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We explore patterns of effective restoration of the chiral UA�1� symmetry using an extended three-flavor
Nambu-Jona-Lasinio model that incorporates explicitly the axial anomaly through the ’t Hooft interaction,
and assuming that the coefficient of the anomaly term is temperature and density dependent. The special
case of explicit breaking of chiral symmetry without UA�1� anomaly is also considered, since this scenario
can provide additional information allowing to understand the interplay between the UA�1� anomaly and
(spontaneous) chiral symmetry-breaking effects. The pseudoscalar and scalar sectors are analyzed in
detail bearing in mind the identification of chiral partners and the study of its convergence. We also
concentrate on the behavior of the mixing angles that give us relevant information on the issue under
discussion. In the region of temperatures (densities) studied, we do not observe signs indicating a full
restoration of U�3� � U�3� symmetry as, for instance, the degeneracy of both a0 and f0 mesons with the
pion. As we work in a real world scenario (mu � md � ms), we only observe the return to symmetries of
the classical QCD Lagrangian in the nonstrange sector.
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I. INTRODUCTION

It is well known that quantum chromodynamics (QCD)
has an approximate U�3� � U�3� chiral symmetry with its
subsymmetry UA�1� being explicitly broken by the axial
anomaly [1]. In this context, the explicit and spontaneous
breaking of chiral symmetry, as well as the UA�1� anomaly,
play a special role, allowing for several nontrivial assump-
tions of low-energy QCD: (i) the octet of the low-lying
pseudoscalar mesons (�;K; �� consists of approximate
Goldstone bosons; (ii) the �� �0 phenomenology is char-
acterized by large Okubo-Zweig-Iizuka (OZI) violations.
In fact, the important contribution of the UA�1�-breaking
and the OZI rule violating terms, in the process of genera-
tion of meson masses and mixing angles, have been
stressed in many phenomenological investigations [2– 4].
New aspects of mixing and the consistent extraction of
mixing parameters from experimental data have recently
been discussed [5].

It is generally expected that ultrarelativistic heavy-ion
experiments will provide the strong interaction conditions
which will lead to new physics. In fact, it is believed that
the availability of high-energy beams can provide the
necessary conditions to observe small-distance scales, al-
lowing to confirm the QCD as the source of the strong
interactions. Restoration of symmetries and deconfinement
are expected to occur, allowing for the search of signatures
of quark-gluon plasma.
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The theoretical studies of QCD at finite temperature and
density present challenging questions, which may be the
source of a productive complement for understanding
relevant features of particle physics, not only in heavy-
ion collisions, but also in the early universe and in neutron
stars. In particular, the role played by the order of the chiral
phase transition on the dynamical evolution of the systems,
and possible experimental signs, have recently been ad-
dressed by some authors [6]. In general, at finite tempera-
ture and/or density one expects chiral symmetry to be
restored above a certain temperature (density).

In QCD, lattice calculations on the nature and order
of the phase transitions indicate that light quarks exper-
ience a restoration of chiral symmetry as the tempera-
ture increases, with a transition temperature Tc around
150 MeV [7–9]. In the chiral limit, the restoration of
chiral symmetry is signaled by the vanishing of the order
parameters h �qqi as the quark masses go to zero. The
high temperature phase is sometimes described as a
weakly interacting gas of quarks and gluons (plasma
phase), which is clearly a simplistic picture for tempera-
tures around the transition temperature. It has been
argued [10] that, just as in the more familiar low tempera-
ture phase, the behavior of the high temperature phase
is characterized by the propagation of color-singlet
objects.

So far, the more reliable lattice QCD calculations for the
phase transition have been focused on the nonzero tem-
perature case. As an alternative to lattice QCD calcula-
tions, QCD-inspired models have been widely used in
recent years to investigate finite temperature and density
effects.
-1  2005 The American Physical Society
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The assumption that the symmetric phase consists of
mesonic modes and (deconfined) current quarks underlies
the extended version of the Nambu-Jona-Lasinio (NJL)
model [11,12]. This scenario allows to look for the spec-
trum of hadrons in parity doubling, whose degeneracy
is taken as an indication of an effective restoration of chiral
symmetries. In particular, scalar mesons and its opposite-
parity partners, the pseudoscalars, are massive and degen-
erate in the symmetric phase.

In the NJL model we can treat both the scalar and the
pseudoscalar mesons on the same footing. The main prob-
lem concerning the scalar sector, JP � 0�, which has been
under intense investigation over the past few years [13], is
that there are too many light scalars below 1 GeV. The two
isoscalars f0�600� (�) and f0�980� [14] as well as the
isovector a0�980� and the isospinor K�

0�800� (that we will
call �) [15] scalars are enough candidates to fill up a nonet
of light scalars. Although it is accepted that large 4-quarks
and meson-meson components [16] are necessary to ex-
plain this nonet, here we shall assume a q �q structure for the
scalar mesons which are relevant to study the restoration of
both chiral and axial symmetries. Recently, Dai and Wu
[17] claimed that (�; f0; a0; �) can be chiral partners of the
pseudoscalar nonet (�;�0; �; K). Many other schemes
have been suggested to describe the scalar meson proper-
ties. In fact, this is a very active field and no definitive
conclusion has been reached as to which states are to be
considered as q �q, multiquark, molecule, gluonia or hybrid
states [18].

An important aspect of the problem is the role played by
the anomalously broken UA�1� symmetry in the restored
chiral phase [19–24]. It has been argued that the chirally
restored phase of QCD is effectively symmetric under
U�Nf� � U�Nf� rather than SU�Nf� � SU�Nf� at high tem-
perature [19,21–23,25]. Special attention also has been
paid to whether or not the effective restoration of the
UA�1� symmetry and the chiral phase transition occur
simultaneously. This question is still controversial and is
not settled yet, indicating that we are still far from the full
understanding of the dynamics of the processes under
discussion. Here, we point out two scenarios discussed
by Shuryak [19]: in scenario 1, Tc � TU�1� and the com-
plete U�Nf� � U�Nf� chiral symmetry is restored well in-
side the quark-gluon plasma region; in scenario 2,
Tc  TU�1�.

The effective restoration of the UA�1� symmetry means
that all UA�1�-violating effects vanish, i.e., all order
parameters of the UA�1� symmetry breaking must vanish.
Since the origin of the anomalous interaction arises due to
the presence of instantons in the physical state through the
’t Hooft term [26], the effective restoration of the UA�1�
symmetry in the NJL model is equivalent to the vanishing
of the effects of this interaction.

The question is to look for observables which are
strongly influenced by the anomaly and to see if they
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decrease and eventually vanish, indicating the absence of
the anomaly. One of such quantities is the topological
susceptibility, �, which, in pure color SU(3) theory, can
be linked to the �0 mass trough the Witten-Veneziano
formula [27]. The vanishing of this quantity could be an
indication of the restoration of theUA�1� symmetry. In fact,
lattice calculations at finite temperature indicate a strong
decrease of the topological susceptibility [28,29], and re-
cent preliminary results at finite density seem to confirm
this tendency [30]. In addition, since the presence of the
axial anomaly causes flavor mixing, with the consequent
violation of the OZI rule, both for scalar and pseudoscalar
mesons, restoration of axial symmetry should have relevant
consequences for the phenomenology of meson mixing
angles, leading to the recovering of the ideal mixing.

In a previous study [31] on effective restoration of chiral
and axial symmetries in the NJL model, we have shown
that the axial part of the symmetry is restored before the
fullU�3� � U�3� chiral symmetry. Here, we investigate two
mechanisms to study an effective restoration of chiral and
axial symmetries, which consists in two different ways for
the behavior of the coupling strength of the anomaly. One
of them is based on a phenomenological decreasing
[11,32], and the other one is inspired on the behavior of
the topological susceptibility as indicated by lattice results
at finite temperature [28]. These two cases are going to be
compared with two limiting conditions: gD � constant and
gD � 0 from the beginning. With this methodology we
expect to disentangle the competition between UA�1�
anomaly and chiral symmetry-breaking effects.

After the presentation of the model and the scenarios of
restoration of the axial symmetry in Secs. II and III,
respectively, we start our investigation with the study of
the consequences of the effective restoration of chiral and
axial symmetries with temperature and zero density
(Sec. IV). Because of recent studies on lattice QCD at
finite chemical potential it is interesting to investigate
also the restoration of the UA�1� symmetry at finite density
and zero temperature. In this case, we will consider two
environment scenarios: completely symmetric matter
(�u � �d � �s) in Sec. V and quark matter simulating
‘‘neutron’’ matter in Sec. VI. Our conclusions are pre-
sented in Sec. VII.
II. MODEL AND FORMALISM

We consider the three-flavor NJL type model containing
scalar-pseudoscalar interactions and a determinantal term,
the ’t Hooft interaction generated by instantons in QCD,
which breaks the UA�1� symmetry. The model has the
following Lagrangian [11,12]:

L � �q�i��@� � m̂�q�
1

2
gS

X8
a�0

�� �q�aq�2 � � �qi�5�
aq�2�

� gDfdet� �q�1� �5�q� � det� �q�1� �5�q�g: (1)
-2



ANALYSIS OF UA�1� SYMMETRY BREAKING AND . . . PHYSICAL REVIEW D 71, 116002 (2005)
Here q � �u; d; s� is the quark field with three flavors,
Nf � 3, and three colors, Nc � 3. �a are the Gell-Mann

matrices, a � 0; 1; . . . ; 8, �0 �
��
2
3

q
I.

Our effective chiral field theory has the same chiral
symmetry of QCD, coming out solely from quark inter-
actions. The global chiral SU�3� � SU�3� symmetry of the
underlying Lagrangian (1) is explicitly broken by the
current quark masses m̂ � diag�mu;md;ms�. As the
Lagrangian (1) defines a nonrenormalizable field theory,
we introduce a cutoff which sets the 3-momentum scale in
the theory.

The NJL model can be generalized to the finite tempera-
ture and chemical potential case by applying the Matsubara
technique [33] as is shown in the Appendix A 2.

A. The gap equation

In order to put the Lagrangian (1) in a form suitable for
bosonization, it is useful to convert the six quark interac-
tion in (1) into a four quark interaction [12,34–37], allow-
ing for the effective quark Lagrangian:

L eff � �q�i��@� � m̂�q� Sab�� �q�
aq�� �q�bq��

� Pab�� �qi�5�
aq�� �qi�5�

bq��; (2)

where the projectors Sab; Pab are presented in the
Appendix A 1 [Eqs. (A1) and (A2)].

The bosonization procedure can be done by the integra-
tion over the quark fields in the functional integral with the
effective Lagrangian (2), leading to an effective action
(A3) where, as shown in the Appendix A 1, the natural
degrees of freedom of low-energy QCD in the mesonic
sector are achieved.

The first variation of the effective action leads to the gap
equation,

Mi � mi � 2gSh �qiqii � 2gDh �qjqjih �qkqki; (3)

with i; j; k � u; d; s cyclic andMi are the constituent quark
masses. The quark condensates are determined by

h �qiqii � �iTr
1

p̂�Mi
� �iTr�Si�p��; (4)

where Si�p� is the quark Green function.

B. Pseudoscalar and scalar meson nonets

To calculate the meson mass spectrum, we expand the
effective action (A3) over the meson fields. Keeping the
pseudoscalar mesons only, we find the meson masses by
using the rest frame, P � 0, and the condition

1� Pij�
P
ij�P0 � M;P � 0� � 0: (5)

For the nondiagonal mesons �;K, we have

P� � gS � gDh �qsqsi; (6)
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PK � gS � gDh �ququi: (7)

The polarization operator in Eq. (5) takes the form given in
the Appendix A 1 by Eq. (A6). The quark-meson coupling
and the meson decay constants fM also are evaluated
according to the usual definitions [12].

The inclusion of the ’t Hooft interaction in the NJL
model allows for flavor mixing, giving rise to a
P2-dependent mixing angle &P�P2� [36,38–40]. Our
scheme for pseudoscalar flavor mixing consists in the
definition of the mixing angle &P in such a way that

�
�0

� �
� O�&P�

�8
�0

� �
�

cos&P � sin&P
sin&P cos&P

� �
�8
�0

� �
; (8)

where � and �0 stand for the corresponding physical fields,
and �8 and �0 are the mathematical objects transforming
as octet and singlet states of the SU(3)-flavor pseudoscalar
meson nonet, respectively.

The condition to diagonalize �DPab�P��
�1 [Eq. (A4)] as

O�1�DPab�P��
�1O � diag�D�1

� �P�; D�1
�0 �P�� gives us the

equation for the mixing angle:

tan2&P �
2B

C�A
; (9)

as well as the inverse meson propagators,

D�1
� �P� � �A� C� �

�������������������������������������
�C�A�2 � 4B2

q
; (10)

D�1
�0 �P� � �A� C� �

�������������������������������������
�C�A�2 � 4B2

q
; (11)

with A � P88 � ��00�P�, C � P00 ���88�P�, B �
��P08 � ��08�P��, and � � P00P88 � P208; the different
projectors Pab and polarization operators �P

ab�P� are de-
fined in the Appendix A 1 [Eqs. (A11)–(A17)].

In the rest frame, the condition D�1
� �P0 � M�;P �

0� � 0 and D�1
�0 �P0 � M�0 ;P � 0� � 0 gives, as usual,

the masses for the � and �0.
As shown in other papers, in the framework of the NJL

model [36,38–40], since A, B, and C depend on P2, the
mixing angles between the components �0 and �8, &P
[short notation of &P�P2�] are P2 dependent. In the present
paper, when studying temperature and density dependence
of several quantities, we only discuss the mixing angle for
P2 � M2

�, for simplicity reasons; we checked that the
behavior of the mixing angle for P2 � M2

�0 gives informa-
tion qualitatively similar.

The same technique used for the pseudoscalar sector can
now be directly applied to the scalar resonances. We deal
here with nine scalar resonances: three a0’s, which are the
scalar partners of the pions, four �’s, being the scalar
partners of the kaons, and the � and f0, which are asso-
ciated similarly with the � and �0. As in the pseudoscalar
case, we have mixing between the � and f0 and the neutral
a00. Keeping now the scalar mesons only, we have the
-3



COSTA, RUIVO, DE SOUSA, AND KALINOVSKY PHYSICAL REVIEW D 71, 116002 (2005)
effective meson action (A20). The scalar meson masses are
obtained from the condition

1� Sij�
S
ij�P0 � M;P � 0� � 0; (12)

with

Sa0 � gS � gDh �qsqsi; (13)

S� � gS � gDh �ququi: (14)

The polarization operator is presented in the Appendix A 1,
Eq. (A21).

Finally we can determine the meson masses of a0 and �
using the respective dispersion relations:

1� Sa0�
S
uu�Ma0 ; 0� � 0; (15)

1� S��
S
us�M�; 0� � 0: (16)

For the diagonal mesons a00, �, and f0 we take into
account the matrix structure of the propagator in (A20).
In the basis of a00 � �� f0 system, we write the projector
Sab and the polarization operator �S

ab as matrices (see the
Appendix A 1). To find the masses of the � and f0 mesons
we use the inverse propagator of the corresponding mesons
as indicated in the Appendix A 1. The value of the angle &S
also can be fixed by a condition similar to Eq. (9).
TABLE I. Physical quantities in the vacuum
symmetry-breaking patterns studied in this wor
quantities.

Explicit symmetry breaking with UA�1� anomaly

Physical quantities

f� � 92:4 MeV
M� � 135:0 MeV
MK � 497:7 MeV
M�0 � 960:8 MeV
M� � 514:8 MeV�

fK � 97:7 MeV�

M� � 728:8 MeV�

Ma0 � 873:3 MeV�

M� � 1045:4 MeV�

Mf0 � 1194:3 MeV�

&P � �5:8o�; &S � 16o�

Explicit symmetry breaking without UA�1� anom

f� � 92:4 MeV
M� � M� � 135:0 MeV
MK � 497:7 MeV
fK � 95:4 MeV�

M�0 � 707:5 MeV�

M� � Ma0 � 740:1 MeV�

M� � 985:38 MeV�

Mf0 � 1194:8 MeV�

&P � �54:74o�; &S � 35:264o�
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When P0 >Mi �Mj, i.e., when the mass of the meson
exceeds the sum of the masses of its constituent quarks, the
meson can decay in its quark-antiquark pairs, being, there-
fore, a resonant state. Then, Eqs. (5), (11), and (12) have to
be calculated in their complex form in order to determine
the mass of the resonance MM and the respective decay
width �M. Thus, we assume that this set of equations has
solutions of the form

P0 � MM �
1

2
i�M; (17)

and, on the other hand, we have to take into account the
imaginary part of the integrals (A8) (for details see
Appendix A 1).

C. Vacuum properties and model parameters

The NJL model exhibits a vacuum phase where chiral
symmetry is spontaneously broken, a mechanism which
generates the constituent quark masses. The model is fixed
by the coupling constants gS; gD in the Lagrangian (1), the
cutoff parameter  which regularizes momentum space
integrals Ii1 and Iij2 �P�, and the current quark massesmi. We
start by considering two sources of chiral U�3� � U�3�
symmetry-breaking: (i) current quark masses; and (ii)
UA�1� symmetry-breaking effective interaction.

As already referred, the SU(3) version of the NJL model
has five parameters, and we would expect a priori that one
state and the parameter sets for the two
k. The asterisks signalize predicted physical

(gD � 0)

Parameter set and constituent quark masses

mu � md � 5:5 MeV
ms � 140:7 MeV
 � 602:3 MeV
gS 2 � 3:67

gD 
5 � �12:36

Mu � Md � 367:7 MeV�

Ms � 549:5 MeV�

aly (gD � 0)

mu � md � 5:5 MeV
ms � 138:75 MeV
 � 602:3 MeV
gS 2 � 4:64
gD 

5 � 0
Mu � Md � 368 MeV�

Ms � 587:4 MeV�

-4
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can uniquely fix those parameters in order to fit five ob-
servables f�, M�, MK, M�, and M�0 . However, this is not
the case as can be seen comparing the parameter sets of
[11,12]. We follow the methodology of Ref. [12] and set
mu to the value 5.5 MeV, and fix the remaining four
parameters by fitting f�, M�, MK, and M�0 . The � meson
in this way is predicted with a mass of 514.8 MeV. This
allows for a good overall agreement of our numerical
results with the experimental or phenomenological quan-
tities as shown in Table I.

However, we point out that this prescription has some
problems in which concerns to the description of the �0

meson. As is well known the NJL model does not confine.
Formally, this is reflected by the fact that integrals like
I�q2�, and hence the polarization function for some me-
sons, get an imaginary part above the q �q threshold that is
calculated as indicated at the end of the previous section.

We will consider a second parametrization without
UA�1� symmetry-breaking effective interaction (gD � 0)
which also is presented in Table I. With this parametriza-
tion we have also an overall satisfactory fit to meson
properties and quark condensates at zero temperature and
density. However, as expected, the results show that the
anomaly term is necessary to obtain the correct meson
mass spectra, especially by giving the �0 and a0 its large
masses, as well as the splitting between �=�, and �=a0
meson masses.
TABLE II. Different schemes of explicit axial symmetry
breaking with temperature (density).

Anomaly coefficient gD

Case I Constant
Case II Fermi function
Case III Decreasing exponential
III. SCENARIOS OF RESTORATION OF THE
AXIAL SYMMETRY AND ENVIRONMENT

CONDITIONS

Model calculations, for instance within NJL type or
sigma models, generally describe the restoration of chiral
symmetry as a natural consequence of the increase of
temperature or density. However, it is found that the ob-
servables associated to the anomaly, although decreasing,
do not show a tendency to vanish [31,41–43]. The anomaly
in our model is present via the ’t Hooft interaction and its
effects appear explicitly in the gap Eqs. (3) and in the
mesons propagators through products of the anomaly co-
efficient by quark condensates [see the expressions of the
projectors Sab, Pab given by Eqs. (A1) and (A2)]. Such
quantities, that act as a kind of ‘‘effective anomaly cou-
pling,’’ will be denoted from now on as hgDii � gDh �qiqii.
The vanishing of such effective coupling should imply the
vanishing of the observables associated to the anomaly.
However this does not happen in the present model without
being enforced because, while the nonstrange quark con-
densates decrease asymptotically, leading to an effect al-
most negligible of hgDiu�hgDid�, the same does not happen
with hgDis, since restoration of chiral symmetry does not
occur in the strange sector and h �qsqsi has always an
appreciable value. Therefore, the vanishing of hgDii, in
general, should be accomplished by assuming that the
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anomaly coefficient gD is a decreasing function of tem-
perature or density.

More attention has been paid, up to now, to the restora-
tion of axial symmetry with temperature than with density,
a motivation which is supported by the lattice results for
the behavior of the topological susceptibility with tempera-
ture [28], that indicate a considerable decrease of this
quantity. However, the theoretical arguments concerning
the possible restoration of axial symmetry, whether tem-
perature or density are considered, are similar. While the
difficulties in testing the QCD vacuum at high density in
heavy-ion collisions are not yet removed, but expecting
that this will hopefully happen in future experiments, it is
useful to have predictions for the nonperturbative regime,
even at a qualitative level. Model calculations in NJL
model, although not being an alternative to lattice calcu-
lations, can provide a useful contribution. Moreover, lattice
calculations for the behavior of the topological suscepti-
bility with density [30], although still in an early stage,
suggest that this observable is also a decreasing function of
density. In view of the considerable interest in the inves-
tigation of the behavior of matter at high densities, and the
possible restoration of symmetries under these conditions,
it is certainly worthwhile to do an exploratory study on the
restoration of the axial symmetry by assuming that gD is
density dependent, in a form similar to the temperature
dependence.

So, after considering the extreme case of a constant
anomaly coupling, gD, we will consider two scenarios to
study the effective restoration of axial symmetry as sum-
marized in Table II.

Case I.—The anomaly coefficient gD is constant for all
range of temperatures or densities.

Case II.—The anomaly coefficient gD is a dropping
function of temperature or density. Following the method-
ology of Ref. [44], the temperature dependence of gD is
extracted by making use of the lattice results for the
topological susceptibility, �, [28]. The expression for �
in the NJL model is presented in the Appendix A 3,
Eq. (A42). In view of the arguments presented above, it
seems reasonable to model the density dependence of gD
extrapolating from the results for the finite temperature
case and proceeding by analogy [31].

Case III.—The anomaly coefficient has the form of a
decreasing exponential (gD�T� � gD�0� exp���T=T0�

2�).
This phenomenological pattern of restoration of the axial
symmetry was proposed by Kunihiro [11] in the framework
-5
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of the present model. Here we consider a dependence of the
anomalous coupling constant on density also inspired on
the finite temperature scenario.

We also consider a simplistic scenario without UA�1�
anomaly (gD � 0), which is achieved in our model by
choosing the second parametrization presented in Table I.
We expect that this scenario, being a limiting case, might
provide additional information allowing to understand the
interplay between the UA�1� anomaly and flavor
symmetry-breaking effects. In fact, in this case the domi-
nant effects come from spontaneous chiral symmetry
breaking through quark loop dynamics.

For a more complete understanding of the density effects
we will consider two different scenarios of quark matter: (i)
symmetric quark matter; and (ii) neutron matter in ,
equilibrium. So, the different patterns of axial symmetry
with gD � constant (Case I), Case II and Case III, and
gD � 0, are going to be studied in hot media, in symmetric
quark matter, and in neutron matter.

The restoration of chiral symmetry with temperature or
density has been extensively studied in the present model
with gD constant [12,38,45]. A general conclusion of such
studies is that chiral symmetry is effectively restored in the
SU(2) sector, but, in the range of densities or temperatures
generally considered, the same does not happen in the
strange sector. It should be noticed that, as we will show,
this conclusion will not be affected by the different patterns
of axial symmetry restoration here considered.

Since in all cases chiral symmetry is explicitly broken by
the presence of nonzero current quark mass terms, chiral
symmetry is realized through parity doubling rather than
by massless quarks. So, the identification of chiral partners
and the study of its convergence is the criterion to study the
effective restoration of chiral and axial symmetries.

IV. RESULTS FOR THE MESONIC BEHAVIOR AT
FINITE TEMPERATURE AND ZERO DENSITY

In this section we analyze the mesonic behavior at finite
temperature and zero chemical potentials. A significant
feature of this analysis is that the observables, that depend
on the anomaly coupling only via hgDiu (hgDid), are not
significantly affected by the specific temperature depen-
FIG. 1. Temperature dependence of hgDiu (left pan
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dence of gD, in the high temperature region, because chiral
symmetry is approximately restored with the consequent
asymptotic vanishing of the nonstrange quark condensates.
In order to see the importance of the behavior of the
effective anomaly coupling for the quantities under study,
we plot them in Fig. 1.

A. Explicit chiral symmetry breaking with UA�1�
anomaly

Case I.—We will start with Case I [see Figs. 2(a) and
2(b)] that will be compared with the other cases under
discussion. In the panel (b) we have the meson masses
for the K meson and its chiral partner �. In the panel (a) we
plot the other scalar and pseudoscalar mesons:
(�; f0; a0; �; �; �0). In both panels, and for all graphics,
the dotted line means the respective continuum. The cross-
ing of the � and � lines with the quark threshold 2Mu, and
the K line with Mu �Ms indicates the respective Mott
transition temperature, TM. Mott transition comes from
the fact that mesons are not elementary objects but are
composed states of q �q excitations and is defined by the
transition from a bound state to a resonance in the contin-
uum of unbound states. Above the Mott temperature we
have taken into account the imaginary parts of the integrals
Iij2 and used a finite width approximation [12,36].

Let us summarize here the behavior of the pseudoscalar
mesons and analyze what this behavior can tell us about
possible restoration of symmetries. One can see that Mott
temperatures for� and�mesons are TM�

� 180 MeV and
TM�

� 212 MeV. The � and K mesons become unbound
at approximately the same temperature: TMK

� 210 MeV.
On the other side, the �0 is always above the continuum
!u � 2Mu, and � has always a strange component for all
temperatures, once its mixing angle &P never gets the ideal
value: &P � �54:736� (see Fig. 3).

Concerning the scalar sector, we notice that the �meson
is the only scalar meson that is a bound state for small
temperatures (the others are always resonances) but turns
into a resonance at TM�

’ 160 MeV. This meson has a
strange component that decreases with temperature but
never vanishes since the ideal mixing angle, &s �
el) and hgDis (right panel) for the different cases.
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35:264�, is never attained in the range of temperatures
studied (see Fig. 3).

For T * 250 MeV the � starts to be degenerate with the
�. As for the a0 meson, it is always a nonstrange state and
is above the continuum !u � 2Mu. It can be seen in
Fig. 2(a) that the partners (�;�) and (�; a0) become de-
generate at almost the same temperature. In both cases, this
1/
4

θ

θ

θ

FIG. 3. Left panel: scalar and pseudoscalar mixing angles as a fun
for the ideal mixing. Right panel: Topological susceptibility as a func
plotted with error bars [28].
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behavior is the signal of the effective restoration of chiral
symmetry in the nonstrange sector. Distinctly, the �0 and
f0 masses do not show a tendency to converge in the region
of temperatures studied. We interpret this behavior as an
indication that chiral symmetry does not show tendency to
get restored in the strange sector [see 2Ms, upper dotted
curve in Fig. 2(a)].

Finally, we focus on the �meson [Fig. 2(b)]. It is always
an unbound state and, as the temperature increases, it
shows tendency to get degenerate in mass with the K
meson. For comparison purposes, we summarize in
Table III an overview of the transition temperatures of
the effective restoration of chiral (second line) and axial
(third line) symmetries in the different cases studied in the
present paper. The masses of the corresponding chiral
partners become degenerate above the referred
temperatures.

Summarizing, the SU(2) chiral partners (�;�) and
(�; a0) become degenerate at T ’ 250 MeV; the chiral
partner (K;�) converges at T ’ 350 MeV and (�0; f0) do
not show a tendency to converge in the region of tempera-
tures studied.

As expected, the axial symmetry is not restored at high
temperatures and the topological susceptibility is also far
away from being zero (see Fig. 3).

Case II.—Some of the results for Case II have been
presented in [31]. Here we summarize the conclusions
obtained.

As mu � md � ms, the (sub)group SU�2� � SU�2� is a
much better symmetry of the Lagrangian (1) than SU�3� �
SU�3�. So, the effective restoration of the SU(2) symmetry
implies the degeneracy between the chiral partners ��;��
and ��; a0� which is verified around T ’ 250 MeV [see
Fig. 2(c) and Table III]. For temperatures at T ’ 350 MeV
both a0 and�mesons become degenerate with the� and �
mesons, showing, as explained below, an effective resto-
ration of both chiral and axial symmetries. Without the
restoration of UA�1� symmetry (Case I), the a0 mass was
moved upwards and never met the � mass, the same argu-
ment being valid for the � and � mesons. We remember
χ

ction of temperature for the three cases presented in Table II and
tion of temperature for the three cases. The lattice data results are
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TABLE III. Transition temperatures of the effective restoration of chiral and axial symmetries
in the different cases.

Case I (gD � constant) Case II Case III gD � 0

SU(2) chiral-transition temperature 250 MeV 250 MeV 225 MeV 300 MeV

U(2) axial-transition temperature � � � 350 MeV 225 MeV � � �
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that the determinant term acts in an opposite way for the
scalar and pseudoscalar mesons as can be seen, for in-
stance, in Eqs. (6) and (13). So, only after the effective
restoration of the UA�1� symmetry we can recover the
SU(3) chiral partners ��; a0� and ��;�� which are now
all degenerate. This is compatible with scenario 1 of
Shuryak [19]: the signals for the effective restoration of
the axial symmetry occur at a temperature where the
signals of the full restoration of U�3� � U�3� symmetry
are not yet visible. In fact, the �0 and f0 masses do not
show a clear tendency to converge in the region of tem-
peratures studied, this absence of convergence being
probably due to the fact that, in the region of temperatures
above T ’ 350 MeV, those mesons are purely strange and
the chiral symmetry in the strange sector is far from being
effectively restored.

The analysis of the temperature dependence of the mix-
ing angles in Fig. 3, allowing for a better understanding of
the meson behavior through the evolution of the quarkonia
content, provides further indication of the restoration of the
axial symmetry: &S (&P) starts at 16� ( � 5:8�) and goes,
smoothly, to the ideal mixing angle 35.264� ( � 54:74�).
This means that flavor mixing no more exists. In fact,
referring to the SU(2) chiral partners (�;�) and (�; a0),
we found that the a0 and � mesons are always purely
nonstrange quark systems, while the � (�) meson becomes
purely nonstrange when &S (&P) goes to 35.264� ( �
54:74�), at T ’ 350 MeV.

Analyzing the (K, �) chiral partner, we conclude that the
behavior of the mesons is not significantly influenced by
the type of temperature dependence of gD used here, as
expected. In fact, in the range of temperatures where gD�T�
could be important, Ms does not change appreciably, and
we know that these meson masses are very sensitive toMs.
For the range of temperatures where the ��; a0� and ��;��
chiral partners become degenerate, the strange quark mass
of Ms is already independent of the gD dependence of the
temperature [see 2Ms, upper dotted curve in Fig. 2(c)].
This is due to the fact that, as explained before,Ms depends
on the anomaly through hgDiu.

We notice that our analysis of the effective restoration of
symmetries is based on the degeneracy of chiral partners
that occurs in a region of temperatures where the mesons
are no more bound states (they dissociate in q �q pairs at
their respective Mott temperatures [12,36]). Moreover, the
mesons �0 and f0 are q �q resonances from the beginning
and its description is unsatisfactory.
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Summarizing, we conclude that at T ’ 250 MeV the
SU(2) chiral partners become degenerate in mass, whereas
at T ’ 350 MeV, the same happens with (�;�;�; a0) me-
sons: the OZI rule is restored and � goes asymptotically to
zero (Fig. 3, dashed line of right panel). These results
indicate an effective restoration of the UA�1� symmetry.

Case III.—Finally, we analyze Case III that is similar to
Case II as we can see in Fig. 2. The main difference is that
the temperature dependence of gD used does strengthen
significantly the chiral phase transition. In fact, the SU(2)
chiral partners ��;�� and ��; a0� are all degenerate for T ’
225 MeV (T ’ 250 MeV in Case II). Linking this fact to
the behavior of the � (in Fig. 3, dotted line in right panel)
that goes very fast to zero, being zero at about 250 MeV,
and with the behavior of the mixing angles (Fig. 3, dotted
lines in left panel), &P and &S, that go both to its ideal
values at 200 MeV, we conclude that both symmetry
restorations happen around the same temperature.

The comparison between Case I (gD � constant) and
Case III helps to understand this situation. We observe that
the more rapid decrease of the temperature dependence of
Ms in Case III, till T  250 MeV, indicated by the upper
dotted lines (2Ms) in the left panel of Fig. 2 [see Fig. 2(a)
and 2(e)], cooperates with the decreasing of gD�T� allow-
ing for the restoration of chiral and axial symmetries at the
same temperature T ’ 225 MeV. This also can be seen, for
instance, in the behavior of the effective anomaly coupling
hgDis that goes to zero at almost the same temperature (see
Fig. 1). This is in accordance with scenario 2 of Shuryak
[19]. The existence of cooperative effects of restoration of
chiral and axial symmetries has already been noticed by
Kunihiro [11], who report a situation where the axial
symmetry is restored before chiral symmetry, a scenario
usually considered not realistic [19].

Concerning (K, �) chiral partner, the conclusions are
similar to those of Case II; the only difference is a faster
decrease of the splitting in the low temperature region, due
to the faster decrease of Ms.

B. Explicit chiral symmetry breaking without
UA�1� anomaly

We consider now a simplistic scenario without UA�1�
anomaly (gD � 0), which is achieved in our model by
choosing the second parametrization presented in Table I.

We start with the � meson that, as expected, is always
degenerate with �. In fact, the � meson is a pure non-
-8
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strange state for all temperatures, with an ideal mixing
angle &P � �54:7360.

On the other side, the �0 is always a pure strange state
which crosses the continuum !u � 2Mu for T *

110 MeV, becoming then a resonance state. Like in the
gD � 0 cases, the �0 meson shows no tendency to become
degenerate with f0, a consequence of the insufficient res-
toration of chiral symmetry in the strange sector, as it has
already been noticed. The a0�� �� is always a nonstrange
state, it is always above the continuum !u � 2Mu.

As the temperature increases, due to the absence of the
UA�1� anomaly, the members of the chiral pairs (�;�) and
(�; a0) become all degenerate simultaneously (T ’
300 MeV), reflecting the effective restoration of chiral
symmetry in the nonstrange sector. We notice that, as
indicated in Table III, this is the case where the transition
temperature to the SU�2� � SU�2� symmetry is higher,
indicating that, as already referred, the anomalous coupling
can be important to drive the effective restoration of the
chiral symmetry itself.

Concerning the kaon and its chiral partner �, they show a
clear tendency to get degenerate, but at temperatures that
are higher than in the previous cases.

Summarizing, the high temperature regime (T 
300 MeV) in Cases II and III, where the axial symmetry
is effectively restored, and the situation gD � 0 are very
similar: the SU(3) chiral partners (�; a0) and (�;�) are
degenerate, and the �0 and f0 mesons have similar split-
tings. The more relevant differences in the behavior at
lower temperatures are manifestations of the different
role played by the axial anomaly and the dynamical flavor
symmetry-breaking effects. For instance, the constituent
strange quark mass has a very different behavior in the
three scenarios as can be seen by the curve representing
2Ms (upper dotted curve) in Figs. 2(c), 2(e), and 2(g). In
addition, we notice that, differently from Case II, in
Case III the restoration of the UA�1� symmetry drives of
chiral symmetry.
V. RESULTS FOR SYMMETRIC QUARK MATTER

In order to study the effective restoration of chiral and
axial symmetries at finite density, we start by considering a
completely symmetric quark matter (�u � �d � �s).
Before our analysis, let us make some considerations about
this type of matter. Although rather schematic, this case
simulates a situation where the hypothesis of absolutely
stable strange quark matter (SQM) can be explored [36]. It
has been argued [45,46] that SQM may only be stable if it
has a large fraction of strange quarks (�s  �u  �d). The
speculations on the stability of SQM are supported by the
observation that the inclusion of the strangeness degree of
freedom allows for a larger decrease of the strange quark
mass which can produce a sizable binding energy. In [36]
we have confirmed this tendency when compared with
neutron matter. We notice that there are always strange
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valence quarks present, so the strange quark mass de-
creases more strongly, although, even in this case, it is still
away from the strange current quark mass for high den-
sities [36]. The advantage of considering this type of matter
is that, like in the nonzero temperature case, all three pions
and all four kaons are degenerate in medium (contrary to
what happens for neutron matter in , equilibrium to be
discussed in the next section). So, the present environment
can provide fruitful comparisons with the nonzero tem-
perature case.

A. Explicit chiral symmetry breaking with UA�1�
anomaly

The study of density effects is performed using a meth-
odology analogous to the temperature case. So we also will
consider three scenarios for the behavior of the anomalous
coupling gD (see Table II). Some conclusions are very
similar to the temperature case as we can check in Fig. 4,
so we will concentrate on the main differences.

Case I.—In this case we have an interesting phenome-
non: the a0 does not degenerate with the �meson, but with
the �0 meson as we can see in Fig. 4(a). In fact, the �0

meson, that starts as an unbound state and becomes bound
for �sym * 4:5�0, degenerates with the a0 meson for
higher densities. This is due to the presence of strange
valence quarks in the medium, which causes Ms to de-
crease more strongly [36], so the influence of the s sector
will be lower in the mass of the �0.

Case II.—The study of Case II in symmetric quark
matter is inspired, as already referred, in the previous
Case II at finite temperature. So, we postulate a depen-
dence for � formally similar to the temperature case as is
shown in Fig. 5 (dashed line), i.e., using a Fermi function.
With this topological susceptibility we obtain the density
dependent anomalous coupling gD��sym�.

Using this density dependence we arrive at conclusions
similar to the finite temperature case discussed before. The
chiral partners ��;�� become degenerate at a density
�sym ’ 3:5�0 and the same happens to the chiral partners
��; a0� [Fig. 4(c)]; this density is the onset for effective
restoration of chiral symmetry in the SU(2) sector.

The analysis of the mixing angles (Fig. 5) indicate that at
�sym ’ 4�0 the scalar and pseudoscalar mixing angles
reach its ideal values and, consequently, the � and the �
become purely nonstrange. At this density the �0 becomes
purely nonstrange and does not show a tendency to degen-
erate with f0, as in the finite temperature case.

Summarizing, as the density increases, the chiral part-
ners (�;�) and (�; a0) become degenerate (for �sym ’

4�0�. Associating this with the behavior of the &P and &S
mixing angles and the behavior of the chiral susceptibility,
that goes to zero (dashed line in Fig. 5), we conclude that
we have an effective restoration of UA�1� symmetry in this
situation.
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FIG. 4 (color online). Density dependence of meson masses
and of limits of the Dirac sea continua (dotted lines) defining q �q
thresholds for the mesons �0; a0; �. The f0 meson is always a
resonance state.
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Case III.—Similarly, for Case III we postulate the
following dependence for gD:gD��sym� � gD�0��
exp����sym=�0�

2�, which is inspired in the corresponding
finite temperature scenario. The topological susceptibility
with this dependence of the coupling anomaly is plotted in
Fig. 5, dotted line. This case is very similar to Case II and
θ

θ

θ

ρ ρ

FIG. 5. Left panel: scalar and pseudoscalar mixing angles as a func
ideal mixing (gD � 0). Right panel: topological susceptibility as a f
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the overall conclusions are parallel to the finite temperature
case (to compare see Figs. 2(e) and 2(f)). The density
dependence for gD��sym� that we used also does strengthen
the chiral phase transition: both symmetry restorations
happen simultaneously for slightly lower densities (�sym ’

3:0�0).
In fact, the SU(3) chiral partners ��; a0� and ��;�� are

all degenerate at very early values of the density (�sym ’

3:0�0), compared with Case II (�sym ’ 4:0�0). This results
from the behavior of � (in Fig. 5, dotted line in right panel)
that goes to zero for �sym ’ 3�0, and by the behavior of the
mixing angles (Fig. 5, dotted lines in left panel) where
both, &P and &S, go to the ideal mixing angles for �sym ’

2:5�0.
Concerning the (K, �) partners [Fig. 4(f)], we conclude

that in all three cases their behavior is very similar: they
practically do not depend on the shape of gD.

B. Explicit chiral symmetry breaking without UA�1�
anomaly

Finally, we analyze the behavior of mesonic modes in
the absence of the axial anomaly: gD � 0. Looking at the
�meson behavior plotted in Fig. 4(g), we conclude that the
pion is always degenerate with � and they are always
bound states. The � (�0) meson is a pure nonstrange
(strange) state for all range of densities. For 2�0 & �sym &

4�0 the �0 meson is a resonance state as can be seen in
Fig. 4(g). As in the Cases I, II, and III, the �0 meson does
not show tendency to become degenerate in mass with the
f0 meson.

The a0 (�) is always a nonstrange state and, for �sym �

0, its mass is higher than !u � 2Mu. As the density
increases, it immediately becomes a bound state and de-
generates with its chiral partner � (�) for densities �sym ’

5�0. So, for �sym * 5�0 the four bound state mesons
(�;�;�; a0) become degenerate reflecting the effective
restoration of chiral symmetry in the nonstrange sector.

Concerning the kaon and its chiral partner � [Fig. 4(h)]
they show a clear tendency to get degenerate at high
densities, where both mesons are bound states. We remark
χ1/
4

ρ ρ

tion of density for the three cases presented in Table II and for the
unction of density for the three cases.
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that the degeneracy of chiral partners in symmetric quark
matter occurs in regions where the mesons are bound
states.

Finally, the more significant difference between case
gD � 0 and the other cases is that the chiral symmetry
effective restoration occurs latter, similarly to the situation
at nonzero temperature.
VI. RESULTS FOR NEUTRON MATTER IN �
EQUILIBRIUM

We consider now asymmetric quark matter in weak
equilibrium and charge neutrality, supposedly of the
same type of that existing in the interior of neutron stars.
To insure this situation, we impose the following con-
straints on the chemical potentials and densities of quarks
and electrons:

�d � �s � �u ��e; (18)

and
2

3
�u �

1

3
��d � �s� � �e � 0; (19)

with

�i �
1

�2
��2i �M2

i �
3=2&��2i �M2

i � and �e � �3e=3�2:

(20)
Similarly to the finite temperature case, and as already

explained in Sec. III, chiral symmetry is effectively re-
stored only in the SU(2) sector, in the range of densities
considered, a conclusion that is independent of the specific
form of the dependence on density of the anomaly coeffi-
cient, gD. The effective anomaly coupling, shown in Fig. 6,
although exhibiting details different from the finite tem-
perature and from the symmetric quark matter cases, are
qualitatively similar.

Let us emphasize some specific aspects on the behavior
of the strange quark mass with density. Although in the
present case, at low densities, there are no strange quarks in
the medium, the mass of the strange quark decreases,
although smoothly, due to the effect of the ’t Hooft inter-
action; eventually it becomes lower than the chemical
potential for strange quarks (at �B ’ 3:8�0). A more pro-
ρ ρ

FIG. 6. Density dependence of hgDiu (left panel)
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nounced decrease of the strange quark mass is then ob-
served, which is no more due to the anomaly (we can see
from Fig. 6 that hgDiu is already very small) but to the
presence of valence strange quarks in the medium [see
Eq. (20)].

Concerning the meson spectra and the mixing angles, we
will show that new aspects also appear, mainly in the high
density region, and will be discussed in the sequel.

As it is the only scenario where the flavor symmetry
exhibited by the physical vacuum state is violated by the
weak interaction conditions (18), this implies several con-
sequences:
(i) s
and hg

-11
plitting between charge multiplets of pions and
kaons;
(ii) a
ppearance of low-lying modes above a certain
density.
This leads us to focus on the behavior of all nine
pseudoscalar mesons and respective scalar partners, as
well as on the chiral partners of the low-lying excitations.
Before we start our discussion we remark the following:
(1) W
e start by analyzing the chiral asymmetry parame-
ter which is a measure of the violation of the isospin
symmetry.
(2) W
e will follow the structure used for the finite
temperature and completely symmetric matter
which leads to the study of the scenarios: Cases I,
II, and III, with gD � 0; and the case gD � 0.
A. Chiral asymmetry parameter

Solving the gap Eq. (3) one verifies that, in the different
cases summarized in Table II, the constituent quark mass
Md decreases slightly more than Mu as the density in-
creases. Bearing in mind a qualitative analysis of the
effects of chiral symmetry breaking (restoration) it is use-
ful to plot the isospin asymmetry parameter

�A �
jMu �Mdj

Mu �Md
; (21)

as a function of the baryonic density in the several cases
under discussion. As is shown in Fig. 7 the chiral asym-
metry parameter �A is more significant in the absence of
ρ ρ

Dis (right panel) for the different cases.
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FIG. 7. Chiral asymmetry parameter as a function of density
for the three cases presented in Table II and the case gD � 0.
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the anomalous coupling constant. We remark that the
presence of the anomaly in the model has the effect of
reducing the isospin asymmetry in a SU(2) broken system
like the neutron matter case. The main consequences of
this isospin asymmetry of the medium must be visible in
the behavior of chiral partners.

B. Explicit chiral symmetry breaking with
UA�1� anomaly

Case I.—The pseudoscalar sector in neutron matter in ,
equilibrium was extensively studied in [34–36], which
corresponds to Case I of the present work. Here we will
focus mainly on the possible degeneracy of chiral partners.
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FIG. 8 (color online). Density dependence of meson masses
and of limits of the Dirac sea continua (dotted lines) defining q �q
thresholds for the mesons. The low-lying solutions also are
included. The anomaly coupling constant is kept constant
(Case I).
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In Fig. 8(a), the meson masses are plotted as functions of
the density. The SU(2) chiral partners (�0; �) are always
bound states. The pion is a light quark system for all range
of densities and the � meson has a strange component at
�B � 0 but never becomes a purely nonstrange state be-
cause &S never reaches 35.264�, the ideal mixing angle
(Fig. 9, Case I). As the density increases these mesons
become degenerate (�B * 3�0). At the same density, the
SU(2) chiral partner (�; a0) is also degenerate. The �
meson is always a bound state, contrarily to a0 that starts
as a resonance, once its mass is above the continuum and
becomes a bound state for �B * 0:5�0. However, the a0
mass separates from the � mass and goes to degenerate
with the �0. To understand this behavior we need to look
for the behavior of the mixing angle &P. From Fig. 9,
Case I, we observe that the angle &P, which starts at
�5:8�, changes sign at �B ’ 3:5�0 becoming positive
and increasing rapidly, which, as will be seen, we interpret
as an indication of a change of identity between � and �0.

We remember that up to the density �B � 3:8�0 (see end
of Sec. VI A) the �q �q�s � s�s content is induced by the
mixing effects only. Above this density strange valence
quarks are present [see Eq. (20)] and induce the strange
quark mass to decrease faster.

This behavior induces changes in the percentage of
strange, �q �q�s � s�s, and nonstrange, �q �q�ns �

1
2 �

�u �u� d �d�, quark content in � and �0 mesons: at low
density, the �0 is more strange than the �, but the opposite
occurs at high density [35]. Then �0 will degenerate in
mass with the a0 meson that is always a nonstrange state.
Finally, the f0 resonance is always a strange state that
shows no tendency to become degenerate with any other
meson.

Now let us comment on the �� behavior and the re-
spective chiral partners a�0 that are plotted in Fig. 8(b). The
�� mesons are always bound states and their masses
increase with density. On the other side, the a�0 mesons
start as resonances and become bound states: the a�0 at
�B ’ 0:25�0 and the a�0 at �B ’ 0:5�0. However, they
never degenerate with the respective pions in the consid-
ered range of densities. This is, once again, due to the fact
that the chiral symmetry in the strange sector is not re-
stored, and the absence of the mechanism of restoration of
the UA�1� symmetry is also relevant in this context. This
will influence the behavior of the �� and a�0 mesons
through Eqs. (6) and (13), respectively, because the quark
condensate h �ssi is still very high (see Fig. 6 for hgDis). A
different scenario occurs for kaons and their chiral part-
ners: K� and �� in Fig. 8(c) and K0� �K0� and �0� ��0� in
Fig. 8(d).

As it already has been shown [36], below the lower limit
of the Fermi sea continuum of particle-hole excitations,
there are low bound states with quantum numbers of
K�; �K0 and ��. Here we show that these low-energy
modes, collective particle-hole excitations of the Fermi
-12
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FIG. 10 (color online). Density dependence of meson masses
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thresholds for the mesons. The low-lying solutions also are
included. The anomaly coupling is a Fermi function (Case II).
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FIG. 9. Left panel: scalar and pseudoscalar mixing angles as a function of density for the three cases and for the ideal mixing. Right
panel: topological susceptibility as a function of density for the three cases.
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sea, have corresponding chiral partners. The behavior of
the low-energy chiral partners with density is similar to
that of the respective high-energy modes and does not
present meaningful differences in Cases I, II, and III.
This can be seen in Figs. 8(c) and 8(d) for (K�; ��) and
( �K0; ��0), respectively.

We also saw in [36] that in the present approach the
criterion for the occurrence of kaon condensation is not
satisfied since the antikaon masses are always larger than
the difference between the chemical potential of strange
and nonstrange quarks. This conclusion is still valid in the
other cases.

Case II.—Like in the previous section, we postulate in
Case II a density dependence of �, as a Fermi function,
formally similar to the finite temperature case (see Fig. 9,
dashed line in the left panel). Then we can apply this
dependence to model the anomalous coupling, allowing
the calculation of all observables.

Analyzing the mixing angles (Fig. 9, right panel) we
observe that the behavior of &S is similar to the nonzero
temperature and completely symmetric quark matter cases:
it starts at 16� and increases up to the ideal mixing angle
35.264�. A different behavior is found for the angle &P, that
changes sign at �B ’ 4:9�0 ( ’ 3:50�0 in Case I): it starts
at �5:8� and goes to the ideal mixing angle 35.264�, which
also leads, by similar reasons as previously, to a change of
identity between � and �0.

The meson masses, as function of the density, are plotted
in Fig. 10(a). The SU(2) chiral partners (�0; �) are now
always bound states. The pion is a light quark system for all
range of densities and the � meson has a strange compo-
nent, at �B � 0, but becomes purely nonstrange when &S
goes to 35.264�, at �B ’ 3�0. At this density the mesons
become degenerate. This behavior is similar to the nonzero
temperature case.

The SU(2) chiral partner (�; a0) becomes degenerate for
4:0�0 � �B � 4:8�0, a region where they are bound states.
In the same range of densities (�; a0) and (�0; �) are all
degenerate. Suddenly the � mass separates from the others
becoming a purely strange state. This is due to the behavior
of &P that, as already referred, changes sign and goes to
35.264�, at �B ’ 4:9�0. On the other hand, the �0, that
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starts as an unbound state and becomes bound at �B >
3:0�0, turns into a purely light quark system and degener-
ates with �0, �, and a0 mesons. So, the � and the �0 also
change identities. Consequently, contrary to results with
temperature, �0 and �0 are now degenerate.

Finally we analyze the behavior of charged mesons with
density, plotted in Figs. 10(b) and 10(d). The figure shows
that the chiral partners ���; a�0 � and ���; a�0 �, panel (b),
become degenerate for �B ’ 4�0; the chiral partners
�K�; ��� and �K�; ���, panel (d), and �K0; �0� and
� �K0; ��0�, panel (c), do not degenerate in the region of
densities considered. We notice that, while the results for
���; a�0 � are affected by the dependence of gD on density,
we find no substantial differences for the kaonic mesons,
whether gD is constant or not. In order to understand this,
let us remember that for the pion and the a0 propagators,
the dependence on the anomaly enters through the effective
coupling hgDis (see Fig. 6) so, with gD a decreasing
function of the density, this term will affect less and less
the meson masses as the density increases. Then, the con-
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vergence of the mesons reflects the restoration of the UA�1�
symmetry. Since for kaonic mesons the propagators de-
pend on the anomaly through the effective coupling hgDiu
(hgDid), the anomaly has little effect on the kaonic masses,
as the density increases, whether gD is constant or not, due
to the strong decrease of the mass of the nonstrange quarks.
The dominant factor for the calculation of the masses of
those mesons is the mass of the strange quark, which,
although decreasing, remains always very high. We can
say that the restoration of the axial anomaly does not
influence the behavior of kaons and of its chiral partners.
In addition, we remark that the chiral asymmetry (21) is
always different from zero in neutron matter, even for high
densities.

We notice that the convergence between the different
chiral partners always occurs at densities where the mesons
are bound states (see Figs. 10 and 11), i.e., they are
collective excitations defined below the respective q �q
threshold.

Case III.—In this case we postulate the following de-
pendence for gD:gD��B� � gD�0� exp����B=�0�2�. The
topological susceptibility with this dependence is plotted
in Fig. 9, dotted line. From Fig. 11(a) we see that the
density dependence for gD��B� used does strengthen the
phase transitions, like in the finite temperature and com-
plete symmetric matter cases. The masses of the chiral
partners ��0; a0� and ��;�� degenerate at very early values
of the density (�B ’ 2:5�0), compared with Case II (where
�B ’ 4�0). Now the interval where these four mesons are
degenerate is bigger: 2:5�0 � �B � 4:8�0: Then the �
mass separates from the others becoming a purely strange
state and the (�0; a0; �0; �) mesons become again degen-
erate in mass.
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FIG. 11 (color online). Density dependence of meson masses
and of limits of the Dirac sea continua (dotted lines) defining q �q
thresholds for the mesons. The low-lying solutions also are
included. The anomaly coupling is a decreasing exponential
(Case III).
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In this scenario, � (in Fig. 9, dotted line) goes to zero for
�B ’ 3�0. The behavior of the mixing angles (Fig. 9,
dotted lines) is also qualitatively similar to Case II: &S
goes to the ideal mixing angles for �B * 2:5�0 and &P also
changes sign, however this happens for lower densities,
�B ’ 1:0�0. In panel (b) of Fig. 10 we verified that the
degeneracy of �� and a�0 occurs for �B * 2:5�0 (�B *

4:0�0 for Case II). In panels (c) and (d) we note a stronger
decrease of the �� and �0� ��0� masses than in Case II. This
is the more relevant effect.

C. Explicit chiral symmetry breaking without UA�1�
anomaly

The absence of mixing effects (gD � 0) in the gap
equation for the specific environment now considered in-
duces effects that, although in general are qualitatively
similar to the previous cases studied (finite temperature
and symmetric quark matter), have relevant differences: (i)
it is observed a more significant decrease of the constituent
quark mass Md as compared to Mu (the chiral asymmetric
parameter plotted in Fig. 7 reflects this behavior); (ii) the
mass of the strange quark remains constant in the range of
densities considered, since there are no strange quarks in
the medium, due to the fact that Ms >�s [see Eq. (20)].
These two facts will have relevant consequences for the
mesonic behavior to be discussed in the sequel. As it can be
seen in Fig. 12(a), and similarly to the previous situations
without anomaly, �0 and � are degenerate in mass, as well
as a0 and � and, as the density increases, the four mesons
become degenerate (�B ’ 4�0). Some meaningfully dif-
ferences relative to the other cases with gD � 0 appear,
however, above �B ’ 5:5�0. Because of the absence of the
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FIG. 12 (color online). Density dependence of meson masses
and of limits of the Dirac sea continua (dotted lines) defining q �q
thresholds for the mesons. The low-lying solutions also are
included. The axial anomaly is absent (gD � 0).
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anomaly, there are no mixing effects and the mixing angles
have, therefore, always ideal values. However, we observe
a change of sign of the pseudoscalar angle, &P, at that
density (&P � �54:736� for �B < 5:5�0, &P � 35:264�

for �B > 5:5�0) a behavior that seems specific of the
type of matter under study. This implies, as usual, that
the �meson, nonstrange up to this density, becomes purely
strange afterwards, the opposite happening to �0, that
changes the role with � from now, being degenerate with
�0; a0; �. A consequence of the strange quark mass re-
maining constant is that the mesons with only a strangeness
content keep their masses constant [f0; �0���]. As in the
Cases I, II, and III, the f0 meson shows no tendency to
become degenerate with any other meson.

In panel (b) the a�0 are always bound states and we
verify that the degeneracy of (a�0 ; �

�) and (a�0 ; �
�) occurs

at different baryonic densities, respectively, �B ’ 3:5�0
and �B ’ 4:1�0. This may indicate the existence of two
separate first-order phase transitions in the nonstrange
sector, in agreement with the conclusions of [47].

In panels (c) and (d) we notice a strongest decrease of
�0� ��0� masses as compared to those of ��. This is due to a
more pronounced decrease of Md with increasing density.
In addition, the splitting between charge multiplets of
pions and kaons is always manifest as expected.
VII. SUMMARY AND CONCLUSIONS

In this work we investigated different patterns of resto-
ration of axial symmetry, in connection with the restoration
of chiral symmetry, in a model with explicit breaking of the
UA�1� anomaly. The restoration of axial symmetry at non-
zero temperature (density) has been discussed using two
different decreasing functions of temperature (density) for
the coupling anomaly, gD: one of them is inspired in lattice
results (Case II) for the topological susceptibility and the
other is a simple exponential function (Case III). These
results were compared with the case where gD � constant
for all temperatures and densities.

We verified that in the last case there is always an
amount of UA�1� symmetry breaking in the particle spec-
trum even when chiral symmetry restoration in the non-
strange sector occurs at high temperature (density). To
complement the information provided by the effective
restoration of axial symmetry, the extreme case gD � 0
also has been considered. For a more complete understand-
ing of the density effects we considered two different
scenarios of quark matter: (i) symmetric quark matter;
and (ii) neutron matter in , equilibrium. So, the different
patterns of axial symmetry in the vacuum state, with gD �
constant (Case I), Case II and Case III, and gD � 0, have
been applied in a hot medium, in symmetric quark matter,
and in neutron matter.

Since in all cases chiral symmetry is explicitly broken by
the presence of nonzero current quark mass terms, the
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chiral symmetry is realized through parity doubling rather
than by massless quarks. So, the identification of chiral
partners and the study of its convergence is the criterion to
study the effective restoration of chiral and axial symme-
tries. Important information is also provided by the mixing
angles and we verify that, in the scenario of effective
restoration of axial symmetry, the mixing angles converge
to the situation of ideal flavor mixing: (i) the � and �
mesons are pure nonstrange q �q states, while f0 and �0 are
pure strange s�s excitations for symmetric matter and non-
zero temperature cases; (ii) the � and �0 change identities
for neutron matter case.

In the conditions of explicit breaking of chiral symmetry
(real world) we worked, SU(3) symmetry is not exact and,
even in the limiting case gD � 0, the strange sector does
contribute with significant effects even at high temperature
(density) as it is visible in the behavior of f0 and � (�0)
mesons.

We can conclude that in Cases II (or III) the UA�1�
symmetry is effectively restored above the critical transi-
tion temperature of the SU(2) chiral phase transition. But,
in the region of temperatures (densities) studied we
do not observe signs indicating a full restoration of
U�3� � U�3� symmetry as, for instance, the degeneracy
of both a0 and f0 mesons with the pion. In fact, as we
work in a real world scenario (mu � md � ms), we only
observe the return to symmetries of the classical QCD
Lagrangian in the nonstrange sector. The dynamics of the
system at low temperatures or densities is dominated by
quantum effects of both chiral and UA�1� breaking symme-
tries. This is manifest in the low-lying mesonic spectrum.
As the temperature or density increase our model simu-
lates, at least phenomenologically, features of the large
hadron mass spectrum. In such systems both chiral and
UA�1� symmetries must be restored, which is signaled
through a systematical appearance of degenerate chiral
and axial partners.

We started with explicit symmetry breaking in the pres-
ence of the UA�1� anomaly in the vacuum state, with the
axial symmetry being effectively restored by thermal (den-
sity) effects. The results are based on a schematic model,
however, it includes some of the main ingredients for a
reliable qualitative description of the high temperature or
density regime of matter. The anomalous effective interac-
tion vanish under extreme conditions of temperature/den-
sity as required by asymptotic freedom of QCD. A more
realistic approach, which includes the enlargement of this
behavior to the scalar-pseudoscalar interaction, can be
done in the framework of a model with finite range form
factors.
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APPENDIX

In this appendix we present some technical details of the
model formalism in the vacuum state and at finite tempera-
ture and chemical potential.

1. Propagators and polarization operators for
pseudoscalar mesons

The effective quark Lagrangian (2) has been obtained
making a contraction of one bilinear � �q�aq� [12,34–37]
with the projectors Sab; Pab given by

Sab � gS0ab � gDDabch �q�cqi; (A1)

Pab � gS0ab � gDDabch �q�cqi; (A2)

where h �q�cqi are vacuum expectation values. The con-
stants Dabc coincide with the SU(3) structure constants
dabc for a; b; c � �1; 2; . . . ; 8� and D0ab � � 1��

6
p 0ab,

D000 �
��
2
3

q
.

The effective model Lagrangian (2) has been written in a
form suitable for the usual bosonization procedure. This
can be done by the integration over the quark fields in the
functional integral. So, the natural degrees of freedom of
low-energy QCD in the mesonic sector are achieved. It
gives the following effective action:

Weff�’;�� � �
1

2
��aS�1ab �

b� �
1

2
�’aP�1

ab ’
b�

� iTr ln�i���@�� � m̂� �a�a

� �i�5��’a�
a��: (A3)

The notation Tr stands for the trace operation over
discrete indices (Nf and Nc) and integration over momen-
tum. The fields �a and ’a are scalar and pseudoscalar
meson nonets, respectively.

To calculate the meson mass spectrum, we expand the
effective action (A3) over meson fields. Keeping the pseu-
doscalar mesons only, we have the effective meson action

W�2�
eff �’� � �

1

2
’a�P�1

ab ��P
ab�P��’

b

� �
1

2
’a�DPab�P��

�1’b; (A4)

with �P
ab�P� being the polarization operator, which in the

momentum space has the form

�P
ab�P� � iNc

Z d4p

�2��4
TrD�Si�p���

a�ij�i�5�Sj�p� P�

� ��b�ji�i�5��; (A5)

where TrD is the trace over Dirac matrices. The expression
in square brackets in (A4) is the inverse non-normalized
meson propagator �DPab�P��

�1.
For the nondiagonal mesons �;K, the polarization op-

erator takes the form
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�P
ij�P0� � 4��Ii1 � Ij1� � �P20 � �Mi �Mj�

2�Iij2 �P0��;

(A6)

where the integrals Ii1 and Iij2 �P0� are given by

Ii1 � iNc
Z d4p

�2��4
1

p2 �M2
i

�
Nc
4�2

Z  

0

p2dp
Ei

; (A7)

Iij2 �P0� � iNc
Z d4p

�2��4
1

�p2 �M2
i ���p� P0�2 �M2

j �

�
Nc
4�2

Z  

0

p2dp
EiEj

Ei � Ej
P20 � �Ei � Ej�2

; (A8)

where Ei;j �
��������������������
p2 �M2

i;j

q
is the quark energy. To regularize

the integrals we introduce the three-dimensional cutoff
parameter  . When P0 >Mi �Mj it is necessary to take
into account the imaginary part of the second integral. It
may be found, with help of the i4 prescription P20 ! P20 �
i4. Using

lim
4!0�

1

y� i4
� P

1

y
� i�0�y�; (A9)

we obtain the integral

Iij2 �P0� �
Nc
4�2

P
Z  

0

p2dp
EiEj

Ei � Ej
P20 � �Ei � Ej�

2

� i
Nc
16�

p�

�E�
i � E�

j �
; (A10)

with the momentum: p� ��������������������������������������������������������������������������������
�P20 � �Mi �Mj�

2��P20 � �Mi �Mj�
2�

q
=2P0 and the en-

ergy: E�
i;j �

��������������������������
�p��2 �M2

i;j

q
.

To consider the diagonal mesons �0, �, and �0 we take
into account the matrix structure of the propagator in (A4).
In the basis of �0 � �� �0 system we write the projector
Pab and the polarization operator �P

ab as matrices:

Pab �

P33 P30 P38
P03 P00 P08
P83 P80 P88

0BB@
1CCA

and �P
ab �

�P
33 �P

30 �P
38

�P
03 �P

00 �P
08

�P
83 �P

80 �P
88

0BB@
1CCA: (A11)

The nondiagonal matrix elements P30�
1��
6

p gD�h �ququi�

h �qdqdi�, P38 � � 1��
3

p gD�h �ququi � h �qdqdi�, �30 ���������
2=3

p
��P

uu�P0� ��
P
dd�P0��, and �38 � 1=

���
3

p
��P

uu�P0� �
�P
dd�P0�� correspond to �0 � � and �0 � �0 mixing. In

the case h �ququi � h �qdqdi, the �0 is decoupled from the
�� �0 system and the preceding matrices have the non-
vanishing elements:
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P33 � gS � gDh �qsqsi; (A12)

P00 � gS �
2

3
gD�h �ququi � h �qdqdi � h �qsqsi�; (A13)

P88 � gS �
1

3
gD�2h �ququi � 2h �qdqdi � h �qsqsi�; (A14)

P08 � P80 �
1

3
���
2

p gD�h �ququi � h �qdqdi � 2h �qsqsi�;

(A15)

and

�P
00�P0� �

2

3
��P

uu�P0� ��P
dd�P0� ��

P
ss�P0��; (A16)

�P
88�P0� �

1

3
��P

uu�P0� ��
P
dd�P0� � 4�

P
ss�P0��; (A17)

�P
08�P0� � �P

80�P0�

�

���
2

p

3
��P

uu�P0� ��P
dd�P0� � 2�

P
ss�P0��;

(A18)

where

�P
ii�P0� � 4�2Ii1 � P20I

ii
2 �P0��: (A19)

The procedure to describe scalar mesons is analogous.
We present below the most relevant steps.

To calculate the meson mass spectrum, we expand the
effective action (A3) over meson fields. Keeping now the
scalar mesons only, we have the effective meson action

W�2�
eff ��� � �

1

2
�a�S�1ab ��S

ab�P���
b

� �
1

2
�a�DSab�P��

�1�b; (A20)

with �S
ab�P� being the polarization operator, which in the

momentum space has the form of (A5) with (i�5) substi-
tuted by the identity matrix.

The polarization operator associated with the nondiag-
onal mesons (a0; �; f0) has the form

�S
ij�P0� � 4��Ii1 � Ij1� � �P20 � �M2

i �M2
j ��I

ij
2 �P0��:

(A21)

To consider the diagonal mesons a00, �, and f0 we take
into account the matrix structure of the propagator in
(A20). In the basis of a00 � �� f0 system we write the
projector Sab and the polarization operator �S

ab as matri-
ces:
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Sab �

S33 S30 S38
S03 S00 S08
S83 S80 S88

0BB@
1CCA

and �S
ab �

�S
33 �S

30 �S
38

�S
03 �S

00 �S
08

�S
83 �S

80 �S
88

0BB@
1CCA: (A22)

In the case h �ququi � h �qdqdi the preceding form of the
matrices is reduced to

Sab !
S33 0
0 �Sab

� �
and �P

ab !
�S
33 0
0 ��S

ab

� �
;

(A23)

with

S33 � gS � gDh �qsqsi; (A24)

S00 � gS �
2

3
gD�h �ququi � h �qdqdi � h �qsqsi�; (A25)

S88 � gS �
1

3
gD�2h �ququi � 2h �qdqdi � h �qsqsi�; (A26)

S08 � S80 � �
1

3
���
2

p gD�h �ququi � h �qdqdi � 2h �qsqsi�:

(A27)

Analogously, we get

�S
00�P0� �

2

3
��S

uu�P0� ��
S
dd�P0� ��

S
ss�P0��; (A28)

�S
88�P0� �

1

3
��S

uu�P0� ��
S
dd�P0� � 4�

S
ss�P0��; (A29)

�S
08�P0� � �S

80�P0�

�

���
2

p

3
��S

uu�P0� ��S
dd�P0� � 2�

S
ss�P0��;

(A30)

where

�S
ii�P0� � 4�2Ii1 � �P20 � 4M

2
i �I

ii
2 �P0��: (A31)

We also obtain

D�1
� � �A� C� �

�������������������������������������
�C�A�2 � 4B2

q
; (A32)

and

D�1
f0

� �A� C� �
�������������������������������������
�C�A�2 � 4B2

q
; (A33)

where the expressions for A, B, and C are formally
analogous to those for pseudoscalars.
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The masses of the � and f0 meson can now be deter-
mined by the conditions D�1

� �M�; 0� � 0 and
D�1
f0
�Mf0 ; 0� � 0.

2. Model formalism at finite temperature and
chemical potential

The NJL model can be generalized to the finite tempera-
ture and chemical potential case. It can be done by the
substitution [33]Z d4p

�2��4
!

1

�i,

Z d3p

�2��3
X
n

; (A34)

where , � 1=T, T is the temperature, and the sum is done
over Matsubara frequencies !n � �2n� 1��T, n �
0;�1;�2; . . . , so that p0 ! i!n �� with a chemical
potential �. Instead of integration over p0 we have now
the sum over Matsubara frequencies which can be eval-
uated

�
1

,

X
n

h�!n� �
X

Rezm�0

��1� f�zm��Res�h�!n�; zm�

� �f�zm�Res� �h�!n�; zm��; (A35)
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where f�z� and �f�z� are the Fermi distribution functions for
quarks and antiquarks:

f�z� �
1

1� e,�z�u�
; �f�z� �

1

1� e,�z�u�
: (A36)

As 1� �f�z� � f��z�, we introduce, for convenience, the
Fermi distribution functions for the positive (negative)
energy state of the ith quark:

n�i � fi��Ei� �
1

1� e�,�Ei��i�
: (A37)

At finite temperature the integral Ii1 (A7) takes the form

Ii1�T;�i� � �
Nc
4�2

Z p2dp
Ei

�n�i � n�i �: (A38)

The integral Iij2 �P� depends now on the temperature T
and two chemical potentials �i;�j which are appropriated
to quark flavors
Iij2 �P0; T; �i; �j� � �Nc
Z d3p

�2��3

�
1

2Ei

1

�Ei � P0 � ��i ��j��
2 � E2j

n�i �
1

2Ei

1

�Ei � P0 � ��i ��j��
2 � E2j

n�i

�
1

2Ej

1

�Ej � P0 � ��i ��j��
2 � E2i

n�j �
1

2Ej

1

�Ej � P0 � ��i ��j��
2 � E2i

n�j

�
: (A39)
For the case i � j, with imaginary part, we have the
expression

Iii2 �P0; T; �i� � �
Nc
2�2

P
Z p2dp

Ei

1

P20 � 4E
2
i

�n�i � n�i �

� i
Nc
4�

�������������������
1�

4M2
i

P20

s

�

�
n�i

�
P0
2

�
� n�i

�
P0
2

��
: (A40)
Having these integrals as functions of the temperature
and chemical potentials, we can investigate the meson
properties in hot/dense matter.

3. Topological susceptibility

The topological susceptibility is given by

��k2� �
Z
d4xe�ikxh0jTQ�x�Q�0�j0iconnected; (A41)

where Q�x� is the topological charge density. The general
expression for � in NJL model has been obtained in [44]
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