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Constraints on the redshift dependence of the dark energy potential

Joan Simon,* Licia Verde,† and Raul Jimenez‡

Dept. of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
(Received 10 December 2004; published 16 June 2005)
*Electronic
†Electronic
‡Electronic

1550-7998=20
We develop a formalism to characterize the shape and the redshift evolution of the dark energy
potential. Our formalism makes use of quantities similar to the horizon-flow parameters in inflation and is
general enough that can deal with multiscalar quintessence scenarios, exotic matter components, and
higher-order curvature corrections to General Relativity. We show how the shape of the dark energy
potential can be recovered nonparametrically using this formalism and we present approximations
analogous to the ones relevant to slow-roll inflation. Since presently available data do not allow a
nonparametric and exact reconstruction of the potential, we consider a general parametric description.
This reconstruction can also be used in other approaches followed in the literature (e.g., the reconstruction
of the redshift evolution of the dark energy equation of state w�z�). Using observations of passively
evolving galaxies and supernova data we derive constraints on the dark energy potential shape in the
redshift range 0:1< z < 1:8. Our findings show that at the 1� level the potential is consistent with being
constant, although at the same level of confidence variations cannot be excluded with current data. We
forecast constraints achievable with future data from the Atacama Cosmology Telescope.
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I. INTRODUCTION

Recent observations [1,2] indicate that ’ 70% of the
present-day energy density of the Universe may be made
of a dark energy component. The two leading explanations
of dark energy are a cosmological constant or a slowly
rolling scalar field, e.g., [3–7], but an explanation in terms
of modifications to the Friedman equations, e.g., [8,9], is
also possible. In both cases this component has a negative
pressure thus inducing an accelerated expansion of the
Universe.

A significant observational effort is directed to unveil the
nature of dark energy (e.g. [10–15]).

The strongest constraints to date on the nature of dark
energy measure the integrated value over time of its equa-
tion of state parameter (w � �=p) (e.g., [1,2,16–18]).
These constraints are very tight (e.g. [2] finds w �
�0:98� 0:12) and are centered around the expected value
for the cosmological constant, but, as pointed out by
[19,20], the finding that the time average value of w is
consistent with �1 does not exclude the possibility that w
varied in time. Therefore, it is an open challenge to deter-
mine whether dark energy is a cosmological constant or a
rolling of a scalar field. A recent review of the current
status of our knowledge of the observational determination
of w and possible theoretical models to explain it is given
by [3].

Recently, observational data sets, or combinations of
different data sets, became powerful enough to attempt to
constrain a possible redshift dependence w�z� (e.g., [1,21]
or, alternatively, to trace the dark energy density as a
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function of time (e.g., [22–27]); since the dark energy
density depends on an integral over w�z�, to obtain the
dark energy density as a function of z one effectively needs
to take one derivative of e.g., luminosity distance measure-
ments but effectively 2 derivatives to obtain w�z� thus ��z�
can be constrained more directly from observational data
e.g., [28–30].

From a theoretical point of view, it is not only important
to clarify whether the energy component is dynamical or
constant, but, in case it is not a cosmological constant, it is
also of great interest to constrain the shape of the potential
of the rolling scalar field. Since different theoretical mod-
els are typically characterized by different potentials, a
reconstruction of the dark energy potential from observa-
tions can yield more direct constraints on physically mo-
tivated dark energy models.

In this paper we take a different approach and attempt to
reconstruct directly the dark energy potential; since theo-
retical models directly predicts the shape of the dark
energy potential this makes comparison with theory more
straightforward. In [31], a different reconstruction for the
quintessence potential was suggested in terms of the
present fraction in dark energy, the present equation of
state, and the amount of early dark energy. In our formal-
ism, we attempt instead to reconstruct such potential di-
rectly, in terms of the Hubble parameter and dark matter
density, in general cases, but in terms of the Hubble pa-
rameter alone in the presence of simple dark matter.

We first present a nonparametric method to reconstruct
the redshift evolution of the potential and kinetic energy of
the dark energy field. Our formalism introduces quantities
similar to the horizon-flow parameters [32,33] in inflation.
It has the nice feature that it is easily implemented in the
presence of higher-order curvature corrections to General
Relativity and different types of energy contributions in
-1  2005 The American Physical Society



1These are corrections that are known to be generated by
quantum corrections to the classical action, and, in particular,
the ones considered here involve a linear combination of the set
of independent operators of lowest dimension.
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Einstein’s equations, as we do in Section II A. Our exact
reconstruction formulas determine the value of the poten-
tial at a given redshift once the matter density, Hubble
parameter �H�, and its first derivative � _H� are experimen-
tally measured at that redshift value and, in principle, yield
exact reconstruction of higher-order derivatives of the
potential. We discuss the observational challenges to re-
construct the potential in this fully nonparametric way due
to the difficulty of measuring _H. As current data is not
good enough to determine _H, we present a general parame-
trization of the potential, based on an expansion in
Chebyshev polynomials. In this approach, the scalar po-
tential as a function of redshift is expanded in Chebyshev
polynomials, which constitutes a complete orthonormal
basis on a finite interval, and have the nice property to be
the minimax approximating polynomial. Our reconstruc-
tion equation becomes a differential equation for the
Hubble parameter, which we solve analytically, and the
coefficients in the Chebyshev expansion become the pa-
rameters to be constrained from observations of the Hubble
parameter. Our general parametrization can apply to other
approaches that were already considered in the literature,
such as expansions of the equation of state and we show the
correspondence to some parametrizations that have been
proposed in the literature. Using current data (in particular
relative ages of a sample of passively evolving galaxies and
recent supernovae data) we reconstruct the potential of
dark energy using our parametrization up to z� 1:8. The
reconstructed potentials obtained from galaxy ages and SN
are consistent. Since these two data sets rely on indepen-
dent physics and are affected by completely different
systematics, this finding suggests that possible systematics
are not a crucial issue.

The reconstructed potential is consistent with being
constant up to the maximum redshift of the observations,
although current constraints do not exclude a variation as a
function of redshift. We show that data obtained with the
Atacama Cosmology Telescope will be able to greatly
improve current constraints.

II. METHOD

A. Dynamics of the scalar field of dark energy

The classical effective action that we shall use to de-
scribe the dynamics of the Universe is

S �
Z
dt d3x

�������
�g

p
�
�

m2p
16�

�R	 f�R;R��R��; . . .�

	
g��

2
@�q@�q� V�q�

�
	 Ssources; (1)

where mp stands for the four-dimensional Planck mass and
g�� for the components of the four-dimensional metric

ds2 � dt2 � a2�t�dx2; (2)

which we shall consider to be a homogeneous, isotropic,
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and spatially flat Friedman-Robertson-Walker (FRW) cos-
mology, as supported by recent data [2].
Ssources stands for the classical action describing the

physical energy content, such as matter and radiation, but
it could also include more exotic sources (e.g. defects,
cosmic strings, etc.). Note also that we have implicitly
assumed the existence of a single canonically normalized
quintessence scalar field q�t; ~x� subject to the potential
V�q�. Thus, we have assumed that this potential is inde-
pendent of the derivatives of the scalar field. For generality,
in Eq. (1) we include the effect of higher derivative terms in
the gravitational sector of the theory [8]. These are de-
scribed by the function f�R;R��R��; . . .� of the different
invariants that we can construct out of the metric and its
derivatives. In four dimensions, the most general lowest
order corrections to Einstein’s classical action would be
described by f � �R2 	 �R��R��

1 (see, for example,
[34]). Other corrections that have been considered, include
arbitrary functions of the scalar curvature f�R� [35], which
include as particular examples linear combinations of
negative powers of these invariants [36].

We focus on cosmologies given by Eq. (2), and shall
restrict ourselves to classical configurations q � q�t�, con-
figurations that do not break the homogeneity and isotropy
of spacetime. The energy momentum tensor of this scalar
field configuration is that of a perfect fluid, with density �q
and pressure pq given by

�q � K�q� 	 V�q�; pq � K�q� � V�q�;

and K 

1

2
_q2;

(3)

where K denotes the kinetic energy of the field. Under
these assumptions, one is led to consider Einstein’s equa-
tions, plus the Klein-Gordon equation of motion for the
scalar field. The first ones reduce to Friedmann’s equations

H2 �
�
3
��T 	 �q�;

�a
a
� �

�
6
��T 	 3pT 	 �q 	 3pq�;

(4)

where � � 8�=m2p (or � � 8�G). In Eq. (4) we intro-
duced the compact notation �T and pT for the total energy
density and pressure. For example �T denotes the full
energy density contribution of Ssources and of the higher
derivative curvature terms f�R;R��R��; . . .�. Thus if the
sources are a collection of n perfect fluids with constant
equation of state !i i � 1; . . . ; n, �T , and pT are

�T �
Xn
i�1

�i 	 �f; pT �
Xn
i�1

!i�i 	 pf; (5)
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2Throughout this paper we denote with ’ the derivative with
respect to q and with _ derivative with respect to time.
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where �f and pf describe the contribution from the higher
derivative curvature terms. For the particular function
f�R2; R��R��� introduced above, such terms would be
written as

��f � �12H
a�3�

a
�3�	 �� � 6

�
�a
a

�
2
�3�� ��

	 6H4�15�	 7�� � 36H2 �a
a
��	 ��;

�pf � 4
a�4�

a
��	 3�� 	 12H

a�3�

a
��	 2�� 	 8H2 �a

a
��

	 9�� 	 2
�
�a
a

�
2
��	 3�� 	 2H4�15�	 7��:

On the other hand, the scalar field q�t� equation of
motion reduces to

�q	 3H _q	 V 0 � 0; (6)

where V 0 � dV=dq.

B. Reconstruction procedure

In this section we provide exact analytical expressions in
which both the kinetic and potential energies of the quin-
tessence field q�t� depend on quantities more directly ob-
servable such as the energy densities, the Hubble constant
H, and its derivatives. Although the higher curvature cor-
rections are not directly observable, they will also have to
appear in the expressions: they can be taken into account
for a given model, that is for a given parametrization of the
functional f. Provided one has an independent way of
determining the densities H and _H the value of the poten-
tial V�z� at a given redshift zwhere these measurements are
available, can then be fixed, up to experimental uncertain-
ties. If also higher-order derivatives ofH are known, higher
derivatives of the potential d�s�V

dq�s�
�z� can be determined,

which can be used to probe the flatness of the potential.
We use the analogous of the inflationary horizon-flow

parameters [32,33] f"ng, which are defined recursively by

"n	1 �
d logj "n j

dN
; n � 0

where N � log�a�t�=a�ti�� is the number of e-foldings
since some initial time ti and "0 � H�Ni�=H�N�. There
are many similarities between the period of inflation and
the presentday accelerated expansion, but, despite the fact
that inflation happened 13:7� 109 years ago, and the ac-
celerated expansion is happening today, as we will see, it is
not observationally easier to reconstruct the dark energy
potential than it is to reconstruct the inflationary potential.
In the equation describing inflationary dynamics the con-
tribution due to matter can be ignored, but it cannot be
ignored when describing today’s expansion. Moreover, the
detailed shape of the primordial power spectrum from
cosmic microwave background (CMB) scales to large scale
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structure scales, and the nature of the primordial perturba-
tions offer a window to test the last 4 inflation e-foldings;
conversely, in the case of dark energy, dark energy started
dominating at z < 1, and between then and now the
Universe expanded only by a factor <2. In addition we
can measure with exquisite precision perturbations from
inflation but have not detected perturbations from dark
energy, which is a very challenging task [37]. On the other
hand we do not have strong constraints on the energy scale
of inflation, that is on the ‘‘normalization’’ of the infla-
tionary potential [38,39] but as we will see, since the matter
content of the Universe can be independently determined,
for a flat Universe, we have some constraints on the quin-
tessence potential normalization.

Keeping in mind the different kind of challenges that a
quintessence potential reconstruction faces, we proceed
with our program. For our purposes, it will be useful to
have explicit expressions for the first two parameters

"1 � �
_H

H2 � 1�
�a
a
H�2 �

dH
dz

�1	 z�
H

; (7)

"2 �
_"1

H"1
; (8)

which, we will show, are needed to determine V and V 0.2

We use the second Friedmann equation (4) to express the
first horizon-flow parameter "1 in terms of the energy and
pressure densities:

"1 �
3

2

�T 	 �q 	 pT 	 pq
�T 	 �q

: (9)

If we write f�q; pqg in terms of its kinetic and potential
energy components, as in (3), we can use (9) to express,
e.g., the kinetic energy in terms of the potential energy as

1

2
_q2 �

1

3� "1

�
"1��T 	 V� �

3

2
��T 	 pT�

�
: (10)

Finally we can use the first Friedmann Eq. (4) to solve
for the value of the kinetic energy and the potential at a
given redshift z

K�z� �
1

2
_q2 � "1

H2

�
�
1

2
��T 	 pT�; (11)

V�z� � �3� "1�
H2

�
	
1

2
�pT � �T�: (12)

This is the generalization of Eq. (16) in [33] which was
derived in the context of inflation.

Equation (12) is a general and exact reconstruction
formula for the potential of a quintessence field given the
assumptions followed in this paper. As example of the
generality of this approach, one can see that it can accom-
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modate models containing nontrivial interactions between
matter and the quintessence field [40] simply by replacing
�m�z� by �m�z�g�q�z�� where g�q� describes the nontrivial
interaction.

It is also straightforward to include modifications to
General Relativity, as mentioned above. Remarkably, due
to the fact that any modification to General Relativity that
only depends on the scalar curvature, that is f � f�R�, is
equivalent to a single scalar field coupled to gravity in a
potential determined by the function f�R� and its deriva-
tives [35], our formalism could be used to put constraints
on such modifications.

Here, we shall focus in the constraints on the dark
energy potential at redshifts smaller than 1000.
Therefore, we shall neglect the radiation energy density
contribution. Furthermore, if we also neglect the contribu-
tion from the higher-order curvature terms, the expression
for the potential simplifies

V�z� � �3� "1�
H2

�
�
1

2
�m: (13)

Analogously, for the kinetic energy we obtain

K�z� � "1
H2

�
�
1

2
�m: (14)

Ideally, our goal would be to constrain the functional
form of the potential V�q�, and this is not what (12)
provides. If the function q�z� was known this would be
straightforward, but q�z� is not an observable quantity. We
will show later (in II C) how V�q� can be obtained.

We can next determine the first derivative with respect to
the field of the quintessence potential. We rewrite (6) as

V0 � �� _q��1f3H _q2 	 _q �qg; (15)

where all terms are already known, except for _q �q which
can be obtained from the time derivative of the kinetic
energy (11). The end result can be expressed as

V0 � �3
mp�������
4�

p H2�"1�1=2
�
1�

�

2H2"1
��T 	 pT�

�
�1=2

�

�
1	

"2
6
�
"1
3
�

�
6H3"1

�
3H��T 	 pT�

	
1

2
� _�T 	 _pT�

	�
: (16)

Thus, if the values of �T�z�, pT�z�, and fH; "1; "2g or
equivalently, fH; _H; �Hg, can be experimentally determined
for some redshift z, II B yields the first derivative of the
potential V 0�z�. As in the previous discussion, the determi-
nation of V 0�q�z�� would require the knowledge of q�z�.

The above formula is the exact result given some energy
density content �T , with associated pressure pT . If we
restrict ourselves to a single matter component and neglect
the higher-order curvature terms, the first potential deriva-
tive reduces to
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V 0�z� � �3
mp�������
4�

p H2�"1�1=2
�
1�

�

2H2"1
�m

�
�1=2

�

�
1	

"2
6
�
"1
3
�

�

4H3"1
�m

�
; (17)

and (17) reproduces Eq. (17) in [33] when the matter
density vanishes ��m � 0�.

In this case, the first derivative of the potential V 0�z� is
known if one can measure �m, fH; _H; �Hg. In the absence of
coupling between matter and the quintessence field
�m�z � 0� is needed instead of �m�z�.

Analogously, exact expressions for higher-order deriva-
tives of the potential d�r�V�q�=dqr can be obtained by
taking the time derivative of II B and using the exact
expression for the kinetic energy (11). In section V we
will use the values of V and V0 to find the conditions that
the potential has to satisfy to be a natural generalization of
the slow-roll conditions during inflation, including the
effects of matter.

C. Redshift parametrization of the potential

In section II B we have shown that an exact reconstruc-
tion of V�z� is possible only if H�z� and _H�z� are known.
While the determination H�z� is an observationally chal-
lenging task (e.g, [28–30,41] and section IV), the deter-
mination of _H�z� is even more formidable.

In this section we shall not attempt a nonparametric and
exact reconstruction of V�z�, we shall instead consider a
parametric description of the potential �V�(i; z�� in terms
of the redshift z and parameters (i. In section IV we will
then use currently available observations to constrain the
potential parameters and discuss future prospects.
Hereafter we will set �f 
 0 and defer the more general
case of �f � 0 to future work.

Equation (13) can be rewritten in terms of the indepen-
dent variable z as

3H2�z� �
1

2
�1	 z�

dH2�z�
dz

� �
�
V�(i; z� 	

1

2
�m�z�

�

 g�(i; z�: (18)

This is a first-order nonlinear differential equation which
can be integrated analytically:

H2�(i; z� � H2
0�1	 z�6 � 2�1	 z�6

�
Z z

0
g�(i; x��1	 x��7dx

�

�
H2
0 �

�
3
�m;0

�
�1	 z�6 	

�
3
�m�z� � 2�1	 z�6

�
Z z

0
V�(i; x��1	 x��7dx: (19)

Hereafter the 0 subscript denotes the quantity evaluated at
z � 0.
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In this approach if we now consider the kinetic energy of
the quintessence field we obtain a first-order nonlinear
differential equation for q�z�

1

2
_�q�2 � �1	 z�6V0 � 6�1	 z�6

Z z

0
V�(i; z��1	 z��7dz

	 K0�1	 z�6 (20)

or equivalently

1

2

�
dq
dz

�
2
�1	 z�2H2�(i; z� � 3��1H2�(i; z� � �m�z�

� V�(i; z�; (21)

which can be integrated to obtain q�z� and thus V�(i; q�
from V�(i; z�:

q�z� � q�0� � �
Z z

0

dz
�1	 z�H�(i; z�

f6��1H2�(i; z�

� 2�m�z� � 2V�(i; z�g1=2; (22)

where the ambiguity in sign comes from the quadratic
expression for the kinetic energy. Typically, if we think
of a scalar field rolling slowly along its potential, the plus
sign will be the relevant one.

Thus the approach highlighted here enables one to go
from determinations of observable quantities �m�0� and
H�z� to a reconstruction of the dark energy potential V as a
function of the field q without taking time or redshift
derivatives. This is of relevance because not V�z� but
V�q� is a quantity that can be more directly related to
theory but which is not directly observable.

For example let us consider a simple two-parameter
parametrization of the potential:

V � )�1	 z�(; (23)

which yields

H2�z� � H2
0�1	 z�6 � 2I(�1	 z�6; (24)

where

I( � �
�
6
�m�0���1	 z��3 � 1�

	
)�

(� 6
��1	 z�(�6 � 1�;

( � 6

(25)

I6 � �
�
6
�m�0���1	 z��3 � 1� 	 )� log�1	 z�;

( � 6:
(26)

If we can neglect the kinetic energy (that is if ( � 1)
then this potential corresponds to a constant equation of
state w: ( � 3�w	 1� as in the Ratra-Peebles [3] case and
�q;0 � 6)=��c�6� (��. In general V�q� can be obtained
integrating Eq. (22) with substitutions (23) and (24).
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D. Chebyshev reconstruction

An interesting parametrization of the potential involves
the Chebyshev polynomials, which form a complete set of
orthonormal functions on the interval ��1; 1�. They also
have the interesting property to be the minimax approx-
imating polynomial, that is, the approximating polynomial
which has the smallest maximum deviation from the true
function at any given order. We can thus approximate a
generic V�z� as

V�z� ’
XN
n�0

)nTn�x�; (27)

where Tn denotes the Chebyshev polynomial of order n
and we have normalized the redshift interval so that x �
2z=zmax � 1; zmax is the maximum redshift at which ob-
servations are available and thus x 2 ��1; 1�. Since
jTn�x�j � 1 for all n for most applications, an estimate of
the error introduced by this approximation is given by
)N	1. With this parametrization, the relevant integral in
(20) becomes:

Z z

0
V�y��1	 y��7dy �

zmax
2

XN
n�0

)n

�
Z 2z=zmax�1

�1
Tn�x��a	 bx��7dx



XN
n�1

)nFn�z�; (28)

where a � 1	 zmax=2 and b � zmax=2. These integrals
can be solved analytically for any order n as shown in
the appendix: Fn are known analytic functions which are
reported in the Appendix.

We obtain:

H2�z; )i� � �1	 z�6H2
0

"
1� 3zmax

XN
n�0

)n
�c

Fn�z�

��m;0

�
1�

1

�1	 z�3

�#
; (29)

where �c denotes the presentday critical density.
Equation (29) seems to describe the potential with N 	

1 parameters ()0 � � � )N). However, since we assume a flat
Universe, �m;0 constrains the coefficients of the
Chebyshev polynomials in expansion (27) and the kinetic
energy of the field. For example, if the potential is constant
(i.e in a cosmological constant case) then it is completely
described by only one parameter )0, and since _q � 0, V0 	
K0 � V0 � �q;0 � �q;0�c, we have that )0 � �q;0�c.
However if the potential is not constant we obtain
-5
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1

2
_q2 � V0�1	 z�6 � V�z� � 6�1	 z�6

�
Z z

0
V�z��1	 z��7dz	 K0�1	 z�6

� V0�1	 z�6 � V�z� � 3�1	 z�6zmax
X
n

)nFn

	 K0�1	 z�6 (30)

and since V0 �
PN

i�0 )i��1�
n we have the constraint:

XN
i�0

)i��1�
n 	 K0 � �q;0�c: (31)

Once the Chebyshev coefficients are known, Eq. (22)
enables one to reconstruct q�z�. The q�z� reconstruction
together with Eq. (27) can then be used to constrain V�q�.

In section IV we show the constraints that can be ob-
tained for the first few Chebyshev coefficients from cur-
rently available data.
III. EQUATION OF STATE

It is widespread to parametrize dark energy not by the
scalar field potential but by its equation of state. In this
section we connect the two descriptions. We first review
the relationship between the dark energy density scaling
with redshift, the dark energy equation of state, and the
dark energy potential. We then apply the reconstruction
method of Sec. II D to the dark energy equation of state and
compare models presented in the literature with our
parametrization.

A. Time-dependent density scaling

Standard contributions to the energy momentum tensor
in Einstein’s equations are characterized by a parameter
that governs how their energy densities decrease with the
expansion of the Universe. For the energy density of the
scalar field we can write in all generality

�q�t� � �q�0�
�
a0
a�t�

�
/�t�

: (32)

The Klein-Gordon equation (6) can be expressed as the
conservation equation for the energy momentum tensor
describing the scalar field

_�q 	 3H��q 	 pq� � 0: (33)

Thus, the pressure of the scalar field pq�t� can be expressed
as a function of the time-dependent exponent /�t�

pq�t� �
�
/�t� � 3

3
�
1

3
log

�
a0
a�t�

�
H�1 d/

dt

	
�q�t�: (34)

Using ansatz (32), we obtain the kinetic and potential
energies for the scalar field
123001
1

2
_q2 �

1

2
�q�t��wq; (35)

V � �q

�
1�

1

2
�wq�t�

�
; (36)

where we introduced the function (compare to [42])

�wq�t� �
1

3

�
/�t� �H�1 log

�
a0
a�t�

�
d/
dt

	
; (37)

which depends on the ratio between kinetic and potential
energies of the scalar field via

�wq�t� �
2

1	 V�q�=K�q�
: (38)

The function �wq�t� controls the deviations from the
equation of state of the scalar field wq�t� from being
exactly �1, i.e. a cosmological constant. Indeed, from
pq�t� � wq�t��q�t�, we have

wq�t� � �1	 �wq�t�: (39)

Thus constraining �wq�t� is equivalent to constraining the
time (or redshift) evolution of the dark energy equation of
state for which there are different independent observatio-
nal constraints (e.g., [3,43], and references therein).

We can relate /�t� to �wq�t� by integrating (37).
Without losing generality, we do this in terms of the
redshift

/�z� �
3

log�1	 z�

Z z

0
�wq�y�

dy
1	 y

; (40)

where we did not include a possible integration constant,
since it is physically irrelevant, i.e. it just redefines the
value of the energy density of the scalar field today ��q�0��.
This relation provides an expression for the potential en-
ergy density of the scalar field once the equation of state is
known, using (36):

V�z� � �q�0�e
3
R

z

0
�wq�y�

dy
1	y

�
1�

1

2
�wq�z�

�
: (41)

The case of a constant �wq, or equivalently, a constant
equation of state wq would correspond to the redshift
parametrization considered in (23) with

) � �q�0�
�
1�

1

2
�wq

�
; and ( � 3�1	 wq�:

Thus, for a physical situation resembling a cosmological
constant �wq ��1�, the parameter ( � 1, as we claimed
in the previous section. Some constant scalar field energy
density scalings were discussed by [4]. The above formal-
ism is a natural generalization of their models.
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B. Beyond a rolling scalar field

Up to now we have assumed that dark energy is given by
a scalar field. The techniques developed here however can
also be used in a more general context.

If the dark energy is not due to a scalar field we can still
describe it as a fluid with a given equation of state. As long
as the equation of state w is >� 1 the two descriptions are
equivalent. For example for a given set of parameters )i
and H0 and�m;0, V�)i; z� is known, the kinetic energy can
be computed using Eq. (31), thus �w is known (Eq. (38))
and so w�z� (Eq. (39)).

However if we want to allow w<�1 then the scalar
field description as presented here fails. However, analo-
gously to section II D, we can expand the redshift depen-
dence of w in Chebyshev polynomials without imposing
any restrictions on the values that w can take. We thus
obtain

w�z� ’
XN
i�0

!iT�x�z�� (42)

and

H2�!i; z� ’ H2
0�1	 z�3

�

"
�m;0 	�q;0 exp

 
3

2
zmax

XN
n�0

!nGn�z�

!#
;

(43)

where Gn is the analogous of Fn of section II D: Fn is a
linear combination of integrals Ii, i � f0; ng whileGn is the
same linear combination of the integrals Ji , i � f0; ng (see
the appendix).

Note that in this parametrization the presentday value of
w is given by

w0 �
XN
i�0

��1�i!i: (44)

Given the parametrization (42) of w�z� subject to the
constraint w>�1 one can always obtain:

V�z� � �q;0�1	 z�3�1	!0� exp

"
3

2
zmax

XN
i�1

!iGi�z�

#

�
1

2

"
1�

XN
i�0

!iTi�x�z��

#
: (45)

In section IV we show how currently available data can
be used to constrain the first few Chebyshev coefficients of
this expansion.

In the remaining of this section we will compare some
models presented in the literature with the parametrization
presented here. Clearly, the case of a constant equation of
state corresponds to !i � 0 for i > 0. The linear parame-
trization in z [44,45] corresponds to !i � 0 for i > 1, and
in particular w0 � !0�!1 and w0 � 2!1=zmax. Finally
the linear parametrization in a [46,47], w � w0 	
123001
waz=�1	 z� for wa � w0 can be closely approximated
by !i � 0 for i > 2, with the constraint (44). [48] pointed
out that a simple, 2-parameter fit may introduce biases: the
expansion (42) allows one to include more parameters by
increasing N as the observational data improve.
IV. OBSERVATIONAL DETERMINATION OF H�z�

Section II B has illustrated that it is necessary to deter-
mine observationally H�z�, _H�z�, �H�z� in order to recon-
struct V�q� and its first derivative V0�q�.

[28–30] pointed out that the first derivative with respect
to redshift of the ‘‘coordinate distance’’ y (where y is
related to the luminosity distance dL by dL � 1=H0y�1	
z�) can yield a measurement of H�z� and �q�z� and that if
one also has knowledge of the second derivative, one can
obtain constraints on p�z� and w�z�. They then propose a
robust numerical differentiation technique where observa-
tional determinations of y�z� are binned and approximated
in each bin by a second-order polynomial; the derivatives
are then obtained for each bin from the best fit coefficients
of the polynomial. They thus obtain a piecewise recon-
struction of H�z�, �q�z�, pq�z�, and w�z� for data sets
comprised of luminosity distances to type IA supernovae
and coordinate distances to radio galaxies. In principle the
potential could be reconstructed from these quantities.

Here we also start off by presenting a determination of
H�z�. Our determination is based on the method developed
by [49] and it uses measurements of relative ages of
passively evolving galaxies. Since the systematic errors
in spectroscopic dating of galaxies tend to cancel out
when computing relative ages, we deem this a robust
method to obtain H�z� directly from data. We briefly dis-
cuss the reliability of this H�z� determination and possible
issues, but a detailed comparison of reliability and per-
formance of the two different approaches will be discussed
elsewhere.

We emphasize the difficulties of computing _H�z�, �H�z�,
necessary to reconstruct not just the potential itself but also
higher-order derivatives of the potential dnV=dqn. We also
present the constraints that can be achieved on the evolu-
tion of the quintessence potential and the dark energy
equation of state from present and future data.

A. Sample selection and differential ages of passively
evolving galaxies

The Hubble parameter depends on the differential age of
the Universe as a function of redshift in the form

H�z� � �
1

1	 z
dz
dt
: (46)

Therefore a determination of dz=dt directly measures
H�z�. In [41] we demonstrated the feasibility of the method
by applying it to a z� 0 sample. In particular, we used the
Sloan Digital Sky Survey to determine H�0� and showed
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that its value is in good agreement with other independent
methods (see [41] for more details). With the availability of
new galaxy surveys it becomes possible to determine H�z�
at z > 0. Here we use the new publicly released Gemini
Deep Survey (GDDS) survey [50] and archival data [51–
56] to determine H�z� in the redshift range 0:1< z< 1:8.
We proceed as follows: first we select galaxy samples of
passively evolving galaxies with high-quality spectros-
copy. Second, we use synthetic stellar population models
to constrain the age of the oldest stars in the galaxy (after
marginalizing over the metallicity and star formation his-
tory), in similar fashion as is done in [41]. We compute
differential ages and use them as our estimator for dz=dt,
which in turn gives H�z�.

The first sample is composed of field early-type galaxies
from [51–53]. In [41] we selected galaxies from [51–53] to
obtain a sample of old elliptical galaxies with high signal to
noise (S/N) spectra and we derived ages for this sample
using the SPEED models [57]. Here from this sample we
discard galaxies for which the spectral fit indicates an
extended star formation, that is for which the best fit
declining exponential has a decaying time greater than
0.1 Gyr. This leaves us with 10 galaxies.

The second sample is composed by 20 old passive
galaxies ([58]) from the publicly released GDDS [50].
GDDS has high-quality spectroscopy of red galaxies,
some of which show stellar absorption features, indicating
an old stellar population. The GDDS collaboration has
FIG. 1. Left panel: the absolute age for the 32 passively evolving
from fitting stellar population models is plotted as a function of reds
redshift the older the galaxies. Right panel: the value of the Hubble p
ages of galaxies in the left panel. The determination at z� 0:1 indica
from [41]. The dotted line is the value of H�z� for the LCDM mode

123001
determined ages (and the star formation history) for these
galaxies [58]: they conclude that for a subsample of 20 red
galaxies the most likely star formation history is that of a
single burst of star formation of duration less than 0.1 Gyr
(in most cases the duration of the burst is consistent with
0 Gyr, i.e. the galaxies have been evolving passively since
their initial burst of star formation). To determine the
galaxies ages they use a set of stellar population models
different than SPEED. We have reanalyzed the GDDS old
sample using SPEED models and obtained ages within
0.1 Gyr of the GDDS collaboration estimate. This indicates
that systematics are not a serious source of error for these
high-redshift galaxies. We complete our data set by adding
the two radio galaxies 53W091 and 53W069 [54–56]
which are the reddest radio galaxies in the Windhorst et
al. survey. In total we have 32 galaxies.

Figure 1 (left panel) shows the estimated absolute ages
for galaxies in the above samples and their 1� error bars.
There is a distinguishable ‘‘red envelope’’: galaxies are
older at lower redshifts.

The next step is to compute differential ages at different
redshifts from this sample. To do so we proceed as follows:
first we group together all galaxies that are within �z �
0:03 of each other. This gives an estimate of the age of the
Universe at a given redshift with as many galaxies as
possible. The interval in redshift is small to avoid incor-
porating galaxies that have already evolved within the bin,
but large enough for our sparse sample to have more than
galaxies in our catalogue (see text for more details) determined
hift. Note that there is a clear age-redshift relation: the lower the
arameter as a function of redshift as derived from the differential
ted by the ’	’ symbol is the Hubble constant determination of H
l.
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one galaxy in most of the bins. Then for each bin we
discard those galaxies that are more than 2� away from
the oldest galaxy in that bin.

We then compute age differences only for those bins in
redshift that are separated more than�z � 0:1 but no more
than �z � 0:15. The first limit is imposed so that the age
evolution between the two bins is larger than the error in
the age determination. We find that this provides a robust
determination of dz=dt since the recovered dz=dt depends
weakly on the choice of binning. With this procedure we
obtain 8 determinations of H�z�.

We note here that differential ages are less sensitive to
systematics errors than absolute ages (see [57] for detailed
discussion, especially their table 2). The value of H�z� is
then directly computed by using Eq. (46). This is shown in
Fig. 1 with 1� error bars. Also shown (dotted line) is H�z�
for the lambda cold dark matter (LCDM) model.

Before we can use these data to derive constraints on
dark energy we need to be aware of the effects of potential
systematic uncertainties of the method. This has been
somewhat discussed in [41] for the Treu sample, but we
review it briefly here and extend it to the rest of the set.
Ages were obtained assuming a single-burst stellar popu-
lation model and a single metallicity model. For the GDDS
galaxies [58] performed fits for declining star formation
histories and for the 20 galaxies we use the best fitting
model corresponded to that of a single burst (declining
FIG. 2. Regions in the )1=�c vs )0=�c (left panel) and )2=�c vs
level, by the priors and the constraints that the kinetic energy in the qu
must be positive.

123001
exponential time less than 0.1 Gyr). This supports using the
single-burst model. The high quality of the GDDS spectra
allows us to explore different star formation histories con-
cluding that the single burst is the one best fitting the
models.

While the single metallicity approximation affect the
recovered ages well below the error bars, the single-burst
approximation may not work as well in general. In fact it is
known that massive elliptical galaxies can experience some
level of star formation activity at low redshift. This can bias
the single-burst equivalent ages of the spectrum towards
younger ages. Although this is a serious caveat for the
interpretation of individual galaxy spectra our selection is
designed to keep only the oldest galaxies in each redshift
bin. However we do rely on having a fair sample of the
galaxy population in each redshift bin so that even though
the ages for some galaxies will scatter towards younger
ages, it is still possible to find enough galaxies to define the
so-called ‘‘red envelope.’’ Since our method relies on the
shape of the ‘‘red envelope,’’ it is insensitive to any system-
atic shift in the ages determinations as long as the shift is
constant with redshift. On the other hand our results could
potentially be seriously compromised if the determination
of the ‘‘red envelope’’ was affected in a redshift-dependent
way. While there is no intrinsic reason for this to happen,
observational and selection effects can in principle do that
but we are not aware of it.
)0=�c (right panel) excluded at the 1� and 2� joint confidence
intessence field must be positive and that at all redshifts �m 	 �q
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B. Constraints on the potential

Following the discussion in sec. II D, we present con-
straints on the shape of the potential achievable from
present and future data sets. Figure 3 shows the constraints
on the first three Chebyshev coefficients for the potential
that can be obtained from our galaxy sample, combined
with the determination of the Hubble constant at z � 0:09
obtained by [41] from the Sloan digital sky survey (SDSS)
luminous red galaxies. We have assumed a flat Universe
and marginalized over a Gaussian prior on �m;0 (�m;0 �
0:27� 0:07 (e.g., [59]) and a flat prior on H0 (30<H0 <
100 Km=s=Mpc). We have used only the large scale struc-
ture prior on �m;0, as the determination of [59] is insensi-
tive to dark energy. Conversely, CMB constraints on the
matter density of the Universe are highly sensitive to the
assumptions about the nature of dark energy (see e.g., [2]
in particular figure 12), and thus should not be used in this
context. Of course, the addition of CMB data can greatly
improve the constraints on the nature of dark energy, but
this needs to be done in a joint analysis and it is left for
future work.

Some regions of the parameter space are unphysical as
they would yield a negative kinetic energy or �m 	 �q <
0; the combined effect of these priors in the )1=�c vs
)0=�c plane and )2=�c vs )0=�c plane is shown in
Fig. 2. We consider only the region 0< )0=�c < 1:1,
�0:5< )1=�c < 0:5, and �0:5< )2=�c < 0:5.
FIG. 3. Constraints in the )1=�c vs )0=�c (left panel) and )2=�c v
relative galaxy ages. Contour levels are 1� marginalized, 1� joint, a
the marginalized likelihood.
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In Fig. 3 we show the one and 2 sigma joint confidence
contours in the )0=�c vs )1=�c and )0=�c vs )2=�c
planes, obtained from our H�z� determination. When add-
ing the Hubble space telescope (HST) key project prior on
H0 [60] the contours remain virtually unchanged. For
comparison in Fig. 4 we show the constraint obtained by
using the recent supernovae data of [1].

Figure 5 shows our best fit reconstructed V�z� from our
H�z� determination (left panel) and from the SN data (right
panel), and the 68% and 95% confidence regions. The
present constraints are consistent at the 1-� level with a
constant potential (that is the cosmological constant
scenario).

The two determinations (one based on relative galaxy
ages and one SN data) are consistent with each other. The
two methods are completely independent and are based on
different underlying physics, different assumptions, and
affected by systematics of completely different nature.
The fact that they agree indicates that possible systematics
are smaller than the statistical errors.

With current data there is a degeneracy between the first
two coefficients, but we can place an upper limit to the
kinetic energy in the quintessence field today: the contri-
bution of the kinetic term to �q is less than 40% at the 2-�
level and the best fit value is at 0. For completeness in
Fig. 6 we report the reconstructed potential as a function of
the field.
s )0=�c (righ panel) obtained from H�z� measurement based on
nd 2� joint. The diamond shows the location of the maximum of
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FIG. 4. One and two sigma joint constraints in the )1=�c vs )0=�c plane and )2=�c vs )0=�c obtained from the Riess et al. (2004)
supernovae data.
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The Atacama Cosmology Telescope (ACT: [61]
www.hep.upenn.edu/act) will identify, through their
Sunyaev-Zeldovich signature in the cosmic microwave
background, all galaxy clusters with masses >1014 M�
FIG. 5. Reconstructed V�z� from relative galaxy ages (left) and fro
confidence regions. In the left panel the dotted line shows the const

123001
in a patch of the sky of angular size 100 square degrees.
Thus ACT will yield * 500 galaxy clusters in the redshift
range 0:1< z< 1:5. For all these clusters, spectra of the
brightest galaxies in the cluster will be obtained by South
m Supernovae (right). The gray regions represent the 1 and 2�
raint imposed by the prior.
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FIG. 6. Reconstructed V�q� from relative galaxy ages.
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African and Chilean telescopes. This will provide us with
an unbiased sample of * 2000 passively evolving galaxies
from z � 1:5 to the present day. To estimate the perform-
ance of ACT galaxies at reconstructing the dark energy
potential, we have estimated that we will have 2000 gal-
axies for which ages have been determined with �10%
accuracy and therefore �1000 determinations of h with
�15% error. Our3 forecasts in the reconstruction of the
dark energy potential are shown in Fig. 7. We have margi-
nalized over a flat prior on the Hubble constant 30<H0 <
90 km s �1Mpc�1 and a Gaussian prior on �m;0, �m;0 �

0:27� 0:035, as an estimate of the improvement of this
determination from galaxy surveys.

C. Constraints on the equation of state

It is illustrative to work out the consequences of the
constraints found on )0, )1, )2. Let us consider the poten-
tial (23) that gives rise to a constant equation of state. If (
is small then one can approximate the potential with )�1	
(z� and thus identify the coefficients in the Chebyshev
expansion: )0 ���! ) and )1 ���! )(, )2 � 0. We thus ob-
tain )1=)0 < 0:3 at the 1-� level; since )1=)0 ’ ( �
3�w	 1� we obtain w & �0:9 at the 1-� level.

As illustrated in Sec. III B for more general cases we can
expand the redshift evolution of the equation of state
parameter in terms of Chebyshev polynomials. Here we
show how constraints on w�z� obtained from our galaxy
3L. V. and R. J. are members of the ACT science team and plan
to apply this technique to ACT data when available in
�2006-2007.
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sample with the differential ages method compare with
other constraints. For example in Fig. 8 (left panel) we
show the constraints in the plane !0 vs !1 (i.e. we impose
N � 1 in (42)), where we have used the HST key prior for
H0 and the prior �m;0 � 0:27� 0:04 as in [1]. The con-
tours show the 1� marginalized, 1�, and 2� joint con-
fidence levels. To compare with the SN constraints of [1]
recall that their w0 is !0 �!1. Thus the degeneracy seen
in the figure is a constraint on w0. Three points in the !0 vs
!1 parameter space are indicated by the diamond, star, and
’	’ sign. These points are at the 1� joint confidence level,
well within the 1� marginalized level and at the 1�
marginalized level, respectively. In particular the ’�’ point
corresponds to the LCDM model. In the right panel we
show the difference between the Hubble parameter for a
given model and that in the LCDM case. Also our deter-
minations of H�z� are shown. The long-dashed line corre-
sponds to the LCDM case ( � point), the dot-dashed line
corresponds to the ‘‘diamond’’-point and the dot-dot-dot-
dashed line to the ’	’-point. It is clear that more data-
points in the redshift range around z � 0:7 would help in
breaking the degeneracy.
V. SLOW-ROLL DARK ENERGY

The constraints derived from our observational determi-
nation of H�z� combined with our theoretical analysis
suggest that observations in the redshift range 0:1< z<
1:8 are consistent, at the 1� level, with a cosmological
constant equation of state �w � �1�.

This suggests to analyze more closely the conditions
under which a quintessence field could resemble such an
equation of state in that redshift range, because this is the
challenge we will be facing in the near future.

There are at least two different approaches that one can
attempt: either work with a generic potential and determine
the properties it has to satisfy to resemble a cosmological
constant, or attempt to argue some universality in the
functional form of the potential due to its expected flatness
in field space.

A. Slow roll in redshift

Given a generic potential scalar field in the presence of a
non-negligible matter energy density �m�z�, we would
expect the conditions the potential has to satisfy to be a
natural generalization of the slow-roll conditions during
inflation, including the effects of matter. These two con-
ditions are:

wq�z� � �1;
dwq�z�

dt
� 0; 8z 2 �0; z0�: (47)

The first one ensures that dark energy behaves approxi-
mately as a cosmological constant at a given redshift z,
whereas the second ensures that such property is main-
tained in time.
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FIG. 7. Predicted constraints for an experiment with 2000 galaxies for which ages are measured with an accuracy of �10%. The
constraint in the Chebyshev coefficients (left panels; circles show the location of the maximum marginalized likelihood while ’	’
show the location of the maximum of the joint 5D likelihood) and the reconstructed dark energy potential (right panel) are significantly
better than current constraints (see text). We have a LCDM model as fiducial. The Atacama Cosmology Telescope will identify about
500 galaxy clusters in the redshift range 0:1< z < 1:5, for at least 2000 galaxies there will be spectroscopic follow-up and therefore
galaxy ages can be derived.
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There are several equivalent ways of studying the con-
sequences of these conditions. In terms of the kinetic scalar
field energy K�q� and its potential energy V�q�, Eq. (47)
implies that V�q� � K�q� and that the ratio, K�q�=V�q� is
nearly constant in time:

wq�z� � �1 )
K�q�
V�q�

� 1;

dwq�z�

dt
� 0 )

dK�q�=V�q�
dt

� 0:
(48)
FIG. 8. Left panel: Constraints in the !0 vs !1 obtained from our
show the 1� marginalized, 1�, and 2� joint confidence levels. T
parameter space are selected. Right panel: difference between the H
LCDM model. The points with error bars are our data points, the long
panel), the dot-dashed line corresponds to the diamond-point, and t
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In terms of the fundamental degrees of freedom q�t�,
conditions (47) are equivalent to

wq�z� � �1 )
1

2
_q2 � V�q�; (49)

dwq�z�

dt
� 0 )

�q
V 0�q�

�
K�q�
V�q�

� 1; (50)

where the last inequality is derived from the identity
galaxy sample with the differential ages method. The contours
he degeneracy constrains w0 
 !0 �!1. Three points in the
ubble constant in a given model and the Hubble constant in the
-dashed line corresponds to the LCDM model ( � -point in the left

he dot-dot-dot-dashed one to the ’	’-point.
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dwq

dt
� 2

_qV�q�

�2q

�
�q�

K�q�
V�q�

V0�q�
�
: (51)

Under these circumstances, the first Friedmann equation (4)
and the Klein-Gordon equation (6) reduce to

3
H2

�
� �m 	 V; 3H _q � �V 0; (52)

which are the extension of the slow-roll equations used in
inflation in the presence of matter. One can now rewrite
conditions (49) and (50), respectively as�mpV

0

V

�
2
� 48�

�
1	

�m

�q

�
; (53)

m2p
V 00

V
� 24�

�
1	

3

2

�m

�q

�
; (54)

where we already used the fact that �mV�1 ��m�
�1
q

whenever (49) is satisfied.
Following the discussion in section II C, it is also con-

venient to rewrite these conditions in terms of redshift
derivatives of the potential V�q�z��. The analogue of con-
ditions (53) and (54) are:

1

V

dV
dz

�
6

1	 z
; (55)

�
dV
dz

�
�1 d2V

dz2
�

5

1	 z
: (56)
B. Slow roll in the field

Phenomenologically, there are many inequivalent func-
tionals that could be chosen to describe the quintessence
field dynamics. Each of them would typically depend on a
set of undetermined parameters, which would be deter-
mined by fitting them to observations, as we did in
Section IV. In order for a generic potential to look indis-
tinguishable from a cosmological constant, these parame-
ters need to be highly fine-tuned.

It is precisely this fine-tuning that suggests that, inde-
pendently of the functional form of the potential, the
potential will allow an expansion in terms of the variation
of the unobservable scalar field variation �q�t� � q�t� �
q�0�, measuring its variation from its current value today.

Let us assume that there is a certain period of physical
time around today, i.e. t � 0, and consistent with the range
of redshift covered in this work, where the variations in the
scalar potential are small in field space. In other words, the
potential is ‘‘flat.’’ Under these conditions, and indepen-
dently of its functional form, the potential V�q� can be
approximated by
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V�q� � V�q�0�� 	 V0�q�0���q�t� 	
1

2
V00�q�0����q�t��2

	O���q�t���
3�: (57)

Let us emphasize that such an expansion is always viable
for small enough �q, but the Taylor expansion can have a
wider validity if the potential is flat enough, that is if the
derivatives of the potential are small jVnj � V0 and if the
kinetic energy is small K � V0.

For this to be a good approximation the following two
conditions should be satisfied:

1

2
V 00
0 �q�t� � q�0�� � V 0

0; (58)

V 0
0�q�t� � q�0��< V0; (59)

where we introduced the notation V�n�
0 � dnV�q�

dqn �q�0��.
We shall also assume that the energy of the scalar field

q�t� is dominated by the potential energy

1

2
_q2 � V�q�; (60)

so that the scalar field dynamics can resemble a cosmo-
logical constant (see (48)) and the rolling due to the kinetic
energy is small. In the following, we shall proceed to
attempt to integrate the system perturbatively. At zeroth
order in the potential expansion the first of Friedmann’s
equation in (4) reduces to

H2 �
�
3

�
�T;0

�
a0
a

�
3�1	w�

	 V0

�
;

where a�0� 
 1. If �T;0 � �m;0, w � 0 and this reduces to
the case of a LCDM universe.

The exact solution

3H �
2c

1	 w
y0 	 tanhct
1	 y0 tanhct

; (61)

and

�a�t��3�1	w� � �coshct�2�1	 y0 tanhct�2; (62)

becomes, for matter 	 dark energy universe

a�t�3 � �y20 � 1�sinh2�ct	 ĉ�; (63)

which yields a Hubble parameter, at zeroth-order H�t��1 �
3 tanh�ct	 ĉ�=�2c�, where we have introduced two dimen-
sionless parameters:

y0 �

���������������
�0
V0

	 1

s
; tanhĉ � y�10 ; (64)

and the dimensional one

c �
�����������
3�V0

p 1	 w
2

: (65)

In a matter 	 dark energy universe �w � 0� and in our
-14
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current approximation c� 3H0
����������
�q;0

q
=2� 0:09 Gyr�1,

whereas y0 �
�������������������������������
�m;0=�q;0 	 1

q
� 1:18 and ĉ� 1:2. Thus

the age of the Universe is �13 Gyrs.
We can then proceed to integrate the Klein-Gordon

equation by taking the first nontrivial contribution coming
from the expansion (57), and plugging in the zeroth-order
Hubble parameter

�q	 3H _q	 V 0
0 � 0: (66)

The solution for the velocity of the scalar filed is

_q �
k� F�t�

�coshct	 y0 sinhct�
2=�1	w�

; (67)

where

F�t� � V0
0

Z t

0
�coshcx	 y0 sinhcx�

2=�1	w�dx

� �if w � 0�
1

2c
V 0
0�y

2
0 � 1�

�

�
1

2
sinh2�ct	 ĉ� � �ct	 ĉ�

�
: (68)

Here, k is the integration constant and we have used the
fact that y20 � 1> 0 and the identity

coshct	 y0 sinhct �
��������������
y20 � 1

q
sinh�ct	 ĉ�: (69)

Note that we could identify the constant of integration k
with the expression k � _q�0� 	 F�0� involving the kinetic
energy of the scalar field today. A second further integra-
FIG. 9. Interval in time where the slow-roll approximation is
valid for some choices of V 0

0 and K0, when V0=�c � 0:7.
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tion yields the dynamical evolution for the field

q�t� � q�0� � k1 	 k
Z t

�a�x���3dx�
Z t

F�x��a�x���3dx;

(70)

which in a matter 	 dark energy universe becomes

q�t� � q�0� �
k

c�y20 � 1� tanhĉ

�
1�

tanhĉ
tanh�ct	 ĉ�

�

	
V 0
0

2c2

�
ĉ

tanhĉ
�

ct	 ĉ
tanh�ct	 ĉ�

�
; (71)

where

k � _q�0� 	 F�0�; F�0� � �y20 � 1�
V 0
0ĉ
2c

�
sinh2ĉ
2ĉ

� 1
�
:

(72)

The approximations presented here are therefore valid if
V0
0=V0�q�t� � q�0��< 1. Figure 9 shows, for some choices

of V0, V 0
0, and K0, the range in lookback time where this

approximation is valid.

VI. CONCLUSIONS

We have proposed to constrain the nature of dark energy,
a rolling scalar field, or a cosmological constant, by recon-
structing its potential as a function of redshift. We have
presented a formalism, similar to the horizon-flow parame-
ters in inflation, to relate quantities characterizing the dark
energy dynamics, i.e. potential and kinetic energy den-
sities, to direct observables such as the matter density
�m�z�, the Hubble parameter H�z�, and its derivatives.
This is the core of our reconstruction programme, and
our results are summarized by (12), (11), and (16), which
provide the value of the potential and kinetic energy den-
sities, and the first derivative of the potential, as a function
of redshift. These expressions are valid even in the pres-
ence of higher-order curvature corrections to General
Relativity and exotic matter sources. In principle, integrat-
ing the exact reconstruction formula for the kinetic energy,
allows one to determine the function q�z�. Using the latter,
one can infer the real shape of the potential V�q� from the
determination of V�z�.

We have then focused on the case of an expanding
universe with only matter and dark energy components
and at z � 1000. In this case the above expressions sim-
plify to (13), (14), and (17). These exact reconstruction
formulas are currently difficult to be used due to the
experimental challenges in determining the derivatives of
the Hubble parameter IV. However, given a parametriza-
tion for the potential energy density, the relation (18)
becomes a differential equation for the Hubble parameter
which can be integrated analytically. Thus determinations
of H�z� can be used to constrain V�z� directly. Since
effectively one will always be dealing with observations
covering a finite redshift range, by an appropriate linear
-15
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transformation in the redshift variable, we can always work
in the interval ��1; 1�, where we know the set of
Chebyshev polynomials provide a complete orthonormal
set of functions, i.e. any function in the interval can be
expressed as a linear combination of Chebyshev polyno-
mials. Moreover, these approximating polynomials have
the smallest maximum deviation from the true function at
any given order, and provide a well-defined estimate of the
error introduced in the truncation of the expansion at a
finite order. We point out, in passing, that such a parame-
trization could be used in any other attempts considered in
the literature where it was the equation of state the observ-
able being parametrized by its redshift dependence.

Using observations of passively evolving galaxies we
obtain measurements of the Hubble parameter at 9 differ-
ent redshifts. We use these determinations to constrain the
first three coefficients in the Chebyshev expansion of the
potential. For comparison we repeat the analysis using
recent supernovae data, which give us an integral of the
Hubble parameter. We find that the reconstructed poten-
tials from both data sets are consistent, giving some con-
fidence that the results are not heavily plagued by
systematic errors. The standard LCDM model is consistent
with current data at the 1� level. We show that future data
obtained from the Atacama Cosmology Telescope will
greatly improve the constraints.

Since a cosmological constant is a good fit to the ob-
servations we asked the question of how to generically
describe small deviations from this simple scenario. It is
clear that even if the nature of dark energy might be related
to a dynamical field, distinguishing such a scenario from a
real cosmological constant will be an extraordinary experi-
mental challenge, as the dark energy potential can be
arbitrarily close to a constant.

We thus analyzed the conditions for the dark energy field
to ‘‘slow roll’’ in the presence of matter, thus enabling a
dynamical dark energy to get arbitrarily close to a cosmo-
logical constant (47). By expanding the potential in Taylor
series for �q�t� � q�t� � q�0� we derived the generaliza-
tion of the standard slow-roll conditions used in inflation,
in the presence of matter, which translate into conditions
that the functional V�q� must satisfy to explain the maxi-
mum deviation allowed from a cosmological constant.

Even though in this paper we focused on single canoni-
cally normalized scalar field, it should be clear that it is
straightforward to apply our formalism to an arbitrary
number of them, not necessarily being canonically normal-
ized. However, the observables quantities are the matter
density, the Hubble parameter, and its derivatives, which
depend on the full kinetic and potential energy densities of
the scalar field sector, and are insensitive to whether these
values are given by the superposition of more than one
field. This poses the question of whether one would be able
to determine, experimentally, the existence of more than
one rolling scalar field. In other words, ‘‘to which extent it
123001
is possible to disentangle the full kinetic/potential energy
of a superposition of scalar fields into the kinetic/potential
energies of their components?’’

We have illustrated the enormous experimental chal-
lenges of reconstructing V�q� from V�z� just for a single
scalar field. The task is even harder for more than one field
as there are more derivative directions to consider, @V=@qi,
and direct experimental observables depend only on the
time derivatives of the full potential energy, i.e. dV=dt �
@V=@qi _qi. Such a disentanglement seems extremely chal-
lenging, if not impossible, at least from the perspective of
the formalism developed here. In this context we can say
that our formalism enables one to reconstruct the proper-
ties (potential and kinetic energy) of an ‘‘effective’’ field.
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APPENDIX A

Chebyshev polynomials can be computed using the
recursion relation:

Tn	1�x� � 2xTn�x� � Tn�1�x� for n � 1; (A1)

where

T0�x� � 1; T1�x� � x: (A2)

Thus Tn�x� will have the following structure: Tn�x� �
(0xn 	 (2xn�2 	 (4xn�4 	 . . . , so for example:

T2�x� � 2x2 � 1; T3�x� � 4x3 � 3x;

T4�x� � 8x4 � 8x2 	 1:
(A3)

The integral on the right-hand side of Eq. (28) will
involve a series of integrals of the type:

In �
Z 2z=zmax�1

�1
xn�a	 bx��7dx: (A4)

In particular, using the recursion relation of the
Chebyshev polynomials we find that:

T0�x� � 1 ) F0�x� 
 I0;

T1�x� � x ) F1�x� 
 I1;

T2�x� � 2x2 � 1 ) F2�x� 
 �2I2 � I0�;

T3�x� � 4x3 � 3x ) F3�x� 
 �4I3 � 3I1�;
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T4�x� � 8x4 � 8x2 	 1 ) F4�x� 
 �8I4 � 8I2 	 I0�;

T5�x� � 16x5 � 20x3 	 5x )

F5�x� 
 �16I5 � 20I3 	 5I1�;

T6�x� � 32x6 � 48x4 	 18x2 � 1 )

F6�x� 
 �32I6 � 48I4 	 18I2 � I0�;

where

In �
�
2z
zmax

� 1
�
n	1

�
1

6

�1	 z��6

a
�

�n� 5��1	 z��5

30a2

	
�n� 5��n� 4��1	 z��4

120a3
(A5)

�
�n� 5��n� 4��n� 3��1	 z��3

360a4

	
�n� 5� � � � �n� 2��1	 z��2

720a5

�
�n� 5� � � � �n� 1��1	 z��1

720a6

	
(A6)

���1�n	1
�
1

6a
�

�n� 5�

30a2
	

�n� 5��n� 4�

120a3

�
�n� 5��n� 4��n� 3�

360a4
	

�n� 5� � � � �n� 2�

720a5
(A7)

�
�n� 5��n� 1�

720a6

	
	

�n� 5� � � � n

720a6
Jn (A8)

and

Jn �
Z 2z=zmax�1

�1

xn

�a	 bx�
dx: (A9)
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These integrals are given by

Jn �
Xn�1
m�0

��1�mam
��2z=zmax � 1��n�m� � ��1��n�m��

�n�m�b�m	1�

	 ��1�n
an

b�n	1�
log�1	 z� (A10)

but can also be obtained using the recursion relation

Jn �
1

nb
��2z=zmax � 1�n � ��1�n� �

a
b
Jn�1; (A11)

where

J0 �
1

b
log�1	 z�: (A12)

Integrals In can also be obtained by recursive relation
[62]

In �
�1	 z��6�2z=zmax � 1�n � ��1�n

�n� 6�zmax=2

�
n�1	 zmax=2�
�n� 6�zmax=2

In�1

for n � 6;

(A13)

where

I0�x� � �
1

3zmax

�
1

�1	 z�6
� 1

�
: (A14)

In the case of Eq. (43) Gn are defined as:

T0�x� � 1 ) G0�x� 
 J0;

T1�x� � x ) G1�x� 
 J1;

T2�x� � 2x2 � 1 ) G2�x� 
 �2J2 � J0�;

etc.
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