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Detection of gravity waves by phase modulation of the light from a distant star
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We propose a novel method for detecting gravitational waves (GW), where a light signal emitted from a
distant star interacts with a local (also distant) GW source and travels towards the Earth, where it is
detected. While traveling in the field of the GW, the light acquires specific phase modulation (which we
account in the eikonal approximation). This phase modulation can be considered as a coherent spreading
of the given initial photons energy over a set of satellite lines, spaced at the frequency of GW (from
quantum point of view it is multigraviton absorption and emission processes). This coherent state of
photons with the energy distributed among the set of equidistant lines, can be analyzed and identified on
Earth either by passing the signal through a Fabry-Perot filter or by monitoring the intensity-intensity
correlations at different times.
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I. INTRODUCTION

The detection of gravity waves (GW) has stimulated a
lot of interest for decades. There are two major GW
detection concepts: acoustic and interferometric detection.
The acoustic method deals with a resonance response of
massive elastic bodies on GW excitations. Historically the
acoustic method was proposed first by J. Weber [1] where
he suggested to use long and narrow elastic cylinders as
GW antennas. Although a significant progress has been
achieved in fabrication and increasing sensitivity of such
type of detectors [2–4] the interpretation of obtained data
is still far to claim undoubtedly the detection of GW. On
the other hand a considerable attention has been shifted
recently to more promising interferometric detection meth-
ods. The interferometric gravitational-wave detector like
Laser Interferometric Gravitational-Wave Observatory
(LIGO) and VIRGO [5,6] represents a Michelson interfer-
ometer with a laser beam split between two perpendicular
arms of interferometer. The principles of operation of such
type of detectors are reviewed in Refs [7–11]. The action of
gravitational waves on an interferometer can be presented
as relative deformation of both interferometer arms. A
gravitational wave with dimensionless amplitude h induces
the opposite length changes �l=l � 1=2h cos�t in each
arm of the Michelson interferometer, where l is the length
of the arm, � is the gravitational-wave frequency. These
length changes produce opposite phase shifts between two
light beams in interferometer arms, when interference
occurs at the beam splitter of Michelson interferometer.
The resulting phase shift of a single beam of light spending
time � in the interferometer can be written as [11]

�� � h
!
�

sin
��
2
; (1)

where ! is the light frequency. This phase shift results an
intensity signal change of the light from interferometer
beam splitter hitting the photodetector.
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The main problem of the acoustic and interferometric
methods that they both deal with is gravitational waves
with extremely small amplitudes of the order h� 10�21

[12] reached the Earth from deep space. One can see from
Eq. (1) that for gravity wave frequencies in the 1 kHz
range, � � 103 Hz, and for the light in visual frequency
range, !� 1014 Hz, one has the maximum phase shift of
the order ��� 10�10 for interferometer arms length of the
order 150 kilometers. Such extraordinarily weak effect
requires an exceedingly high detector sensitivity both
acoustic and interferometric detectors.

Alternatively, GW detection may be based on effects
associated with propagation of light or electromagnetic
waves in gravitational fields. There are two primary effects
for the light in constant gravitational field i) the deflection
of light rays near massive bodies [13] and ii) the Shapiro
effect accounting for integrated time delay of the signal
passing near a strong source of gravitational field [14]. The
same effects have to be observed for light propagating in
gravity waves: the gravitational waves have to induce a
weak time dependent deflection of light ray propagating
through these waves and also lead to gravity-wave-induced
variation in time delay. The idea to use astrometry to detect
periodic variation in apparent angular separation of appro-
priate light sources was proposed by Fakir [15]. It is shown
that for a gravity wave source located between the Earth
and the light source (with line of sight close aligned to
gravity wave source) a periodical variation of the order
��� 
h��� in the angular position of the light source has
to be observed. Here h��� is the dimensionless strength of
the gravity wave at distances of the order gravitational
wavelength � which is many orders of magnitude greater
than the strength of the same waves when they reach the
Earth. On the other hand one can directly measure the
variation of the integrated time delay induced by gravity
waves on the light emitted by a distant star passing through
space region with strong gravity wave. The idea to use
timing observation for detection of the gravitational waves
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FIG. 1. A star emits light which is deformed by the gravity
field, but its phase is modulated, an effect which can be detected
on the Earth.
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was suggested first by Sazhin [16] and then this problem
was studied in details by several authors [17–19]. The
estimations carried out in Ref. [17] give the following
answer for the rate of change in the gravity-wave-induced
time delay, _�:

j _�j � jh�r � D�j; (2)

where h�r � D� is the gravity wave strength at distances of
the order of impact parameter D for the light beam passing
near the gravity wave source. To put some numbers let us
consider a dissymmetric rotating neutron star with spin
frequency of the order 103 Hz and gravity wave amplitude
of the order H� 10�5 cm [8], then Eq. (2) gives j _�j �
10�12 while the same effect measured near Earth results
j _�j � 10�26 assuming the neutron star to be at a typical
distance of a few kiloparsecs from the Earth. One can see
that all effects due to gravitational waves near the gravity
wave source are several orders of magnitude stronger than
the same ones on the Earth.

In the present paper we want to suggest a new gravita-
tional waves detection method based on the interaction of
the photon with gravitational waves. Assuming that the
photons from a distant star passing near gravitational-wave
source, where the photon-gravity wave interaction as-
sumed to be strong, the photon-gravity wave interaction
leads to relatively strong modulation in time of photon
frequency. The latter allows to analyze this modulation of
the photons reaching the Earth by means of standard
optical methods including the Fabry-Perot analysis and
quantum photon correlations measurements. It is important
that while the interaction of photons with gravitational
wave is rather weak (proportional to strength of gravita-
tional wave) the frequency modulation can be accumulated
over large distances during the photon propagation that
could result in an experimentally measurable effect on the
Earth. In some aspects our treatment of the photon-gravity
wave interaction resembles the effect of photon accelera-
tion by gravitational wave [20], where the photon propa-
gating in plane gravitational wave long enough time
acquires a considerable increase of the frequency.
However while in Ref. [20] the photon-gravity wave inter-
action was treated in the frame of reference of the photon,
we have considered this interaction in the point of obser-
vation frame coordinate which seems to give the widening
of the initial monochromatic photon wave packet rather
than the increase of the photon frequency.
II. PROPAGATION OF LIGHT NEAR THE
LOCALIZED SOURCE OF GRAVITATIONAL

WAVES

In this section we consider how the plane electromag-
netic waves interact with gravitational-wave field emitted
by some localized source. The situation we have in mind is
depicted in Fig. 1. The light signal originates from a distant
star S and travels towards the Earth to be detected by an
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observer O, but along the way it interacts with a gravita-
tional body M, which also emits gravity waves. We con-
sider the trajectory of the light ray in the two-dimensional
plane formed by the star S, the body which emits the GW
M, and the Earth. Provided that the wavelength of the GW
is large compared to the wavelength of the light signal, we
will use the eikonal or geometrical optics approximation to
describe the interaction of the light in gravitational waves.
The propagation of the electromagnetic waves in the field
of gravitational waves was considered many times and we
can refer the reader to several papers dealing with these
questions in the geometrical optics approximation [7,21–
25]. Our subsequent analysis of this problem will be car-
ried out in close analogy with the paper of Sazhin and
Maslova [25], where they have considered the structure of
electromagnetic field in Fabry-Perot resonator in the field
of gravitational waves. However in the present paper we
will be interested in a different aspect of the interaction of
the light beam passing in immediate proximity to the
gravitational-wave source, where the amplitude of the
gravitational waves is assumed to be strong in comparison
with the amplitude of the same waves reaching the Earth. It
is important that since the light interacts with gravitational
waves in the region where they are strong, the resulting
photons frequency modulation seems to be appreciable to
detect it on the Earth.

A. The eikonal equation

In the geometrical optics approximation the propagation
of the light ray is described by the eikonal equation:

gik
@ 
@xi

@ 

@xk
� 0; (3)

where gik � gik0 � hik the metric tensor associated with
the Schwarzschildian static metric gik0 of the object M,
which is perturbed by the tensor hik associated with the
GW emitted from M [13]. Here we will neglect the true
form of the static metric gik0 assuming that light ray prop-
agates in the flat Minkovsky space gik0 � �ik �
diagf1;�1;�1;�1g. It is known that the static metric leads
both to the deflection of the light ray near the massive body
and time delay of the light signal passing along the ray (so
called Shapiro effect). It can be rigorously shown in the
subsequent analysis that the former effect of the light
deviation leads to the negligible correction to the addi-
tional phase accumulated by photons due to the interaction
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with GW and one can assume the light trajectory to be a
straight line. As for static Shapiro time delay it can be
easily incorporated to the final answer for photon phase
and actually does not affect on the subsequent detection
method of modulated photons.

Let  0 � �!t	 ky be the eikonal in the absence of
gravitational waves perturbation with metric �ik (we as-
sumed the light ray to be propagating along the y axis in the
plane formed by three bodies). Assuming that the pertur-
bation is small, in the presence of gravitational waves the
eikonal becomes  �  0 	  1, where  1 a small addition
to the eikonal  0 computed to first order in hik— it satisfies
the equation:

@ 1

@t
	 c

@ 1

@y
� �

!
2
F�t; r�; (4)

where we have introduced the notation F�t; r� �
h00 	 hyy � 2h0y. Using the Green’s function formalism
one can find the general solution of this equation. Then to
first order in the gravitational-wave perturbation hik the
additional phase acquired by the photon due to the inter-
action with the GW, can be written for arbitrary time
dependence of the perturbed metric:

 1�t; y� � �
1

2

!
c

Z y

�1
F
�
t�

y� y0

c
; y0

�
dy0: (5)

B. The emission of GW

Assuming that the GW tensor hik is a small perturbation
to the static flat metric in the quadrupole approximation
one can write the coordinate components of the GW tensor
as [13]:

~h �� �
2G

c4

�Q���t� r=c�

r
; (6)

where G is the Newtonian gravitation constant, ~hik �
hik �

1
2�ikh (where h � hii), Q�� is the quadrupole mo-

ment:

Q���t� �
Z

~T00�t; r�x
�x�d3x; (7)

where ~Tik � Tik �
1
2�ikT, Tik is the energy-momentum

tensor of the GW source, T � Tii . Equation (6) implies
that the so-called harmonic gauge condition, @k ~h

k
i � 0 has

been chosen for the components of GW tensor hik.
Using the gauge condition one can find the ~h00 and ~h0�

components of the GW tensor. To do this let us write the
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equation @k ~h
k
i � 0 separately for coordinate and time com-

ponents:
@~h��
@x�

�
@~h�0

@x0 ;
@~h0�

@x�
�
@~h00

@x0 : (8)

Combining the Eq. (6) with the first Eq. (8) the ~h�0

components of GW tensor can be written as:

~h �0 �
2G

c3

@

@x�

� _Q���t� r=c�

r

�
; (9)

while from this equation and the second Eq. (8) one has:

~h 00 �
2G

c2

@2

@x�@x�

�Q���t� r=c�

r

�
: (10)

Using the expressions (6), (9),(10) for the components of
the GW tensor write the explicit expression for F�t; r� �
h00 	 hyy � 2h0y in the right-hand side of Eq. (5). Taking
coordinate derivatives and keeping in mind that along the
ray trajectory @xr � D=r, @yr � y=r, @zr � 0 (where D is
the impact parameter) the F�t; r� takes the form

F�t; r� �
2G

c4

� �Qxx

r
D2

r2
	 2

�Qxy

r
D
r

�
y
r
� 1

�
	

�Qyy

r

�
y
r
� 1

�
2
�

	
2G

c3

�
3

_Qxx

r2
D2

r2
	 2

_Qxy

r2
D
r

�
3
y
r
� 1

�

	
_Qyy

r2

�
3
y2

r2
� 2

y
r
� 1

��

	
2G

c2

�
3
Qxx

r3
D2

r2
	 6

Qxy

r3
yD

r2
	
Qyy

r3

�
3
y2

r2
� 1

��
;

(11)

where all quadrupole moments Q�� are assumed to be the
functions of the retarded variable t� r=c.

C. Solution of the eikonal equation

For simplicity the source of GW is assumed to emit only
one frequency �. We consider the two following situ-
ations: either the GW source has been emitting since t �
�1, or the signal is bounded in time, with an exponential
decay. In the former case one can write �Q���t� �
q�� sin�t. Then substituting the expression for F�t; r�,
see Eq. (11), into Eq. (5) one could write the solution

for  1 as an integral over the variable z � y0=D��������������������������
1 	 �y0=D�2

p
:

 1�$� � �2
!
c

Z 1

D=�2y�

z3Hyy � 2z2Hxy 	 zHxx

�z2 	 1�2
sin

�
�$� 2


D
�
z
�
dz	 4

!
c

�
�

2
D

�


Z 1

D=�2y�

z2�z2 � 2�Hyy � 2�2z3 � z�Hxy 	 3z2Hxx

�z2 	 1�3
cos

�
�$� 2


D
�
z
�
dz	 4

!
c

�
�

2
D

�
2


Z 1

D=�2y�

z�z4 � 4z2 	 1�Hyy � 6z2�z2 � 1�Hxy 	 6z3Hxx

�z2 	 1�4
sin

�
�$� 2


D
�
z
�
dz; (12)
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where the variable $ � t� y=c accounts for the effect of
retardation of the light signal during its propagation to the
point of observation, H�� � 2Gq��=c4, � is the wave-
length of gravitational waves. Assuming that at the point of
observation y� D, one can safely set the lower limit for
all integrals in this expression equal to zero. Then for large
values of the impact parameter 2
D=� � 1 one can
asymptotically estimate these integrals and the main con-
tribution to  1 is given by the following expression:

 1�$� �
1

2
2

�
�

D

�
2!
c
Hxx sin�$ (13)

�
hxx



�

%

�
�

D

�
2
sin�$; (14)

where in the last line the answer is rewritten in terms of the
dimensionless strength of gravitational waves: hxx �
Hxx�

�1. One could see that the main contribution to the
photon phase  comes from the hxx component of gravi-
tational radiation confirming the well-known fact [18,19]
that only gravitational waves propagating perpendicular to
the photon wave vector (directed along y axis in our
geometry) have a considerable effect on the electromag-
netic radiation.

Let us now consider the case where gravity waves are
emitted starting at t � 0 decaying exponentially with char-
acteristic time �0. In this case let us choose �Q���t� to be
equal to:

�Q���t� � q��&�t� exp
�
�
t
�0

�
sin�t; (15)

where &�x� � 0 for x < 0 and 1 for x > 0. Then for large
values of the impact parameter, 2
D=� � 1, the solution
for  1 is given by the following formula:

 1�$� �
hxx



�
�

D

�
2 �

%
&�$�e�$=�0 sin�$: (16)

One can see that in this case at the point of observation the
modulated contribution to the eikonal also decaying ex-
ponentially with the same characteristic time �0.

D. The preexponential factor

Let us now go beyond the geometrical optics or eikonal
approximation and calculate the preexponential factor for
the photon wave function. The photon wave function
’�t; y� with momentum k satisfies the wave equation:

1�������
�g

p
@
@xi

� �������
�g

p
gik

@’

@xk

�
� 0; (17)

where g � detgik. Up to the first order contribution in hik

one could find g � ��1 	 h� with h � hii. Taking the
derivative over xi and keeping only the first order terms
in hik one could arrive to expression:
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gik
@2’

@xi@xk
�
@’

@xk
@
@xi

�
hik �

1

2
�ikh

�
� 0: (18)

One could see that under the harmonic gauge condition
@i ~h

i
k � 0 with ~hik � hik �

1
2�

i
kh the second term in the

above equation vanishes and the photon wave equation
reduces to

gik
@2’

@xi@xk
� 0: (19)

Let us write the photon wave function as ’�t; y� �
c�t; y�ei , where  is the eikonal of the photon interacting
with gravitational waves. Then assuming that c � 1 	 a,
where a is the small contribution of the first order in hik,
one could rewrite the above equation as

gik
�
@2a

@xi@xk
	 2i

@ 
@xi

@a

@xk
	 i�1 	 a�

@2 

@xi@xk

� �1 	 a�
@ 
@xi

@ 

@xk

�
� 0: (20)

The last term in this equation vanishes due to the eikonal
Eq. (3). Since the free eikonal  0 � ky�!t is the linear
function of xi the all second derivatives of  0 vanish and
the remaining wave equation up to the first order terms in
hik takes the form:

�ik
@2a

@xi@xk
	 2i�ik

@ 0

@xi
@a

@xk
	 i�ik

@2 1

@xi@xk
� 0: (21)

Assuming that the a�t; y� � a�t� y=c� thus the first term
above vanishes one could finally find

@a
@t

	 c
@a
@y

�
1

2

c2

!

�
1

c2

@2 1

@t2
�
@2 1

@y2

�
: (22)

Substituting here the general solution for  1 (see Eq. (5))
one can express the right-hand side of Eq. (22) through the
function F�t; y�:

@a
@t

	 c
@a
@y

�
c
4

�
@F
@y

�
1

c
@F
@t

�
: (23)

According to our previous analysis the main contribution
to a�t; y� is given by the Hxx component of gravitational
radiation:

F�t; r� � Hxx
sin��t� r=c�

r
D2

r2
: (24)

Substituting this expression to the Eq. (23) the solution for
a�$� for large values of impact parameter 2
D=� � 1 has
the form:

a�$� � �
hxx



�
�

D

�
2
cos�$: (25)

Combining together Eq. (14) with Eq. (25) one can finally
write the photon wave function at the point of observation
in the form:
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’k�$� �
e�i!�$	�g sin�$�

1 	 �g� cos�$
; (26)

where we have introduced the time �g associated with
integrated Shapiro time delay (see below):

�g � �
hxx



�
�

D

�
2
��1: (27)

The same solution Eq. (26) for the photon wave function is
valid for the case where gravitational radiation is bounded
exponentially in time (see Eq. (15)) however in this case �g
depends on time and equals to

�g�$� � �
hxx



�
�

D

�
2
��1&�$�e�$=�0 : (28)
E. Modulation due to alternating Newtonian
gravitational field

The observation and detection of the gravitational waves
undoubtedly provides us a new astrophysical tool which
can give us a deeper insight on the processes like the
neutron star formation, the processes happening in close
binaries at the final stage of its evolution, etc. However the
observation of gravitational waves gives us also an addi-
tional proof of the General Theory of Relativity itself and it
seems reasonable to consider the effect of photon phase
modulation in Newtonian theory of gravitation where the
gravitational potential instantly adjusts to the current con-
figuration of moving bodies.

Consider, for example, an oscillating neutron star or a
rotating double star system which in Newtonian theory of
gravity causes an alternating Newtonian gravitational po-
tential ��r; t�. This alternating field can also lead to photon
phase modulation and results in principle in the same effect
like for the case of photon in the field of gravitational
waves. The aim of this section is to compare the effect of
photon phase modulation between these two theories.

As the rotation or the oscillation frequency of the stars is
much less than the frequency of the photon we can work in
the same eikonal approximation as in the previous sections.
The Newtonian gravitational field contributes only to the
diagonal metric elements: h00 � hii � 2�=c2, where � is
a gravitational potential at the point of observation. At
large distances compared to the size of the star system
we can leave only the quadrupole term in the potential

��r; t� � GQ��
n�n�
2r3

: (29)

Here r is the distance from the star to the photon, the

coordinate axis are chosen to be the same as before, so r ������������������
y2 	D2

p
, ni— the direction vectors of r: nx �

D=
�����������������
y2 	D2

p
, ny � y=

�����������������
D2 	 y2

p
, nz � 0, Q���t� is the

alternating tensor of the mass quadrupole moment of the
star. The values of Q�� are determined by the parameters
122001
of the star, like orientation of the angular velocity, eccen-
tricity, etc. We will further discuss the general case, assum-
ing only, that due to rotation or oscillation
�Q���t� � q�� sin�t.

The correction to the eikonal due to rotation is given by
the same Eq. (5) as for the GW case solution of the eikonal
equation, where in our case F�t; y� � h00 	 hyy � 2h00

�n � �
!
c

Z y

�1
h00

�
t�

y� y0

c
; y0

�
dy0: (30)

Substituting the expression for � into the formula above
and making the substitution z � y0=D one obtains:

�n�$� �
1

2

!
c

�
�

2
D

�
2 Z y=D

�1

Hxx 	 2Hxyz	Hyyz
2

�1 	 z2�5=2

 sin
�
�$	 2


D
�
z
�
dz; (31)

where we have introduced H�� � 2Gq��=c4.
Then for large values of the impact parameter

2
D=� � 1 and large distances y=D� 1 one can obtain
the following approximate expression for �n:

�n�$� �
1

6

!
c

����
�

D

s
e�2
D=���Hxx �Hyy� sin�$

	 2Hxy cos�$�: (32)

One can see that the photon phase modulation due to the
Newtonian alternating potential vanishes exponentially for
large impact parameters in contrast to the GW modulation
which vanishes as 1=D2 (see Eq. (14)). Technically the
difference between Newtonian and GW cases follows from
the different y0 dependence of the F�t; y0� function. For the
properly retarded GW radiation the solution for  1, see

Eq. (14), involves the oscillating integral over sin��$	

�y0 �
����������������������
�y0�2 	D2

p
�=c�, where the oscillating dependence

on y0 near the source jy0j �D almost vanishes making the
light-GW interaction more effective. Oppositely for the
instantly adjusted Newtonian radiation one has in
Eq. (30) fast oscillating integral over y0 with sin��$	
y0=c� near vicinity of the gravitational-wave source, which
leads to a very small value of modulation.

F. The Shapiro effect in GW

Using the results of the previous sections let us calculate
the integrated time delay of the light signal propagating in
the field of gravitational waves. Consider an arbitrary wave
packet emitted by some distant light source traveling to-
ward Earth near a source of GW:

’�$� �
Z
’!e

�i!$ d!
2


; (33)

where $ � t� y=c. Using the results for monochromatic
photons propagating in the field of gravitational radiation
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one can find the signal at the point of observation:

’ob�$� �
Z
’!e

�i!�$	�g sin�$� d!
2


� ’�$	 �g sin�$�:

(34)

One can see that the interaction with the gravitational
radiation leads to alternating time delay of the signal �t �
�g sin�t, (note that the �g is negative, see Eq. (27)). This
effect was suggested independently first by Sazhin and
Detweiler [16] for detection of gravitational waves using
the timing observation of a pulsar the line of sight to which
passes near the source of GW.

III. DETECTION OF THE GW

Let us now turn to the discussion about how the photons
modulated by the interaction with the gravitational waves
can be measured in some realistic setup.

Consider first the simple case where the modulated
photons (26) simply hit a photodetector which can react
at all photon’s frequencies. However, any real photodetec-
tor reacts not on the vector potential A�t� of the photons in
the photodetector directly, but rather on the electrical field
E�t� induced by the photons in this photodetector. Then the
one photon photo-detection probability, P�t��t, to observe
a photon during time interval �t can be expressed as [26]:

P�t��t � �
Sc�t
Edet

hÊ����t; r� � Ê�	��t; r�i; (35)

where S is the area of the photodetector, Edet some char-
acteristic energy describing the interaction of the photode-
tector with incoming photons, � is the quantum efficiency
of the photo-detection, Ê�	��t; r� is the positive frequency
part of the electrical field operator, Ê����t; r� is the
Hermitian conjugate of Ê�	��t; r�:

Ê �	��t; r� � �

�������
4


p

L3=2

X
ks

���������
 h

2!k

s
_’k�t; r�eksâks: (36)

At the point of observation we set r � 0 to shorten the
notations. Taking the time derivative of the photon wave
function (26) one gets the photo-detection probability
equal to

P�t��t �
4
�Sc�t

EdetL
3

X
ks

 h!k

2
nks

� 2�
S

r2
�t

Z
d!

 h!
Edet

n�!�; (37)

where r is the distance between the light source and the
Earth, n�!�d! is the number of the photons with fre-
quency ! emitted by the distant light source per unit
time into a unit angular domain.

One can see that the photo-detection probability does
not feel any photon phase modulation due to GW and this
probability is the same as it would be for the monochro-
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matic photons emitted by a distant light source. Thus for
such a simple setup it is not possible to retrieve any
information about the gravity wave from the photodetector
signal.

Consider however a more realistic setup where the
photodetector has a sensitivity edge !s which means that
the photodetector does not react on the photons with fre-
quency less than !s. One can treat this situation as if the
photons passed through a filter with transparency t�!� �
&�!�!s� before hitting the photodetector. It is conve-
nient to write this transparency as an operator acting on
the photon wave function: t̂ � &�i@t �!s�. Then after
passing such a filter the photon has a wave function
equal to t̂’k�t� � &�!k�t� �!s�’k�t�, where !k�t� �
!k�1 	 ��g cos�t� � !kf�t�. Then for the photo-
detection probability one has:

P�t��t � 2�
S�t

r2
Z
d!

 h!
Edet

&�!f�t� �!s�n�!�: (38)

Consider now the case where photons coming to the pho-
todetector from a sharp Lorentzian spectral line with maxi-
mum !0 near the photodetector sensitivity edge !0 � !s
and width !0:

n�!� � n�!0�
!2

0

�!�!0�
2 	 !2

0

; (39)

then according to Eq. (38) the photo-detection probability
for the modulated photons (26) has an appreciable contri-
bution which is periodic in time at the GW frequency, and
which is proportional to the strength of gravitational
waves:

P�t��t � P0�t
�
1 	 ��g

2!0


!0
cos�t

�
; (40)

where P0�t is the photo-detection probability for non-
modulated photons.

From the above analysis one can conclude that in order
to detect the modulation of the photons by GW one should
place before the photodetector some filter which has a
finite frequency band. Then the formula for photo-
detection probability (38) with a sensitivity edge has a
rather general sense. In fact let us consider an arbitrary
filter placed before the photodetector with transparency
T�!�. Then provided that the time spent by the photon in
this filter (that is an inverse frequency band of the filter) is
much smaller than frequency of the GW, �, one can treat
the modulated photons as monochromatic photons with
slowly varying frequency !k�t� � !k�1 	 ��g cos�t� �
!kf�t�. In this case the photo-detection probability can be
written simply as

P�t��t � 2�
S�t

r2
Z
d!

 h!
Edet

T�!f�t��n�!�: (41)
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From this expression one can see that there are two
different regimes of GW detection in this proposed setup.
Consider the first regime where the distribution function of
the light source n�!� has a sharp peak of the width !0 (or in
more general case some sufficient irregularity like the edge
of the spectrum) centered near the transmission window of
the filter. Then, provided that the amplitude of the photon’s
frequency modulation, !k��g, is much bigger than the
width of the spectrum irregularity, !k��g � !0, the re-
sulting photo-detection signal will be a periodic sequence
of peaks.

In the opposite case where the light spectrum n�!� is a
slowly varying function of the frequency within the trans-
parency window of the filter one can consider n�!� as a
constant in Eq. (41). Then the time dependence of the
photo-detection probability can be written as:

P�t��t � 2�
S�t

r2
1

f�t�

Z
d!

 h!
Edet

T�!�n�!�: (42)

This result can be understood as the time modulation of the
number of incoming photons per unit time within a finite
frequency interval.

From another point of view one can note that the modu-
lated photon wave function (26) can be written as a super-
position of waves with energies shifted by n� (n integer):

’k�t� �
1

1 	 ��g cos�t

X	1

�1

Jn�!�g�e�i�!	n��t; (43)

where Jn is the Bessel function. In order to detect a gravity
wave signal it is therefore necessary to provoke an inter-
ference between these Fourier components. To do it one
can both investigate the modulated light signal passing
through the Fabry-Perot interferometer or on the other
hand study the intensity-intensity correlation of the pho-
tons coming on the photodetector.

A. Analysis of the light signal with an interferometer

In this section we consider in detail the setup where at
the point of observation— the Earth— the modulated light
signal before hitting the photodetector passes through an
interferometer, which is characterized by a complex trans-
mission amplitude t�!�. We will assume that the light
passing through a Fabry-Perot filter comes from a single
Lorentzian spectral line of the type (39). For simplicity, let
us first assume that there is only one Fabry-Perot (FP)
resonance within this spectral line. The transparency of
FP is written in the usual way:

t�!� �
i!=2

!�!0 	 i!=2
: (44)

Here a derivation of the photo-detection probability is
provided. It relies on the assumption ��g � 1, which is
relevant for experimental situations (see below).
122001
Consider the propagation of a photon wave packet ’k�t�
(26) through the FP interferometer. The resulting wave
packet after the FP can be written �k�t� � t̂’k�t�, where
t̂ is the transparency operator of the FP in real time repre-
sentation:

t̂ �
i!
2
�i@t �!0 	 i!=2��1; (45)

where ! is the width of FP resonance. However the real FP
filter does not act directly on the vector potential of the
incoming photons but rather on the electromagnetic field
induced by these photons. Using similar arguments the
positive frequency part of electrical field operator
E�	��t; r�, after passing the Fabry-Perot filter, can be writ-
ten in terms of the transmission operator of the filter:

Ê �	��t; r� � �

�������
4


p

L3=2

X
ks

���������
 h

2!k

s
�t̂ _’k�t; r��eksâks: (46)

With these notations the photo-detection probability can
be written as

P�t� � 2�
S

r2
Z  hd!
!Edet

�t̂ _’k�t����t̂ _’k�t��n�!�d!: (47)

The action of the operator t̂ on the function _’k�t� can be
found using the Green’s function formalism:

t̂ _’k�t� �
!

2

Z t

�1
e�i!0�t����

!
2�t��� _’k���d�: (48)

Substituting this expression into Eq. (47) in the limit!0 �
! one finally obtains the following expression for the
photo-detection probability:

P�t��2�
S

r2
 h!0

Edet

!2

4

Z
n�!�e�!td!


Z t

�1

Z t

�1
e�i!0���s�	

!
2��	s� _’�

k��� _’k�s�d�ds: (49)

Performing the integral over! and introducing the relative
time $ � �� s, and the total time � � ��	 s�=2, in the
working limit ��g � 1 one can write the photo-detection
probability as:

P�t� � �

S

r2
 h!0

Edet
n�!0�!0

!2

4

Z t

�1
d�e�!�t���


Z 2�t���

�2�t���
ei$�!0��g cos���e�

!0���
2 j$jd$: (50)

Performing the integration over $ in the limit !0 � ! the
leading contribution to the photo-detection probability is
given by the following expression:
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P�t� � �

S

r2
 h!0

Edet
n�!0�!0

!2

4


Z 1

0

!0�t� z�e�!zdz

�!0��g�2cos2��t� z� 	 !2
0�t� z�=4

;

(51)

where we have made the substitution z � �t� �� and we
introduced the notation !0�t� � !0j1 	 ��g cos�tj.

1. ’’Strong’’ GW or narrow spectrum

Let us consider the limit where the frequency broad-
ening of the initially monochromatic photon wave packet
due to the interaction with gravitational waves, �! �

!0��g, is much bigger than the width of the spectral
line !0. The condition �! � !0 can be achieved both in
the case where the amplitude of GW is strong enough or
when one has a very narrow spectral line. In this limit one
can safely neglect the dependence on j1 	 ��g cos�tj and
put !0�t� � !0 in Eq. (51) assuming ��g � 1. Then the
leading contribution to the photo-detection probability can
be written in terms of the occupation number n�!� of the
spectral line:

P�t� � �

S

r2
 h!0

Edet
!2

Z 1

0
n�!0�t� z��e�!zdz; (52)

where !0�t� � !0�1 	 ��g cos�t�. This result has a very
simple qualitative explanation which is consistent with our
previous simple arguments for the photodetector with sen-
sitivity edge (see Eq. (41)). Consider a photon wave packet
coming to FP filter: ’k � C�t�e�i!k�t	�g sin�t�. Such a wave
packet in the limit � � !k can be interpreted as a photon
with a frequency which is slowly varying in time !k�t� �
!k�1 	 ��g cos�t�. If however the time spent by this
photon in the FP filter, !�1, is much smaller than the
characteristic time of the frequency change ��1 one can
assume the photon at any instant of time to be monochro-
matic with frequency !k�t�. Then one can take advantage
of our Eq. (41). Performing the integration over ! in
Eq. (41) with Lorentzian spectral line n�!� (39) one has

P�t� � �

S

r2
 h!0

Edet
n�!0�t��!: (53)

On the other hand this result can be derived directly from
our elaborate analysis by putting n�!0�t� z�� � n�!0�t��
in Eq. (52). The exponential factor in Eq. (52) describes a
time delay of the photon wave packet propagating through
the FP filter.

The result Eq. (53) describes the periodic sequence of
symmetric peaks with a half period of gravitational waves

=� and widths equal to

� �
!0

�!
��1: (54)
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If however the width of these peaks becomes smaller than
the time needed for the photon to penetrate through the FP
filter: �� !�1 then the form of peaks becomes asymmet-
ric and the more accurate expression (52) has to be used.

It should be noted that the expression (52) is valid not
only for a single spectral line (39) but also for arbitrary
distribution function for the light source, where there is a
sufficient irregularity in n�!� like, for example, at the edge
of the spectrum. Indeed if one considers the arbitrary
distribution function n�!� which changes much at fre-
quency scale �! around !0 then it follows from
Eq. (52) that one again has a periodical sequence of peaks
for photo-detection signal in regime �! � �!. In this
sense the described effects (52), (53) have nothing to do
with the interference of the different components of the
photon wave packet (43) and deal rather with the effect of
the photon frequency modulation !k�t� � !k�1 	

��g cos�t� due to the interaction with the GW. If however
the amplitude of the frequency modulation �! becomes
smaller than the characteristic scale of the spectral function
n�!� (the case of a broad spectrum) the effects associated
with frequency modulation completely disappear.

B. ’’Weak’’ GW or broad spectrum

Consider now the opposite limit to the previous case
when the amplitude of GW is small or when the width of
the spectral line is large enough so that the amplitude of the
frequency modulation �! is much smaller than the width
of the spectral line !0. It should be noted that this situation
is the most common situation in practice since the ampli-
tude of GW is extremely small even in the vicinity of GW
source. In the limit �! � !0 one can safely expand the
integral expression in Eq. (51) up to the lowest order in the
small ratio �!=!0 � 1 and perform the integration over z.
Keeping all terms of the type 1 	 ��g cos�t in the work-
ing assumption ! � � the photo-detection probability can
be now written as:

P�t� � �

S

r2
 h!0

Edet
n�!0�!

�
1 � ��g cos�t

�2
�!2

!2
0

cos2�t
�
: (55)

One can see that in the case of a broad spectrum one
obtains small oscillations against a huge constant back-
ground with frequencies � and 2� suppressed by small
factors ��g � 1 and �!2=!2

0 � 1, correspondingly.
However as one can see from Eq. (55) even for the extreme
case of infinitely broad spectral line there is still a time
dependent contribution to the P�t�:

P�t� � �

S

r2
 h!0

Edet
n�!0�!�1 � ��g cos�t�: (56)

It should be noted that this expression does not depend
absolutely on the form of the spectra of the distant light
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source and the time modulation of the photo-detection
signal defined only by the strength of the gravitational
waves. The amplitude of the photo-detection probability
in this case is proportional to the number of photons
n�!0�! coming to the photodetector per unit time and
one can practically use the FP filter with appropriate width
! to collect enough number of photons.

The second important point which has to be emphasized
here is that the time dependent term in Eq. (56) has nothing
to do with the effect of the frequency modulation men-
tioned above (see Eq. (52), (53)) and presents an absolutely
different effect associated with interference of the different
components of the photon’s wave packet (43) after passing
the FP filter. To clarify the nature of this interference effect
we will consider in the next section an example where there
are two extremely narrow FP resonances, ! � �, within
the broad spectrum of the distant light source.

C. Two resonances case

Let us consider a more general case where two narrow
resonances at frequencies !0 � �=2 are present within the
spectral line (� is the separation between resonances). In
this case the transmission amplitude of the FP filter t�!�
again can be written as an operator acting on the electro-
magnetic field (e.m.f.) induced by modulated photons: t̂ �
t̂1 	 t̂2, where t̂1�2� corresponds to the first (second) reso-
nance:

t̂ 1�2� � e�i�
i!
2

�
i@t �!0 �

�

2
	 i

!

2

�
�1
; (57)

where 2� is the relative phase difference between
resonances.

Using similar types of arguments and the same method
of calculation as for the case of FP filter with a single
resonance, in the limit !0 � �, !0 � ! one arrives at the
following expression for the photo-detection probability:

P�t� � �

S

r2
 h!0

Edet
n�!0�!0

!2

4
�P1�t� 	 2P12�t� 	 P2�t��;

(58)

where

P1�2��t� �
Z 1

0

!0�t� z�e�!zdz

��! cos��t� z� � �
2�

2 	
!2

0�t�z�
4

; (59)

P12�t� �
Z 1

0

!0�t� z� cos��z���e�!zdz

�!2cos2��t� z� 	
!2

0�t�z�
4

: (60)

Consider now the extreme limit of infinitely broad spec-
trum: !0 ! 1, then in the limit ! � �, ! � � one has:

P�t� � �

S

r2
 h!0

Edet
n�!0��2!��1 � ��g cos�t�: (61)

Comparing this result with the expression for the photo-
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detection probability for the single resonance case (56) one
can see that in the regime of a broad spectrum !0 ! 1 the
photo-detection probability does not depend on the number
of resonances in FP filter and depends rather on the total
transparency of the filter (2! in present case).

Consider however the opposite limit of extremely nar-
row resonances ! � � (this is hardly possible in practice).
Then the resonance factor with respect to separation be-
tween resonances, �, appears in the expression for photo-
detection probability:

P�t� � �

S

r2
 h!0

Edet
n�!0��2!�

�
1 �

��g!

2


! cos��t��� 	 �� � �� sin��t���

!2 	 �� � ��2

�
:

(62)

One can see that there is a parametric resonance for the
photo-detection signal at � � �. The photo-detection
probability at the resonance equals to:

P����t���

S

r2
 h!0

Edet
n�!0��2!�

�
1�

��g
2

cos��t���
�
;

(63)

while for j� � �j � ! (out of resonance) the term which
depends on time in the photo-detection probability is satu-
rated by the small factor !=j� � �j.

A similar resonance appears in regime ! � � for the
case where the width of the spectrum n�!� is broad but
�!0=!0�

2��g � 1 so one can neglect all factors j1 	

��g cos�tj in Eq. (58):

P�t���

S

r2
 h!0

Edet
n�!0��2!�

�
1

�
�!2

!2
0

!
!cos�2�t���	�2����sin�2�t���

!2	�2����2

�
:

(64)

One can see that the parametric resonance at � � 2�
appears in this case. Now we argue that the resonances at
� � � and � � 2� (62), (64) arise because of the inter-
ference of different components of the photon’s wave
packet (26). To show it let us simply write the transparency
of the FP filter as t�!� � �!�!�!0� 	 ��!�!0 � ��
where �!�!� is a narrow peaked function with finite width
! � �. Then using the expansion of the photon wave
packet (43) one can write the photo-detection probability
in terms of the sums over different components of the
photon’s wave packet:

P�t� � 2�
S

r2
X1

n;m��1

Z  h!
Edet

n�!�d!ei�n�m��tt��!	 n��

 t�!	m��Jn�!�g�Jm�!�g�: (65)

Let us assume that the distance between resonances is
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exactly equal to N� � � where N is an integer. Then
substituting the transmission amplitude t�!� into this ex-
pression and making the integration over ! one gets:

P�t� � 4�
S

r2
X1

n��1

n�!0 � n��!
 h�!0 � n��

Edet

 �J2
n��!0 � n���g� 	 Jn��!0 � n���g�

 Jn	N��!0 � n���g� cosN�t�: (66)

Then for the special choice N � 2 assuming that the argu-
ment of the Bessel function is typically large one can put
Jn	2�x� � �Jn�x� for x� 1. Then the photo-detection
probability can be written as

P�t� � 4�
S

r2
�1 � cos2�t�

X1
n��1

n�!0 � n��

 !
 h�!0 � n��

Edet
J2
n��!0 � n���g�: (67)

One can see that the term which is alternating in time in
P�t� arises due to interference of the different components
of the photon wave packet (26).

D. Analysis of intensity correlations

In the previous section, we showed that by appropriate
filtering of the light signal, it is possible to extract oscil-
lations associated with the past interaction with the GW.
While this previous proposal is promising and attractive,
one can take an alternative route for the detection of the
GW signal: the measurement of intensity-intensity corre-
lations of the photo-detection signal. Consider the correla-
tor hhI�t1�I�t2�ii: because of the time modulation due to the
presence of the GW, it no longer depends on the variable
t1 � t2 only. Using the definition the intensity operator, one
can see qualitatively that the Fourier components of
Eq. (43) will lead to a two particle interference effect.

The quantity to be measured on the Earth is thus the
intensity correlator of the photo-detection signal which is
the time ordered product of electrical field operators:

hh:Î�t1�Î�t2�:iidt1dt2 � �2 S
2c2dt1dt2
E2

det

 hhÊ����t1�Ê
����t2�

 Ê�	��t2�Ê
�	��t1�ii: (68)

Substituting here the expression for the electrical field
operators (36) and performing the quantum average one
gets
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hh:Î�t1�Î�t2�:iidt1dt2 � 2�2 S
2dt1dt2
r4

Z
d!1d!2


 h2!1!2

E2
det

n�!1�n�!2�

 ei!1�t1�t2	�g�sin�t1�sin�t2��

 e�i!2�t1�t2	�g�sin�t1�sin�t2��:(69)

This correlator can be rewritten as

hh:Î�t1�Î�t2�:iidt1dt2 � 2�2 S
2dt1dt2
r4

jf�t1 � t2

	 �g�sin�t1 � sin�t2��j
2; (70)

where

f�t� �
Z  h!
Edet

n�!�e�i!td!: (71)

The function f�t� typically decays exponentially on a time
scale given by the inverse of the line width !0 � �. Thus
one can safely linearize the dependence of the intensity-
intensity correlator with respect to the relative time � �
t1 � t2:

hh:Î�t	 ��Î�t�:ii � 2�2 S
2

r4
jf���1 	 ��g cos�t��j2; (72)

where � � t1 � t2 is the relative time and t is the total time.
Let us now calculate the spectral power, S�t� of the pho-
tons’ noise defined as

S�t� �
Z
hh:Î�t	 ��Î�t�:iid�: (73)

Substituting here the expression for photon intensity cor-
relator one can show that

S�t� �
4
�2

1 	 ��g cos�t
S2

r4
Z �  h!�2

E2
det

n2�!�d!: (74)

One can see from this equation that the intensity correla-
tion contains periodic oscillations—although with a small
amplitude— in the total time. Note that contrary to the
Fabry-Perot diagnosis, here a rather accurate measurement
is implied, as the contribution to other noise sources (due to
scattering, etc.) needs to be minimized compared to this
periodic signal. In particular, it requires a large time ac-
quisition window to filter out spurious fluctuations.

E. Conclusion

Let us now summarize all results obtained through the
article and give some estimations and limitations for the
proposed gravitational waves detection method. The pri-
mary effect we have dealt with is the modulation of the
photon phase due to interaction with gravitational field
have been found in the geometrical optics approximation
and described by Eq. (26) for the photon wave function:

�k�$� � C�$�e�i!k$�i!k�g sin�$; (75)

where $ � t� r=c and C�$� � �1 	 ��g cos�$��1 is the
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preexponential factor. This effect of phase modulation
leads immediately to the well-known Shapiro effect of
the time delay of the signal propagating near the source
of gravitational field. For the case of the source of gravi-
tational waves this time delay is an alternating function of
time �ar � r=c� �g sin��, where �ar is an arrival time of
the signal, r=c the traveling time of the signal in flat
Minkovski space, and

�g � �
hxx���




�
�

D

�
2
��1: (76)

Here hxx��� is the dimensionless strength of gravitational
wave near the GW source, D impact parameter, � �
2
c=� is the frequency of gravitational waves. The
Shapiro effect in fact seems to be a very promising candi-
date for gravity wave detection experiment since the time
delay (or the additional alternating in time phase) mainly
accumulated near the source of gravitational waves where
the strength of GW are many orders of magnitude greater
when they reach the Earth. However in the proposed
experiment [16] it requires a pulsar on the line of sight
which passes near the source of gravitational radiation. In
this paper we propose a gravitational waves detection
method based on the Fabry-Perot interference analysis
(or equivalently time correlation measurement) of the light
signal from an arbitrarily light source (not necessarily a
pulsar) passing near the strong source of gravitational
radiation. Then the photodetector signal contains an alter-
nating in time component (with GW frequency) propor-
tional to the strength of gravitational radiation near the GW
source (see Eqs. (56), (61)):

P�t� � P0�1 � ��g cos�t�; (77)

with P0 a photodetector signal corresponding to a light
coming to a FP filter from a distant star. To estimate an
effectiveness of the proposed method let us first estimate a
brightness of the light source needed to resolve an alter-
nating component in the photo-detection signal. Collecting
the signal over a long time �obs allows to better resolve the
alternating component. Assuming that during the observa-
tion time Nobs photons coming from a distant star hit the
photodetector, in the limit of Poissonian statistics,
h�N2

obsi � Nobs one has the following limiting require-
ment:

��g�D�
���������
Nobs

p
� 1: (78)

In the extreme case where the light passes in immediate
proximity (D � �) to the GW source one has the condi-
tion:

h���
���������
Nobs

p
� 1: (79)

Then assuming that the distant star emits in the frequency
band �! and that the diameter of the telescope equals to d
one has:

Nobs � L
d2

R2

!

�!
�obs

 h!0
; (80)
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where L is the brightness of the distant star, R is the
distance to the Earth.

The most promising candidates of gravitational waves
sources appropriate for proposed detection method are the
periodic sources of gravitational radiation such as close
binaries at the final stage of evolution or asymmetric
rotating neutron stars, allowing to collect the signal for
long enough time to resolve the tiny gravitational wave
modulation on the stochastic Poisson noise. Let us give
some estimations, assuming the total mass m of binary
system of the order of the mass of the Sun, and rotating
with a frequency 9� 10�2 Hz. Then the dimensionless
strength of gravitational waves at the distance r from the
emitter, according to quadrupole approximation, is given
by

h � 4
G5=3

c4

1

r
m5=392=3; (81)

assuming that the role of the distant star plays one of the
components of the binary system r � �Gm=92�1=3 one has
h�r� � 4�Gm9�4=3=c4 � 10�9. In order to resolve this
modulation one needs about Nobs � 1018 photons coming
to a photodetector during �obs. Assuming the typical dis-
tance from the binary system to the Earth of the order 1 kpa
with d � 10m, !0 � 1014 Hz, and !=�!� 1, �obs �
1039�1 � 105s one has the required brightness of the
binary component, according to Eq. (80) of the order L�
105LS where LS is the brightness of the Sun. Of course the
requirement to have such a bright component of the binary
system makes the observation of the proposed effect rather
problematic in practice.

In reality the situation with binary systems is even worse
due to the presence of the Doppler effect for the light
emitted from one of the rotating components. In fact the
Doppler effect results in the same frequency modulation of
the emitted light as the gravitational waves modulation and
the amplitude of the frequency modulation due to the
Doppler effect is of the order of�

�!
!

�
Doppler

�

�
v
c

�
2
�

�Gm9�1=3

c
9
c
: (82)

For parameters described above it results in an effect of the
order 105 that is 5 orders of magnitude greater than the
frequency modulation due to gravitational waves.

The situation however could be much better for very
close neutron star binaries at the last stage of evolution. In
this case the rotational frequency can be of the order of
102 Hz and results in a dimensionless strength of emitted
gravitational waves of the order h��� � 10�6. Assuming
that the distance to the binary neutron star system is of the
order 1 kpa and that there is a bright distant star situated on
the line of sight to the binary from the Earth with impact
parameter D� � and collecting the signal during the time
�obs � 1039�1 � 10s one has the following lower limit for
the brightness of distant star L� 102LS.
-11



LESOVIK, LEBEDEV, MOUNUTCHARYAN, AND MARTIN PHYSICAL REVIEW D 71, 122001 (2005)
ACKNOWLEDGMENTS

We acknowledge discussions to M. Sazhin, A.
Starobinsky, and K. Bayandin. A. L. thanks the Ecole-
Normale Landau Institute agreements and CNRS for his
stay at the Centre de Physique Théorique. He also ac-
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