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Superadiabatic-type magnetic amplification in conventional cosmology
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We consider the evolution of cosmological magnetic fields in Friedmann-Robertson-Walker models and
outline a geometrical mechanism for their superadiabatic amplification on large scales. The mechanism
operates within standard electromagnetic theory and applies to Friedmann-Robertson-Walker universes
with open spatial sections. We discuss the general relativistic nature of the effect and show how it modifies
the adiabatic magnetic evolution. Assuming a universe that is only marginally open today, we estimate the
main features of the superadiabatically amplified residual field.
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1In the galaxy there is also a random magnetic field, which is
stirred up by turbulent motions and saturates on scales of �50�
I. INTRODUCTION

Magnetic fields appear everywhere in the universe. From
Earth and the nearby stars, all the way to the remote galaxy
clusters and high-redshift protogalaxies, the existence of
magnetic fields has been repeatedly verified [1]. Despite
this widespread presence, however, the origin of cosmic
magnetism remains a mystery and it is still the subject of
debate. Over the years, numerous mechanisms of magneto-
genesis have appeared in the literature (see [2] for recent
reviews). Broadly speaking, one can classify these scenar-
ios into those arguing for a late (post-recombination) mag-
netic generation and those advocating a primordial origin
for the field [3]. Prior to recombination we have superstring
and inflation based models, mechanisms operating during
the electroweak and the quark-hadron phase transitions,
eddies in the pre-recombination plasma, and effects at
electron-proton recombination. These early time scenarios
are mainly global amplification mechanisms of primeval
magnetic seeds. In the post-recombination era there exist
local astrophysical processes that generate the magnetic
seeds and operate simultaneously with the amplifying
process. For example, weak magnetic fields produced via
the Biermann battery [4] can be amplified to galactic size
fields during the protogalactic collapse [5]. Alternatively,
stronger magnetic seeds can be injected into the intraga-
lactic medium by stellar winds and supernova explosions
(e.g. see [6]). In addition, there is still relatively little
knowledge on the reionization of our universe and the
related magnetohydrodynamics.

An attractive aspect of early magnetogenesis is that it
makes the ubiquity of large-scale magnetic fields in the
universe, particularly those observed in high-redshift pro-
togalaxies, easier to explain. Inflation seems the most
plausible candidate for producing the primordial fields,
as it naturally leads to large-scale phenomena from sub-
horizon microphysics. The main obstacle in this scenario is
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that any early magnetic field that survives an epoch of
inflation is so drastically diluted that it can never seed
the galactic dynamo for the ordered, large-scale field.1

The reason is cosmological magnetic flux conservation,
namely, the fact that the strength of the large-scale fields
drops as a�2 (a is the scale factor of the universe). The root
of the problem is traced down to the conformal invariance
of electromagnetism and to the conformal flatness of the
Friedmann-Robertson-Walker (FRW) models. Together,
these two are thought to guarantee that B / a�2 always
and irrespective of plasma effects. When the FRW back-
ground has nonzero spatially curvature, however, we will
show this is not necessarily the case.

The most common way of modifying the ‘‘adiabatic’’
B / a�2 law is by breaking away from standard electro-
magnetic theory. There is more than one way of doing that,
which explains the large number of relevant scenarios in
the literature. Perhaps the first detailed discussion of the
issue was the one given in [7]. Among other suggestions,
the authors introduced a coupling between the Maxwell
field and the curvature of the space in their Lagrangian. As
a result, both the conformal invariance and the gauge
invariance of Maxwell’s equations were lost. However,
when applied to a spatially flat FRW universe, the afore-
mentioned interaction led to an extra magneto-curvature
term in the magnetic wave equation The immediate con-
sequence was that superhorizon-sized magnetic fields,
evolving in a poorly conducting inflationary universe, de-
cayed slower than the standard a�2 law. This meant an
effective superadiabatic amplification of the field on these
scales, a concept that was originally introduced in gravi-
tational wave studies [8]. In other words, magnetic fields
on large enough scales could go through an epoch of
100 pc. This field has magnitude slightly larger than that of the
ordered magnetic field but its growth time is only 3� 107 yrs
(i.e. one tenth of the typical growth time scale associated with
the ordered field dynamo).
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2Angled brackets denote spatially projected vectors and the
projected, symmetric, and trace-free part of spacelike second-
rank tensors (e.g. _Bhai � ha

b _Bb). Also, round brackets indicate
symmetrization and square ones antisymmetrization.
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inflation and still remain strong enough to sustain the
galactic dynamo.

Following [7], several mechanisms producing magnetic
fields during inflation and reheating have appeared in the
literature [9]. Most of these scenarios break the conformal
invariance of the Maxwell field by introducing extra cou-
plings with the spacetime curvature, or nonconformally
invariant sources to Maxwell’s equations. In this paper
we consider a conventional interaction between the elec-
tromagnetic and the gravitational field, which so far has
been sparsely studied in cosmology. This is the natural
general relativistic coupling between electromagnetism
and spacetime geometry that emerges from the vector
nature of the Maxwell field and from the geometrical
approach of Einstein’s theory. The best known effect of
the aforementioned interaction, which emerges from the
Ricci identities, is probably the ‘‘scattering‘‘ of electro-
magnetic radiation by the gravitational field [10]. In what
follows we will show that, under certain circumstances, the
same coupling also can lead to the superadiabatic amplifi-
cation of cosmological magnetic fields without violating or
modifying standard electromagnetism. Our mechanism
operates primarily on magnetic fields coherent on the
largest subcurvature scales of a spatially open FRW uni-
verse, which asymptotically approaches flatness as it
undergoes a period of inflationary expansion. The result
is that these fields decay as a�1, a rate considerably slower
than the adiabatic a2 law. Therefore, primordial magnetic
fields that survive an epoch of inflation could be consid-
erably stronger than previously anticipated due to curva-
ture effects alone. In practice this means that magnetic
fields which are coherent on very large scales could have
appreciable strengths. Assuming that 1��� 10�2 today,
in particular, we find a residual field of 10�35 G spanning a
comoving length of �104 Mpc. This is much stronger than
any other large-scale field obtained by conventional meth-
ods. Moreover, in a universe currently dominated by a
dark-energy component, a seed field of 10�35 G lies within
the broad galactic dynamo requirements [11].

The attractive aspects of the mechanism presented
below are its simplicity and the fact that it operates within
standard electromagnetic theory. If the universe is margin-
ally open today, this scenario could provide a viable
method for a superadiabatic type of early magnetic ampli-
fication and lead to fields with astrophysically interesting
strengths on very large scales. Even if the universe is not
open, however, our mechanism still offers a simple general
relativistic counterexample to the widespread perception
that the superadiabatic amplification of magnetic fields in
FRW cosmologies is not possible within conventional
electromagnetism. In either case, we believe that this study
will further facilitate our theoretical understanding of the
subject, while it also may prove a valuable step in the
ongoing quest for an answer to the origin of cosmic
magnetism.
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II. MAGNETIC FIELDS IN CURVED FRW
UNIVERSES

We begin by reminding the reader that, with the excep-
tion of completely random radiation or a fully tangled
magnetic field, electromagnetic fields are not compatible
with the highly symmetric FRW spacetimes. The isotropy
of the latter means that these models cannot naturally
accommodate inherently anisotropic sources like the
Maxwell field. The implication is that, strictly speaking,
even weak cosmological electromagnetic fields should be
studied in perturbed Friedmann models. Here we will show
also that the standard magnetic evolution of B / a�2 does
not always hold in Friedmann models with nontrivial
spatial curvature. All these mean that studying cosmologi-
cal magnetic fields in flat Minkowski space is a good
approximation only when the fields are weak and only on
small scales in models with nontrivial spatial curvature. In
the latter case the approximation becomes progressively
less accurate as one moves to larger scales and the 3-
curvature effects start kicking in. Technically speaking,
this means that certain linear couplings between the field
and the geometry of the 3-space, which vanish only when
the background is identically flat, are bypassed. It is the
purpose of this paper to examine the implications of these
magneto-geometrical couplings for the evolution of cos-
mological magnetic fields.

Our analysis uses the covariant approach to general
relativity, which introduces a family of timelike fundamen-
tal observers moving with 4-velocity ua (i.e. uaua � �1).
We assume that relative to ua the cosmic medium has a
perfect fluid form with a barotropic equation of state, and
that the fundamental observers experience an electromag-
netic field with components Ea and Ba. Both Ea and the
pseudovector Ba live on the observers’ local rest space (i.e.
Eaua � 0 � Baua). In the absence of vorticity, the projec-
tion tensor hab � gab � uaua, where gab is the spacetime
metric, is also the metric of the spatial hypersurfaces. The
electromagnetic field obeys the standard Maxwell’s for-
mulas, consisting of two propagation equations2

_B hai � �
2

3
�Ba � 		ab � "abc!c
Bb � "abc _ubEc

� curlEa; (1)

_E hai � �
2

3
�Ea � 		ab � "abc!c
Eb � "abc _ubBc

� curlBa � J a; (2)

with � representing the volume expansion, 	ab the shear,
!a the vorticity, _ua the 4-acceleration, and J a � Jhai the
-2



3On sufficiently large scales the current term in Eq. (5) is
negligible even during the standard big bang evolution. Indeed,
by definition curlJ a � �abcD

bJ c � �abc@bJ c, given the sym-
metry of the of Christoffel symbols. Moreover, @aJ b � J=L,
where J 2 � J aJ

a and L is the scale in question. Clearly, as we
move to progressively larger wavelengths @aJ b ! 0.
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projected 4-current [12]. The above are supplemented by
the constraints

D aBa � 2!aEa; (3)

D aEa � �e � 2!aBa; (4)

where �e is the charge density. Note that overdots indicate
proper time derivatives and Da � ha

brb is the covariant
derivative operator on the observer’s local 3-space. Also,
curlva � �abcD

bvc for any orthogonally projected vector
va (i.e. with vaua � 0) and �abc is the projected permuta-
tion tensor. By differentiating Eq. (1) with respect to time
and then using (2) to eliminate Ea, one arrives at the
covariant wave equation of Ba in a general spacetime
[13]. Linearized about a FRW background the latter reads

�B a � D2Ba � �5H _Ba � 4H2Ba �
1

3
�	1� 3w
Ba

�RabBb � curlJ a; (5)

where H � �=3 � _a=a is the background Hubble pa-
rameter, � is the energy density of the matter, and w �
p=�, where p � p	�
 is the barotropic pressure. When
linearizing the full equations we assume that the magnetic
field vanishes in the unperturbed FRW background. This
guarantees the gauge-invariance of the analysis and frees
our results from any gauge related ambiguities (see [13] for
further discussion and technical details). Note the second
last term in the right-hand side of the above, where Rab �
	2k=a2
hab is the zero-order spatial Ricci tensor and k �
0;�1 is the associated curvature index. This term is man-
ifestly linear and vanishes only when the background
model is spatially flat. Cosmological magnetic field studies
in flat spaces will clearly bypass such magneto-geometrical
terms. The latter result from the general relativistic cou-
pling between the electromagnetic and the gravitational
field and are an unavoidable consequence of the geomet-
rical nature of Einstein’s theory. Technically speaking this
magneto-geometrical interaction is manifested in the 3-
Ricci identity. In the absence of rotation, the latter reads
2D
cDb�Ba � RdabcBd, where Rabcd represents the spa-
tial Riemann tensor and Rab � Rc

acb [13,14]. In what
follows we will consider the implications of the magneto-
curvature term in the right-hand side of Eq. (5) for the
evolution of cosmological magnetic fields.

The effect of the current term in the right-hand side of
(5) depends crucially on the conducting properties of the
medium in which the magnetic field evolves. If Ohm’s law
holds, then the electrical conductivity is the quantity that
describes these properties. In general there are additional
terms in what is known as the generalized Ohm’s law. For
example, when building a magneto-hydrodynamical model
of three separate fluids, namely, electrons, protons and
neutrals, the interaction of the first two gives rise to the
Hall effect and the last two lead to ambipolar diffusion (e.g.
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see [15]). However, only the resistive term is responsible
for the dissipation of the magnetic energy into heat, while
the other effects do not cause dissipation. The Hall term
might have influenced the evolution of the field during the
radiation era [16] and the ambipolar diffusion is effective
in the intragalactic medium [17,18]. During inflation the
universe is normally treated as a very poor conductor.
Thus, Ohm’s law guarantees that all spatial currents vanish,
despite the presence of nonzero electric fields (e.g. see
[13]). Given that we are primarily interested in the evolu-
tion of a large-scale primordial magnetic field during a
early period of inflation, we will from now on ignore the
current contribution to Eq. (5).3

After inflation, the reheating process reinstates the high
electrical conductivity of the cosmic medium. Of course,
the resistivity of the plasma is not identically zero.
Nevertheless, the amount of magnetic dissipation on large
scales is negligible. We can estimate the decay time of a
magnetic field coherent over a scale L (with L smaller than
the horizon scale) as td � L2=�, where � is the magnetic
diffusivity (e.g. see [19]). Assuming Spitzer conductivity at
an epoch when the temperature of the universe is T �
104 K, we have � � 107 cm2= sec and obtain td �
1026 yrs for fields coherent on approximately 100 pc.
This time scale is many orders of magnitude larger than
the current age of the universe. Therefore, the magnetic
flux on astrophysically interesting scales is effectively
frozen into the cosmic plasma.

We adopt the standard decomposition Ba � B	n
Q
	n

a ,

where Q	n

a is the nth vector harmonic, DaB	n
 � 0 �

_Q	n

a , DaQ	n


a � 0, and D2Q	n

a � �	n2=a2
Q	n


a . Then, sub-
stituting the background expression of Rab into Eq. (5) we
obtain

�B	n
 � 5H _B	n
 � 4H2B	n
 �
1

3
�	1� 3w
B	n


�
2k

a2 B	n
 �
n2

a2 B	n
 � 0; (6)

for the evolution of the nth magnetic mode. The Laplacian
eigenvalues take continuous values, with n2 � 0, when
k � 0;�1 and discrete ones, with n2 � 3, for k � �1. In
this notation supercurvature modes in spatially open mod-
els have 0 � n2 < 1, which guarantees that the physical
wavelength of the perturbation is larger than the curvature
scale (i.e. �n � a=n > a). On the other hand, modes with
n2 > 1 span lengths smaller than the curvature scale and
will be therefore termed subcurvature. Note that the super-
curvature modes are always larger than the Hubble length
-3



4The adopted normalization scheme, where C � 0 and � < 0,
has allowed us to streamline the key equations considerably
without loss of generality. Within these conventions, a ! 0 for
� ! �1 and a ! �1 as � ! 0�.

CHRISTOS G. TSAGAS AND ALEJANDRA KANDUS PHYSICAL REVIEW D 71, 123506 (2005)
and consequently never in causal contact. On the other
hand, perturbations on subcurvature scales can be causally
connected (see [20] for further discussion). For our pur-
poses, the causality of magnetic modes with n2 > 1 is
crucial. Finally, we remind the reader that n2 � 0 denotes
the so-called homogeneous mode.

To proceed further we recall that the zero-order
Raychaudhuri equation does not explicitly depend on the
background curvature and takes the form �a=a � ��	1�
w
=6. On using this expression and introducing �, the
conformal time variable with _� � 1=a > 0, Eq. (6) be-
comes

B00
	n
 � 4

�
a0

a

�
B0
	n
 � 2

�
a0

a

�
2
B	n
 � 2

�
a00

a

�
B	n


� 2kB	n
 � n2B	n
 � 0; (7)

where primes indicate differentiation with respect to �.
Finally, employing the ‘‘magnetic flux‘‘ variable B	n
 �

a2B	n
 the above reduces to

B 00
	n
 � n2B	n
 � �2kB	n
: (8)

This wave equation shares a very close resemblance with
the one obtained in [7] [see Eq. (2.15) there]. The similarity
is in the presence of a curvature-related source term in both
expressions. The difference is that here the magneto-
curvature term is a natural and unavoidable consequence
of the vector nature of the magnetic field and of the
geometrical approach of general relativity. No new physics
has been introduced and standard electromagnetism still
holds.

III. THE SUPERADIABATICALLY AMPLIFIED
MAGNETIC FIELD

For a spatially flat background, the magneto-curvature
term in Eq. (8) vanishes and one recovers the standard
wavelike evolution of the field, with an amplitude decreas-
ing according to the familiar a�2 law. The adiabatic de-
pletion rate is preserved also when the background is
spatially closed, despite the presence of a nonzero
magneto-curvature term in (8). Indeed, for k � �1 the
latter exhibits an oscillatory solution of the form [13]

B	n
 �
1

a2

�
C1 cos

� ��������������
n2 � 2

p
�
�
� C2 sin

� ��������������
n2 � 2

p
�
��

;

(9)

for the nth magnetic mode (with C1, C2 constants). Apart
from modifying the oscillation frequency, the magneto-
curvature term in Eq. (8) has no significant effect on the
evolution of the field when k � �1. Note that in this case
the oscillatory behavior of the magnetic field is ensured on
all scales by the closed geometry (i.e. by the compactness)
of the space.

When dealing with the hyperbolic geometry of a spa-
tially open FRW model, however, the oscillatory behavior
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of B	n
 is not always guaranteed. Indeed, for k � �1
Eq. (8) reads

B 00
	n
 � 	n2 � 2
B	n
 � 0; (10)

which clearly does not accept an oscillatory solution on
sufficiently long wavelengths (i.e. for n2 < 2). These wave-
lengths extend from large subcurvature scales, with 1 �
n2 < 2, to supercurvature lengths with 0 � n2 < 1. Let us
consider the largest subcurvature scales first, since on these
wavelengths the associated magnetic modes can be caus-
ally connected. It is convenient to introduce the parameter
k2 � 2� n2, so that the range 0 < k2 � 1 corresponds to
the largest subcurvature scales. Then, Eq. (10) assumes the
form

B 00
	k
 � k2B	k
 � 0; (11)

yielding the following solution for large-scale magnetic
fields

B	k
 �
1

a2 
C1 cosh	jkj�
 � C2 sinh	jkj�
�: (12)

On these scales the standard B / a�2 law is not a priori
guaranteed. Indeed, consider a FRW universe with open
spatial sections. Then, the Friedmann and the
Raychaudhuri equations combine to provide the expression

aH � coth
�
1

2
	1� 3w
� � C

�
; (13)

where C depends on the normalization. The above governs
the expansion dynamics during the various epochs in the
lifetime of this universe, provided that the barotropic index
w remains constant throughout each period. For our pur-
poses the key period is that of an inflationary expansion
with p=� � w � �1. The reason is that then the conduc-
tivity of the cosmic medium is effectively zero and the
magnetic evolution is monitored by Eqs. (6)–(8). Also, the
most dramatic suppression of the field occurs during in-
flation and therefore any change in the magnetic depletion
rate during that period could prove crucial. Note that
inflation does not change the geometry of the 3-space,
but simply makes it look flatter by pushing the curvature
scale well beyond the observer’s horizon. Setting C � 0,
which means that � < 0, reduces (13) to aH � � coth�.
The latter integrates to give

a �
A0e�

1� e2� ; (14)

with A0 � a0	1� e2�0
=e�0 a positive constant (see [13]
for details).4 Substituting this result into the right-hand side
of Eq. (12) we can express the evolution of the magnetic
field in terms of the cosmological scale factor. For sim-
plicity consider the case of jkj ! 1�, which corresponds to
-4
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the largest subcurvature scales with n2 ! 1�. Then, from
(12) and (14) we arrive at

B � C3	1� e2�
a�1 � C4e��a�2; (15)

where C3 and C4 are constants. Therefore, on the largest
subcurvature scales, the dominant magnetic mode never
depletes faster than a�1. This decay rate is considerably
slower than the typical a�2 law and holds throughout the
inflationary era. Note that the magnetic depletion switches
to the adiabatic a�2 rate at the � ! 0� limit only.5 Result
(15) immediately implies that, beyond a certain scale, the
cosmological magnetic flux increases with time instead of
being preserved. Hence, in spatially open almost-FRW
universes, large-scale magnetic fields that survive inflation
are significantly stronger than anticipated because of cur-
vature effects alone.
IV. THE RESIDUAL MAGNETIC FIELD

In the previous sections we have studied the evolution of
large-scale primordial magnetic fields, emphasizing on
their behavior during the inflationary regime of a spatially
open FRW cosmology. So far we have provided a qualita-
tive analysis that identified a superadiabatic-type amplifi-
cation for magnetic fields spanning the largest
subcurvature scales of the universe. Next we will attempt
to estimate the key properties of these superadiabatically
amplified fields, namely, their strength and coherence
length.

Following [7], the energy density stored in the nth
magnetic mode as it crosses outside the horizon is �B �
	M=mPl


4�, where � ’ M4 is the total energy density of the
universe and mPl is the Planck mass. Then, assuming that
B2 / a�4, the energy density in the mode at the end of the
inflationary regime is given by [7]

�B �
B2

8'
� 10�104 ~��4

Mpc�(: (17)

Here �( is the radiation energy density and ~� is the
comoving scale of the field. The latter is measured in
Mpcs and it is normalized so that ~� coincides with the
physical scale today. Note that the magnetic mode crossed
outside the horizon N � N	~�
 e-folds before the end of
5According to Eq. (10), the curvature effects modify the
magnetic evolution on large scales with n2 < 2.
Expression (15) shows that as jkj ! 1�, which corresponds to
n2 ! 1� and the largest subcurvature scales, the magnetic field
decays as a�1. When n2 ! 2�, on the other hand, we have jkj !
0� and B / a�2. In particular, expressions (12) and (14) com-
bine to provide the general solution

B	k
 � C3	1� e2�
jkjajkj�2 � C4	1� e2�
�jkja�jkj�2; (16)

with jkj � 1. Clearly, when jkj takes its values in the open
interval (0,1) the decay rate of the dominant magnetic mode
varies between a�2 and a�1, which is always slower than the
adiabatic a�2 law.
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inflation (see [7] for details). The underlying assumption
leading to the above result is that any given mode is excited
quantum mechanically while inside the horizon and
‘‘freezes in‘‘ as a classical perturbation once it crosses
through the Hubble radius. The dramatic weakness of the
residual field demonstrated in Eq. (17), reflects the drastic
suppression of the magnetic energy density relative to the
vacuum energy, which remains constant throughout the
inflationary regime. After inflation �( also decays as a�4

and the ratio r � �B=�( does not change.
If the dynamo amplification of large-scale fields is effi-

cient, the strength of the required magnetic seed, as mea-
sured at the time of completed galaxy formation, ranges
from �10�19 G down to �10�23 G. In addition, the co-
herence length of the initial field should be at least as large
as the size of the largest turbulent eddy, namely, no less
than �100 pc. The aforementioned magnetic strengths,
which correspond to r � 10�27 and r � 10�35, respec-
tively, have been obtained in a spatially flat universe with
zero cosmological constant. However, if the universe is
open or if it is dominated by a dark-energy component, the
above quoted requirements are considerably relaxed. In
particular, the standard dynamo can produce the currently
observed galactic magnetic fields from a seed of the order
of 10�30 G, or even less, at the end of galaxy formation
[11]. Note that a ‘‘collapsed’’ magnetic field of �10�30 G
coherent on approximately 100 pc corresponds to a co-
moving field of the order of 10�34 G spanning a scale of
�10 kpc. Nevertheless, even seeds as week as 10�34 G
have been very difficult to produce in a conventional way
on the required scales. For example, assuming a field with a
coherence length of 10 kpc and using Eq. (17), we find a
residual strength of approximately 10�53 G. Clearly, such
fields cannot seed the galactic dynamo and are therefore
astrophysically irrelevant.

The situation changes considerably if during inflation
the magnetic energy density decays as a�2 instead of
following the adiabatic a�4 law. As we have already
seen, this happens on the largest subcurvature scales (and
beyond) when the inflationary patch has negative spatial
curvature. Therefore, the universe can be permeated by
substantially strong large-scale magnetic fields even if it is
only marginally open today. For a direct comparison with
the spatially flat case scenario, it helps to follow the
analysis of [7] [see also Eq. (17) above]. Consider a typical
grand unified theory-scale inflationary scenario with M �
1017 GeV and reheating temperature TRH � 109 GeV.
Then, for B2 / a�2, the energy density stored in a given
magnetic mode at the end of inflation is given by

�B � 10�90M8=3T�2=3
RH

~��2
Mpc�( � 10�51 ~��2

Mpc�(; (18)

instead of (17). According to the above, on a given scale,
the earlier inflation starts and the lower the reheating
temperature, the stronger the superadiabatically amplified
residual field. After inflation the high conductivity of the
-5
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plasma is restored. This ensures that B2 / a�4 and con-
sequently that the ratio r � �B=�( � 10�51 ~��2

Mpc remains
fixed. To proceed we note that ~� is nearly the curvature
scale at the end of inflation. Also, in a universe with non-
trivial spatial geometry the effect of curvature in a comov-
ing region remains unchanged, since the curvature scale
simply redshifts with the expansion (e.g. see [20]). This
means that if 1��0 is of the order of 10�2, as it appears to
be today [21], the current curvature scale is

	�k
0 �
	�H
0����������������
1��0

p � 104 Mpc; (19)

where 	�H
0 � H�1
0 , H0 ’ 2h � 10�42 GeV, and 0:5 �

h � 1. The above is also the approximate scale of the
superadiabatically amplified primordial magnetic field,
redshifted to the present. Then, by substituting this comov-
ing scale into expression (18) we find that

r �
�B

�(
� 10�59; (20)

which corresponds to a magnetic field with current strength
around 10�35 G. Note that the above quoted strength de-
pends on the current values of the Hubble and the density
parameters, although this dependence is weak. Also, in
order to satisfy the conventional causality requirements
we have implicitly assumed that the universe was suffi-
ciently open at the onset of inflation. In particular, a
relatively mild initial value of �i < 0:1 will suffice for
all practical purposes. Such a value ensures that effectively
all the largest subcurvature modes are initially inside the
horizon and therefore in causal contact when inflation
starts.

The first point to underline is that, to the best of our
knowledge, magnetic fields with B0 � 10�35 G and coher-
ence lengths of �104 Mpc are greatly stronger than any
field obtained within standard electromagnetic theory on
such scales. Moreover, fields with this strength are of
astrophysical interest because they can successfully seed
the galactic dynamo, as long as the current energy density
of the universe is dominated by a dark component; a
scenario favored by resent observations [21]. For a nearly
flat universe with the dark energy making up to 70% of the
present density parameter, in particular, a seed field of
�10�35 G is within the lower strength required for the
galactic dynamo to operate [11]. Note that the above given
magnetic strengths do not account for the effects of the
physically more realistic scenario of anisotropic protoga-
lactic collapse. The latter is expected to add a few more
orders of magnitude to any field obtained through the
highly idealized spherical collapse models [22].

For completeness, let us also consider the magnetic
evolution on supercurvature scales. During inflation super-
curvature modes also obey Eqs. (11) and (15). On these
scales the eigenvalue 	n
 lies in the interval 
0; 1
, which
implies that 1 < k2 � 2. Then, near the k2 � 2 limit that
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corresponds to the homogeneous mode, the magnetic de-
cay rate becomes B / a

��
2

p
�2. The latter is considerably

slower than the a�1 law associated with the largest sub-
curvature scales. One should keep in mind, however, that
supercurvature scales in spatially open FRW cosmologies
lie always outside the Hubble radius and therefore are not
causally connected. Nevertheless, any magnetic field that
happens to span over these scales at the onset of inflation
will decay much slower than its subcurvature counterparts.

Finally, we should note that the linear amplification
mechanism outlined here, which is purely geometrical in
nature, is in some respects analogous to the one discussed
in [23]. There, the electromagnetic field is coupled to the
inhomogeneous metric of a perturbed FRW model. Given
the a priori weakness of the field, however, the magnetic
amplification achieved in [23] is presumably a nonlinear
effect. The same also can be said about the scenario dis-
cussed in [24], where a weak primordial magnetic field was
amplified through its coupling to gravity wave perturba-
tions soon after the end of inflation.

V. DISCUSSION

The origin and the evolution of the magnetic fields that
we observe almost everywhere in the universe today re-
mains an open issue and a matter of debate. The structure
of the galactic large-scale field strongly suggests a
dynamo-type amplification mechanism, but the latter re-
quires a seed field to operate. Depending on the efficiency
of the large-scale dynamo, the strength of the required seed
varies between 10�12 and 10�23 G at the time of completed
galaxy formation, while its coherence length is approxi-
mately 10 kpc on comoving scales. However, the questions
regarding the origin of cosmic magnetism involve not only
the initial seed fields but the dynamo mechanism itself. As
yet, there is no final dynamo theory and the whole subject
is still under intense research [25]. Therefore, there is no
certainty on what the properties of the initial seed magnetic
field should be. For instance, the fact that astrophysical
plasmas are gas mixtures (neutrals, ions and electrons) can
substantially modify the standard single fluid approach
(e.g., see [26]) and the dynamo action [27]. Besides, tur-
bulent effects during the radiation era can change the
features of a primordial field by enlarging, say, its coherent
length [28]. Magnetic helicity also is expected to play a
pivotal role in these phenomena. Hence, the requirements
necessary for the subsequent MHD process that will am-
plify the primordial seed could be substantially relaxed.

The geometry of our universe, whether it is open or
closed, and whether its energy density is close to the
critical one is also an open question of contemporary
cosmology [29]. Current observations strongly suggest
that the universe is nearly flat, though they stop short
from establishing whether it is marginally open or margin-
ally closed. It appears also that at present the expansion
dynamics is dictated by a dark-energy component, in the
-6
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form of a positive cosmological constant or quintessence.
If so, the standard constraints on the magnetic seed
strength required for the galactic dynamo to operate effi-
ciently can be relaxed down to 10�34 G, or even less.
However, even fields as weak as 10�34 G, on comoving
scales of approximately 10 kpc, are very difficult to pro-
duce unless standard electromagnetism is violated. The
latter effectively means breaking the conformal invariance
of Maxwell’s equations and in most of the cases this is
achieved by appealing to less well understood phenome-
nology. The underlying reason is that in spatially flat FRW
models the magnetic fields decays as B / a�2 always and
irrespective of plasma effects.

On these grounds, we have studied the evolution of
cosmological magnetic fields in perturbed FRW with non-
trivial background geometry. By allowing for curved spa-
tial sections, we showed that the adiabatic B / a�2 law is
not always guaranteed because of the linear coupling be-
tween the field and the background 3-geometry [13]. When
dealing with spatially open FRW models, in particular, the
extra curvature-related source term in the magnetic wave
equation meant that large-scale fields decay as a�1 instead
of the standard adiabatic a�2 law. This is possible for fields
evolving through a period of inflationary expansion, due to
the very low electrical conductivity of the latter. As a
result, primordial magnetic fields coherent on the largest
subcurvature scales could survive an epoch of inflation and
still be strong enough to sustain the dynamo process. Our
linear mechanism operates near the curvature scale and, in
particular, at the largest subcurvature scales. This in turn
ensures that the superadiabatically amplified magnetic
field has rather specific properties. Assuming that 1�� ’
10�2 today and that H0 � 100h km= sec�Mpc, with 0:5 �
h � 1, we find a residual field of the order of 10�35 G
spanning over a region of approximately 104 Mpc.
Magnetic fields like these are by far stronger than any
other large-scale field obtained within standard electro-
magnetic theory. Moreover, magnetic fields with the afore-
mentioned properties are of astrophysical interest provided
the energy density of our universe is currently dominated
by a dark component. If so, a comoving field of strength of
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the order of 10�35 G can seed the large-scale galactic
dynamo when its coherence scale is at least as large as
10 kpc. The latter is much less than the coherence length of
our superadiabatically amplified field, though we expect
fragmentation of the original seed field during the proto-
galactic collapse and the subsequent nonlinear era.

If the universe is marginally open today, our mechanism
allows for a simple, viable, and rather efficient amplifica-
tion of large-scale primordial seed magnetic fields to
strengths that can seed the galactic dynamo. Even if the
universe is not open, this study still brings about a rather
important issue. This is the unique nature and nontrivial
properties of magnetic fields and their potential implica-
tions in the context of general relativity. Magnetic fields, in
particular, are the only vector source that we know that
exist in the universe today and in the geometrical frame-
work of Einstein’s theory vectors have different status than
scalars. The special status of the former, which is mani-
fested in the Ricci identities, couples the Maxwell field
directly to the geometry of the space in a natural way. This
coupling has been largely bypassed in the literature, though
its implications are generally nontrivial and in many cases
quite counter-intuitive [30]. The best known example is
probably the scattering of electromagnetic waves by the
gravitational field, which leads to the violation of Huygens
principle [10]. Here, we have considered the implications
of this relativistic magneto-geometrical interaction for the
evolution of large-scale magnetic fields in FRW universes.
We found that, contrary to the widespread perception, a
superadiabatic-type amplification of cosmological mag-
netic fields is possible in conventional cosmological mod-
els and within standard electromagnetic theory. Therefore,
in this case, the magneto-geometrical coupling mimics
effects that have been traditionally attributed to new
physics.
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