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Pion superfluidity and meson properties at finite isospin density
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We investigate pion superfluidity and its effect on meson properties and equation of state at finite
temperature and isospin and baryon densities in the frame of a standard flavor SU(2) NJL model. In mean
field approximation to quarks and random phase approximation to mesons, the critical isospin chemical
potential for pion superfluidity is exactly the pion mass in the vacuum, and corresponding to the isospin
symmetry spontaneous breaking, there is in the pion superfluidity phase a Goldstone mode which is the
linear combination of the normal sigma and charged pion modes. We calculate numerically the gap
equations for the chiral and pion condensates, the phase diagrams, the meson spectra, and the equation of
state, and compare them with that obtained in other effective models. The competitions between pion
superfluidity and color superconductivity at finite baryon density and between pion and kaon superfluidity
at finite strangeness density in flavor SU(3) NJL model are briefly discussed.
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INTRODUCTION

It is generally believed that there exists a rich phase
structure of Quantum Chromodynamics (QCD) at finite
temperature and baryon density, for instance, the decon-
finement process from hadron gas to quark-gluon plasma,
the transition from chiral symmetry breaking to the sym-
metry restoration [1], and the color superconductivity [2] at
low temperature but high baryon density. Recently, the
study on the QCD phase structure is extended to finite
isospin density. The physical motivation to study QCD at
finite isospin density and the corresponding pion super-
fluidity is related to the investigation of compact stars,
isospin asymmetric nuclear matter, and heavy ion colli-
sions at intermediate energies. In early studies on dense
nuclear matter and compact stars, it has been suggested
that charged pions and even kaons are condensed at suffi-
ciently high density [3–6].

While the perturbation theory of QCD can well describe
the properties of the new phases at high temperature and/or
high density, the study on the phase structure at moderate
(baryon or/and isospin) density depends on lattice QCD
calculation and effective models with QCD symmetries.
While there is not yet precise lattice results at finite baryon
density due to the Fermion sign problem [7], it is in
principle no problem to do lattice simulation at finite
isospin density [8]. Recently it has been found that [9–
11] there is a phase transition from normal phase to pion
superfluidity at a critical isospin chemical potential which
is about the pion mass in the vacuum, �c

I ’ m�. The QCD
phase structure at finite isospin density is also investigated
in many low energy effective models, such as chiral per-
turbation theory [8,12–15], Nambu–Jona-Lasinio (NJL)
model [16–20], random matrix method [21,22], ladder
QCD [23], and strong coupling lattice QCD [24].

One of the models that enables us to see directly how the
dynamic mechanisms of chiral symmetry breaking and
restoration operate is the NJL model [25] applied to quarks
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[26–29]. The chiral phase transition line [26–32] in the
temperature and baryon chemical potential (T ��B) plane
calculated in the model is very close to the one obtained
with lattice QCD. Recently, this model was also used to
investigate the color superconductivity at moderate baryon
density [33–40]. It is natural to extend the NJL model to
finite isospin chemical potential [16,17]. In the frame of
general NJL Lagrangian with UA�1� breaking term [19], it
is analytically proved [20] at the quark level that the
critical isospin chemical potential for pion superfluidity
is exactly the pion mass in the vacuum, �c

I � m�, and this
relation is independent of the model parameters, regulari-
zation scheme,UA�1� breaking coupling, and color degrees
of freedom Nc.

Unlike the effective models at hadron level where one
can study the effect of phase transitions on meson and
diquark properties in mean field approximation, in the
NJL model applied to quarks only the order parameters
of the phase transitions, namely, the condensates, can be
described at mean field level; to study mesons and diquarks
should go beyond the mean field approximation. It is well-
known that [27] in the mean field approximation to quarks
together with random phase approximation (RPA) to me-
sons in the NJL model, one can obtain the hadronic mass
spectra and the static properties of mesons remarkably
well, especially the Goldstone mode corresponding to the
chiral symmetry spontaneous breaking. However, in the
pion superfluidity or the color superconductivity phase, the
structure of the bubble summation in RPA is much more
complicated than that in the chiral breaking phase. The
correlation among the mesons and diquarks becomes very
important and leads to the Goldstone modes corresponding
to the isospin and color symmetry spontaneous breaking.
In this paper, we study analytically and numerically the
pion superfluidity, its effect on the meson properties, and
its possible competition with the color superconductivity
and kaon condensation in the frame of the standard NJL
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model at finite temperature and baryon, isospin, and
strangeness chemical potentials.

This paper is organized as follows. In Sec. II, we estab-
lish the mean field theory of the NJL model at finite
temperature and baryon and isospin densities. In Sec. III,
we study the pion superfluidity at zero temperature, zero
baryon chemical potential, but finite isospin chemical po-
tential, and calculate the chiral and pion condensates and
thermodynamic functions. In Sec. IV, we study the tem-
perature behavior of the pion superfluidity at zero baryon
chemical potential and show the phase diagrams in the
temperature and isospin chemical potential plane. In
Sec. V, we investigate the meson modes in both normal
phase and superfluidity phase in RPA. In Sec. VI, the
bosonized version of the SU�2� NJL model is discussed
at finite isospin chemical potential with pion condensation.
In Sec. VII, we study the baryon chemical potential effect
and the competition between pion and diquark condensa-
tions. In Sec. VIII, we briefly discuss the flavor SU�3� NJL
model at finite isospin and strangeness chemical potentials
including both pion and kaon condensations. We summa-
rize in Sec. IX.
II. MEAN FIELD THEORY OF NJL MODEL AT
FINITE �I

The standard approach for dealing with the thermody-
namics of variable particles is via the grand canonical
ensemble. The key quantity for a system with baryon
number conservation and isospin number conservation is
the partition function defined by

Z�T;�I; �B; V� � Tre���H��BB��II3�: (1)

Here V is the volume of the system, � the inverse tem-
perature � � 1=T, �B and �I are the baryon and isospin
chemical potentials, and B and I3 are the conserved baryon
number and isospin number operators. If we take only
quark field  as an elementary field of the system, the
operators can be expressed as

B �
1

Nc

Z
d3 ~x � �0 ; I3 �

1

2

Z
d3 ~x � �0�3 ; (2)

The factors 1=Nc and 1/2 reflect the fact that Nc quarks
make a baryon and quark’s isospin quantum number is 1/2.
In the imaginary time formalism of finite temperature field
theory, the partition function can be represented as

Z�T;�I; �B; V� �
Z
�d � ��d �e�

R
�

0
d�
R
d3 ~x�L� � ��0 �;

(3)

where L is the Lagrangian density of the system, and� the
quark chemical potential matrix in flavor space � �
diag��u;�d� with the u and d quark chemical potentials,

�u �
�B

Nc
�
�I

2
; �d �

�B

Nc
�
�I

2
: (4)
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The flavor SU�2� NJL Lagrangian density is defined as
[25–29]

L � � �i��@� �m0� �G�� �  �2 � � � i�5 ~� �2�; (5)

with scalar and pseudoscalar interactions corresponding to
� and � excitations, or equivalently,

L � � �i��@� �m0� �G�� �  �2 � � � i�3�5 �2

� 2� � i�5�� �� � i�5�� ��; (6)

with �� and �� excitations instead of �1 and �2, and
�	 � ��1 	 i�2�=

���
2

p
.

The above Lagrangian density has the symmetry
UB�1�

N
SUI�2�

N
SUA�2� corresponding to baryon num-

ber gauge symmetry, isospin symmetry, and chiral symme-
try, respectively. However, in the presence of a nonzero
isospin chemical potential, the isospin symmetry SUI�2�
breaks down to UI�1� global symmetry which is related to
Bose-Einstein condensation of charged pions, and the chi-
ral symmetry SUA�2� breaks down to UA�1� global sym-
metry which is associated with the chiral condensation of
the sigma meson. Therefore, in the case with �I � 0,
chiral symmetry restoration at finite temperature and
chemical potentials means only degeneration of � and
�0 meson masses. At zero baryon chemical potential, the
‘‘Fermi surfaces’’ of the u�d� and anti-d�u� quarks coin-
cide. Therefore, at sufficiently high �I > 0 the condensate
of u and anti-d quarks is favored, and at sufficiently high
�I < 0 the condensate of d and anti-u quarks is favored.
Since at low isospin chemical potential (and low tempera-
ture and low baryon chemical potential) there is no decon-
finement, the condensates can be identified as Bose-
Einstein condensates of charged pions, �� and ��.
Introducing the chiral condensate,

h �  i � � � �u � �d; �u � h �uui; �d � h �ddi;

(7)

and two pion condensates,

h � i�5�� i �
���
2

p
h �ui�5di � �� �

����
2

p ei!;

h � i�5�� i �
���
2

p
h �di�5ui � �� �

����
2

p e�i!;
(8)

a nonzero condensate �means spontaneous chiral symme-
try breaking, and a nonzero condensate � means sponta-
neous isospin symmetry breaking. The phase factor !
related to the condensates �� and �� indicates the direc-
tion of the UI�1� symmetry breaking. If the system is in
global thermal equilibrium, ! is a constant and it does not
change any physical result. For convenience we choose
! � 0 in the following. As is well known and will be seen
later, there are corresponding Goldstone modes in the
region of spontaneous chiral breaking and the region of
spontaneous isospin breaking.
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Defining the meson fluctuations "�; "�0
; "��

; "��
as

�  � �� "�; � i�3�5 � "�0
;

� i�5�� � �� � "��
; � i�5�� � �� � "��

;

(9)

and keeping only the linear terms in ", the partition func-
tion in mean field approximation is simplified as

Z�T;�I; �B; V� �
Z
�d � ��d �e�

R
�

0
d�
R
d3 ~xLmf ; (10)

with the mean field Lagrangian density

Lmf � � �i��@� � �m0 � 2G�� ���0 � 2iG��1�5� 

�G��2 � �2�; (11)

from which the inverse quark propagator matrix in the
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flavor space as a function of quark momentum can be
derived directly,

S �1
mf �k� �

��k���u�0 �Mq 2iG��5

2iG��5 ��k���d�0 �Mq

� �
;

(12)

with the effective quark mass

Mq � m0 � 2G�: (13)

Using the method of massive energy projectors [34], we
obtain explicitly the mean field quark propagator

S mf�k� �
Suu�k� Sud�k�
Sdu�k� Sdd�k�

� �
; (14)

with the four matrix elements
S uu�k� �
k0 � Ek ��d

�k0 � E�
���k0 � E�

��
���0 �

k0 � Ek ��d

�k0 � E�
���k0 � E�

��
���0;

Sdd�k� �
k0 � Ek ��u

�k0 � E�
���k0 � E�

��
���0 �

k0 � Ek ��u

�k0 � E�
���k0 � E�

��
���0;

Sud�k� �
2iG�

�k0 � E�
���k0 � E�

��
���5 �

2iG�
�k0 � E�

���k0 � E�
��

���5;

Sdu�k� �
2iG�

�k0 � E�
���k0 � E�

��
���5 �

2iG�
�k0 � E�

���k0 � E�
��

���5;

(15)
where E	
 are effective quark energies

E	
 � E	

k 
�B

3
;

E	
k �

�������������������������������������������������
�Ek 	�I=2�2 � 4G2�2

q
;

Ek �
����������������������
jkj2 �M2

q

q
;

(16)

and �	 are the energy projectors

�	�k� �
1

2

�
1	

�0�� � k�Mq�

Ek

�
: (17)
A. Gap equations

The quark propagator (14) is the background of calcu-
lations for quarks in mean field approximation and also for
mesons in RPA. From the definitions of the chiral and pion
condensates (7) and (8), it is easy to express them in terms
of the matrix elements of the quark propagator,

�u � �Nc
Z d4k

�2��4
TrD�iSuu�k��;

�d � �Nc
Z d4k

�2��4
TrD�iSdd�k��;

� � Nc
Z d4k

�2��4
TrD��Sud�k� � Sdu�k���5�;

(18)

where the trace TrD is taken in Dirac space and the
four momentum integration is defined as

R
d4k
�2��4 �

iT
P
n

R
d3 k

�2��3 at finite temperature. Obviously, in the

study without considering color superconductivity, the
color degrees of freedom in the NJL model is trivial, and
the trace in color space simply contributes a factor Nc.
Performing the trace in spin space (the trace including the
energy projectors are presented in Appendix A) and the
Matsubara frequency summation we have
-3
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�u �
Z d3k

�2��3
NcMq

Ek

	
ff�E

�
�� � ff��E

�
�� � ff�E

�
�� � ff��E

�
�� �

Ek ��I=2
E�
k

�ff�E
�
�� � ff��E

�
���

�
Ek ��I=2

E�
k

�ff�E
�
�� � ff��E

�
���



;

�d �
Z d3k

�2��3
NcMq

Ek

	
�ff�E�

�� � ff��E�
�� � ff�E�

�� � ff��E�
�� �

Ek ��I=2
E�
k

�ff�E�
�� � ff��E�

���

�
Ek ��I=2

E�
k

�ff�E�
�� � ff��E�

���



;

� � �4NcG�
Z d3k

�2��3

	
1

E�
k

�ff�E
�
�� � ff��E

�
��� �

1

E�
k

�ff�E
�
�� � ff��E

�
���



; (19)
with the Fermi-Dirac distribution function

ff�x� �
1

ex=T � 1
: (20)

This group of gap equations has a symmetry that it is
invariant under the transformations �u ! �d; �d !
�u;�I ! ��I. Therefore, we can only concentrate on
the case �I > 0 and the results for the case �I < 0 can
be obtained easily. It is also necessary to note that for
�B � 0 or �I � 0, there is always �u � �d, since in
this case the chemical potential difference between �u and
u is the same as the difference between �d and d.

In any case we can combine the first two gap equations
into one determining the chiral condensate �,

� �
Z d3k

�2��3
2NcMq

Ek

	
Ek ��I=2

E�
k

�ff�E
�
�� � ff��E

�
���

�
Ek ��I=2

E�
k

�ff�E
�
�� � ff��E

�
���



: (21)

We now consider the limit of �I � 0. In this case the
gap equations are reduced to

�
	
1�

Z d3k
�2��3

8NcG��������������������������
E2
k � 4G2�2

q �ff�E�
�� � ff��E�

���




�
Z d3k

�2��3
4m0Nc��������������������������

E2
k � 4G2�2

q �ff�E�
�� � ff��E�

���;

�
	
1�

Z d3k
�2��3

8NcG��������������������������
E2
k � 4G2�2

q �ff�E�
�� � ff��E�

���




� 0: (22)
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Only in the chiral limit m0 � 0, there is possibly nonzero
�, and the gap equation
1�
Z d3k

�2��3
4Nc�����������������������������������������

k2 � 4G2��2 � �2�
p �ff�E

�
��

� ff��E
�
��� � 0 (23)
determines the combination of the two condensates �2 �
�2. In the real world with nonzero quark mass m0 � 0, the
pion condensate is forced to vanish, � � 0 at �I � 0, and
� satisfies the well-known NJL gap equation
��
Z d3k

�2��3
4NcMq

Ek

	
ff

�
Ek �

�B

3

�

� ff

�
�Ek �

�B

3

�

� 0: (24)
B. Thermodynamics

The thermodynamic potential in mean field approxima-
tion
� � �
T
V

lnZ � �
T
V

Tr lnS�1
mf �G��2 � �2� (25)
can be evaluated with the effective quark energies
��T;�I; �Bj�u;�d; �� � �G��2 � �2� � Nc
Z d3k

�2��3
�E�

� � E�
� � E�

� � E�
� � 2T�ln�1� e�E

�
�=T� � ln�1� eE

�
�=T�

� ln�1� e�E
�
�=T� � ln�1 � eE

�
�=T���: (26)
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The gap Eqs. (19) for the condensates are equivalent to the
extremum condition of the thermodynamic potential,

@�
@�u

� 0;
@�
@�d

� 0;
@�
@�

� 0: (27)

Note that when there exist multi roots of the gap equations,
only the solution which satisfies the minimum condition

@2�

@�2
u
� 0;

@2�

@�2
d

� 0;
@2�

@�2 � 0 (28)

is physical.
Once � is known, the thermodynamic functions that

measure the bulk properties of matter can be obtained. For
an infinite system, these are the pressure p, the entropy
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density s, the charge number densities nB and nI, the flavor
number densities nu and nd, the energy density ,, and the
specific heat c, that are defined as

p � ��; s � �
@�
@T

; nB � �
@�
@�B

;

nI � �
@�
@�I

; nu � � @�
@�u

; nd � � @�
@�d

;

, � �p� Ts��InI ��BnB; c �
@,
@T

:

(29)

The flavor number densities nu � h �u�0ui and nd �
h �d�0di can also be obtained directly from the matrix
elements of the quark propagator,
nu � �Nc
Z d4k

�2��4
TrD�iSuu�k��0�

� Nc
Z d3k

�2��3

	
ff�E

�
�� � ff��E

�
�� � ff�E

�
�� � ff��E

�
�� �

Ek ��I=2
E�
k

�ff�E
�
�� � ff��E

�
���

�
Ek ��I=2

E�
k

�ff�E�
�� � ff��E�

��� � 2


;

nd � �Nc
Z d4k

�2��4
TrD�iSdd�k��0�

� Nc
Z d3k

�2��3

	
ff�E�

�� � ff��E�
�� � ff�E�

�� � ff��E�
�� �

Ek ��I=2
E�
k

�ff�E�
�� � ff��E�

���

�
Ek ��I=2

E�
k

�ff�E�
�� � ff��E�

��� � 2


: (30)

Each pure number density is the difference between the corresponding quark number density and antiquark number
density,

nu � n�u � n�u ; nd � n�d � n�d : (31)

With the help of the positive and negative energy projectors �� and ��, we separate n	u;d from nu;d,

n�u � Nc
Z d3k

�2��3

	
ff�E�

�� � ff��E�
�� �

Ek ��I=2
E�
k

�ff�E�
�� � ff��E�

���



;

n�u � �Nc
Z d3k

�2��3

	
ff�E

�
�� � ff��E

�
�� �

Ek ��I=2
E�
k

�ff�E
�
�� � ff��E

�
��� � 2



;

n�d � Nc
Z d3k

�2��3

	
ff�E

�
�� � ff��E

�
�� �

Ek ��I=2
E�
k

�ff�E
�
�� � ff��E

�
���



;

n�d � �Nc
Z d3k

�2��3

	
ff�E

�
�� � ff��E

�
�� �

Ek ��I=2
E�
k

�ff�E
�
�� � ff��E

�
��� � 2



:

(32)
It is easy to obtain the relations between the flavor number
densities and the charge number densities,
nI �
1

2
�nu � nd�; nB �

1

3
�nu � nd�: (33)
III. PURE ISOSPIN EFFECT IN MEAN FIELD
APPROXIMATION

To solve the gap equations and calculate the thermody-
namic functions numerically, we should first fix the model
parameters. Because of the contact interaction between
quarks that is introduced in the model, there is of course
-5
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FIG. 1. The chiral and pion condensates � and �, scaled by the
chiral condensate �0, as function of isospin chemical potential
�I in the chiral limit (upper panel) and real world (lower panel)
at T � �B � 0.
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no confinement. A further consequence of this feature is
that the model is nonrenormalizable, and it is necessary to
introduce a regulator � that serves as a length scale in the
problem, and which can be thought of as indicating the
onset of asymptotic freedom[41]. In the following we take
a hard three-momentum cutoff �, which and the other two
model parameters, the effective coupling constant G and
the current quark mass m0, can be fixed by fitting the pion
mass m� � 0:134 GeV, the pion decay constant f� �
0:093 GeV, and the quark condensate density �u � �d �
��0:25 GeV�3 in the vacuum. They are[31] m0 � 0, � �
0:65 GeV, and G � 5:01 GeV�2 in the chiral limit, and
m0 � 0:005 GeV, � � 0:653 GeV, and G � 4:93 GeV�2

in the real world.
In this section we concentrate on the pure isospin effect

with T � �B � 0. In this case the difference between the u
quark and d quark condensates disappears and we need to
calculate the total chiral condensate � � 2�u � 2�d only.

A. Pion and chiral condensates

At zero temperature and baryon chemical potential the
gap equations for the chiral and pion condensates are
reduced to

�� 2NcMq

Z d3k
�2��3

1

Ek

�
Ek ��I=2

E�
k

�
Ek ��I=2

E�
k

�
� 0;

�
	
1� 4NcG

Z d3k
�2��3

�
1

E�
k

�
1

E�
k

�

� 0:

(34)

It is clear that the order parameter � � 0 is always a
solution of the second gap equation, it corresponds to the
phase with isospin symmetry at low isospin chemical
potential. The other order parameter � describing chiral
properties in this phase is �I independent,

�� 4NcMq

Z d3k
�2��3

1

Ek
� 0: (35)

This means that the chiral condensate keeps its vacuum
value in the isospin symmetric phase with � � 0.

At the critical isospin chemical potential �c
I where the

isospin symmetry starts to break spontaneously and the
pion condensate appears, the solution � � 0 should sat-
isfies the equation

1� 8NcG
Z d3k

�2��3
1

Ek

E2
k

E2
k � ��c

I �
2=4

� 0: (36)

From the comparison with the well-known pole equation
[26–31] determining the pion mass in the vacuum,

1� 8NcG
Z d3k

�2��3
1

Ek

E2
k

E2
k �m2

�=4
� 0; (37)

where the quark mass Mq hidden in the quark energy Ek is
the same as that in (36) and controlled by the gap equation
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(35), we find explicitly that the critical isospin chemical
potential �c

I for the pion condensation phase transition at
T � �B � 0 is exactly equal to the pion mass in the
vacuum,

�c
I � m�: (38)

For �I > �c
I the isospin dependence of the two order

parameters is governed by the first equation of (34) and

1� 4NcG
Z d3k

�2��3

�
1

E�
k

�
1

E�
k

�
� 0: (39)

The condensates � and � scaled by the chiral conden-
sate �0 in the vacuum are shown in Fig. 1 as functions of
�I. In the chiral limit, pions are Goldstone particles of
-6
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2, 3, 4 in the normal phase with �I � 0:1 GeV (upper panel) and
pion superfluidity phase with �I � 0:4 GeV (lower panel) at
T � �B � 0.
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chiral symmetry spontaneous breaking, m� � 0. There-
fore, at �I � 0 the pion condensate jumps up from the
vacuum value � � 0 to a finite value, and the chiral
condensate jumps down from the vacuum value �0 �
2��0:25 GeV�3 to zero and then keeps zero in the region
�I > 0 due to the constraint of the gap equations (34).
These sudden changes at the critical point �c

I � 0 means
that in the chiral limit, no matter how small the isospin
chemical potential is, the chiral symmetry is restored and
pion Bose-Einstein condensate occurs. In the real world
with nonzero current quark mass, the critical point is at
�c
I � m� � 0:134 GeV and both the chiral and pion

superfluidity phase transitions are of second order. When
the isospin chemical potential is small, the vacuum state is
not disturbed. Only when it exceeds the pion mass, the pion
condensate goes up with�I and at the same time the chiral
condensate drops down with �I. The two condensates
coexist in a wide region. Different from the result obtained
with chiral perturbation theory[8] where the pion conden-
sate at finite �I is always less than the chiral condensate in
the vacuum, �=�0 < 1, � in our calculation can be larger
than �0 at some intermediate isospin chemical potential.
The pion condensate tends to zero at about �I �
1:75 GeV. While the value of the endpoint of pion con-
densation in our calculation is closely related to the finite
momentum cutoff �, the disappearance of pion condensa-
tion at sufficiently high isospin chemical potential can be
understood in the frame of asymptotic freedom of QCD.

What is the isospin effect on the chiral condensate if we
do not consider isospin spontaneous breaking? In this case,
the only condensate, the chiral condensate �, is controlled
by the gap equation

�� 4NcMq

Z d3k
�2��3

1

Ek
��Ek � j�Ij=2� � 0; (40)

the isospin chemical potential dependence of � is similar
to its well-known baryon chemical potential dependence.
In the chiral limit, the phase transition point is at

�I � 2

�������������������������
�2 �

�2

2GNc

s
: (41)

B. Dispersion relations

The dispersion relations of quasiparticles are given by
the poles of the quark propagator (14),

!1�jkj� � E�
��jkj�; !2�jkj� � �E�

��jkj�;

!3�jkj� � E�
��jkj�; !4�jkj� � �E�

��jkj�:
(42)

In the case with �B � 0, it is easy to see the symmetry of
!1 � �!2 and !3 � �!4. The dispersion relations in
this case are shown in Fig. 2 at T � 0. In both the isospin
symmetric phase with �I � 0:1 GeV<m� and the sym-
metry breaking phase with �I � 0:4 GeV>m�, any qua-
siparticle excitation needs energy. In the normal phase with
116001
� � 0, the chiral condensate � opens the gap for the
quasiparticle excitations, and in the pion superfluidity
phase with �I > m�, the gap is mainly due to the pion
condensate � � 0. In the normal phase, the minima of the
quasiparticle energies are located at jkj � 0, but in the
superfluidity phase, the location of the minima of !1 and
!2 are shifted to a finite momentum when �I is large
enough.

The quark occupation numbers n�u �jkj�, n�u �jkj�,
n�d �jkj�, and n�d �jkj� in momentum space are just the
integrated functions in (32). At T � �B � 0 they are
reduced to

n�u �jkj� � n�d �jkj� � 1�
Ek ��I=2

E�
k

;

n�d �jkj� � n�u �jkj� � 1�
Ek ��I=2

E�
k

:

(43)
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In the normal phase we have n�u �jkj� � n�u �jkj� �
n�d �jkj� � n�d �jkj� � 0, since the ground state in this
case is just the vacuum state and there are no quark or
antiquark excitations. In the superfluidity phase, there are
excited quarks and antiquarks, the occupation numbers are
shown in Fig. 3 as functions of momentum. Note that the
maximal occupation number is 2 because of the spin
degenerate.

C. Bulk properties

We first calculate the isospin density. At T � �B � 0 it
is

nI � Nc
Z d3k

�2��3

	
Ek ��I=2

E�
k

�
Ek ��I=2

E�
k



: (44)
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The numerical result, scaled by the normal nuclear density
n0 � 0:17=fm3, is shown in Fig. 4. Again in the normal
phase with �I < m� the unchanged ground state leads to a
zero isospin density. Only when �I exceeds the vacuum
pion mass, nI increases monotonously with �I. This non-
zero net isospin density is due to the Bose-Einstein con-
densation of charged pions which results in different flavor
densities. To see this clearly, we plot the flavor densities,
scaled by the normal nuclear density n0, as functions of
isospin chemical potential in Fig. 5. In the superfluidity
phase the relation n�u � n�d > n�d � n�u leads to the net
isospin density, and then the number of �� in the system
should be larger than the number of ��.
-8
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Physically, the thermodynamic potential ��T;
�I; �B; j�u�T;�I;�B�; �d�T;�I; �B�; ��T;�I; �B�� cor-
responds to the pressure except for a sign, and only the
pressure relative to the physical vacuum �phys

vac can be
measured. The physical vacuum is defined to be
0.6

0.8
�phys
vac � ��0; 0; 0j�u�0; 0; 0�; �d�0; 0; 0�; ��0; 0; 0��;

(45)
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0.

chiral condensate �0 in the vacuum, as functions of isospin
density nI at T � �B � 0.
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We introduce the rescaled thermodynamic potential

���T;�I;�Bj�u;�d;�� ���T;�I;�Bj�u;�d;����phys
vac ;

(47)

the measurable pressure p and the energy density , are
related to it. Of course, the redefinition of � will not
change the number densities and the entropy density since
they are the derivatives of � with respect to � and T.

The pressure and energy densities are shown in Fig. 6 at
T � �B � 0. From the redefinition (47) they are zero in
the vacuum and keep zero in the normal phase, since the
isospin effect is not strong enough to disturb the vacuum
state. In the pion superfluidity phase, the ratio of p to ,
which describes the equation of state of the system goes up
with increasing �I first and then gets saturated, p=,� 0:7,
at�I � 0:5 GeV. This behavior indicates that the system is
far from an ideal gas which satisfies the equation of state
p � 1

3 ,.
To conclude this subsection, we remark that the isospin

number density nI is perhaps a more physical variable than
the isospin chemical potential �I, since nI can be directly
measured. The chiral and pion condensates� and�, scaled
by the chiral condensate �0 in the vacuum, the pressure p
and energy density ,, and the ratio of p to , are shown
again in Figs. 7 and 8. Different from their �I-dependence,
Figs. 1 and 6, where the isospin symmetric and symmetry
breaking phases are shown simultaneously and are sepa-
rated from each other at �I � m�, the isospin symmetric
phase is now contracted at a point nI � 0. The isospin
density corresponding to the saturated equation of state is
about 5 times the normal nuclear density.
-9
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IV. TEMPERATURE EFFECT IN MEAN FIELD
APPROXIMATION

We now study the temperature behavior of the chiral and
pion condensates and the thermodynamic functions, and
discuss the phase diagram in the T ��I plane in mean
field approximation at �B � 0.

A. Chiral and pion condensates

The temperature dependence of the two condensates �
and �, again scaled by the chiral condensate �0 in the
vacuum, at a fixed isospin chemical potential �I �
0:05 GeV is shown in Fig. 9 in the chiral limit. In the
chiral limit any small isospin chemical potential will force
the broken chiral symmetry to be restored and the isospin
symmetry to be broken at T � 0. Therefore, the chiral
condensate keeps zero, and the pion condensate is contin-
116001-10
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uously melted in the hot medium. Finally at a critical
temperature Tc � 0:18 GeV the pion condensate vanishes
and the isospin symmetry is restored. At small isospin
chemical potential the value of the critical temperature
for isospin restoration is almost the same for chiral resto-
ration in the study without considering pion condensation
[27,31]. In Fig. 10 we show the pion and chiral condensates
as functions of T at�I � 0:15 GeV and 0.2 GeV. For�I >
m�, the pion condensate is already nonzero at the begin-
ning, then drops down due to the temperature effect, and
finally disappears at a critical temperature Tc. Like the
standard BCS theory, the critical temperature and the
pion condensate at T � 0 satisfies the linear relation,

TC��I� � 0:57��T � 0; �I�: (48)

The relative strength of the two condensates at the
beginning depends on the isospin chemical potential,
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as functions of isospin chemical potential �I at �B � 0 and
T � 0:1 GeV.
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��T � 0�>��T � 0� at small �I and ��T � 0�>
��T � 0� at large �I. Qualitatively different from the
study on chiral symmetry restoration without considering
pion condensation where the chiral condensate decreases
with increasing temperature monotonously, here � goes up
continuously in the coexistence region of the two conden-
sates, and drops down only in the region where the isospin
symmetry is restored. However, we found that when �I is
close to the critical value �c

I � m�, say m� <�I <
0:2 GeV, the total condensate

������������������
�2 � �2

p
(the dashed line

in Fig. 10, behaves in a similar way like the� in the normal
study without considering pion condensation.

B. Number densities

The isospin density nI and flavor densities n	u;d, scaled
by the normal nuclear density n0, are shown in Fig. 11 as
functions of isospin chemical potential �I at �B � 0 but
T � 0:1 GeV. At finite temperature, there is thermal exci-
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tation of particles. Since T � 0:1 GeV is not very high, the
critical isospin chemical potential �c

I for pion condensa-
tion is still approximately the vacuum pion massm�. In the
region of �I < �c

I , the small but finite isospin density is
purely due to the thermal excitation, while in the region of
�I > �c

I the rapidly increasing density is dominated by the
Bose-Einstein condensation of charged pions. The thermal
excitation depends strongly on the isospin chemical poten-
tial carried by the particle. At �I < �c

I , the densities of
quarks with positive isospin chemical potential increase
with�I, while the densities of quarks with negative isospin
chemical potential decrease with �I.

C. Phase diagram in T��I plane

In the chiral limit when m0 � 0, the solution of the last
gap equation of (19) for�with�u � �d � 0 separates the
region of isospin symmetry breaking with � � 0 from the
region of symmetry restoration with � � 0. The phase
transition line demarcating these two regions is given in
the upper panel of Fig. 12 in the T ��I plane for�B � 0.
Since an infinitely small isospin effect can restore the
chiral symmetry, there is � � 0 in the whole plane in the
chiral limit. In the real world with nonzero current quark
mass, the system is in isospin symmetric phase not only at
high temperature and/or high isospin chemical potential
but also at low isospin chemical potential with �I � m�.
Since the chiral symmetry phase transition is not well
defined in the case with nonzero current quark mass, we
116001
did not show the chiral phase transition line. In principle,
there is � � 0 in the whole T ��I plane.
V. MESONS AT FINITE ISOSPIN DENSITY

We now investigate meson properties at finite isospin
chemical potential. In the NJL model, the meson modes are
regarded as quantum fluctuations above the mean field.
The meson modes can be calculated in the frame of RPA
[27]. When the mean field quark propagator is diagonal,
e.g. the case with only chiral condensation, the summation
of bubbles in RPA selects its specific channel by choosing
at each stage the same proper polarization function, a
meson mode which is determined by the pole of the cor-
responding meson propagator is related to its own polar-
ization function #MM�k� [30,31] only,

1 � 2G#MM�k� � 0: (49)

However, for the quark propagator with off-diagonal ele-
ments, like the cases of / and /0 meson spectrum [27],
pion superfluidity considered here, and color superconduc-
tivity in Sec. VII, we must consider all possible channels in
the bubble summation in RPA. Using matrix notation, the
effective quark propagator (14) leads to the meson modes
determined by

det�1� 2G#�k�� � 0; (50)

with the polarization function matrix
1� 2G# �

1� 2G#�� �2G#���
�2G#���

�2G#��0

�2G#��� 1� 2G#����
�2G#����

�2G#���0

�2G#��� �2G#����
1� 2G#����

�2G#���0

�2G#�0� �2G#�0��
�2G#�0��

1� 2G#�0�0

0BBB@
1CCCA: (51)
Here the polarization functions defined as

#MM0 �k� � i
Z d4p

�2��4
Tr�%�

MSmf�p� k�%M0Smf�p��;

(52)

with the vertexes

%M �

8>>><>>>:
1 M � �
i���5 M � ��

i���5 M � ��

i�3�5 M � �0;

%�
M �

8>>><
>>>:

1 M � �
i���5 M � ��

i���5 M � ��

i�3�5 M � �0;

(53)

are shown in Appendix B. Here the trace Tr is taken in
color, flavor, and Dirac spaces.
As will be seen in the following, in the normal phase
with vanished pion condensate, the polarization matrix is
diagonal at finite isospin chemical potential and one can
then directly use the method developed in [30,31] to cal-
culate the masses of �, ��, ��, and �0. In the super-
fluidity phase with nonzero � and off-diagonal matrix
elements in the mean field quark propagator, the collective
excitations of the system will in principle not be the
original meson modes in the vacuum but their mixture. In
particular, it is expected that there will be a Goldstone
mode in the superfluidity phase corresponding to the spon-
taneously isospin symmetry breaking.

In the following we will study the meson properties in
the normal phase (� � 0) and superfluidity phase (� � 0)
separately.

A. Meson properties in normal phase

In the vacuum, due to isospin symmetry, one can regard
�1; �2 or ��; �� or any other linear combination of
�1; �2 as eigen collective modes. In the normal phase
-12
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with vanished pion condensate, the polarization function
matrix is diagonal with respect to the basis ��;��; ��; �3�
but not diagonal with respect to the basis ��;�1; �2; �3�.
This means that in the normal phase, the eigen collective
modes are �;��; ��; �0. Thus the dispersion relation for
each mode is determined through the equation
116001
1 � 2G#MM�k� � 0: (54)

The meson mass is defined as the root k0 at k � 0.
Doing the trace in flavor and color spaces, we obtain the

polarization functions in terms of the matrix elements of
the quark propagator,
#���k� � iNc
Z d4p

�2��4
TrD�Suu�p� k�Suu�p� � Sdd�p� k�Sdd�p��;

#�0�0
�k� � �iNc

Z d4p

�2��4
TrD��5Suu�p� k��5Suu�p� � �5Sdd�p� k��5Sdd�p��;

#����
�k� � �2iNc

Z d4p

�2��4
TrD��5Suu�p� k��5Sdd�p��;

#����
�k� � �2iNc

Z d4p

�2��4
TrD��5Sdd�p� k��5Suu�p��;

(55)
now the trace TrD is taken only in Dirac space. At zero
temperature and zero baryon density, the polarization func-
tions at k � 0 are simplified as

#���k0� � 4Nc
Z d3p

�2�3�

1

Ep

E2
p �M2

q

E2
p � k20=4

;

#�0�0
�k0� � 4Nc

Z d3p
�2�3�

1

Ep

E2
p

E2
p � k20=4

;

#����
�k0� � 4Nc

Z d3p
�2�3�

1

Ep

E2
p

E2
p � �k0 ��I�

2=4
;

#����
�k0� � 4Nc

Z d3p
�2�3�

1

Ep

E2
p

E2
p � �k0 ��I�

2=4
:

(56)

From the comparison with their expressions in the vacuum
with �I � 0, we obtain the �I dependence of the meson
masses,

M���I� � m�; M�0
��I� � m�;

M��
��I� � m� ��I; M��

��I� � m� ��I:
(57)

The mesons which carry zero isospin charge keep their
vacuum masses, while the mass of the meson which carries
positive (negative) isospin charge decreases (increases)
with �I linearly. These relations hold before �I � m�
where the pion condensation starts.

After performing Matsubara frequency summation, the
meson polarization functions at k � 0 are explicitly ex-
pressed as
#���k0� � �2Nc
Z d3p

�2�3�

1

Ep

E2
p �M2

q

E2
p � k20=4

�ff�E�
�� � ff�E�

�� � ff��E�
�� � ff��E�

���;

#�0�0
�k0� � �2Nc

Z d3p
�2�3�

1

Ep

E2
p

E2
p � k20=4

�ff�E�
�� � ff�E�

�� � ff��E�
�� � ff��E�

���;

#����
�k0� � 4Nc

Z d3p
�2�3�

	
2Ep ��I � k0

k20 � 4�Ep ��I=2�
2 �ff�E

�
�� � ff��E

�
��� �

2Ep ��I � k0
k20 � 4�Ep ��I=2�

2 �ff�E
�
�� � ff��E

�
���



;

#����
�k0� � 4Nc

Z d3p
�2�3�

	
2Ep ��I � k0

k20 � 4�Ep ��I=2�2
�ff�E

�
�� � ff��E

�
��� �

2Ep ��I � k0
k20 � 4�Ep ��I=2�2

�ff�E
�
�� � ff��E

�
���



:

(58)
From the comparison of #����
at �B � 0 and k0 � 0

with the last gap equation of (19) for the pion condensate
�, the phase transition line from � � 0 to � � 0 in the
T ��I plane at �B � 0 can be calculated by the equation
1� 2G#����
�k0 � 0� � 0: (59)
Thus the �� mass is always zero on the phase boundary.
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B. Meson properties in superfluidity phase

The polarization functions #MM0 �k0� at k � 0 are cal-
culated in Appendix B as explicit functions of temperature
T, baryon chemical potential �B, and isospin chemical
potential �I in general case with nonzero chiral and pion
condensates. While �;��, and�� are no longer collective
excitation modes due to the pion condensation, there is still
no mixing between �0 and other mesons,

#�0��k� � #�0��
�k� � #�0��

�k� � 0: (60)

Its mass in the superfluidity phase is determined by
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1� 2G#�0�0
�k0 � M�0

;k � 0� � 0: (61)

Taking the polarization function #�0�0
evaluated in

Appendix B and making comparison with the gap equation
for � at T � �B � 0, we get analytically

M�0
��I� � �I; �I > m�: (62)

The other meson masses are now determined by the
equation
det
1 � 2G#�� �2G#���

�2G#���

�2G#��� 1� 2G#����
�2G#����

�2G#��� �2G#����
1� 2G#����

0B@
1CA
k0�M

� 0 (63)

at k � 0, namely,

���1� 2G#����
�k0���1� 2G#����

�k0�� � 4G2#2
����

�k0���1� 2G#���k0�� � 16G3#���
�k0�#���

�k0�#����
�k0�

� 4G2#2
���

�k0��1 � 2G#����
�k0�� � 4G2#2

���
�k0��1� 2G#����

�k0���k0�M � 0: (64)
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FIG. 13. The meson mass spectra in the chiral limit as func-
tions of �I at T � �B � 0.
We first discuss the masses in the chiral limit. In the
chiral limit, the chiral condensate � as well as the effective
quark mass Mq are forced to be zero by any small isospin
chemical potential. From the explicit form of the polariza-
tion functions evaluated in Appendix B, the mixing be-
tween � and �	 disappears, #��	

� 0, then � is still an
eigen collective mode. Since the polarization functions for
� and �0 are exactly the same in this case, #�� � #�0�0

,
the mesons �0 and � have the same mass in the super-
fluidity phase,

M��T;�I; �B� � M�0
�T;�I; �B�; (65)

for any T, �I, and �B, which reflects the restoration of
chiral symmetry. In the case of T � �B � 0 we have

M���I� � M�0
��I� � �I: (66)

The other two eigen modes are determined by

��1� 2G#����
�k0���1� 2G#����

�k0��

� 4G2#2
����

�k0��k0�M � 0: (67)

From the polarization functions shown in Appendix B, it is
easy to prove that M � 0 is a solution of (67) correspond-
ing to the spontaneously isospin symmetry breaking. We
call the massless meson mode as �L and the other heavy
mode as�H. The meson mass spectra in the chiral limit are
shown in Fig. 13 as functions of �I at T � �B � 0.

In the real world with nonzero current quark mass, there
is not only the mixing between the charged pions, but also a
mixing between � and the charged pions. From the explicit
expression of the polarization functions shown in
Appendix B, we have
#��	
� #�	� /

���
2

p
Mqj2G�j;

#����
� #����

/ 4G2�2:
(68)

To quantitatively see the mixing degree among �;�� and
��, we introduce two dimensionless parameters,

/�� �

���
2

p
Mqj2G�j

4G2�2
0

; /�� �
4G2�2

4G2�2
0

; (69)

describing the strengths of �� � mixing and �� �
mixing. Their isospin dependence is shown in Fig. 14 at
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FIG. 15. The meson masses as functions of isospin chemical
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the full calculation and the dashed lines from the approximation
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FIG. 14. The mixing strengths /�� and /�� as functions of
isospin chemical potential �I at T � �B � 0.
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T � �B � 0. The �� � mixing is much weaker than the
�� � mixing, since the former is proportional to both
chiral condensate and pion condensate, but the latter to the
square of pion condensate, and in the superfluidity phase
the chiral symmetry is almost restored. The �� � mixing
is important only around the phase transition point �c

I �
m�, but the �� � mixing is strong in a wide region after
the phase transition.

The mass spectra calculated through solving the Eq. (64)
numerically are shown in Fig. 15, together with M�0

,
Eq. (62) in the superfluidity phase and the masses (57) in
the normal phase, as functions of �I at T � �B � 0.
Again we obtain the Goldstone mode reflecting correctly
the spontaneous isospin symmetry breaking in the super-
fluidity phase. In the normal phase �;��; ��, and �0

themselves are eigen modes of the collective excitation
of the system, but in the superfluidity phase, except for �0

which is still an eigen mode, �;��, and �� are no longer
eigen modes. Since the masses determined by (64) are
continuously connected with the masses of �;��, and
�� at the phase transition point �I � m�, we call them
&;#�, and #�, shown in Fig. 15. When �I is high
enough, the pion condensation will disappear due to the
asymptotic freedom of QCD, this turning point in the NJL
model is about ~�c

I � 1:75 GeV, see Fig. 1. Above this
turning point the mass spectra are again controlled by the
polarization functions (56) and the �I dependence is simi-
lar to (57).
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The mass spectra in the superfluidity phase calculated in
the NJL model here are very similar to the result predicted
in chiral perturbation theory [8,12],

M#�
� 0; M#�

� �I

���������������������������
1� 3m4

�=�4
I

q
;

M�0
� �I:

(70)

However, if we neglect the �� � mixing in the super-
fluidity phase, � is still the eigen mode and the mass is
calculated from the pole equation

1� 2G#���k0 � M�;k � 0� � 0; (71)

and the other two eigen modes which are linear combina-
tions of �� and �� are determined by Eq. (67). One of the
modes is still the Goldstone mode and the other is a heavy
one. The numerical results for� and the heavy one are also
shown in Fig. 15 as dashed lines. In this case, the broken
UA�1� symmetry will be restored at sufficiently high iso-
spin density, indicating by the same � and �0 mass. It is
clear that the difference between the full calculation and
the approximation neglecting �� � mixing is mainly
in the narrow region above the phase transition point
�I � m�.

We now analytically prove the Goldstone mode in the
general case in the NJL model. To this end we consider the
polarization function matrix
1� 2G# �

1 � 2G#00 �2G#01 �2G#02 �2G#03

�2G#10 1� 2G#11 �2G#12 �2G#13

�2G#20 �2G#21 1 � 2G#22 �2G#23

�2G#30 �2G#31 �2G#32 1� 2G#33

0BBB@
1CCCA (72)
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with respect to the basis ��;�1; �2; �3�.
From Appendix B, �3 does not mix with other modes,

#3n�k� � #n3�k� � 0; n � 0; 1; 2: (73)

Its mass is determined by its own polarization function at
k � 0,

1� 2G#33�k0 � M�0
� � 0: (74)

The masses of the other modes are solved from the
equation

det
1 � 2G#00 �2G#01 �2G#02

�2G#10 1� 2G#11 �2G#12

�2G#20 �2G#21 1 � 2G#22

0@ 1A
k0�M

� 0

(75)

at k � 0. The existence of the Goldstone mode means that
M � 0 is a solution of the above equation. This is really
true. In fact, setting k0 � k � 0 we have from the
Appendix B

#02�0; 0� � #20�0; 0� � #12�0; 0� � #21�0; 0� � 0;

(76)

the Goldstone mode can be checked by the equation

1� 2G#22�k0 � 0;k � 0� � 0: (77)

Using the analytical form of #22 evaluated in Appendix B,
we find that the above equation is exactly the same as the
gap equation for the pion condensate. Therefore, in super-
fluidity phase with � � 0, there is always a Goldstone
mode. Note that this massless mode holds in the whole
superfluidity phase at finite temperature and isospin and
baryon chemical potentials.

The Goldstone mode will extremely change the thermo-
dynamics of the system. In mean field approximation, only
quarks contribute to the thermodynamic potential, see (26).
Since quarks are heavy at low temperature, the thermody-
namic functions scaled by the temperature, for example,
p=T4; ,=T4; s=T3, and c=T3 approach to zero in the limit of
T ! 0 [31]. However, when the meson fluctuations are
included, the massless meson mode will lead to power
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laws of thermodynamic functions at low temperature, these
scaled functions will approach to nonzero constants.
VI. PION SUPERFLUIDITY IN LINEAR SIGMA
MODEL

In this section we study the linear sigma model at finite
isospin chemical potential and compare it with the NJL
model. Since the linear sigma model can be regarded as a
bosonized version of the NJL model, we want to know
whether the former can reproduce the results we have
worked out with the latter with quarks as elementary
degrees of freedom. It is well known that one can use the
bosonization technique to integrate out the quark degrees
of freedom and obtain the effective Lagrangian for the
meson bound states in the NJL model [27,42]. In the real
world the Lagrangian is just one of the linear sigma models
with an explicit chiral breaking term,

L �
1

2
��@���2 � �@� ~��2� �

1

2
�2g2

�f2
� �m2

����2 � ~�2�

�
g2
�

2
��2 � ~�2�4 � f�m2

��; (78)

where g� � g�q �q is the pion-quark-antiquark coupling
constant, f� the pion decay constant, and m� the pion
mass in the vacuum, g� and f� can be calculated in the
NJL model in RPA.

A. Zero temperature

Introducing the isospin chemical potential �I corre-
sponding to the third component of isospin charge

I3 �
Z
d3 ~x��1@t�2 � �2@t�1�; (79)

and the chiral and pion condensates

h�i � 3; h��i � h��i �
4���
2

p ; (80)

we obtain the effective Lagrangian at tree level,
Leff � �U�3; 4� �
1

2
��@���2 � �@��3�

2 � �@t�1 ��I�2�
2 � �@t�2 ��I�1�

2 � �r�1�
2 � �r�2�

2�

� g2
�

	�
332 � 42 � f2

� �
m2
�

2g2
�

�
�2 �

�
32 � 342 � f2

� �
m2
�

2g2
�

�
�2

1

�

�
32 � 42 � f2

� �
m2
�

2g2
�

�
��2

2 � �2
3� � 434��1



� 2g2

��3�� 4�1���2 � �2� �
g2
�

2
��2 � �2�2; (81)
with the classical potential

U�3; 4� � �
1

2
�2g2

�f2
� �m2

���32 � 42� �
g2
�

2
�32 � 42�2

� f�m
2
�3�

1

2
�2
I4

2; (82)
where the two condensates are determined by minimizing
the potential,

@U
@3

� 0;
@U
@4

� 0: (83)

We have chosen pion condensate to be real as in the NJL
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model. In this section we use 3 and 4 standing for the
chiral and pion condensates in order to avoid confusion
with the definitions in the NJL model.

In the vacuum the constraints (83) on the potential give
3 � f� and 4 � 0, and the sigma mass can be read out
from the quadratic term in the sigma field in the effective
Lagrangian (81), m2

� � 4g2
�f

2
� �m2

�.
At finite isospin density the two condensates in the

ground state satisfy 3 � 0; 4 � f�
���������������������������
1� 2�2

I =m
2
�

q
in the

chiral limit. This is consistent with the NJL model: Any
small isospin density can force the chiral symmetry to be
restored in the chiral limit. In the real world, we obtain 3 �
f�; 4 � 0 for �I < m� which is the same as in the vac-
uum, and [5]

3 � f�
m2
�

�2
I

; 4 � f�

�����������������������������������������������������
1�

�
m2
�

�2
I

�
2
� 2

�2
I �m2

�

m2
� �m2

�

s
;

(84)

for�I > m�. This result is qualitatively consistent with the
NJL model and the chiral perturbation theory. In particular,
the critical behaviors of the two condensates around the
phase transition point �c

I � m� in the three effective mod-
els are almost the same.

The thermodynamic functions can be evaluated from the
potential U. The isospin density nI, pressure p, and energy
density , are analytically written as

nI � �
@U
@�I

� �I4
2 � �If

2
�

�
1� m4

�

�4
I
� 2

�2
I�m

2
�

m2
��m2

�

�
;

p � �U�3; 4� �U�f�; 0�

�
1

2
f2
���2

I �m2
��

2

�
1

�2
I

�
1

m2
� �m2

�

�
;

, � �p��InI

�
1

2
f2
���2

I �m2
��

�
�2
I � 3m3

�

�2
I

�
3�2

I �m2
�

m2
� �m2

�

�
: (85)

If we take the limit m� ! 1, we reproduce the result in
the chiral perturbation theory [8,12]. However, the finite
sigma mass leads to a big difference at large �I. At large
�I, the ratio p=, approaches 1 in the chiral perturbation
theory, but only about 1/3 in the linear sigma model and 0.7
in the NJL model, as shown in Fig. 16. While the three
effective models are very different in high density region,
they behave almost the same in the region close to the
116001
critical point, see also the chiral and pion condensates
shown in the lower panel of Fig. 16.

The meson mass spectrum is easily obtained by diago-
nalizing the quadratic part of the effective Lagrangian (81).
It is clear that �0 itself is an eigen mode of the system,
while�� and�� are not, like the case in the NJL model. A
simple algebra calculation gives the result

M���I� � m�; M����I� � m� ��I;

M����I� � m� ��I; M�0
��I� � m�;

(86)

for �I < m� and
M&��I� �

���������������������������������������������������������������������������������������������������������������������������������
2g2

�f2
� � 7�2

I =2�m2
� � 2g2

�

����������������������������������������������������������������
�32 � 42 � 3�2

I =4g
2
��

2 � 3242
qr

;

M#�
��I� �

���������������������������������������������������������������������������������������������������������������������������������
2g2

�f
2
� � 7�2

I =2�m2
� � 2g2

�

����������������������������������������������������������������
�32 � 42 � 3�2

I =4g
2
��

2 � 3242
qr

; M#�
��I� � 0; M�0

��I� � �I;

(87)
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FIG. 17. The meson masses as functions of isospin chemical
potential �I at T � 0 in the linear sigma model. The solid lines
are the full calculation and the dashed lines from the approxi-
mation neglecting �� � mixing.
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for�I > m�. The numerical result is shown in Fig. 17. The
�� � mixing here also plays an important role for the
meson mass spectra. The calculation without considering
�� �mixing is indicated by dashed lines. We find that the
mass spectra are qualitatively consistent with the NJL
model and the chiral perturbation theory.

B. Finite temperature

There are two approaches to treat thermal excitation in
the linear sigma model, the Hartree-Fock approximation
and the large N expansion. It is well known that a disad-
vantage of the Hartree-Fock approach in the discussion of
chiral symmetry restoration is the lack of the Goldstone
mode in the symmetry breaking phase [43]. Here we
calculate the mass spectra and phase diagram in the two
approaches at finite temperature and isospin density and
compare the results with the NJL calculation.

Since the sigma model (78) can be regarded as an O�4�
model, we adopt the largeN expansion method in theO�N�
sigma model with boson chemical potential. With the same
method and technics given by Harber and Weldon [44], the
mass parameterM and condensates 3 and 4 are determined
by the following gap equations

M2 � 2g2
��3

2 � 42 � f2
� � 2J0�T;�I;M�� �m2

�;

4�M2 ��2
I � � 0; 3M2 � f�m2

� � 0;
(88)

the thermal excitation is introduced by the function

J0�T;�I;M� �
1

2

Z d3k
�2��3

1������������������
k2 �M2

p �2fb�T; 0;M�

� fb�T;�I;M� � fb�T;��I;M��; (89)
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with the Bose-Einstein distribution function

fb�T;�I;M� �
1

e�
������������
k2�M2

p
��I�=T � 1

: (90)

It is easy to derive the solution

M�T;�I� � �I; 3�T;�I� � f�
m2
�

�2
I

;

4�T;�I� �
������������������������������������������������������
42�0; �I� � 2J0�T;�I; �I�

q
;

(91)

in the pion superfluidity phase, and the coupled equations

M2 � 2g2
��3

2 � f2
� � 2J0�T;�I;M�� �m2

�; 3 � f�
m2
�

M2 ;

(92)
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for M and 3 in the normal phase with 4 � 0. From the
above two groups of solutions we can obtain the phase
diagram in the T ��I plane, shown in Fig. 18.

The Hartree-Fock approach in the superfluidity phase is
rather complicated, and there is no Goldstone mode at
finite temperature in this approach. Here we will not
present the treatment in the superfluidity phase with 4 �

0. However, to calculate the phase transition line of pion
superfluidity in the T ��I plane is much easier. We need
only the formulas in the normal phase with 4 � 0. From
the detailed derivation given in Appendix C, the effective
meson masses and the chiral condensate in this phase are
governed by the coupled equations,

M2
� � 2g2

��332 � f2
� � 3h��i � 2h��i � h�0�0i�

�m2
�;

M2
�0

� 2g2
��3

2 � f2
� � h��i � 2h��i � 3h�0�0i� �m2

�;

M2
�	

� 2g2
��3

2 � f2
� � h��i � 4h��i � h�0�0i� �m2

�;

2g2
�3�3

2 � f2
� � 3h��i � 2h��i � h�0�0i� � 3m2

�

� f�m
2
�: (93)

To illustrate how to determine the critical temperature from
the quantities obtained in the normal phase, we consider
the isospin density derived from the thermodynamic po-
tential shown in Appendix C,

nI � �
@�
@�I

�
Z d3k

�2�3�
�fb�T;�I;M�� � fb�T;��I;M���: (94)

Note that this is only the thermal contribution to the isospin
density and true only in the normal phase. In the super-
fluidity phase we should include the contribution from the
condensation of charged pions. From the definition of
Bose-Einstein condensation, the phase transition point
where the occupation number density is divergent at zero
momentum is determined by

M��Tc;�I� � �I: (95)

We have checked that this equation can also be derived
from the superfluidity phase in the limit of 4 � 0.

The phase diagram in the T ��I plane calculated with
the large N expansion method and Hartree-Fock approxi-
mation is shown in Fig. 18 in the chiral limit (upper panel)
and the real world (lower panel). It is clear that the result of
the large N expansion is qualitatively consistent with the
NJL model calculation. Especially, in the chiral limit,
when �I ! 0 the critical temperature in the large N ap-
proach is very close to the one obtained in the NJL model,
116001
while in the Hartree-Fock approximation the critical tem-
perature approaches zero, which is certainly wrong.

VII. FINITE BARYON DENSITY AND DIQUARK
CONDENSATION

We have investigated the NJL model at finite isospin
chemical potential �I and temperature T and made com-
parison with the other effective models. We now turn to the
discussion at finite baryon chemical potential �B. It is well
known that [7,27,45] the baryon density effect on decon-
finement and chiral restoration is qualitatively different
from the temperature effect: the phase transition is of first
order at high baryon density but of second order or even a
smooth crossover at high temperature. The physics in high
baryon density region is also very different from that in
high isospin density region: the spontaneously broken
symmetry is of color symmetry at sufficiently high baryon
chemical potential but isospin symmetry at sufficiently
high isospin chemical potential, the former is described
by the diquark condensate h  i and the latter by the pion
condensate �. We will first consider the baryon density
effect on the pion condensation without considering the
color superconductivity, and then discuss the competition
between the pion superfluidity and color superconductivity
in the �B ��I plane.

A. Finite baryon density effect without diquark
condensate

As we indicated in the Appendix B, when the two
chemical potentials �B and �I are both nonzero, the u
and d quark condensates are different from each other, see
(19). It is clear that the isospin chemical potential �I
should be large enough to guarantee the phase transition
of pion superfluidity at finite baryon chemical potential �B
and temperature T, at least it should be larger than the
critical value m� at T � �B � 0. In our numerical calcu-
lation we took it as 0.2 GeV. The �B dependence of the
chiral and pion condensates, again scaled by the chiral
condensate �0 in the vacuum at fixed T and �I, is shown
in Fig. 19. At zero temperature, the u and d quark con-
densates �u and �d are almost the same, and all the three
condensates, �u; �d, and � keep their vacuum values in
the pion superfluidity phase. At a critical value �B �
0:85 GeV, a first order phase transition happens, the pion
condensate jumps down from its vacuum value to zero, and
the u and d quark condensates jump up from their vacuum
value to some larger values. In the normal phase with � �
0, the two chiral condensates decrease with increasing
baryon chemical potential, and the difference between
them becomes remarkable. The temperature effect changes
the phase transition from first order to second order, see the
lower panel for T � 0:1 GeV, and reduces the critical
baryon chemical potential from about 0.85 GeV to about
0.65 GeV. Also the temperature effect leads to a remark-
able difference between the two chiral condensates not
-19
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FIG. 19. The u and d quark condensates and pion condensate,
scaled by the chiral condensate �0 in the vacuum, as functions of
�B at �I � 0:2 GeV and T � 0 (upper panel) and T � 0:1 GeV
(lower panel).
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FIG. 20. The u and d quark condensates and pion condensate,
scaled by the chiral condensate �0 in the vacuum, as functions of
T at �I � 0:2 GeV and �B � 0:6 GeV.
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only in the normal phase but also in the pion superfluidity
phase.

The temperature dependence of the three condensates is
indicated in Fig. 20 at fixed chemical potentials. Similar to
the case [30,31] of investigating chiral symmetry restora-
tion without pion condensation, the temperature effect here
results in a second order phase transition of pion super-
fluidity. The phase diagram in the T ��B plane at fixed�I
is shown in Fig. 21, which is very similar to the chiral
phase transition line at�I � 0 [31]. The phase transition is
of second order in high temperature region and of first
order in high baryon chemical potential region, and the
tricritical point which connects the first and second order
phase transitions is located at T � 0:045 GeV and �B �
0:78 GeV.
116001
B. Competition between pion and diquark condensates
at Nc � 2

To study both pion superfluidity and color superconduc-
tivity at finite baryon and isospin chemical potentials, we
first consider the two color NJL model with both quark-
antiquark and diquark channels,
L � � �i��@� �m0� �GS�� �  �2 � � � i�5 ~� �2�

�GD� � 
ci�5�

c
2�
f
2 �� � i�5�

c
2�
f
2 

c�; (96)
-20



PION SUPERFLUIDITY AND MESON PROPERTIES AT . . . PHYSICAL REVIEW D 71, 116001 (2005)
where �c2 and �f2 are the second Pauli matrix in color and
flavor spaces, GS and GD are the coupling constants in the
quark-antiquark channel and diquark channel, and from the
Fierz transformation we have GD � GS for Nc � 2.

At sufficiently small �I and large �B, there should be
only chiral condensate � and diquark condensate ( de-
fined as
116001
( � h � ci�5�c1�
f
1 i: (97)
Similar to Sec. II, it is straightforward to derive the quark
propagator matrix in Nambu-Gorkov space and then obtain
the gap equations for the two condensates [34,35]. At zero
temperature they are
�� 2NcMq

Z d3k
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FIG. 22. The phase diagram of pion superfluidity and color
superconductivity in the �B ��I plane at T � 0 in the frame of
Nc � 2 (upper panel) and Nc � 3 (lower panel) NJL models.
with the energy functions E	
( and effective quark mass Mq

defined as

E	
( �

������������������������������������������������������
�Ek 	�B=Nc�

2 � 4G2
D(

2
q

;

Mq � m0 � 2GS�:
(99)

These gap equations for � and ( are exactly the same as
the gap equations for � and � shown in Sec. II at T � 0, if
we do the replacement ( ! �;�B ! �I. Making com-
parison with the pion mass Eq. (37) in the vacuum and
considering the symmetry between ( and �, we obtain the
critical baryon chemical potential �c

B of color supercon-
ductivity and the critical isospin chemical potential �c

I of
pion superfluidity,

�c
B � m�; ��I < m��;

�c
I � m�; ��B <m��:

(100)

Therefore, the normal phase without pion and diquark
condensations is in the square box �I < m� and �B <
m�, shown in Fig. 22. The system is in the phase of color
superconductivity with� � 0 and ( � 0 for�I < m� and
�B >m� and in the phase of pion superfluidity with� � 0
and ( � 0 for �B <m� and �I > m�. In the region of
high�I and�B, due to the symmetry between the pion and
diquark condensates proposed by their gap equations, we
can conclude that the pion and diquark condensates are
equivalent in the phase diagram in the�I ��B plane. This
can be confirmed by taking the bosonized version [46] of
the two color NJL model with chiral, pion, and diquark
condensates. The effective potential in the bosonized ver-
sion can be derived as

V��;�;(� � �a��2 � �2 � (2� � b��2 � �2 �(2�2

� c��
1

2
�2
I�

2 �
1

2
�2
B(

2; (101)

where a, b, and c are constants. We can easily obtain a first
order phase transition line, shown by the dashed line in
Fig. 22, by minimizing the effective potential. The phase
diagram calculated here in the frame of the NJL model is
exactly the same as the one obtained with effective chiral
Lagrangian for Nc � 2 [13].
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C. Competition between pion and diquark
condensations at Nc � 3

In the real world with color degrees of freedom Nc � 3,
the NJL model including the diquark sector is defined by
the Lagrangian density

L � � �i��@� �m0� �GS�� �  �2 � � � i�5 ~� �2�

�GD� � ci9i�5,
9��
c ,ijf  j��� � i9i�5,

9��
c ,ijf  

c
j��;

(102)

where ,ijf and ,9��c are totally antisymmetric tensors in
flavor and color spaces.
116001
At sufficiently small �I and large �B, there should be
only chiral and diquark condensates. Taking the standard
way used in Sec. II we can derive the quark propagator
matrix in the Nambu-Gorkov space and then obtain the gap
equations determining the chiral condensate � and diquark
condensate ( defined as

( � h � ci9,
ij
f ,

9�3
c i�5 j�i; (103)

where it has been regarded that only the first two colors
participate in the condensate, while the third one does not.
At zero temperature, the �B and �I dependence of the two
condensates are governed by the equations
�� 4Mq
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�

� 0: (104)
Similar to the meson mass equations derived in RPA
[26,27,31], we can obtain the diquark mass in the vacuum
by the pole equation

1� 8GD

Z d3k
�2��3

�
1

Ek �mD=2
�

1

Ek �mD=2

�
� 0:

(105)

At sufficiently small �B and large�I, the system should
be in the pion superfluidity phase. The chiral and pion
condensates � and � are controlled by the gap equations
shown in Sec. II. From the comparison of them at zero
temperature with the pion mass equation in the vacuum,
and the comparison of the gap equations (104) with the
diquark mass equation (105), we get the conclusion that in
the �B ��I plane the normal phase without pion and
diquark condensates is in the rectangle defined by

�I < m�; �B <
3

2
mD; (106)

shown in Fig. 22. Outside this rectangle, we know that the
system is in color superconductivity phase with ( � 0 and
� � 0 for �I < m� and �B >

3
2mD, and in pion super-

fluidity phase with � � 0 and ( � 0 for �B <
3
2mD and

�I > m�. As for the phase structure in the region with high
baryon and isospin chemical potentials, it needs to consider
the gap equations for the three condensates �, �, and (
simultaneously. The dashed line in the lower panel of
Fig. 22, which separates the phase with � � 0 and ( �

0 from the phase � � 0 and ( � 0, is just an estimation
by us.
VIII. EXTENSION TO SU�3� NJL MODEL

We examine now the possible pion and kaon superflu-
idity at finite isospin and strangeness chemical potentials in
the frame of the flavor SU�3� NJL model. The Lagrangian
density is defined as [26–29]
L � � �i��@� �m0� �G
X8
a�0

�� � ;a �2 � � � i�5;a �2�

� K�det � �1� �5� � det � �1� �5� �; (107)
where m0 � diag�m0u; m0d; m0s� is the mass matrix of
current quarks, G and K are coupling constants, and the
t’Hooft’s determinant includes six-fermion interaction.
The three flavor NJL Lagrangian can be brought into an
effective form similar to (5) of the two flavor NJL model by
writing the six-fermion interaction in an effective four-
body form [26–29],
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Leff � � �i��@� �m0� �
X8
i�0

�G�
i �
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i �
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03�
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3 ��; (108)
with the effective couplings
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(109)

where �s � h�ssi is the s quark condensate. The key ther-
modynamic quantity, the partition function Z in three
flavor case, is defined by

Z�T;�I; �B;�S; V� � Tre���H��BB��II3��SS�; (110)

with baryon number, isospin number, and strangeness
number

B �
1

3

Z
d3x � �0 ; I3 �

1

2

Z
d3x � �0;3 ;

S � �
Z
d3x�s�0s;

(111)

as conserved charges, and baryon, isospin, and strangeness
chemical potentials �B, �I, and �S. In the frame of
imaginary time formulism of finite temperature field the-
ory, the partition function can be represented as

Z�T;�I;�B;�S;V� �
Z
�d � ��d �e�

R
�

0
d�
R
d3 ~x�Leff� � ��0 �;

(112)

where � � diag��u;�d;�s� is the chemical potential ma-
trix in flavor space with the chemical potential for the
strangeness quark

�s �
�B

3
��S: (113)
116001
A. Chiral properties at low �I and �S

We discuss first the three chiral condensates �u�d, and
�s under the condition of low isospin and low strangeness
chemical potentials, �I < �c

I and �S < �c
S, where �c

I is
the critical isospin chemical potential for pion condensa-
tion and �c

S the critical strangeness chemical potential for
kaon condensation. They will be determined in the follow-
ing subsection. Performing the standard mean field ap-
proach and keeping only the linear terms in the meson
fluctuations, we obtain the Lagrangian in the mean field
approximation

Lmf � � �i��@� ���0 �M� � 2G��2
u � �2

d � �2
s�

� 4K�u�d�s; (114)

where M � �Mu;Md;Ms� is the mass matrix in flavor
space with the effective quark masses

Mi � m0i � 4G�i � 2K�j�k;

�i � u; d; s; i � j � k; j < k�:
(115)

Because of the lack of pion and kaon condensates, the
mean field quark propagator is diagonal in flavor space,

S mf�k� � diag�Su�k�;Sd�k�;Ss�k��; (116)

with the matrix elements

S i�k� �
�i

��0

k0 � E�
i �k�

�
�i

��0

k0 � E�
i �k�

; (117)

where E	
i are the effective quark energies

E	
i �k� �

�������������������
k2 �M2

i

q
	�i; (118)

and �i
	 the energy projectors

�i
	 �

1

2

�
1	

�0�� � k�Mi��������������������
k2 �M2

i

q �
: (119)

In self-consistent Hatree-Fock approximation the gap
equations which determine the value of the chiral conden-
sates �u; �d; �s are expressed in terms of the quark propa-
gators,

�i � �iNc
Z d4p

�2��4
TrDSi�p�: (120)

After performing the Matsubara frequency summation, we
have
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�i � �6
Z d3k

�2��3
Mi������������������

k2 �M2
i

q �1� ff�E
�
i � � ff�E

�
i ��:

(121)

The three effective quark masses are shown in Fig. 23 as
functions of baryon chemical potential �B at T � �S � 0
and �I � 0:06 GeV <m�. We use the model parameters
fixed in [47]. The three masses keep their vacuum values
till the common critical point where they suddenly jump
down. The mass difference between u and d quarks arisen
from the finite isospin chemical potential can only be seen
after the chiral transition.

In principle the meson mass spectra can be evaluated by
solving the corresponding pole equation like (54) for the
two flavor NJL model. The meson polarization functions in
flavor space are evaluated in Appendix D. In the general
case with nonzero pion and kaon condensates, the off-
diagonal elements in the polarization function matrix in
flavor space make it complicated to solve the pole equa-
tion. However, in the region without pion and kaon con-
densates as we are interested in here, the off-diagonal
elements disappear and the pole equation is reduced to

1� 2G	
i #MM�k0 � MM;k � 0� � 0; (122)

with G�
1 for M � a0; a�; a�, G�

4 for M � =�; =�, G�
6 for

=0; �=0, G�
1 for M � �0; ��; ��, G�

4 for M � K�; K�,
and G�

6 for K0; �K0. At zero temperature, we can analyti-
cally obtain the meson masses as functions of �I and �S
by comparing the above mass equations at finite�I and�S
with the same equations but in the vacuum,

MM��I;�S� � mM �QI�I �QS�S; (123)

where QI and QS are the isospin number and strangeness
number of the meson M, respectively.

LIANYI HE, MENG JIN, AND PENGFEI ZHUANG
0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

µ
B
 (MeV)

(M
eV

)

M
s
 

M
u
,M

d
 

FIG. 23. The three effective quark masses Mu, Md, and Ms as
functions of baryon chemical potential �B at T � �S � 0 and
�I � 0:06 GeV in the flavor SU(3) NJL model.
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B. Phase diagram in �S ��I plane

In this subsection, we analytically determine the critical
isospin chemical potential �c

I for pion condensation and
the critical strangeness chemical potential �c

S for kaon
condensation in the three flavor NJL model, and briefly
discuss the phase structure in �S ��I plane. For simplic-
ity, we always set T � �B � 0 in this subsection.

We first consider the case with only pion condensation in
the region of j�Sj<�C

S and determine the critical value
�c
I . Taking the standard mean field approximation, we

obtain the inverse of the quark propagator

S �1
mf �k� �

G�1
u 2iG�

1 �5� 0
2iG�

1 �5� G�1
d 0

0 0 G�1
s

0B@
1CA; (124)

with G�1
i � ��k� ��i�0 �Mi for i � u; d; s. Since in

the current case the pion condensate is decoupled from the
s quark propagator, we can take the same procedure as in
the two flavor case and obtain the same critical isospin
chemical potential

�c
I � m� ��S < �c

S�: (125)

We then study the case with only the kaon condensate in
the region of �I < m�. We define the K� and K� con-
densates

Kus � 2h �ui�5si � 2h�si�5ui; (126)

and K0; �K0 condensates

Kds � 2h �di�5si � 2h�si�5di: (127)

Which kind of kaon condensation happens depends on the
sign of�S and �I. In the physical world with�I < 0, only
K0 and K� condensates can be realized. Without losing
generality, we consider here the case �I > 0 and �S > 0
only, and then map the result to the other regions in the
�S ��I plane. In this case the possible kaon condensation
is K�.

At mean field level the inverse quark propagator in the
flavor space can be expressed as

S �1
mf �k� �

G�1
u 2iG�

4 Kus�5 0
2iG�

4 Kus�5 G�1
s 0

0 0 G�1
d

0B@
1CA: (128)

For convenience, we have changed the basis in the flavor
space from �u; d; s� in (124) to �u; s; d� in (128). It is
straightforward to derive the propagator itself from its
inverse,

S mf�k� �
Su�k� Sus�k� 0
Ssu�k� Ss�k� 0

0 0 Sd�k�

0@ 1A; (129)

with the elements
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Su�k� � ����k� ��u�0 �Mu� � 4�G�
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2K2
us�5��
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2K2
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Ssu�k� � �2iG�
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(130)

With the propagator we can express the condensates as

�i � �Nc
Z d4k

�2��4
TrD�i�Si�k�� �i � u; d; s�; Kus � Nc

Z d4k

�2��4
TrD��Sus�k� � Ssu�k���5�: (131)

To calculate the critical strangeness chemical potential, we setKus ! 0�, and the gap equations on the phase transition line
become

�i � iNc
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FIG. 24. The phase structure of pion and kaon condensations
in �S ��I plane at T � �B � 0 in the flavor SU�3� NJL
model. The upper panel is for �I > 0 and �S > 0 and the lower
panel is for all possible �I and �S.
Doing the trace in Dirac space, performing the Matsubara
frequency summation, and then comparing the gap equa-
tions with the mass equations for kaons in the vacuum, we
find

�c
S � mK ��I=2; ��I < m��: (133)

This result is certainly independent of the model parame-
ters and the regularization scheme. The above analytic
conclusions �c

I � m� and �c
S � mK ��I=2 were ob-

tained numerically in the three flavor NJL model without
UA�1� breaking term [18].

Combining the two critical chemical potentials �I and
�S, the system is in the normal phase without pion and
kaon condensations when�I and�S satisfy the constraints

�I < m�; �S < mK ��I=2: (134)

In the region of �I < m� and �S > mK ��I=2, there is
only K� condensation, and in the region of �S <mK �
�I=2 and �I > m� there is only pion condensation. The
phase transition lines in the�S ��I plane are indicated by
solid lines in Fig. 24. As for the other region in the �S �
�I plane, we should consider both pion and kaon conden-
sations and the calculation will become much complicated.
The dashed line in Fig. 24 which separates the region with
pion condensate from the region with the kaon condensate
is just an estimation. However, with the bosonized chiral
Lagrangian, this dashed line is described by [12]

�C
S �j�Ij>m�� �

1

2�I
�

�����������������������������������������������
��2

I �m2
��

2 � 4m2
K�

2
I

q
�m2

��:

(135)

Considering the symmetries between �� and �� and
among K�; K�; K0, and �K0, we display in the lower panel
of Fig. 24 the phase diagram with different pion and kaon
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condensations, which is the same as the one obtained in the
frame of bosonized chiral Lagrangian [12].
IX. SUMMARY

It is well-known that physical symmetries of a system
dominate its behavior not only in the vacuum but also in
hot and dense medium. The symmetries in the vacuum are
usually changed by the temperature and density effect. In
this paper we have investigated the changes of isospin
symmetry, chiral symmetry, and color symmetry and their
reflection in meson spectra, and thermodynamic functions
at finite temperature T, and isospin, baryon, and strange-
ness chemical potentials �I;�B, and �S in effective
models.

We studied the flavor SU�2� NJL model in detail. With
the standard techniques we set up in flavor space the quark
propagator matrix with off-diagonal elements arisen from
the pion condensation at finite isospin density. With the
propagator we derived the gap equations determining the
temperature and chemical potential dependence of the
pion and chiral condensates, and obtained the thermody-
namic functions in mean field approximation. By self-
consistently solving the gap equations at finite isospin
density and the pion mass equation in the vacuum, we
analytically derived the critical isospin chemical potential
for pion superfluidity, �c

I � m�, at quark level. Therefore,
in the chiral limit with vanishing pion mass, any small
isospin effect will lead to chiral symmetry restoration and
isospin symmetry spontaneous breaking even in the vac-
uum. In the real world with finite current quark mass and at
finite temperature, there is a strong competition between
the pion and chiral condensates in their coexistence region.
The chiral condensate goes up continuously in the mixed
region and drops down outside, while the pion condensate
decreases monotonously in the whole temperature region.

The bulk properties of the system in the limit of high
isospin density are also quite different from the corre-
sponding ideal gas, the equation of state is hard, and the
ratio of pressure to energy density approaches 0.7. We
investigated the effect of pion superfluidity on the meson
properties in the hot and dense quark-meson plasma, by
taking into account the off-diagonal elements in the meson
polarization function matrix in isospin space. We found
that the mean field approximation to quarks together with
RPA to mesons can well describe the isospin spontaneous
breaking, there is a massless Goldstone mode which is a
linear combination of the ��; ��, and � modes in the
whole superfluidity phase. We proved the Goldstone mode
analytically in general case with finite T;�I, and�B. In the
superfluidity phase, while the �0 mode is still an eigen
mode, the �;��, and �� mixing is very strong, especially
in the region close to the phase transition point. We dis-
cussed also the competition between the pion superfluidity
and color superconductivity at finite baryon density. While
we did not make full calculation with both pion and
116001
diquark condensates, we determined the critical baryon
chemical potential �c

B for color superconductivity. The
region of the normal phase without pion and diquark con-
densates in �S ��I plane is controlled by the pion mass
m� and diquark massmD in the vacuum. In the case of two
colors it is in a square box defined by �I < m� and �B <
m�, and in the case of three colors it is in a rectangle
defined by �I < m� and �B < 1:5mD.

We briefly extended our discussion on pion superfluidity
to the flavor SU�3� NJL model at finite isospin and strange-
ness densities. We found that the conclusion of the critical
isospin chemical potential �c

I � m� for pion superfluidity
does not change, and that the critical strangeness chemical
potential for kaon superfluidity is related not only to the
kaon mass mK but also to the isospin chemical potential,
�c
S � mK ��I=2. We showed the phase diagram of pion

and kaon superfluidity in �S ��I plane with possible
charged pion condensates and kaon condensates.

We have investigated the pion superfluidity and meson
properties at tree level and the thermal excitation at finite
isospin density in the bosonized version of the NJL model,
namely, the linear sigma model, and made comparison of
our calculations in the NJL model and sigma model with
the result obtained in chiral perturbation theory. Many
conclusions in the linear sigma model are qualitatively
or even quantitatively consistent with that in the NJL
model. We found that at zero temperature the linear sigma
model can reproduce the result of chiral perturbation the-
ory by taking the limit m� ! 1, but at finite temperature
the Hartree-Fock approximation cannot recover the
Goldstone mode in the pion superfluidity phase. The phase
diagram in the T ��I plane in large N expansion ap-
proach is more reasonable than the one in the Hartree-
Fock approximation.

It is necessary to discuss the difference among the
effective models. The conclusion �c

I � m� is observed
in almost all model calculations and lattice simulation.
While obtaining this result is easy and looks trivial in the
meson effective models such as chiral perturbation theory
and the linear sigma model, because the pion mass is a
parameter in these models, it is in the NJL model a general
result of mean field approximation to quarks and RPA to
mesons and diquarks. This is also true for kaon condensa-
tion. In chiral perturbation theory, the chiral and pion
condensates are regarded as a rotation from each other.
As a result, the maximum pion condensate should be the
same as the chiral condensate in the vacuum. In the NJL
model, we found that this rotation point of view is only true
around the phase transition point. Beyond this region the
pion condensate can be larger than the maximal chiral
condensate in the vacuum. This behavior is qualitatively
consistent with the lattice simulation [9–11]. As for the
linear sigma model, because the pion condensate increases
with �I without bound, the phase structure at high �I is
unphysical. Of course, due to the lack of confinement
-26
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mechanism in the NJL model, we need a momentum cutoff
� in numerical calculations. Therefore, we cannot take the
numerical results in high temperature and high density
regions seriously.
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APPENDIX A: TRACE IN DIRAC SPACE

In obtaining the gap equations for the condensates and
the meson and diquark polarization functions, we need to
take the trace of the quark propagators including energy
projectors in Dirac space. Here we list the results.
Tr����p��0���p��0� � Tr����p��0���p��0� � 2M2=E2
p;

Tr����p��0���p��0� � Tr����p��0���p��0� � 2� 2M2=E2
p;

Tr����p��5���p��5� � Tr����p��5���p��5� � 2� 2M2=E2
p;

Tr����p��5���p��5� � Tr����p��5���p��5� � 2M2=E2
p;

Tr��e�p��0�e0 �p��5� � Tr��e�p��5�e0 �p��0� � 0;

Tr��5���p��0�5���p��0� � Tr��5���p��0�5���p��0� � 0;

Tr��5���p��0�5���p��0� � Tr��5���p��0�5���p��0� � �2;

Tr��5���p��5�5���p��5� � Tr��5���p��5�5���p��5� � 2;

Tr��5���p��5�5���p��5� � Tr��5���p��5�5���p��5� � 0;

Tr��5�e�p��0�5�e0 �p��5� � Tr��5�e�p��5�5�e0 �p��0� � 0;

Tr��e�p��0�5�e0 �p��0� � Tr��5�e�p��0�e0 �p��0� � 0;

Tr��e�p��5�5�e0 �p��5� � Tr��5�e�p��5�e0 �p��5� � 0;

Tr����p��0�5���p��5� � Tr����p��0�5���p��5� � 0;

Tr����p��0�5���p��5� � 2M=Ep;

Tr����p��0�5���p��5� � �2M=Ep;

Tr����p��5�5���p��0� � Tr����p��5�5���p��0� � 0;

Tr����p��5�5���p��0� � 2M=Ep;

Tr����p��5�5���p��0� � �2M=Ep;

Tr��5���p��5���p��0� � Tr��5���p��5���p��0� � 0;

Tr��5���p��5���p��0� � 2M=Ep;

Tr��5���p��5���p��0� � �2M=Ep;

Tr��5���p��0���p��5� � Tr��5���p��0���p��5� � 0;

Tr��5���p��0���p��5� � 2M=Ep;

Tr��5���p��0���p��5� � �2M=Ep: (A1)
APPENDIX B: POLARIZATION FUNCTIONS IN THE SU(2) NJL MODEL

We list the meson polarization functions #ij�k� in the SU(2) NJL model for i; j � �;�1; �2; �3 and for i; j �
�;��; ��; �0. With respect to the basis ��;�1; �2; �3�, they are
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#00�k� � iNc
Z d4p

�2��4
TrD�Suu�q�Suu�p� � Sdd�q�Sdd�p� � Sud�q�Sdu�p� � Sdu�q�Sud�p��;

#11�k� � �iNc
Z d4p

�2��4
TrD��5Suu�q��5Sdd�p� � �5Sdd�q��5Suu�p� � �5Sud�q��5Sud�p� � �5Sdu�q��5Sdu�p��;

#22�k� � �iNc
Z d4p

�2��4
TrD��5Suu�q��5Sdd�p� � �5Sdd�q��5Suu�p� � �5Sud�q��5Sud�p� � �5Sdu�q��5Sdu�p��;

#33�k� � �iNc
Z d4p

�2��4
TrD��5Suu�q��5Suu�p� � �5Sdd�q��5Sdd�p� � �5Sud�q��5Sdu�p� � �5Sdu�q��5Sud�p��;

#01�k� � �Nc
Z d4p

�2��4
TrD�Suu�q��5Sdu�p� � Sdd�q��5Sud�p� � Sud�q��5Suu�p� � Sdu�q��5Sdd�p��;

#10�k� � �Nc
Z d4p

�2��4
TrD��5Suu�q�Sud�p� � �5Sdd�q�Sdu�p� � �5Sud�q�Sdd�p� � �5Sdu�q�Suu�p��;

#02�k� � iNc
Z d4p

�2��4
TrD�Suu�q��5Sdu�p� � Sdd�q��5Sud�p� � Sdu�q��5Sdd�p� � Sud�q��5Suu�p��;

#20�k� � iNc
Z d4p

�2��4
TrD��5Sdd�q�Sdu�p� � �5Suu�q�Sud�p� � �5Sdu�q�Suu�p� � �5Sud�q�Sdd�p��;

#03�k� � Nc
Z d4p

�2��4
TrD�Sdd�q��5Sdd�p� � Suu�q��5Suu�p� � Sud�q��5Sdu�p� � Sdu�q��5Sud�p��;

#30�k� � Nc
Z d4p

�2��4
TrD��5Sdd�q�Sdd�p� � �5Suu�q�Suu�p� � �5Sdu�q�Sud�p� � �5Sud�q�Sdu�p��;

#12�k� � �Nc
Z d4p

�2��4
TrD��5Suu�q��5Sdd�p� � �5Sdd�q��5Suu�p� � �5Sdu�q��5Sdu�p� � �5Sud�q��5Sud�p��;

#21�k� � �Nc
Z d4p

�2��4
TrD��5Sdd�q��5Suu�p� � �5Suu�q��5Sdd�p� � �5Sdu�q��5Sdu�p� � �5Sud�q��5Sud�p��;

#13�k� � iNc
Z d4p

�2��4
TrD��5Suu�q��5Sud�p� � �5Sdd�q��5Sdu�p� � �5Sdu�q��5Suu�p� � �5Sud�q��5Sdd�p��;

#31�k� � iNc
Z d4p

�2��4
TrD��5Suu�q��5Sdu�p� � �5Sdd�q��5Sud�p� � �5Sud�q��5Suu�p� � �5Sdu�q��5Sdd�p��;

#23�k� � Nc
Z d4p

�2��4
TrD��5Sdu�q��5Suu�p� � �5Sud�q��5Sdd�p� � �5Suu�q��5Sud�p� � �5Sdd�q��5Sdu�p��;

#32�k� � Nc
Z d4p

�2��4
TrD��5Suu�q��5Sdu�p� � �5Sdd�q��5Sud�p� � �5Sud�q��5Suu�p� � �5Sdu�q��5Sdd�p��;

(B1)
where the momentum q is defined as q � p� k.
For determining the meson masses in RPA, we need only

the polarization functions at k � 0. With the calculated
trace shown in Appendix A, we have
#03 � #30 � #13 � #31 � #23 � #32 � 0: (B2)
If we further set k0 � 0, which is used to determine the
116001
temperature and chemical potentials corresponding to the
zero meson mass, we obtain
#02 � #20 � #12 � #21 � 0: (B3)
After performing the Matsubara frequency summation we
derive the expressions as explicit functions of temperature
and chemical potentials,
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#22�k0 � 0� � �2Nc
Z d3p

�2��3
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#33�k0� � 2Nc
Z d3p
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p � �E2

p ��2
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(B4)

The meson polarization functions in the basis ��;��; ��; �0� are defined as

#���k� � iNc
Z d4p

�2��4
TrD�Suu�q�Suu�p��Sdd�q�Sdd�p��Sud�q�Sdu�p��Sdu�q�Sud�p��;

#����
�k� ��2iNc

Z d4p

�2��4
TrD��5Suu�p� k��5Sdd�p��; #����

�k� ��2iNc
Z d4p

�2��4
TrD��5Sdd�p� k��5Suu�p��;

#����
�k� ��2iNc

Z d4p

�2��4
TrD��5Sud�p� k��5Sud�p��; #����

�k� ��2iNc
Z d4p

�2��4
TrD��5Sdu�p� k��5Sdu�p��;

#���
�k� ��

���
2

p
Nc

Z d4p

�2��4
TrD�Suu�p� k��5Sdu�p��Sdu�p� k��5Sdd�p��;

#���
�k� ��

���
2

p
Nc

Z d4p

�2��4
TrD�Sud�p� k��5Suu�p��Sdd�p� k��5Sud�p��;

#����k� ��
���
2

p
Nc

Z d4p

�2��4
TrD��5Suu�p� k�Sud�p���5Sud�p� k�Sdd�p��;

#����k� ��
���
2

p
Nc

Z d4p

�2��4
TrD��5Sdu�p� k�Suu�p���5Sdd�p� k�Sdu�p��: (B5)

The explicit expressions as functions of temperature and chemical potentials at k � 0 can be written as
#���k0�� 2Nc
Z d3p
�2��3
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1
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�
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1
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#����
�k0��#����
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Z d3p
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(B6)
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APPENDIX C: HATREE-FOCK APPROXIMATION IN THE LINEAR SIGMA MODEL

In Hatree-Fock approximation, the interaction terms among� and�i in the effective Lagrangian (81) of the linear sigma
model are fully absorbed into the � and �i effective masses, and the model behaves like a quasiparticle system. At
sufficiently high temperature, the pion condensation vanishes and the system contains only chiral condensate. This is the
case we considered in deriving the critical isospin chemical potential �c

I for pion superfluidity in Sec. VI. In this case the
Lagrangian density is simplified as

LHF �
1

2
��@��2 � �@�3�

2 � �@t�1 ��I�2�
2 � �@t�2 ��I�1�

2 � �r�1�
2 � �r�2�

2�

�
1

2
�M2

��
2 �M2

0�
2
3 �M2

���
2
1 � �2

2�� �
�U�3�: (C1)
with the effective meson masses
M2
� � 2g2

��332 � f2
�� 3h��i � 2h��i � h�0�0i� �m2

�;

M2
0 � 2g2

��32 � f2
�� h��i � 2h��i � 3h�0�0i� �m2

�;

M2
� � 2g2

��3
2 � f2

�� h��i � 4h��i � h�0�0i� �m2
�;

(C2)
and the effective potential
�U�3� �
1

2
�2g2

�f
2
� �m2

��3
2 �

g2
�

2
34 � f�m

2
�3

�
g2
�

2
��h��i � 2h��i � h�0�0i�

2

� 2�h��i2 � 2h��i2 � h�0�0i
2��; (C3)
where the thermal excitation functions h��i; h��i, and
h�0�0i are calculated from the mean field propagators,
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h��i �
Z d3k

�2��3
1�������������������

k2 �M2
�

p 1

e
�������������
k2�M2

�

p
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;
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Z d3k

�2��3
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q 1
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;
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Z d3k
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�

p
��I�=T � 1

�
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p
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: (C4)

The thermodynamic potential of the system in Hartree-
Fock approximation can be expressed as the summation of
the quasiparticle contributions plus the effective potential,

� � �U�3� � T
Z d3k

�2�3�
ln�1� e�

�������������
k2�M2

�

p
=T�

� T
Z d3k

�2�3�
ln�1� e�

������������
k2�M2

0

p
=T�

� T
Z d3k

�2�3�
ln�1� e��

�������������
k2�M2

�

p
��I�=T�

� T
Z d3k

�2�3�
ln�1� e��

�������������
k2�M2

�

p
��I�=T�: (C5)
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The gap equation for the chiral condensate 3 is derived by
minimizing the thermodynamic potential,

2g2
�3�3

2 � f2
� � 3h��i � 2h��i � h�0�0i�

� 3m2
� � f�m

2
�: (C6)

The mass equations (C2) with the thermal excitation func-
tions (C4) and the gap equation (C6) form a group of
coupled equations and determine self-consistently the tem-
perature and chemical potential behavior of the chiral
condensate and the effective meson masses.
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APPENDIX D: POLARIZATION FUNCTIONS IN
THE SU�3� NJL MODEL

We define the following matrices

;	ab �
1���
2

p �;a 	 i;b�: (D1)

The meson polarization functions are defined as

#MM�k� � i
Z d4p

�2��4
Tr�%�

MSmf�p� k�%MSmf�p��;

(D2)

with the couplings
%M �

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

;�
12 M � a�

;�
12 M � a�

;3 M � a0

;�
45 M � =�

;�
45 M � =�

;�
67 M � =0

;�
67 M � �=0

i�5;
�
12 M � ��

i�5;�
12 M � ��

i�5;3 M � �0

i�5;�
45 M � K�

i�5;
�
45 M � K�

i�5;�
67 M � K0

i�5;�
67 M � �K0

; %�
M �

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

;�
12 M � a�

;�
12 M � a�

;3 M � a0

;�
45 M � =�

;�
45 M � =�

;�
67 M � =0

;�
67 M � �=0

i�5;
�
12 M � ��

i�5;�
12 M � ��

i�5;3 M � �0

i�5;�
45 M � K�

i�5;
�
45 M � K�

i�5;�
67 M � K0

i�5;�
67 M � �K0

: (D3)

Doing the trace in color and flavor space first, we obtain

#a0a0
�k� � iNc

Z d4p

�2��4
TrD�Su�p� k�Su�p� � Sd�p� k�Sd�p��;

#a�a��k� � 2iNc
Z d4p

�2��4
TrD�Su�p� k�Sd�p��; #a�a��k� � 6i

Z d4p

�2��4
TrD�Sd�p� k�Su�p��;

#k�k��k� � 2Nci
Z d4p

�2��4
TrD�Su�p� k�Ss�p��; #k�k��k� � 2Nci

Z d4p

�2��4
TrD�Ss�p� k�Su�p��;

#k0k0�k� � 2Nci
Z d4p

�2��4
TrD�Sd�p� k�Ss�p��; #�k0 �k0�k� � 2Nci

Z d4p

�2��4
TrD�Ss�p� k�Sd�p��;

#�0�0
�k� � �Nci

Z d4p

�2��4
TrD��5Su�p� k��5Su�p� � �5Sd�p� k��5Sd�p��;

#����
�k� � �2Nci

Z d4p

�2��4
TrD��5Su�p� k��5Sd�p��; #����

�k� � �2Nci
Z d4p

�2��4
TrD��5Sd�p� k��5Su�p��;

#K�K�
�k� � �2Nci

Z d4p

�2��4
TrD��5Su�p� k��5Ss�p��;

#K�K�
�k� � �2Nci

Z d4p

�2��4
TrD��5Ss�p� k��5Su�p��; #K0K0�k� � �2Nci

Z d4p

�2��4
TrD��5Sd�p� k��5Ss�p��;

# �K0 �K0�k� � �2Nci
Z d4p

�2��4
TrD��5Ss�p� k��5Sd�p��: (D4)
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