canonical normalization,
a light field is roughly speaking one satisfying the flatness
condition in Eq. (25). The terminology is suggested by the
important special case that the effective potential during
inflation is quadratic. Then, a light field is roughly speak-
ing that whose effective mass during inflation is less than
the value H� of the Hubble parameter. More precisely, the
condition that the vacuum fluctuation be promoted to a
classical perturbation is [25]

m<
3

2
H�: (31)

From now on we focus on the quadratic potential and take
this as the definition of a light field. Conversely a heavy
field may be defined as one for which the condition in
Eq. (31) is violated.

During inflation light fields slowly roll according to
Eq. (26) (with the vacuum fluctuation superimposed) while
the heavy fields presumably are pinned down at an instan-
taneous minimum of the effective potential. As we have
seen, multicomponent inflation takes place in a subspace of
field space. The fields in this subspace are light, but their
effective masses are sufficient to appreciably curve the
inflationary trajectories. In the case of both multicompo-
nent and single-component inflation, there also could be
‘‘ultralight’’ fields, which do not appreciably curve the
inflationary trajectory and which therefore have practically
no effect on the dynamics of inflation.

B. The evolution of the curvature perturbation

To describe the behavior of perturbations during the
superhorizon era, without making too many detailed as-
sumptions, it is useful to invoke the separate universe
hypothesis [2,5,15,26] after smoothing on a given comov-
ing scale much bigger than the horizon.5 According to this
hypothesis the local evolution at each position is that of
some unperturbed universe (separate universe). Of course
the separate universe hypothesis can and should be
checked where there is a sufficiently detailed model.
However, it should be correct on cosmological scales for
a very simple reason. The unperturbed Universe may be
defined as the one around us, smoothed on a scale a bit
bigger than the present Hubble distance. In other words,
the separate universe hypothesis is certainly valid when
applied to that scale. But the whole range of cosmological
scales spans only a few decades. This means that cosmo-
-5
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logical scales are likely to be huge compared with any
scale that is relevant in the early Universe, and accordingly
that the separate universe hypothesis should be valid when
applied to cosmological scales even though it might fail on
much smaller scales (this expectation was verified in a
preheating example [27] to which we return later).

We are concerned with the curvature perturbation, which
during the superhorizon era is conserved as long as the
pressure is a unique function of the energy density (the
adiabatic pressure condition). The adiabatic pressure con-
dition will be satisfied if and only if the separate universes
are identical (at least as far as the relation between pressure
and energy density is concerned).6 The condition to have
identical universes after a given epoch is that the specifi-
cation of a single quantity at that epoch is sufficient to
determine the entire subsequent evolution.

In the case of single-component inflation, the initial
condition may be supplied by the local value of the inflaton
field, at the very beginning of the superhorizon era when it
first becomes classical. Given the separate universe hy-
pothesis, that is the only possibility if the inflaton is the
only light field ever to play a significant dynamical role.
This means that the curvature perturbation generated at
horizon exit during single-component inflation will be
equal to the one observed at the approach of horizon entry,
provided that the inflaton is the only light field ever to play
a dynamical role.

If inflation is multicomponent, more than one field is by
definition relevant during inflation. Then the curvature
perturbation cannot be conserved during inflation. The
variation of the curvature perturbation during multicom-
ponent inflation is caused by the vacuum fluctuation or-
thogonal to the unperturbed inflationary trajectory, which
around the time of horizon exit kicks the trajectory onto a
nearby one so that the local trajectory becomes position-
dependent. After inflation is over, the curvature perturba-
tion will be conserved if the local trajectories lead to
practically identical universes. In other words it will be
conserved if the light (and ultralight) fields, orthogonal to
the trajectory at the end of inflation, do not affect the
subsequent evolution of the Universe.

The curvature perturbation after inflation will vary if
some light or ultralight field, orthogonal to the trajectory at
the end of inflation, affects the subsequent evolution of the
Universe (to be precise, affects the pressure). As we shall
describe in Sec. VII, three types of scenarios have been
proposed for this post-inflationary variation of the curva-
ture perturbation.
6Of course the identity will only hold after making an appro-
priate synchronization of the clocks at different positions.
Having made that synchronization, horizon entry will occur at
different times in different positions, which can be regarded as
the origin of the curvature perturbation.
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V. NON-GAUSSIANITY

A. Defining the non-Gaussianity

A Gaussian perturbation is one whose Fourier compo-
nents are uncorrelated. All of its statistical properties are
defined by its spectrum, and the spectrum P g of a generic
perturbation is conveniently defined [20,21] by7

hg�k1�g�k2�i �
2�2

k3
	3�k1 � k2�P g�k�; (32)

the normalization being chosen so that

hg2�x�i �
Z 1

0
P g�k�

dk
k
: (33)

On cosmological scales a few Hubble times before horizon
entry, observation shows that the curvature perturbation is
almost Gaussian with P 1=2

� ’ 10�5.
The simplest kind of non-Gaussianity that the curvature

perturbation could possess is of the form

��x� � �g�x� �
3

5
fNL��2g �x� � �2g�; (34)

where �g is Gaussian with h�gi � 0, and the nonlinearity
parameter fNL is independent of position. We will call this
correlated &2 non-Gaussianity. Note that this definition
assumes that h�i � 0, which means that the zero Fourier
mode (spatial average) is dropped.

Following Maldacena [10], we have inserted the prefac-
tor ��3=5� so that in first-order perturbation theory our
definition agrees with that of Komatsu and Spergel [9],
which is generally the definition people use when com-
paring theory with observation. Working in first-order
perturbation theory, these authors write ��x� � �g�x� �
fNL��

2
g�x� ��2

g�, and their � is equal to �3=5 times
our � .

One of the most powerful observational signatures of
non-Gaussianity is a nonzero value for the three-point
correlator, specified by the bispectrum B defined by [9,28]

h��k1���k2���k3�i � �2���3=2B�k1; k2; k3�

� 	3�k1 � k2 � k3�: (35)

For correlated &2 non-Gaussianity (with the Gaussian term
dominating)

B�k1; k2; k3� � �
6

5
fNL�P� �k1�P� �k2� � cyclic�; (36)

where P� �k� � 2�2P � �k�=k3. For any kind of non-
7Technically the expectation values in this and the following
expressions refer to an ensemble of universes but, because the
stochastic properties of the perturbations are supposed to be
invariant under translations, the expectation values can also be
regarded as averages over the location of the observer who
defines the origin of coordinates.
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Gaussianity one may use the above expression to define a
function fNL�k1; k2; k3�.

Given a calculation of fNL using first-order perturbation
theory, one expects in general that going to second order
will change fNL by an amount of order 1. On this basis, one
expects that a first-order calculation is good enough if it
yields jfNLj � 1, but that otherwise a second-order calcu-
lation will be necessary.

The definition Eq. (36) of fNL is made using our adopted
definition of � . If � in the definition is replaced by �MW

(with the zero Fourier mode dropped) then fNL should be
replaced by

fMW
NL 	 fNL �

5

3
: (37)

To obtain this expression we used Eq. (8) and dropped
terms higher than second order.

All of this assumes that the non-Gaussian component of
� is fully correlated with the Gaussian component. An
alternative possibility [29] that will be important for us is
if � has the form

��x� � �g�x� �
3

5
~fNL��

2
$�x� � �2$�; (38)

where �g and �$ are uncorrelated Gaussian perturbations,
normalized to have equal spectra, and the parameter ~fNL is
independent of position. We will call this uncorrelated &2

non-Gaussianity. It can be shown [29] that in this case, fNL
as defined by Eq. (36) is given by

fNL �
� ~fNL
1300

�
3
: (39)
8Near a maximum of the potential ‘‘fast-roll’’ inflation [39,40]
can take place with j�V j somewhat bigger than 1. Maldacena’s
calculation does not apply to that case but, presumably, it gives
initial non-Gaussianity jfNLj � 1. However, the precise initial
value of fNL in this case is not important because the corre-
sponding initial spectral index is far from 1, which means that
the initial curvature perturbation must be negligible.
B. Observational constraints on the non-Gaussianity

Taking fNL to denote the nonlinearity parameter at the
primordial era, let us consider the observational con-
straints. Detailed calculations have so far been made only
with fNL independent of the wave numbers, and only by
using first-order perturbation theory for the evolution of the
cosmological perturbations after horizon entry. It is found
[30] that present observation requires jfNLj & 102 making
the non-Gaussian fraction at most of order 10�3. The use of
first-order perturbation theory in this context is amply
justified. Looking to the future though, it is found that
the PLANCK satellite will either detect non-Gaussianity
or reduce the bound to jfNLj & 5 [9,28], and that foresee-
able future observations can reach a level jfNLj � 3 [9,28].

Although the use of first-order perturbation theory is not
really justified for the latter estimates, we can safely con-
clude that it will be difficult for observation ever to detect a
value jfNLj � 1. That is a pity because, as we shall see,
such a value is predicted by some theoretical scenarios. On
the other hand, other scenarios predict jfNLj roughly of
order 1. It will therefore be of great interest to have detailed
second-order calculations, to establish precisely the level
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of sensitivity that can be achieved by future observations.
A step in this direction has been taken in Refs. [31,32],
where the large-scale cosmic microwave background an-
isotropy is calculated to second order in terms of only the
curvature perturbation (generalizing the first-order Sachs-
Wolfe effect [33]).
VI. THE INITIAL NON-GAUSSIANITY

A. Single-component inflation

At first order, the curvature perturbation during single-
component inflation is Gaussian. Its time-independent
spectrum is given by [20,21]

P � �k� �
��
H
2�

�
2
�
H
_’

�
2
�
k�aH

; (40)

and its spectral index n 	 d lnP �=d lnk is given by

n� 1 � 2�V � 6�: (41)

The spectrum r of the tensor perturbation, defined as a
fraction of P � , is also given in terms of the slow-roll
parameter �:

r � 16�: (42)

If the curvature perturbation does not evolve after
single-component inflation is over observation constrains
n and r, and hence the slow-roll parameters �V and �.
A current bound [34] is �0:048< n� 1< 0:016 and
r < 0:46. The second bound gives � < 0:029, but barring
an accurate cancellation the first bound gives � & 0:003. In
most inflation models � is completely negligible and then
the first bound gives �0:024<�V < 0:008 (irrespective
of slow-roll inflation models, the upper bound in this
expression holds generally, and the lower bound is badly
violated only if there is an accurate cancellation). The
bottom line of all this is that � and j�V j are both con-
strained to be & 10�2.

Going to second order, Maldacena [10] has calculated
the bispectrum during single-component inflation (see also
Refs. [12–14,35–38]). His result may be written in the
form

fNL �
5

12
�2�V � 6�� 2�f�k1; k2; k3��; (43)

with 0 � f � 5=6. By virtue of the slow-roll conditions,
jfNLj � 1.8 In other words, the curvature perturbation � ,
as we have defined it, is almost Gaussian during single-
component inflation.
-7
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From Eq. (30) �A is also practically Gaussian, but this
quantity is defined only during inflation and therefore
could not be considered as a replacement for � . More
importantly, �MW has significant non-Gaussianity because,
from Eq. (37), it corresponds to fMW

NL � �5=3.
One may ask why it is our � and not �MW which is

Gaussian in the slow-roll limit.9 One feature that distin-
guishes our � is that any part of it can be absorbed into the
scale factor without altering the rest; indeed

gij � 	ija2���e2�1��2 � 	ij~a2���e�2 ; (44)

with ~a � ae�1 (if we tried to do that with �MW, the part of �
not absorbed would have to be rescaled). This means that
an extremely long-wavelength and possible large part of �
has no local significance. It also means, in the context of
perturbation theory, that the first-order part of � can be
absorbed into the scale factor when discussing the second-
order part. However, the Gaussianity of � does not seem to
be related directly to this feature. Rather, it has to do with
the gauge transformation, relating quantities  A and  B
defined on different slicings.

With our definition [7], the gauge transformation is

 A�t;x� �  B�t;x� � ��NAB�t;x�; (45)

where �NAB is the number of e-folds of expansion going
from a slice B to a slice A, both of them corresponding to
time t.10 In writing this expression we used physical time t
instead of conformal time, the two related by dt � ad�.
Along a comoving world line, the number of e-folds of
expansion is defined as N 	

R
~Hd* where ~H is the local

Hubble parameter and d* is the proper time interval [7].
To understand the relevance of this result, take  B � 0

and  A � �� . The pressure is adiabatic during single-
component inflation, which means that dt can be identified
with the proper time interval d*, and the proper expansion
rate on slicing A is uniform [7]. As a result, to second order,

� � H�t��t�t;x� �
1

2
_H�t���t�t;x��2

’ H�t�t;x� �
1

2

_H

H2 �H�t�t;x��2

’ H�t�t;x�: (46)

In the last line we made the slow-roll approximation, and
from the second line we can see that the error in fNL caused
by this approximation is precisely �.

We also need the gauge transformation for the inflaton
field ’ in terms of �t. Since the slices correspond to the
same coordinate time, the unperturbed inflaton field can be
9We thank Paolo Creminelli for enlightening correspondence
on this question.

10This expression is valid even when the tensor perturbation is
included [7]. As a result, the gauge-invariant expressions men-
tioned earlier are still valid in that case, as are the results based
on them including the present discussion.
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taken to be the same on each of them which means that the
gauge transformation for 	’ is

	’A�t;x� � 	’B�t;x� � �’AB�t;x�; (47)

where �’AB is the change in ’ going from slice B to slice
A. But slice A corresponds to uniform ’, which means that
on slice B to second order

H�t�
	’B�t;x�

_’0
� �H�t��t�t;x� �

1

2
H�t�

�’0

_’0
��t�t;x��2

’ �H�t�t;x� �
1

2

�’0

H _’0
�H�t�t;x��2

’ �H�t�t;x�; (48)

where in the last line we used the slow-roll approximation.
We can see that the fractional error caused by this approxi-
mation is �’0=H _’0 � �� �V .

Combining Eqs. (46) and (48) we have in the slow-roll
approximation

� ’ �H�t�
	’B�t;x�

_’0
; (49)

with fractional error of order maxf�V; �g [this also can be
seen directly from Eqs. (21) and (23) evaluated with
 � 0, but we give the above argument because it explains
why the result is valid for � as opposed to �MW].

The final and crucial step is to observe that in the slow-
roll approximation ’B is Gaussian, with again a fractional
error of order maxf�V; �g. This was demonstrated by
Maldacena [10] but the basic reason is very simple. The
non-Gaussianity of ’ comes either from third and higher
derivatives of V (through the field equation in unperturbed
spacetime) or else through the backreaction (the perturba-
tion of spacetime); but the first effect is small [20,21] by
virtue of the flatness requirements on the potential, and the
second effect is small because _’0=H

2 is small [21]. This
explains why � with our adopted definition is practically
Gaussian by virtue of the slow-roll approximation.

B. Multicomponent inflation

The flatness and slow-roll conditions Eqs. (24)–(26)
ensure that the curvature of the inflationary trajectories is
small during the few Hubble times around horizon exit,
during which the quantum fluctuation is promoted to a
classical perturbation. As a result, the initial curvature
perturbation in first-order perturbation theory, is still given
by Eq. (40) in terms of the field ’ that we defined earlier.

What about the initial non-Gaussianity generated at
second order? In the approximation that the curvature of
the trajectories around horizon exit is completely negli-
gible, the orthogonal fields are strictly massless. Such
fields would not affect Maldacena’s second-order calcula-
tion, which would therefore still give the initial non-
Gaussianity. It is not quite clear whether the curvature
can really be neglected, as it can be in the first-order
-8
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case, and it may therefore be that the initial non-
Gaussianity in multifield inflation is different from
Maldacena’s result. Even if that is the case though, we
can safely say that the initial non-Gaussianity corresponds
to jfNLj � 1, since the curvature of the trajectories is
certainly small.
11The fields ’ and $ in Eq. (53) are supposed to be canonically
normalized, which means that ’ is not the field appearing in the
Rigopoulos definition Eq. (27) of �A. Instead the authors of [45]
give an equivalent definition in terms of the canonically normal-
ized fields.
VII. THE EVOLUTION AFTER HORIZON EXIT

A. Single-component inflation and �A
2

During single-component inflation the curvature pertur-
bation � , as we have defined it, does not evolve. From its
definition Eq. (8), the same is true of �MW

2 .
In contrast �A2 , given by Eq. (30), will have the slow

variation [22]

_� A
2 � ��2 _�� _�V���1�

2: (50)

This variation has no physical significance, being an arti-
fact of the definition.

Using a particular gauge, Acquaviva et al. [24] have
calculated _�A2 in terms of first-order quantities  1, 	’1, and
their derivatives, and they have displayed the result as an
indefinite integral

�A2 �t� �
Z t

A�t�dt� B�t�: (51)

Inserting an initial condition, valid a few Hubble times
after horizon exit, this becomes

�A2 �t� � �A2 �ti� �
Z t

ti
A�t�dt� Bjtti : (52)

In view of our discussion, it is clear that these equations
will, if correctly evaluated, just reproduce the time depen-
dence of Eq. (50).

The authors of Ref. [24] also present an equation for _�A2 ,
again involving only first-order quantities, which is valid
also before horizon entry. Contrary to the claim of the
authors, this classical equation cannot by itself be used to
calculate the initial value (more precisely, the stochastic
properties of the initial value) of �A2 . In particular, it cannot
by itself reproduce Maldacena’s calculation of the
bispectrum.

It is true of course that in the Heisenberg picture the
quantum operators satisfy the classical field equations. In
first-order perturbation theory, where the equations are
linear, this allows one to calculate the curvature perturba-
tion without going to the trouble of calculating the second-
order action [21] (at the nth order of perturbation theory
the action has to be evaluated to order n� 1 if it is to be
used). At second order in perturbation theory it remains to
be seen whether the Heisenberg picture can provide a
useful alternative to Maldacena’s calculation, who adopted
123508
the interaction picture and calculated the action to third
order.

B. Multicomponent inflation

During multicomponent inflation the curvature pertur-
bation by definition varies significantly along a generic
trajectory, which means that non-Gaussianity is generated
at some level. So far only a limited range of models has
been investigated [41–46]. To keep the spectral tilt within
observational bounds, the unperturbed trajectory in these
models has to be specially chosen, but the choice might be
justified by a suitable initial condition.

We shall consider here a calculation by Enqvist and
Väihkönen in Ref. [45]. Following the same line as
Acquaviva et al. [24], they study a two-component infla-
tion model, in which the only important parts of the po-
tential are

V�’;$� � V0 �
1

2
m2
$$2 �

1

2
m2
’’2: (53)

The masses are both supposed to be less than �3=2�H�, so
that this is a two-component inflation model, and the above
form of the potential is supposed to hold for some number
�N of e-folds after cosmological scales leave the horizon.
They take the unperturbed inflation trajectory to have
$0 � 0, and the idea is to calculate the amount of non-
Gaussianity generated after �N e-folds. Irrespective of any
later evolution, this calculated non-Gaussianity will repre-
sent the minimal observed one (unless non-Gaussianity
generated later happens to cancel it).

It is supposed that the condition $0 � 0, as well as the
ending of inflation, will come from a tree-level hybrid
potential,

V�’;$� � V0 �
1

2
m2

0$
2 �

1

4
+$4 �

1

2
m2
’’2 �

1

2
g2$2’2:

(54)

Like the original authors though, we shall not investigate
the extent to which Eq. (54) can reproduce Eq. (53) for at
least some number of e-folds. We just focus on Eq. (53),
with the assumption $0 � 0 for the unperturbed trajectory.

Because $0 � 0, the unperturbed trajectory is straight,
and at first order the curvature perturbation � is conserved.
This is not the case though at second order. Adopting the
definition �A, the authors of [45] give an expression for �A2
similar to that in Eq. (52) describing the evolution of the
second-order curvature perturbation on superhorizon
scales.11 This equation, in the generalized longitudinal
gauge, reads (from Eq. (67) in Ref. [45]):
-9
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�A2 �t� � �A2 �ti� � �
1

�HM2
P

�Z t

ti
�6H��2@i�	 _$1@i	$1� � 2�	 _$1�

2 � 4��2@i�	 _$1@i	$1�

 �m2

$�	$1�
2

� ��� �V�6H��4@i�@k@k	$1@i	$1�

 � ��� �V�H��4@i@i�@k	$1@k	$1�




� 3��4@i�@k@
k	$1@

i	$1�


 �

1

2
��4@i@

i�@k	$1@
k	$1�



�dt� ����2@i�	 _$1@
i	$1�

� 3��4@i�@k@k	$1@i	$1�

 �

1

2
��4@i@i�@k	$1@k	$1�


 � 3�H��4@i�@k@k	$1@i	$1�

�
�H
2

��4@i@
i�@k	$1@

k	$1��

��������
t

ti

	
; (55)
12In the proper treatment of the integral and its initial condition
the factors ���1�2, �V��1�2, and m2

$=H
2��1�

2 cancel out since the
evaluated quantity is in this case �A2 �t� � �A2 �ti�, and �1 is
conserved. This was not taken into account in Ref. [45].
where ��2 is the inverse of the Laplacian operator.
Assuming that this expression is correct, we consider the

non-Gaussianity it may generate. Following the original
authors, we note first that

��������H	$1

_’0

���������
��������H	’1

_’0

��������� j�1j 	 constant; (56)

which is a good approximation since the first-order pertur-
bation equation of the effectively massless field $ is the
same as the first-order perturbation equation of the inflaton
field ’ on superhorizon scales. Moreover, the time deriva-
tive of the first-order perturbation in $ can be estimated as

j	 _$1j �
m2
$

H
j	$1j; (57)

assuming slow-roll conditions. If we also assume that H
and m2

$ are almost constants in time, we end up with

�A2 �t� � �A2 �ti� � �
1

�HM2
P

Z t

ti
�6H��2@i�	 _$1@i	$1�

� 2�	 _$1�
2 �m2

$�	$1�
2�dt: (58)

For m2=H2 � 1 the first and third term in the integrand
dominate, whereas all the three terms become of the same
order of magnitude for m2=H2 � 1 which is the limit of
applicability of the calculation. In any case, the typical
magnitude of the right-hand side is of order

�N
m2
$

H2 j�1j
2; (59)

with �N the number of e-folds specified by the integral
limits. This looks big, but we have to remember that the
right-hand side is uncorrelated with the inflaton perturba-
tion 	" which generates �A1 . Therefore, Eq. (38) as op-
posed to Eq. (34) applies, and we would need �N � 1300
to get even fNL � 1, which is impossible.

These conclusions differ sharply from those of
Enqvist and Väihkönen [45] who actually find �A2 /
123508
O��; �V;m
2
$=H

2���1�
2.12 Their estimate of the right-hand

side of Eq. (58) does not contain our factor �N, but much
more importantly they estimate fNL as if the right-hand
side were fully correlated with �A1 to conclude that the
model can give fNL � 1.

The reason of the discrepancy lies in the Eq. (71) in
Ref. [45], which we write in the same form as our Eq. (59):

�A2 �t� � �A2 �ti� � �
1

�HM2
P

Z t

ti
�6H��2@i�	 _$1@i	$1�

� 2�	 _$1�
2 �m2

$�	$1�
2�dt

� �
1

�HM2
P

Z t

ti
��2��2@i�	 �$1@

i	$1�

� 2�	 _$1�
2�; (60)

where the equation of motion 	 �$1�3H	 _$1�m
2
$	$1�0

has been used. Enqvist and Väihkönen seem to have ne-
glected the factor 	 �$1 in the above expression, keeping
only the term �2�	 _$1�

2 in the integrand, which gives the
partial estimate

�A2 �t� � �A2 �ti� � �N
m4
$

H4 j�1j
2 �

m2
$

H2 j�1j
2: (61)

This last step is wrong because 	 �$1 can only be neglected
compared with 3H	 _$1 �m2

$	$1, which is not present in
the integrand in Eq. (60). Moreover, what we need is the
integral of 	 �$1, i.e. 	 _$1, which is in any case non-
negligible. That is the origin of our new term

�N
m2
$

H2 j�1j
2; (62)

in Eq. (59). As a conclusion the level of non-Gaussianity in
this hybrid-type model seems to be much smaller than
previously thought as the conditionm$ & H is presumably
not satisfied for a sufficient number of e-folds.
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C. Preheating

Now we turn to the possibility that significant non-
Gaussianity could be generated during preheating.
Preheating is the term used to describe the energy loss by
scalar fields which might occur between the end of infla-
tion and reheating [47,48], the latter being taken to corre-
spond to the decay of individual particles which leads to
more or less complete thermalization of the Universe.
Preheating typically produces marginally relativistic parti-
cles, which decay before reheating.

It was suggested a long time ago [49,50] that preheating
might cause the cosmological curvature perturbation to
vary at the level of first-order perturbation theory, perhaps
providing its main origin. More recently it has been sug-
gested [46,51,52] that preheating might cause the curvature
perturbation to vary at second order, providing the main
source of its non-Gaussianity.

If the separate universe hypothesis is correct, a variation
of the curvature perturbation during preheating can occur
only in models of preheating which contain a noninflaton
field that is light during inflation. This is not the case for
the usual preheating models that were considered in
[46,51,52], and accordingly one does not expect that sig-
nificant non-Gaussianity will be generated in those mod-
els.13 This is not in conflict with the findings of [46,51,52]
because the curvature perturbation is not actually consid-
ered there. Instead the perturbation  MW in the longitudi-
nal gauge is considered, which is only indirectly related to
� by Eqs. (8), (12), and (13).14 We conjecture that non-
Gaussianity for the curvature perturbation on cosmological
scales is not generated in the usual preheating models, but
that instead the curvature perturbation remains constant on
cosmological scales. This should of course be checked, in
the same spirit that the constancy of the curvature pertur-
bation was checked at the first-order level [27].

The situation is different for preheating models which
contain a noninflaton field that is light during inflation. At
least three types of models have been proposed with that
feature [46,53–55]. Except for [46] only the magnitude of
the curvature perturbation has been considered, but in all
three cases it might be that significant non-Gaussianity is
also generated.

D. The curvaton scenario

In the simplest version of the curvaton scenario [56,57],
the curvaton field$ is ultralight during inflation and has no
significant evolution until it starts to oscillate during some
radiation-dominated era. Until this oscillation gets under
13The preheating model considered in [46] contains a field
which may be heavy or light; we refer here to the part of the
calculation that considers the former case.

14The slices of the longitudinal gauge are orthogonal to the
threads of zero shear, and  MW on them is very different from the
curvature perturbation � .
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way, the curvature perturbation is supposed to be negligible
(compared with its final observed value). The potential
during the oscillation is taken to be quadratic, which will
be a good approximation after a few Hubble times even if it
fails initially. The curvature perturbation is generated dur-
ing the oscillation, and is supposed to be conserved after
the curvaton decays. Here we give a generally valid for-
mula for the non-Gaussianity in the curvaton scenario,
extending somewhat the earlier calculations.

The local energy density �$ of the curvaton field is
given by

�$��;x� �
1

2
m2
$$

2
a��;x�; (63)

where $a��;x� represents the amplitude of the oscillations
andm$ is the effective mass. It is proportional to a��;x��3

where a is the locally defined scale factor. This means that
the perturbation 	�$=�$ is conserved if the slicing is
chosen so that the expansion going from one slicing to
the next is uniform [15]. The flat slicing corresponding to
 MW � 0 has this property [7,15] and accordingly 	�$ is
defined on that slicing.

Assuming that the fractional perturbation is small
(which we shall see is demanded by observation) it is given
by

	�$
�$

� 2
	$a
$a

�

�
	$a
$a

�
2
: (64)

We first assume that $�x� has no evolution between in-
flation and the onset of oscillation. Then 	$a=$a will be
equal to its value just after horizon exit, which we saw
earlier will be practically Gaussian.

The total density perturbation is given by

	�
�

� #$
	�$
�$

; (65)

where #$ 	 �$=� / a is the fraction of energy density
contributed by the curvaton. Adopting the sudden-decay
approximation, the constant curvature perturbation obtain-
ing after the curvaton decays is given by Eqs. (12) and (14),
evaluated just before curvaton decay and with  � 0. In
performing that calculation, the exact expression Eq. (64)
can, without loss of generality, be identified with the first-
order part 	�$1

=�$0
, the second- and higher-order parts

being set at zero.
Adopting the first-order curvature perturbation in

Eq. (12), one finds [57] chi-squared non-Gaussianity com-
ing from the second term of Eq. (64),

fNL � �
5

4r
; (66)

with

r 	
3�$

4�r � 3�$
; (67)
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evaluated just before decay (�r is the radiation density).
Going to the second-order expression one finds [58] addi-
tional chi-squared non-Gaussianity. The final nonlinearity
parameter fNL � fMW

NL � 5=3 is given by

fNL �
5

3
�

5

6
r�

5

4r
: (68)

If #$ � 1 then fNL is strongly negative and the present
bound on it requires #$ * 0:01 (combined with the typical
value � � 10�5, this requires 	�$=�$ � 1 as advertised).
If instead #$ � 1 to good accuracy, then fNL � �5=4.
Either of these possibilities may be regarded as generic
whereas the intermediate possibility (jfNLj � 1 but
fNL � 5=4) requires a special value of #$ just a bit less
than 1.

Finally, we consider the case that $ evolves between
horizon exit and the era when the sinusoidal oscillation
begins. If $a (the amplitude of oscillation at the latter era)
is some function g�$�� of the value a few Hubble times
after horizon exit, then

	$a � g0	$� �
1

2
g00�	$��

2; (69)

where the prime means derivative with respect to $�.
Repeating the above calculation one finds

fNL �
5

3
�

5

6
r�

5

4r

�
1�

gg00

g02

�
: (70)

The final term is the first-order result (given originally in
[59]), the middle term is the second-order correction found
in [58], and the first term converts from fMW

NL to fNL.

E. The inhomogeneous reheating scenario

The final scenario that has been suggested for the origin
of the curvature perturbation is its generation during some
spatially inhomogeneous reheating process [60–63].
Before a reheating process the cosmic fluid is dominated
by matter (nonrelativistic particles, or small scalar field
oscillations which are equivalent to particles) which then
decay into thermalized radiation. At least one reheating
process, presumably, has to occur to give the initial condi-
tion for big bang nucleosynthesis, but there might be more
than one.

The inhomogeneous reheating scenario in its simplest
form supposes that the curvature perturbation is negligible
before the relevant reheating process and constant after-
TABLE I. Non-Gaussianity according to differe
perturbation. For the simplest curvaton scenario,

Scenario jfNLj � 1

Single-component inflation yes
Multicomponent inflation likely
Simplest curvaton scenario unlikely
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wards. The inhomogeneous reheating corresponds to a
spatially varying value (a perturbation) of the local
Hubble parameter Hreh�x� at the decay epoch (or equiv-
alently of the local energy density), and this generates the
final curvature perturbation. The perturbation in Hreh oc-
curs presumably because it depends on the value of some
noninflaton ‘‘modulon’’ field & which was light or ultra-
light during inflation.

In contrast with the curvaton scenario, where the form
�$ can reasonably be taken as �$ / $2, the inhomoge-
neous reheating scenario does not suggest any particular
form for Hreh�&�. Depending on the form, the inhomoge-
neous reheating scenario presumably can produce a wide
range of values for fNL.
VIII. CONCLUSIONS

We have examined a number of scenarios for the pro-
duction of a non-Gaussian primordial curvature perturba-
tion, presenting the results with a unified notation. These
are the single-component inflation, multicomponent infla-
tion, preheating, curvaton, and inhomogeneous reheating
scenarios. Although the trispectrum may give a competi-
tive observational signal [64,65], we have focused only on
the bispectrum which is characterized by the parameter
fNL. In all cases our treatment is based on existing ones,
though we do not always agree with the original authors.

The preheating and inhomogeneous reheating scenarios
cover a range of possibilities, which have not been fully
explored but which can presumably allow a wide range for
fNL. The same is true of multicomponent inflation, except
that extremely large values comparable with the current
bound jfNLj & 102 seem relatively unlikely. In contrast,
the simplest curvaton scenario can produce a strongly
negative value (even violating the current bound).
However, in the important special case where the curvaton
dominates the energy density before it decays, it gives
precisely fNL � �5=4. Finally, for the single-component
inflation case, Maldacena’s calculation combined with cur-
rent constraints on the spectral tilt show that it has magni-
tude less than 10�2. These result are summarized in the
Table I.

In the near future, results from Wilkinson Microwave
Anisotropy Probe [66] or elsewhere may detect a value
jfNLj � 1. If that does not happen, then PLANCK [8] or a
successor will either detect a value jfNLj � 1, or place a
bound jfNLj & 1. The precise level at which this will be
nt scenarios for the creation of the curvature
fNL � �5=4 is a favored value.

jfNLj ’ 1 fNL � �1 fNL � 1

no no no
possible possible possible
likely likely no
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possible has yet to be determined because it would require
a second-order calculation of all relevant observational
signatures. The example of the simplest curvaton scenario,
where fNL � �5=4 is a favored value, shows that such a
calculation and the eventual observations will be well
worthwhile.
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