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Supersymmetric structure of electroweak Sudakov corrections
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Electroweak radiative corrections can be evaluated in the Sudakov approximation, a systematic high-
energy expansion known to be relevant for the analysis of future collider experiments in the TeV energy
range. In the minimal supersymmetric standard model and at next-to-leading order, Sudakov electroweak
corrections satisfy remarkable relations at the one-loop level. Explicit computations in component fields
are available for various different 2 ! 2 processes relevant for linear collider or CERN LHC physics. The
Sudakov corrections turn out to be equal or closely related in several classes of processes differing by the
replacement of certain final or initial states with their superpartners. This fact suggests that supersym-
metry is partially restored at high energy. We analyze the supersymmetric structure of such relations by
computing the Sudakov corrections in the framework of superfield perturbation theory. As a simple
application, we derive in full details an extended complete set of supersymmetric relations among
different processes related by supersymmetry to the fundamental fermion pair production process
e�e� ! ff.
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I. INTRODUCTION

The calculation of radiative corrections in models of
fundamental interactions will play an important role in
the theoretical analysis of future collider experiments. In
this paper, we work in the minimal supersymmetric stan-
dard model (MSSM), where higher order perturbative ef-
fects can be calculated systematically due to
renormalizability.

A general discussion of the structure of radiative cor-
rections in the MSSM can be found in [1]. Actual calcu-
lations involve the exchange of virtual states including, of
course, the various supersymmetric partners of standard
model particles. In principle, supersymmetry (SUSY)
could simplify the analysis by providing an underlying
structure. In practice, supersymmetry is softly broken at
low energy making it very hard to exploit the symmetry in
the actual evaluation of definite physical processes [2].

Thus, most of the existing calculations of radiative
corrections in the MSSM are performed in the familiar
component formalism. Physical fields are treated sepa-
rately and the SUSY multiplet structure is not fully ex-
ploited in the perturbative expansion.

This is an unpleasant situation, but the following con-
siderations suggest the possibility of recovering supersym-
metry to some extent in the phenomenological analysis of
radiative corrections. In the future collider experiments in
the TeV energy range, in particular, at the CERN Large
Hadron Collider (LHC) and International Linear Collider
(ILC), the typical experimental situations will be charac-
terized by large invariant masses. A high-energy expansion
seems therefore a natural opportunity to achieve major
simplifications in the structure of loop corrections.

Indeed, high-energy expansions enjoy several useful
features in this respect. First, helicity conservation reduces
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the number of relevant amplitudes. Second, it is known that
radiative effects beyond production thresholds are rather
smooth and can be described by the so-called logarithmic
Sudakov expansion (LSE) [3]. In particular, in a MSSM
scenario with light SUSY partners below the typical value
of 300– 400 GeV, such expansions effectively apply at
energies in the TeV range. The practical consequences of
LSE have been deeply analyzed in the standard model [4]
and in the MSSM both at ILC [5–7] and at LHC [8].
Radiative corrections are expanded in a logarithmic vari-
able that, in the electroweak case, is typically
�W log�s=M2

W�, where s is the squared center of mass
energy and �W � �=sin2�W with �W being the Weinberg
weak mixing angle. Logarithms arise from ultraviolet and
mass singularities. At one loop and next-to-leading order
(NLO), there appear contributions of the form
�W log2�s=M2

W� and �W log�s=M2
W� which have been

shown to be sizable at the planned energies. For instance,
at

���
s

p
� 1 TeV they give typical corrections of tens of

percent to the one-loop cross sections.
The accuracy of LSE has been discussed by explicit

comparisons with full one-loop calculations of specific
processes [6]. In practice, LSE leads to very simple and
compact expressions that allow rather straightforward phe-
nomenological analysis [9]. With a conservative attitude,
processes where LSE predicts large observable effects
have strong motivations for a full treatment.

We now come back to the issue of supersymmetry and
consider what happens in the MSSM. Indeed, in this case
we observe quite remarkable special features of LSE. The
most important is that LSE turns out to be independent
from most of the soft breaking terms at NLO. Therefore it
isolates the dependence of observables on very specific
parameters, like for instance the vacuum alignment angle
tan	 [9].
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Independence from soft breaking can be argued by
dimensional arguments in terms of the high-energy mass
suppression of low dimensional breaking operators. It sug-
gests that some amount of SUSY could be recovered at the
level of LSE. This conjecture has been checked as a by-
product of complete one-loop calculations of various pro-
cesses relevant for ILC and LHC [7] in the component
approach.

The interesting result is that Sudakov corrections to
processes involving particles in the same SUSY multiplets
are closely related, as explained in full detail below. We
shall denote briefly such kind of results Sudakov super-
symmetric relations (SSR). In this paper, we shall discuss a
proof of such relations within the framework of superfield
perturbation theory.

The plan of the paper is the following. In Sec. II we
discuss the specific details of SSR. It will emerge that the
Sudakov correction can be split into three contributions, so
called universal, Yukawa, and angular dependent. In
Sec. III we illustrate the supergraph calculation of the
universal correction. In Sec. IV we discuss the Yukawa
correction. Finally, in Sec. V we illustrate the evaluation of
box supergraphs that compute the angular dependent cor-
rection. In Sec. VI, we summarize our results and discuss
future developments.

II. SUDAKOV SUPERSYMMETRIC RELATIONS

We now review the observed SSR as they emerge from
explicit one-loop calculations in the MSSM in component
fields. We closely follow the notation of [7] and work at
one loop. We begin the discussion by considering the ILC
process (f � e)

e�� e�� ! f	f	; (1)

where �, 	 are chirality left (L) or right (R) indices. We
denote by s the squared center of mass (c.m.) energy of the
initial e�e� pair.

The electroweak Sudakov correction to the amplitude
for the process (1) is described at high energy and at next-
to-leading logarithmic order in the following very simple
form,

ASudakov � ABorn�1 � cU
� � cU

	 � cY
	 � cang

�	� � ARG; (2)

where the initial (cU
�) and final (cU

	) universal coefficient cU

is

cU
� �

1

16�2

�
g2I��I� � 1� � g02

Y2
�

4

�

	

�
2 log

s

M2
V

� log2 s

M2
V

�
; (3)

where I, T3 are the total and third component of isospin
and Y is the hypercharge. We denote by g and g0 the
SU�2� 	 U�1�Y gauge coupling, following standard
notation.
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As we claimed, Eq. (2) is valid at NLO, i.e. when we
neglect all terms which are not growing with the c.m.
energy. The mass scale of the linear logarithm is not fixed
at NLO in the logarithmic expansion. Instead, the mass
scale in the squared logarithm is not arbitrary. In compo-
nents, several diagrams with exchange of gauge bosons do
contribute. The massMV can beM�,MZ, orMW according
to the exchanged virtual gauge boson. For the photon, we
set fictitiously M� � MZ. This permits a unified treatment
of the neutral current electroweak interactions. In the
application to a physical process, the correct procedure
will require to reinsert M� back into inclusive observables,
include initial and final radiation effects, and finally take
the physical M� ! 0 limit (see for instance the detailed
discussion about mass scale separation at two-loop level in
[10]).

The two terms in (3) have a clear separate origin from
the neutral (�, Z) and charged (W
) current sectors, as
shown by the Casimir operator of U�1�Y or SU(2). When
the approximation MZ ’ MW is used, one recovers the
above simple formula where the isospin and hypercharge
contributions are collected together. IfMZ andMW are kept
distinct, the two contributions are separated accordingly
[6].

For simplicity, in this paper, we focus on the simpler
neutral currents sector to illustrate the superfield technique.
More precisely, we aim at recovering the SSR involving the
hypercharge U�1�Y part of the gauge group, i.e. for cU,

cU;neutral
� �

1

16�2 g
02 Y

2
�

4

�
2 log

s

M2
Z

� log2 s

M2
Z

�
: (4)

Intrinsic charged currents contributions can also be con-
sidered, but there are minor complications due to the triple
gauge boson vertex. The Sudakov correction is gauge
invariant, and it is convenient to organize the various
diagrams in a gauge invariant way by means of the pinch
technique [11]. We leave details regarding the implemen-
tation of the pinch technique with superfields to a separate
work.

The Yukawa coefficient cY is present if f is heavy and
we keep its mass [12]. Let us focus on the important case of
top or bottom quark production. If we denote by f0 the
SU(2) partner of f, we have

cY
	 � �

g2

16�2

�
1 � �	;R

2

m̂2
f

M2
W

�
�	;L

2

m̂2
f0

M2
W

�
log

s

M2 ; (5)

where m̂t � mt= sin	 and m̂b � mb= cos	, and M is a
mass scale not fixed at NLO. It is typically taken as M �
mt. It is important to remark that it is only and precisely
from this correction that a dependence on the MSSM
parameters arises at very high energy in this process.
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The angular dependent correction is

cang
�	 � �

g2

16�2 log
s

M2
V

�
�tan�2

WY�Y	 � 4T3
�T

3
	� log

t
u

�
��;L�	;L

1=4 tan�2
WY�Y	 � T3

�T
3
	

	

�
�b;f log

�t
s

� �t;f log
�u
s

��
; (6)

where t and u are standard Mandelstam variables. The
hypercharge contribution is particularly simple,

cang;neutral
RR � �

g02

4�2

Y�
2

Y	
2

log
s

M2
Z

log
t
u
: (7)

Finally, the renormalization group (RG) contribution ARG

contains the logarithms due to RG running of the coupling
constants. This piece will be considered as known and not
discussed in the following. It can be found in detail in [7].

These expressions are remarkably simple and can be
used as a starting point for the analysis of the phenomeno-
logical consequences of radiative corrections, at least in the
high-energy regime. A detailed discussion of their accu-
racy, resummation properties, and relevance to the MSSM
parameter space analysis can be found in the papers we
have cited in the Introduction (see, in particular, the review
[4]).

In this work, we shall be concerned with the SUSY
structure of these corrections. Such a structure is illustrated
by the following results. Instead of (1), we could consider
the related process of sfermion production, again at ILC,

e�� e�� ! ~f	 ~f�	: (8)

Here, the index 	 is not a chirality index but just denotes
~f	 as the sfermion partner of the chiral fermion f	. The
remarkable result is that the Sudakov correction takes the
same form as for fermion production with the same coef-
ficients, both for the universal, Yukawa, and angular de-
pendent parts.

Also, if we are interested in charged Higgs production
e�� e

�
� ! H�H�, we find again the same set of corrections

under the assignment Q�H�� � �1, T3�H�� � �1=2.
The only change is in the Yukawa term that reads instead

cY
H�H� � �3

g2

32�2

�
m2
t

M2
W

cot2	�
m2
b

M2
W

tan2	
�

log
s

M2 :

(9)

Similar results are obtained for final charginos, neutralinos
[9], as well as for the initial states which appear in LHC
processes, i.e., quarks, gluons [8]. In the following, we
shall denote by SSR (Sudakov SUSY relations) the equal-
ity of Sudakov corrections for processes that differ by the
replacement of some particle in the initial or final state with
its superpartner.
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The very existence of SSR proves that some amount of
SUSY is recovered at the level of Sudakov correction,
although supersymmetry is softly broken in the MSSM.
As we said in the Introduction, we can argue that at high
energy soft breaking terms are irrelevant and mass sup-
pressed and SUSY relations are recovered. An application
of this idea can be found in [13] where the structure of
gauge boson helicity conservation in the MSSM is ana-
lyzed under such hypothesis.

In principle, under the assumption of unbroken SUSY,
some partial information can be derived from Ward iden-
tities. For instance, to match the corrections to the produc-
tion of a fermion pair to those in the sfermion case, one
could start from the relation

�SUSYh0je�� e�� ~f�	f	j0i � 0: (10)

The variation of the final state (~f�	f	) connects the ampli-
tudes for the two processes e�� e�� ! ~f�	 ~f	 and e�� e

�
� !

f	f	. However, the terms coming from the variation of the
initial state (e�� e�� ) also contribute due to the possibility of
exchanging a neutralino in the s channel. Thus, Ward
identities suggest that SSR can be extended to include
the gaugino form factor �! ’� in the equality between
the Sudakov corrections to the vector form factors V" !

  and V" ! ’�’. This will be immediately proved in
the later calculations. Beside these considerations, it must
be checked in some details that soft terms are actually
irrelevant and do not contribute at the Sudakov level to
the right-hand side of the variation Eq. (10).

It is clear that to obtain more detailed results on the
Sudakov logarithmic corrections we should exploit in finer
details their specific kinematical origin. Let us discuss the
infrared contributions that, for instance, lead to squared
logarithms. In spontaneously broken gauge theories the
gauge boson masses MV are natural infrared regulators.
Thus, at large energy E� MV , we can expect mass sin-
gularities to show up as powers of log�E=MV�, i.e. the
infrared part of Sudakov corrections. In the standard
model, it is well known how to extract these (logarithmic)
singular terms by a careful analysis of the relevant dia-
grams [14]. Besides, the lowest order results can be im-
proved by RG techniques in order to resum higher order
effects and prove factorization properties. Advanced ex-
amples of these resummation techniques include the treat-
ment of angular dependent corrections whose numerical
relevance in actual experiments is well known to be non-
negligible [5,15] and that, as we reviewed, also satisfy
supersymmetric relations. In principle, the extension to
MSSM could be done in order to study the possible validity
of SSR beyond one loop.

Here, we begin with the one-loop contributions and do
not consider resummation issues. Instead, since we are
interested in SSR, we show how the mass singularities
can be isolated in a manifest supersymmetric way. We
stick to a detailed diagrammatic calculation because we
-3
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FIG. 1. Diagram giving the universal Sudakov correction to
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believe that this is the clearest framework where soft break-
ing independence arises in a controlled and explicit way.
However, we do not work in components, but exploit
instead superfield perturbation theory [16,17].

This technique is not much used in practical calculations
for phenomenological studies in the MSSM precisely be-
cause of the large amount of SUSY breaking. In principle,
soft terms can be included by the spurion technique [18].
The method is somewhat cumbersome apart from the
analysis of UV divergences or to the (related) construction
of renormalization group evolution equations [19]. For
applications, component field calculations are certainly
preferred.

Instead, Sudakov corrections can be computed safely
and efficiently in the superfield approach, as this paper
will show. Indeed, the calculation is also largely simplified
for the following reasons:
the V!! form factor.
(1) S
cheme independence: at one loop, Sudakov cor-
rections are physical and renormalization scheme
independent. Any scheme dependence drops out
because scheme dependent subtractions do not in-
troduce contributions growing with the energy. All
the subtleties related to regularization consistency
and to the need of restoring Ward identities [20] do
not show up at the next-to-leading logarithmic level.
(2) M
ass independence: we can insert fictitious masses
in the superdiagrams, at least at NLO. In all dia-
grams leading to Sudakov corrections, the mass
terms are suppressed at high energy as a conse-
quence of elementary properties of the basic loop
integrals. The only relevant mass scales entering the
expressions for Sudakov corrections are the gauge
boson masses unaffected by soft terms.
We now consider the various supergraphs contributing
the Sudakov corrections of various kinds. For each case,
we compute the Sudakov expansion of the one-loop effec-
tive action in a manifest supersymmetric way and show
how SSR are recovered quite easily.
III. UNIVERSAL SUDAKOV CORRECTION

We begin with the V!! term in the one-loop effective
action ". The supergraph giving the Sudakov correction is
shown in Fig. 1 for the final state correction. Of course, the
same (crossed) diagram gives also the correction to the
initial state. We want to retrieve the following result,

"Sudakov
V!!

� cU"tree
V!!

; (11)

where cU is given in Eq. (3). After expansion of the super-
fields V, !, and !, this proves SSR for the gauge universal
Sudakov correction.

The value of the supergraph is (see for instance the
analogous computation in O�4� extended super Yang-
Mills [17]):
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"V!! � �
ig2

0

2

Z d4k

�2��4
1

D1D2D3

Z
d4�!�p; ��!�q; ��

	

�
�k� q�2 �

1

2
D�k6 � q6 �D�

1

16
D2D2

�

	 V�r; ��; (12)

where g0 is the neutral V coupling and D1 � k2 �M2
Z,

D2 � �k� q�2 �M2
!,D3 � �k� p�2 �M2

!. The conven-
tion for chiral and vector superfields is

! � ’� � � �2F� i�-"�@"’�
i
2
�2�-"@" 

�
1

4
�’�2�2; (13)

VWZ � �-"�V" � i�2���i�2���
1

2
D�2�2; (14)

where, for simplicity, we have written V in the Wess-
Zumino gauge. This is possible for external V fields in
gauge invariant amplitudes. Instead, virtual V exchange
will involve all the unphysical degrees of freedom of V.
The covariant derivatives D, D acting on V are conven-
iently written after contraction with auxiliary spinors / , /
and read (r6 � -"r")

/D � /@� /r6 �; / D � �@ / ��r6 /: (15)

We now analyze the three terms inside the square brack-
ets in "V!!. The first term is proportional to the Passarino-
Veltman (PV) function B0 evaluated at one of the external
! squared momenta. It is divergent and must be regulated
but does not give Sudakov logarithms being independent
from the c.m. energy. Basic definitions and asymptotic
expansions of the PV functions can be found in full gen-
erality in [21].
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In the second term of "V!! we require the finite loop
integral (in the large r2 � M2

i ; p
2; q2 regime)

Z �
dk
2�

�
4 �k� q�"
�k2 �M2

V���k� q�2 �M2
!���k� q� r�2 �M2

!�

� �
i

16�2 �C11q� C12p�": (16)

The PV functions C11 and C12 have the following asymp-
totic expansion where � denotes equality modulo terms
not growing with r2:

C11 �
1

2r2

�
2 log

r2

M2
V

� log2 r
2

M2
V

�
; (17)

C12 ��
1

r2 log
r2

M2
V

: (18)

The third term can be integrated by parts moving theD and
D operators on the chiral and antichiral fields !, !. By
chirality, we have D�! � D _�! � 0. Also, the expres-
sions D2! and D2! are not vanishing but are mass sup-
pressed as a consequence of the equations of motion of !,
!. To see this, we contract the effective action vertex V!!
with the propagator

h0jTf!�p; �1; �1�!��p; �2; �2�gj0i

�
1

16

i

p2 �M2
!

D2
1D

2
1�12; (19)

where �12 � ��1 � �2�
2��1 � �2�

2. If we now act with D2

and exploit D2D2D2 � 16�D2, we see that, apart from
mass corrections, any effective vertex with a D2! or D2!
term does not have the necessary pole to survive the on-
shell projection.

The Sudakov correction comes therefore entirely from
the second term,

"Sudakov
V!!

�q; p; r� �
ig2

0

4

Z d4k

�2��4
Z
d4�!�q�!�p��k

� q�� _�D
�D _�V�r�: (20)

We perform the loop integral and replace k� q!
��i=16�2��C11q� C12p�. Integrating by parts the D, D
operators we find

"Sudakov
V!!

�q; p; r� �

�
g2

0

4 � 16�2

Z
d4��D _�!�q�D�!�p�

� !�q�D _�D�!�p���C11q6 � C12p6 �� _�

	 V�r�: (21)

Since we are interested in the Sudakov enhanced terms, we
can further simplify. Indeed, we observe that the combina-
tion �p6 � _��@"D�! and the similar one for ! are mass
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suppressed as follows again from Eq. (19). The first term
of Eq. (21) does not contribute. AnticommutingD andD in
the second term and taking the trace we obtain

"Sudakov
V!!

�q; p; r� �
g2

0

16�2 �q � p�C11

Z
d4�!�q�!�p�V�r�:

(22)

We can now replace C11 by its asymptotic expansion and
identify g0 � 2�g0Y=2� where g0Y=2 is the U�1�Y standard
coupling. A factor 2 is needed to conform to standard
normalization of the gauge field in components. The final
result is

"Sudakov
V!!

�
1

16�2

�
g0
Y
2

�
2
�

2 log
r2

M2
Z

� log2 r
2

M2
Z

�

	
Z
d4�!!V

� cU"tree
V!!

: (23)

We have obtained in a very straightforward way the SSR
for the neutral part of the correction cU. The scale MV has
been set to MZ since the possible soft corrections to the
gaugino mass cannot affect the squared logarithm scale. As
a technical comment, the unphysical scalar component of
V does propagate along the internal V line, but it can be
checked that it does not give Sudakov logarithms. Thus, the
result in Eq. (23) is the correct physical gauge invariant
one.

To summarize, the superfield calculation of the effective
action has taken into account simultaneously the correction
to the three specific vertices appearing in the expansion ofR
d4�VWZ!!, i.e.

 -" V"; i�’@"’� � @"’’��V";

� ’� H:c::
(24)

The first two appear in the initial and final universal
correction to the amplitudes for producing a ff or ~f~f�

pair. They have been proven to be equal in agreement with
SSR. The third one is a by-product of the superfield cal-
culation and, by supersymmetry, gets an identical correc-
tion. Hence, the SSR can be extended in a supersymmetric
way to the gaugino form factor �! 2� in full consis-
tency with the Ward identity (10). As a check, an explicit
calculation in components confirms this result.
IV. YUKAWA SUDAKOV CORRECTION

The Yukawa corrections proportional to the squared
heavy quark masses arise from a different kind of super-
graph and have special features that we now discuss in
detail. We start from the corrections �m2

t . Later, we shall
include those �m2

b. The Sudakov Yukawa corrections can
be treated in a simplified and independent sector of the
MSSM governed by the Lagrangian
-5
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L �
X
!

Z
d4�!eg0V! � yt"

�	
Z
d2��uQ�Hu	 � H:c:�;

(25)

where the vector V is external and, in the MSSM, stands for
one of the neutral gauge bosons Z, �. The coupling yt is the
relevant Yukawa coupling proportional to mt and reads at
lowest order

yt �
gmt���

2
p
MW sin	

; (26)

where g is the SU(2) gauge coupling. The various chiral
fields are as follows. The SU(2) singlet u contains as
physical fields the right component of top tR and its
SUSY partner ~tR. The SU(2) doublet Q contains two chiral
fields u, d, whose components are the left-handed top and
bottom, with their superpartners. The SU(2) doublet Hu is
one of the two Higgs doublets of the MSSM and contains
two chiral fields H�, H0,

Q �
u
d

� �
; Hu �

H�
u

H0
u

� �
: (27)

Since V is external, the calculation can be entirely done in
a gaugeless limit of the MSSM, precisely as in [22] where
the subleading correction O�G"m

2
t � to the Z! bb vertex

and 6 parameter is computed in a gaugeless limit of the
standard model.

The Sudakov correction comes from the diagram pro-
portional to g y2

t shown in Fig. 2. This is similar to the
previous "V!!, but differs in the chiral structure because of
the exchange of a ! field, instead of a vector V. The D
algebra details can be worked out and the expressions we
derived for the universal correction are still valid apart
from trivial changes in the couplings and, most important,
the swap C11 $ C21. This will be the technical reason for
the correction being linear and not quadratic in the loga-
rithm of the center of mass energy.
V(r)

Φ (q)

Φ

Φ

1

2

2Φ

(p)Φ
FIG. 2. Diagram contributing the y2

t Yukawa terms.
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To perform the actual calculation, we should evaluate a
few diagrams according to specific final state and ex-
changed virtual ! fields. Indeed, due to the explicit
SU(2) structure of the Higgs field it is not possible to
join together the photon and the Z. However, instead of
considering the separate corrections to the � and Z vertices
it is more instructive to relate the single logarithm appear-
ing in cY to the external ! self-energy divergences. This is
possible due to the following remarks.
(1) T
+ 2  

FIG. 3.
tional t
where
invaria

-6
he linear logarithm and the divergence % of the
vertex proportional to y2

t appear in the fixed combi-
nation % � log�s=M2�. This follows from the actual
expression of the diagram in Fig. 2. It is enough to
substitute C11 ! C12 in Eq. (22) and to combine the
logarithm coming from the asymptotic expansion of
C12 with the divergence of the B0 function from the
first term of Eq. (12).
(2) T
he divergence in the vertex is canceled by the
external ! self-energies, also proportional to y2

t .
This follows from the fact that the divergence of
the sum of diagrams shown in Fig. 3 and dictated by
the SU(2) invariant " tensor is proportional to the
sum of charges of the three chiral fields !1;2;3. Thus,
cancellation results from the Yukawa interaction
being a neutral SU(2) singlet, as it must.
The above observations link the calculation of the loga-
rithmic Yukawa correction to the external propagators
which are quite simple and independent from the off-shell
vector V. Indeed, the coefficient of the logarithm in the
vertex must be equal to the coefficient of the divergence in
the self-energy. The correction to the kinetic termR
d4�!! in the effective action is well known and reads

"�!;!� � y2
t

Z d4p

�2��4
A�p�d4�!��p; ��!�p; ��; (28)

where
Φ
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+
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Φ

Φ

Φ

Φ

Φ

Φ
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1
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3

Cancellation of the divergence in the terms propor-
o y2

t . It is given by the sum of the above Yukawa diagrams
!1;2;3 can be Hu, Q, or u as allowed by the SU(2)
nt coupling uQ �Hu.
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FIG. 4. Direct and crossed box diagrams giving the angular
Sudakov correction.
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FIG. 5. Box diagrams with one four-leg vertex V2!!.
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A�p� �
1

16�2 % � finite: (29)

In addition, counting the possible diagrams and the color
factors, we have the following multiplicity factors for the
superfield propagators:

"�u; u��: 2; (30)

"�Q�;Q	�: ��	; (31)

"�Hu�;Hu	�: Nc��	; �Nc � 3�: (32)

In conclusion, the relative Yukawa correction to the various
processes one can consider is obtained in terms of the
common coefficient

c � �
g2

2 	 16�2

m̂2
t

M2
W

log
s

m2
t
� �

�

8�s2
W

m̂2
t

M2
W

log
s

m2
t
;

(33)

as in the following list:

cY�uR; uR� � cY�~uR; ~u�R� � 2c; (34)

cY�uL; uL� � cY�~uL; ~u�L� � c; (35)

cY�dL; dL� � cY�~dL; ~d�L� � c; (36)

cY�H�
u ; H

�
u � � cY� ~H�

u ; ~H�
u � � 3c: (37)

If we now add the y2
b term �ybdQ �Hd [where the second

Higgs doublet is Hd � �H0
d;H

�
d �

T] we recover the full
Yukawa correction Eq. (5) for final fermions or sfermions.
In particular, we proved SSR for this kind of correction
with almost no calculations.

For final charged Higgs bosons, we must recall that the
physical H� field is defined as the combination H� �
cos	H�

u � sin	H�
d . Therefore, for H�H� production,

we have to scale mt ! mtcos2	 and mb ! mbsin2	 in
the above expressions obtaining precisely Eq. (9).
Φ 4DD
α β

. DD
α β

. Φ 3

ΦΦ 1 2

FIG. 6. Direct box diagram: surviving term after D algebra
manipulations and neglecting mass suppressed terms.
V. ANGULAR DEPENDENT
SUDAKOV CORRECTION

We now turn to the final piece of the calculation, the
angular corrections coming from gauge boson exchange in
boxes. The effective four point vertex is proportional toR
d4�!1!2!3!4, where !i are the chiral and antichiral

fields required to describe the initial and final states of the
scattering process. For instance, in four fermion scattering
at tree level, the sum of � and Z exchange leads to the
Dirac structure �" � �". For right-handed fermions in two
spinor notation, this is proportional to -" � -" that can
written in the form � 1 4�� 2 3� by a Fierz transforma-
tion. This is precisely the fully fermionic component of the
above superspace integral.
115016
The angular dependent Sudakov correction comes from
the two diagrams drawn in Fig. 4 with their detailed chiral
structure and from the two diagrams involving the V2!!
vertex shown in Fig. 4. For simplicity, we are assuming that
the initial and final states do not belong to the same (lepton
or quark) family.

For details about D algebra manipulations, we refer to
[16,17]. We just illustrate the general algorithm at one loop
since box calculations with superfields are not usual. The
various D2 and D2 operators are moved away from their
position by integration by parts in � space. They can be
transferred to other internal lines or to external fields.
When all the D2 and D2 on internal lines are on the same
line, we obtain a zero result if there are less than four
factors. If we have precisely D2D2, we can simply remove
them. In particular, the D algebra of Fig. 5 is trivial. If we
have more than four D, D factors, we can exploit the D
algebra fD�;D _�g � 2i-"� _�@" to reduce their number.
-7
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Useful relations are D�D	D� � 0, D2D2D2 � 16�D2,
and so on. After doing the D algebra, we are left with a
single d4� integration and a standard loop integral.

The direct box diagram is reduced to Fig. 6. As in the
calculation of the universal correction, we neglect system-
atically all mass suppressed contributions D2!, D2!.
Also, by definition D! � D! � 0. Therefore, we can
simplify D�D _�!�p� � 2p� _�!�p�. The diagram is thus
proportional to 2p3 � p4D0 whereD0 is the four point basic
PV function defined by

Z d4k

i�2

1

D1D2D3D4
� D0; (38)

with

D1 � k2 �M2; D2 � �k� p1�
2 �M2; (39)

D3 � �k� p1 � p2�
2 �M2;

D4 � �k� p1 � p2 � p3�
2 �M2:

(40)

For simplicity and somewhat heuristically, we put the same
mass M in all propagators. The final result will be inde-
pendent from M at next-to-leading logarithmic level. We
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could, of course, keep separate masses inside the loop and
find the same result. We define the Mandelstam variables
as s � �p1 � p4�

2, t � �p1 � p2�
2, u � �p1 � p3�

2. In the
large s limit, with fixed ratios t=s, u=s, the asymptotic
expansion of the D0 function is

D0 �
1

st

�
log2 s

M2
V

� log2 t

M2
V

�
: (41)

The relative value of the one-loop correction with respect
to the tree scattering amplitude is then

cang
direct � �

g2
0

32�2

�
log2 s

M2
V

� log2 t

M2
V

�
: (42)

To evaluate the crossed diagram it is convenient to
perform D algebra making all the D, D operators act on
the fields !1 and !4. This leads to the combination shown
in Fig. 7. Apart from trivial normalizations and couplings
that we shall insert in the end, Fig. 7(a) gives a C0 function
[21] due to the canceled propagator between fields 2 and 3.
The same is true for the two diagrams in Fig. 5. The C0

function and its expansion for s � �p1 � p2
2� � p2

i ; m
2
i are
C0�p1; p2� �
Z d4k

i�2

1

�k2 �m2
1���k� p1�

2 �m2
2���k� p1 � p2� �m2

3�
�

1

2s
log2 s

m2
2

: (43)
Φ 3

Φ 2

Φ 3

Φ 2D

+ 

Φ

Φ 1

4

1/2

Φ 4

p
α β

.

D Φ 1α

β
.

(a) (b)

−p2

FIG. 7. Crossed box diagram: surviving contributions after D
algebra manipulations and neglecting mass suppressed terms.
Keeping only the terms growing with energy we obtain

�a� � Fig:�5� �
1

2s
log2 s

M2 : (44)

Figure 7(b) requires the expansion of the D1i functions
defined by

Z d4k

i�2

k"

D1D2D3D4
�

X3

i�1

D1ip
"
i : (45)

These are given asymptotically by

D11 �
1

2st

�
�log2 s

M2 � 2log2 t

M2

�
; (46)

D12 �
1

2st

�
�log2 s

M2 � log2 t

M2

�
; (47)

D13 ��
1

2st
log2 t

M2 : (48)

As a final step, we must evaluate

�b� �
1

2

Z
d4�D�!1!2!3D _�!4�-"� _��� ~D11p1 � ~D12p3

�D13p2�"; (49)

where ~D1i � D1i �D0. We already remarked that
�p6 � _��D�!�p� and its conjugate are mass suppressed.
Thus, we manipulate each of the terms in Eq. (49) in order
to have aD (orD) operator on each derived field (i.e. fields
accompanied by a factor of the associated momentum).

The term �p1 is already in this form and does not
contribute. The �p3 term is treated as follows:

Z
d4�D�!1!2!3D _�!4�6p3�

_��

� �
Z
d4�D _�D�!1!2!3!4�6p3�

_�� � . . .

� 4p1 � p3

Z
d4�!1!2!3!4; (50)

where we used integration by parts of the D, D operators,
because of momentum conservation. In a similar way we
obtain for the �p2 term
-8
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Z
d4�D�!1!2!3D _�!4�6p2�

_��

� �4p2 � p4

Z
d4�!1!2!3!4: (51)

Hence,

�b� �
1

2
2u� ~D12 �D13� �

1

2s

�
log2 s

M2 � 2log2 u

M2

�
;

(52)

and

�a� � Fig:�5� � �b� �
1

s

�
log2 s

M2 � log2 u

M2

�
: (53)

Reinserting factors of 2 and couplings, we find the full
crossed contribution relative to the Born amplitude,

cang
crossed �

g2
0

32�2

�
log2 s

M2 � log2 u

M2

�
: (54)

Summing it with the direct term we obtain

cang � cang
direct � cang

crossed

� �
g2

0

32�2

�
log2 t

M2 � log2 u

M2

�

�
NLO

�
g2

0

16�2 log
s
MZ

log
t
u
; (55)

where we neglect subleading terms �log2��t=s� or
�log2��u=s� not growing with energy. Also, in the single
logarithm, we have chosen arbitrarily the scale MZ which
is not fixed at this order in the logarithmic expansion.

After the already discussed identification g0 �
2�g0Y=2�, we find perfect agreement with the calculation
in components. Expanding

R
d4�!1!2!3!4 in compo-

nent fields, we recover SSR for the angular Sudakov cor-
rection. In addition, we have proven that SSR can be
extended to the amplitudes for other four fermion or sfer-
mion scattering processes, like for instance the fully scalar
scattering ~f~f� ! ~f~f�. This is a pleasant result that can be
checked by explicit component analysis [23].

As a technical remark, we notice that from the above
expressions, it is straightforward to check that there are no
box contributions of Yukawa type giving asymptotic

SUPERSYMMETRIC STRUCTURE OF ELECTROWEAK . . .
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Sudakov logarithms. The diagrams proportional to y4
t

with exchange of virtual ! superparticles can be calculated
with the same techniques and all the terms growing with
the energy cancel.
VI. CONCLUSIONS

We have shown that superfield perturbation theory can
be applied to the calculation of Sudakov electroweak cor-
rections in the MSSM. The precise physical origin of these
corrections permits us to identify the supergraphs that
produce logarithmically enhanced effects. For simplicity,
we have analyzed the neutral, essentially Abelian, contri-
butions. The calculation is made easy by the physical
nature of Sudakov corrections which are well defined,
finite, and gauge invariant quantities. With a single super-
graph, we simultaneously calculate the correction for sev-
eral possible external states. In this framework, it is
therefore quite straightforward to prove the existence of
supersymmetric relations among the Sudakov corrections
to various processes.

It is clear that many extensions are possible, in particu-
lar, to processes relevant to LHC. For instance, single top
quark production via the parton processes bu! td, ud!

tb, bg! tW�, and bg! tH� receives large SUSY elec-
troweak corrections as discussed in [8] at the Sudakov
level. The superfield approach can prove in such cases
supersymmetric Sudakov relations with processes of pro-
duction of single stop squark that have similar large
corrections.

As a final comment, we emphasize the remarkable sim-
plicity of the Yukawa correction in superfield language and
the possibility of computing it in a gaugeless limit of the
MSSM. Indeed, it should be possible to evaluate the phe-
nomenologically important two-loop contribution in a
rather compact way, at least in the Sudakov approximation,
by combining recent results on multiloop asymptotic ex-
pansions [24] with superfield perturbation theory. Work is
in progress on such topic.
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