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String theories in principle address the origin and values of the quark and lepton masses. Perhaps the
small values of neutrino masses could be explained generically in string theory even if it is more difficult
to calculate individual values, or perhaps some string constructions could be favored by generating small
neutrino masses. We examine this issue in the context of the well-known three-family standard-like Z;
heterotic orbifolds, where the theory is well enough known to construct the corresponding operators
allowed by string selection rules, and analyze the D- and F-flatness conditions. Surprisingly, we find that a
simple seesaw mechanism does not arise. It is not clear whether this is a property of this construction, or of
orbifolds more generally, or of string theory itself. Extended seesaw mechanisms may be allowed; more
analysis will be needed to settle that issue. We briefly speculate on their form if allowed and on the
possibility of alternatives, such as small Dirac masses and triplet seesaws. The smallness of neutrino
masses may be a powerful probe of string constructions in general. We also find further evidence that there

are only 20 inequivalent models in this class, which affects the counting of string vacua.
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L. INTRODUCTION

String theory proposes to provide a well-defined under-
lying theory for elementary particle physics. As such it is
obligated to provide an understanding for the phenomena
we see at accessible energy scales, including the origin of
fermion masses and mixings. In particular, one should be
able to identify the mechanism that explains the smallness
of neutrino masses as a natural outcome in some class of
explicit string constructions. In this paper we perform a
study of a particular class of real string constructions in a
top-down manner, and search for the couplings necessary
to generate the ““‘minimal seesaw” mechanism for neutrino
masses (to be defined more precisely below). Though we
are mindful that this is not the only possible method of
achieving very light neutrinos, it does lead naturally to very
small masses (though not necessarily to large mixing
angles) and it is the basis of the vast majority of phenome-
nological studies of neutrinos in the literature.' The mini-
mal seesaw requires a well-defined set of fields and
couplings to be present in the low-energy theory. In par-
ticular, it requires the simultaneous presence of both Dirac
mass terms and large Majorana mass terms for the right-
handed neutrinos. There is no standard model symmetry to
forbid such couplings. Large Majorana masses might,
however, be forbidden by extensions of the low-energy

'For recent reviews of the neutrino oscillation data and models
of their masses and mixings, see [1-5].

1550-7998/2005/71(11)/115013(18)$23.00

115013-1

PACS numbers: 12.60.Jv, 11.25.Mj, 14.60.Pq, 14.80.Ly

theory, such as an additional U(1)" gauge symmetry [6].
Their possible existence forms a useful probe of the much
more restrictive string constructions.

Sadly, string theory has been largely silent on the issue
of neutrino mass since the subject was first raised in the
context of heterotic strings nearly 20 years ago [7,8]. The
reason for this silence is not hard to understand: the issue of
flavor is perhaps the most difficult phenomenological prob-
lem to study in explicit, top-down string constructions—
and neutrino masses are just one aspect of this problem. To
begin such a study requires that many things be worked
out: one needs not just the spectrum of massless states, but
also their charges under all Abelian symmetries (properly
redefined so that only one linear combination of U(1)
factors is anomalous). To obtain the superpotential cou-
plings to very high order the string selection rules for the
particular construction must be worked out and put into a
form amenable to automation. Obtaining these working
ingredients takes time and effort, though the techniques
are well known. Certain parts of this process have been
completed and discussed in the literature for several string
models. The most comprehensive study of weakly-coupled
heterotic models with semirealistic gauge groups and par-
ticle content are the free-fermionic constructions (see for
example [9-12] and references therein) and the bosonic
standard-like Z; orbifold constructions (see for example
[8,13] and references therein). In particular, a systematic
study of the spectra in the phenomenologically promising
BSL, class of the Z; orbifold has been performed by one of

© 2005 The American Physical Society



GIEDT, KANE, LANGACKER, AND NELSON

the authors of this paper. Thus we have at our disposal
these results and here we will exploit them to perform a
systematic study of the superpotential couplings and flat
directions®—with particular emphasis on the issue of neu-
trino mass. We will define this BSL, class more properly in
Sec. IL.

But merely working out the allowed superpotential cou-
plings (itself a tedious task) is not sufficient for studying
neutrino masses. The minimal seesaw calls for a very
special type of coupling: a supersymmetric bilinear
Majorana mass term. Such terms do not arise from string
theory for the states in the massless spectrum. Thus it must
be that this term arises dynamically through the vacuum
expectation value (vev) of some field or fields. This means
we must consider the issue of flat directions in the space of
chiral matter fields. To be more precise, in semirealistic
string constructions we are inevitably faced with an enor-
mous vacuum degeneracy that we do not know how to
resolve from first principles. So even once we have

(i) assumed a particular string construction,
(i) assumed a particular compactification, and

(iii) assumed (or better yet, determined) the background

values for string moduli, we are still

(iv) faced with a wealth of D- and F-flat directions in

the space of chiral matter fields.

These flat directions are combinations of background field
values for which the classical scalar potential vanishes and
supersymmetry is maintained. There are typically many
such directions, all degenerate and all consistent vacuum
configurations of the string construction. By setting certain
chiral superfields to background values that do not lie
along such a flat direction, one is attempting to expand
about an inappropriate configuration—in particular, a con-
figuration in which supersymmetry is spontaneously bro-
ken at a high scale (not to mention a configuration which is
not a valid point for a saddle-point expansion). A minimum
of the classical potential, and thus a classical vacuum, will
be the supersymmetric one.” Therefore, to the extent that
superpotential couplings of the minimal supersymmetric
standard model (MSSM) arise from terms involving one or
more vevs, they must occur along such flat directions, and
the issue of fermion masses and flavor is intricately tied to
the issue of vacuum selection in string theory—hence the
great difficulty in studying the issue of neutrino masses.

Only a handful of investigations into neutrino masses in
explicit top-down string constructions have been per-
formed, though there are many more examples of “string
inspired” bottom-up studies, and it is worthwhile to review
these instances before proceeding. Two noteworthy ex-

*These flat directions are only approximate (i.e. through
degree 9); see Appendix B.

“Here we assume that there is a supersymmetric minimum.
Also, in the presence of low-scale supersymmetry-breaking
effects, the minimum of the effective potential may be shifted
slightly away from a supersymmetric minimum.
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amples in intersecting brane constructions are that of
Ibafiez et al. [14] and that of Antoniadis er al. [15].
These are both nonsupersymmetric constructions with
low string scales. In the first case Majorana neutrino
masses are forbidden by a residual global symmetry broken
only by chiral symmetry breaking effects so that masses
can only be of the Dirac type. In the second case Majorana
couplings are again forbidden, but a large internal dimen-
sion is used to justify the smallness of neutrino masses.
Heterotic examples come closer to realizing the standard
seesaw paradigm. The most complete top-down analyses
involve free-fermionic constructions of Ellis et al. [16,17]
and Faraggi et al. [18—20] in which a detailed treatment of
flat directions was performed. In both cases some assump-
tions about strong dynamics in the hidden sector need to be
made in order to populate the neutrino mass matrix. In
addition, the latter set of models involves an extended set
of fields that are not of the minimal seesaw variety. In both
of these heterotic cases (as well as the recent heterotic
construction of Kobayashi et al. [21]) several right-handed
neutrino species are involved, where by ‘““different spe-
cies” we mean that right-handed neutrinos with different
gauge charges with respect to some extension of the stan-
dard model gauge group are involved. The point to be made
here is not to say that these are impossibilities or that these
examples cannot explain the smallness of neutrino masses.
It is rather to emphasize that in the (very few) extant string
examples neutrino and lepton mass matrices arise that look
very different from those expected from a typical grand
unified theory (GUT) ansatz, and in some cases different
from those stemming from a minimal seesaw ansatz.

Our focus will be very much different. In the heterotic-
based papers mentioned above one or two flat directions
were chosen for further study on the basis of certain
phenomenological virtues that are not directly concerned
with neutrino masses, such as the projecting of certain
exotic matter states from the spectrum or the desire to
accommodate realistic quark masses. Neutrino masses
are an afterthought, and it is not clear whether the lack of
a simple seesaw is indicative of the string construction or
simply the flat direction chosen. Here we will take the
uniqueness of the neutrino self-coupling of the minimal
seesaw as a guide and study a very large class of flat
directions, in a large set of models, in search of precisely
this coupling. By putting the issue of neutrino masses as
the primary consideration we are thus examining the ques-
tion of whether it is possible to infer the existence of small
neutrino masses as a reasonable outcome of a consistent,
explicit string construction independent of other questions
of low-energy phenomenology. (Of course, our preference
and ultimate goal would be to find a theory in which the
conspiracy of operators, couplings, charges, etc., was such
that neutrinos almost ““had” to be light, rather than it being
an accident.) If the answer is positive then it also would be
of interest to study whether the string constraints provide
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any insight into such issues as the existence of two large
mixing angles, the nature of the mass hierarchy (ordinary
or inverted or approximately degenerate) and the relation
(if any) to the quark and charged lepton masses and
mixings.

We now summarize the content and results of this ar-
ticle. In Sec. II we define and motivate the class of heterotic
orbifold models that we analyze and explain the remark-
able fact that from a starting point of thousands of possi-
bilities one is left to consider only 20 inequivalent cases. A
definition of the minimal seesaw and a description of the
algorithm we use for finding it is described in Sec. III,
where we also provide various details regarding flat direc-
tions and couplings in the models. Two cases of the 20
allowed for the possibility of a Majorana coupling along a
flat direction, though both ultimately fail to provide the
minimal seesaw or realistic neutrino masses for a variety of
reasons. Nevertheless we investigate both in some detail
and describe their successes and ultimate failures in
Sec. IV. We comment on the possible implications and
alternatives in the concluding Sec. V. Supporting material
is provided in three appendices. In Appendix A we list the
relevant fields in the spectra for representative models of
the two promising cases of Sec. IV. In Appendix B we
discuss the extent to which the flat directions we identify
should be considered approximately flat. Finally, in
Appendix C we provide a brief and accessible review of
the string selection rules as they apply to superpotential
couplings in the effective supergravity. We show that it is
possible to reduce these (conveniently) to gauge invariance
and a set of triality (i.e., Z3) invariances.

I1. BSL 4, MODELS OF THE Z; ORBIFOLD

As mentioned in the introduction, to systematically
study the issue of flavor in general—and neutrino masses
in particular—requires a thorough knowledge of many
aspects of the low-energy (4D) theory. To date one of the
few classes of string constructions where this process has
been systematically performed are standard-like models
obtained from Z; orbifolds [22,23] of the Eg X Eg heter-
otic string [24]. The construction is bosonic because of the
way in which fields in the underlying 2D conformal field
theory are realized, and it is symmetric because left-
moving and right-moving 2D conformal field theory de-
grees of freedom associated with the compact 6D space are
treated symmetrically. There is an Abelian embedding of
the orbifold action (space group) into the gauge degrees of
freedom through a shift embedding V with two discrete
Wilson lines a; and a3 [25,26]. Note that there are only
three independent Wilson lines in the Z; orbifold. Because
the third Wilson line is set to zero, one automatically
obtains a three-generation model—part of the reason for
the phenomenological interest in the Z; construction.

The twist vector which represents the orbifold action and
the Wilson lines are embedded in the Eg X Eg root torus,
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and the result is a breaking of this group to a product of
subgroups. The surviving groups emerge according to

Eg) — Gy and E%z) — Gy,;q- There are a vast number of
such consistent embeddings, but it has been shown in the
Z5 case that many of them are actually equivalent [27]. The
bosonic standard-like models of type A (BSL, models—a
designation coined in [13]) are those models of this class
which have G, = SU(3) X SU(2) X U(1)’ and (three
generations of) (3,2) representations in order to accommo-
date the quark doublets. As it turns out, with the choice of
G.ps that has been imposed, the (3,2) representations al-
ways occur in the untwisted sector [28].

Three-generation models of this type have appeared
extensively in the literature on semirealistic heterotic orbi-
folds [8,29-32]. A complete enumeration of consistent
embeddings into the first Eg was given in [27]. However,
it is in general not possible to place all the fields of the
MSSM matter content exclusively in the untwisted sector.
Thus it is necessary to work out the spectrum of twisted
sector states as well, and to therefore provide all possible
completions of the embeddings in [27] to the hidden sector
Ej factor as well.* A complete enumeration of consistent
completions of these embeddings into the second Eg was
given in [33]. There it was found that only five possibilities
for Gy;q exist. For one of the five possibilities, the non-
Abelian part of Gy,;4 only contains SU(2) factors. We do not
regard this as a viable hidden sector for dynamical super-
symmetry breaking by gaugino condensation, since the
condensation scale will be far too low to provide a reason-
able scale of supersymmetry breaking [34]. Therefore only
the four remaining possibilities for Gy;q are of interest to
us. With this restriction, it was found that there are just 175
models.

A systematic study of several properties of these models
was given in [13]. In particular the complete massless
spectrum of chiral matter was determined for each of the
175 models, where it was found that only 20 distinct sets of
representations occur for the 175 models. Furthermore, the
4D theories generated by the different embeddings in each
of the 20 classes had several identical physical properties.
This was interpreted as an indication that models in the
same pattern are actually equivalent. We will refer to these
20 cases as patterns of the BSL, master class.

We give a summary of these 20 patterns in Table I,
organized by the hidden sector gauge group Gy;y, with

“When a nontrivial embedding is chosen, the low-energy
gauge theory results from a twisted affine Lie algebra in the
underlying 2D conformal field theory. In this case the weights of
the states under the original Eg X Eg Cartan elements are shifted
by fractional amounts 0 mod 1/3. The twisted sector states are
then typically charged under both Eg factors, so that it is
necessary to know the ‘““hidden” sector embedding to obtain
the states that are also charged under the “observable” sector
Cartan elements; i.e., one loses the clear distinction between
hidden and observable sector states.
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TABLE I. Summary of BSL, patterns. For each pattern we
give the number of models in the pattern, the hidden sector gauge
group, the scale of the anomalous U(1) FI-term, and the number
of distinct species of chiral matter superfields.

Pattern  No. Ghia TFI Species
1.1 7 SO(10) X U(1)3 No U(1)y 51
1.2 7 S0(10) X U(1)? 0.15 76
2.1 10 SU(5) X SU2) X U(1)3 0.09 64
22 10 SU(5) X SU((2) X U(1)? 0.10 66
2.3 7 SUG) X SU(2) X U(1)? 0.10 65
2.4 7 SUK5) X SU((2) X U(1)? 0.13 60
2.5 6 SUS) X SUQ) X U(1)? 0.14 61
2.6 6 SU5) X SUQ) X U(1)? 0.12 51
3.1 12 SU4) X SU2)?* X U(1)3 0.07 58
32 5 SUM4) X SUQ)?* X UQ1)? 0.12 57
3.3 10 SU4) X SUQ2)* X U(1)? 0.12 57
3.4 5 SU4) X SUQ)* X U(1)? 0.13 53
4.1 7 SUB) X SUR)? X U(1)* 0.10 61
4.2 12 SU3) X SU((2)* X U(1)* 0.09 62
4.3 7 SUB) X SU2)? X U(1)* 0.07 63
4.4 15 SU3) x SU(Q2)* X U(1)* 0.12 59
45 17 SU3) X SU(Q2)* X U(1)* 0.11 61
4.6 13 SU3) X SU((2)* X U(1)* 0.12 60
4.7 6 SU3) X SU(Q2)* X U(1)* 0.11 62
4.8 6 SU3) X SUQ2)* X UQ1)* 0.12 53

the number of different embeddings in each pattern given
in the first column. In each of the 175 individual embed-
dings the U(1) charges of the spectrum can be obtained and
the anomaly isolated to one Abelian factor U(1)y. This
anomaly is cancelled [35-37] by the Green-Schwarz
mechanism [38], which involves a Fayet-Iliopoulos (FI)
term in the 4D Lagrangian. This term can be calculated
from the known spectrum and is given by

_ g%TR Tr Qx

= M3 ,
FI 19272 P

(2.1)
where ggrgr is the (unified) string coupling just below the
compactification scale and Mp; is the reduced Planck
mass. We will discuss the relevance of this particular
mass scale in Sec. IV. The value of &g depends on the
vacuum expectation value of the dilaton, which provides
the determination of ggrr. If we take the unification of
couplings in the MSSM as a rough guide to what this vev
might be, we can make the approximation gip =0.5.

Then the value of the ratio rg; = /| €|/ MpL can be calcu-
lated; we provide the numerical value of this factor in the
third column of Table I. In the final column we give the
total number of different species of chiral superfield in
each of the individual models for the pattern. Note that
the total number of fields would then involve a three-fold
replication of these species (except that for twisted oscil-
lator states there is a 9-fold multiplicity).
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When the gauge anomaly is isolated to a single Abelian
factor, the only nominal difference between different mem-
bers of each pattern is the apparent charges under the
various U(1) factors in Gy, X Gpigq. Yet the value of
Tr Qy is identical for each member of a given pattern,
suggesting that a basis exists for which these charges
and perhaps those of all the Abelian factors—would, in
fact, be identical. In this case the members of each pattern
would truly be redundant models; in this work we will find
further evidence for this conjecture.

Clearly, then, the bosonic standard-like models of the Z3
orbifold are an ideal starting point for a dedicated study of
neutrino masses: they already contain the standard model
particle content and gauge group (though with much more
besides), the vast number of possibilities has been reduced
to a tractable number through much past research, and
many of the key ingredients needed for our analysis are
already known. Indeed, these properties have made this
class a laboratory for other recent work in string phenome-
nology [39-43].

III. THE SEARCH FOR NEUTRINO MASS
COUPLINGS

We now know with certainty that some neutrinos have
mass and that the different flavors of neutrinos mix with
one another with large mixing angles. We further know that
the differences in the squared masses of the physical
eigenstates are extraordinarily small: on the order of
1073 eV? for the mass difference that explains the atmos-
pheric oscillation data and 107> eV? for the mass differ-
ence that explains the solar neutrino oscillation data. One
possible explanation is that the masses themselves are of
this order, and indeed cosmological observations of large
scale structure constrain the sum of the physical masses to
be on the order of a few XO0.1 eV [44]. The fantastic
smallness of these numbers, in comparison to the masses
of the quarks and charged leptons, seems to call for an
explanation dramatically different from those of other
standard model fields.

A. The minimal seesaw

While it is logically possible that neutrinos get their
masses solely through electroweak symmetry breaking,
with extremely small Yukawa couplings to Higgs states
and right-handed (Dirac) neutrinos, the preferred explana-
tion has long been the seesaw mechanism [45—48]. In this
scenario one assumes the existence of heavy (Majorana)
neutrinos which are singlets under the standard model
gauge group Ggy which play the role of right-handed
neutrinos. If these heavy states have O(1) Yukawa cou-
plings to the lepton and Higgs doublets, then integrating
them out of the effective theory produces sufficiently small
effective neutrino masses for the light states. In a super-
symmetric context we can cast this as an effective neutrino
mass superpotential which takes the form
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_ 0 (mD)ij v;

Wer = 0o N)( () e (W} B
where one assumes mp << my, in order to produce the
desired light eigenvalues. Here, the v; are the neutrino
superfields associated with the minimal supersymmetric
standard model, and the N; are (charge-conjugated) right-
handed neutrino superfields. One typically assumes that v;
runs over three generations of fields and that there are three
(or possibly more) N;. We will assume three generations of
each type of field, given the three-generation construction
that we appeal to. We will refer to the neutrino system
defined by these assumptions and the matrix (3.1) as the
“minimal seesaw.” The overwhelming majority of the vast
literature on neutrino phenomenology is based on this
minimal paradigm. We wish to study whether it is possible
to embed this scenario in a string-derived model—say, a
BSL, model.

Once we introduce string theory, we are confronted with
a number of chiral superfields beyond the states of the
MSSM. There are many potential candidates for the
right-handed neutrino fields »,. In fact, typically half the
species in the models of Table I are singlets of the standard
model gauge group—though none of them are singlets
under all of the Abelian gauge factors simultaneously. In
this they are distinct from the various moduli of the string
theory. These states are also represented by chiral super-
fields and are singlets under all gauge symmetries. Could
these be candidates for right-handed neutrinos?

While not a logical impossibility, we argue that a viable
model of neutrino mass is unlikely to involve these fields.
Moduli fields have no superpotential couplings at the
perturbative level, so the types of Yukawa interactions
that can give rise to the matrix (3.1) are absent at this level.
Furthermore, the string moduli are likely to receive a mass
only after supersymmetry is broken, and thus we
might expect typical values in the matrix (m,);; to be
O (TeV). The entries in the matrix (mp);; would then
need to be extremely small to explain the observed neu-
trino mass differences. Thus we will search for the needed
couplings among the fields that have been summarized in
Table I.

As mentioned above, bare mass terms W = m, D
with m,; << Mp; do not arise in a natural way from the
underlying string theory. Thus our first task is to identify a
degree n =3 coupling that would yield an effective
Majorana mass term

(81 S,-2)NN, (3.2)

where we have suppressed the generation labels associated
with the 3-fold degeneracy of the spectrum. The principal
questions that we address in this section are
(1) Is it possible to get the simplest sort of Majorana
mass couplings (3.2) in the BSL, models?
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(2) Since vevs of Ggy singlets (S;) are necessary, we
must simultaneously ask: Are these vevs consistent with
D- and F-flatness?

B. Flat direction scan and analysis

To obtain answers to questions (1) and (2), we have
studied in detail all allowed superpotential couplings and
an elementary class of flat directions up to a certain order
(described below) for a representative sample (3 models
from each of the 20 representation patterns) of the 175
models in the BSL, class. Though straightforward, the
computation is very tedious and impossible without auto-
mation; it took weeks for the C/C + + routines to run on a
Pentium 4 processor. Some idea of the scale of the project
will be evident in the discussion below, since a fringe
benefit of the analysis is a count of couplings and flat
directions for each model in which interesting aspects of
the BSL, models emerge. It also should be stated that none
of the analysis made here requires a detailed knowledge of
the strength of couplings. For a study of the class of flat
directions that we consider, it is sufficient to know the
selection rules.

As is well known, D-flat directions are easily and com-
pletely classified by analytic invariants [49—52]. To each
holomorphic gauge-invariant I(®) of the chiral superfields
®,,..., D, in the theory corresponds a D-flat direction,
given by

(K;) = c(I;), (3.3)
where c is a universal constant, K; = dK/d®; with K the
Kihler potential, and I; = d1/9®;. Of course, ¢ can be
absorbed into the definition of /. It is an undetermined
parameter, whose magnitude corresponds to the scale of
the breaking. Energetically, all scales are equally favored.

In the case where there is an anomalous U(1)y, a slight
modification is required. We choose a basis of U(1)
charges where only one, Qy, is anomalous and Tr Qy >

0. We express the invariant / as a sum of monomials /) in
the fields

= ZCAI(A). (3.4)
A

D-flatness is satisfied if and only if: (i) each I¥ is gauge
invariant with respect to all nonanomalous factors of the
gauge group, and (ii) at least one of the /™ has strictly
negative Qy charge. The vanishing of the Qy D-term
imposes one real constraint on the c4; an overall phase
among the c4 can be removed by going to unitarity gauge
with respect to the U(1)yx. The remaining degeneracy of
solutions corresponds to flat directions, termed elsewhere
as D-moduli [53,54].

In our analysis of effective Majorana neutrino mass
couplings, we restrict our attention to the case where [ is
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a single monomial satisfying this invariant condition, with
QOx(I) <0 if an anomalous U(1) exists. We refer to this
product of fields as an I-monomial. Thus we examine only
special points in the D-moduli space. Polynomials that are
linear combinations of the I-monomials correspond to a
more general class of D-flat directions [55,56]. Since these
generalizations allow for more fields to get vevs, they
might provide new paths to obtain (3.2). However, this
more complicated scenario involves significantly more
analysis. While it is a sensible follow-up to the present
study, for practical reasons we leave it to future work. To
simplify our analysis, we impose stringent F-flatness [12].
That is to say, we do not permit the vev of any monomial in
dW/d¢,; to contribute a nonzero term (to the order we
study). This sufficient but not necessary condition is a
further restriction to special points in D-moduli space,
which is nevertheless a class with a large number of
elements.

In our automated search, we adopted the following
procedure:

Step 1.—We generated a complete list of I-monomials

that (i) contained only fields neutral under SU(3) X

SU(2) € Gy and, (ii) had degree less than or equal to

ten.

Step 2.—All superpotential couplings allowed by selec-

tion rules (see Appendix C) were generated, up to and

including degree 9.

Step 3.—We eliminated from the list of I-monomials all

those that would violate stringent F-flatness with respect

to the superpotential couplings generated in Step 2. The
remaining I-monomials specify our list of D- and F-flat
directions.

Step 4.—For each flat direction that survived Step 3, we

searched for couplings from the list generated in Step 2

that would provide an effective Majorana mass coupling

of the form (3.2), where the vevs (S;) were each con-
tained in the I-monomial of the given flat direction. The
repeated field in the coupling then becomes a candidate

right-handed neutrino N.

Step 5.—If the candidate N fields were not singlets of the

non-Abelian factors of Gy;4, we also checked that the flat

direction broke those factors of the gauge group so that

N could be an effective gauge singlet along the flat

direction.

The result of this procedure was a success for only 2 of
the 20 patterns in these models: pattern 1.1 and 2.6. This is
already a remarkable result. But this is not sufficient to
claim that the minimal seesaw has been discovered. In
cases where we find in the affirmative on the two questions
just posed at the end of Sec. IIT A, other questions remain:

(3) The vevs required for (3.2), and any others that are

required for flatness, generally break some of the U(1)

factors in the model. A question connected with this is:

Does a U(1) survive that will serve as electroweak

hypercharge U(1)y, and, in particular, is N a singlet

under this group?
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(4) Does the candidate Majorana neutrino N also have
the requisite H,LN Dirac couplings to SU(2) doublets
so as to produce the mp, entries in (3.1)?

(5) Do the remainder of the standard model particles

have the proper charge assignments under the candidate

U(1)y?

If questions (3)—(5) can be answered affirmatively, then
we have the minimal seesaw. Note that we are not demand-
ing anything about the remaining Yukawa couplings of the
MSSM. Of course a truly realistic model must not only
possess such superpotential terms, it must also possess
them in such a way as to give rise to the observed hier-
archies between quark, charged lepton and neutral lepton
masses, and the observed large (small) leptonic (quark)
mixings. As mentioned in the introduction, we are here
making neutrinos our principal focus.

The two patterns that were successful in answering
questions (1) and (2) will be discussed in more detail in
Sec. IV. Here we wish to remark on a few aspects of the flat
direction analysis that deserve some comment. Our proce-
dure clearly produced a wealth of data on couplings and
flat directions for all of the models in the BSL, class. A
sense of the size of the project can be seen in the number of
superpotential couplings, allowed by all selection rules,
that needed to be studied. These are the results of Step 2
above, and are listed in Table II. Many of the higher order

TABLE II. Number of allowed superpotential couplings by
degree. For each pattern of Table I we give the number of
superpotential coupling at leading order (degree 3) through
degree 9 allowed by the string selection rules (note that there
were no degree 5 couplings allowed for any pattern).

Pattern 3 4 6 7 8 9

1.1 113 24 21329 23768 1697 3380308
1.2 97 12 13968 4418 498 1552812
2.1 67 10 5188 3515 162 342186
2.2 80 11 7573 3066 272 582326
2.3 75 10 6508 2874 250 467020
2.4 53 0 2795 360 0 119454
2.5 58 6 3363 688 26 150838
2.6 31 0 642 0 0 10976
3.1 54 4 2749 768 21 119973
32 43 2 1758 291 9 59182
33 48 4 2187 393 20 81497
3.4 31 8 750 375 42 15074
4.1 50 3 2090 693 14 81222
4.2 62 6 3206 793 38 143257
4.3 55 5 2516 613 15 100793
44 38 2 1137 147 3 28788
4.5 48 0 1872 0 0 62597
4.6 47 0 1738 50 0 51970
4.7 53 0 2219 0 0 76244
4.8 21 0 301 0 0 4120
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couplings are just products of lower order invariants.
However, even taking this into account, the number of
invariants is impressive. That Patterns 2.6, 4.5, 4.7, and
4.8 only have superpotential couplings whose degree is a
multiple of three follows directly from the string selection
rules, as discussed in Appendix C. It is unclear to us why
Patterns 2.4 and 4.6 lack superpotential couplings whose
degree is a multiple of four. It also is interesting that degree
5 couplings were never allowed. There is a unique form
allowed by string selection rules, but in the BSL, class of
models this is never a gauge-invariant coupling. It would
be of interest to understand this result more fundamentally;
we leave it for future considerations.

The second significant result is the extent to which
stringent F-flatness restricts the number of [-monomials.
That is to say, F-flatness is a powerful restriction on flat
directions—perhaps not a great surprise, but we are able to
quantify this in Table III. The first column in that table, in
which no condition of F-flatness is imposed, is the result of
Step 1 above, while the final column is the result of Step 3.
It is interesting that in some models either there is a unique
stringently F-flat direction or no such directions at all, to
the order considered here. A further analysis of these cases
is warranted to understand what is the true nature of the

TABLE III. Restriction of D-flat directions due to stringent F-
flatness. The column “w/o” indicates the number of I-
monomials that were found without imposing stringent F-
flatness. The column ‘“w/3”’ contains the number that remained
after imposing stringent F-flatness solely with respect to the
degree 3 superpotential couplings. The column “w/3-9” pro-
vides the final number of I-monomials that survive our analysis,
having imposed stringent F-flatness up to degree 9.

Pattern w/o w/3 w/3-9
1.1 1486616 16283 489
1.2 11656 188 28
2.1 155555 1239 245
2.2 96932 737 249
2.3 43884 670 115
2.4 5195 114 12
2.5 12 0 0
2.6 825 9 9
3.1 16927 80 27
32 2443 18 10
33 9871 74 22
34 1303 59 41
4.1 17413 106 26
4.2 78 819 513 199
4.3 14715 310 163
4.4 26 0 0
4.5 5126 32 25
4.6 128 8 5
4.7 5285 15 15
4.8 49 1 1
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vacuum in these models;’ however, this is beyond the
scope of the present study. It also can be observed that
stringent F-flatness with respect to the degree 3 couplings
is already very limiting. In every model the higher order
couplings only reduce the number of flat directions by a
factor of O(1).

But by far the most significant and intriguing result was
the following: We analyzed the first 3 models from each of
the 20 BSL, representation patterns.6 For each model that
we studied of a given pattern, our results were identical in
terms of the number of couplings of each degree, the
number of initial [-monomials obtained in Step 1, and the
number of [-monomials that survived Step 3. This provides
further support to what was already indicated in the results
of [13]: the models of a given pattern are in fact equivalent
and that the BSL, class only contains 20 inequivalent
models. This is a drastic reduction from the tens of thou-
sands that would be expected from naive considerations of
all the different embeddings one can construct that would
yield the same G,,,. Furthermore, the restrictiveness of F-
flatness is responsible for isolated vacua in N = 1 models
and is often invoked in the counting of string vacua. We
wish to emphasize the relevance of our analysis to ““land-
scape’ analyses: merely counting free parameters in some
moduli space is not really a counting of physically distinct
vacua.

IV. TWO PROMISING CASES

Two of the 20 patterns were capable of producing a
candidate Majorana neutrino mass as an effective operator
of the form (3.2) along one or more flat directions. Neither
pattern was ultimately able to generate realistic neutrino
masses, however. In this section we will consider each
pattern by choosing a representative model from the set
(with the implicit assumption that all models in a pattern
are actually equivalent).

A. Pattern 2.6

We will first consider pattern 2.6 by choosing one of the
six models in the pattern for explicit examination:
model 2.8.” This model is defined by the following embed-
ding vectors

>The true minimum of the scalar potential may involve non-
trivial cancellations between terms contributing to the F-terms,
so they would correspond to the larger class of flat directions that
are not stringently F-flat.

6Compare with Table 13 of [13]. We were not able to check all
models for all patterns due to the rather lengthy run-time for the
automated analysis.

"The numbering system for the 175 individual models derives
from [13] but is otherwise irrelevant for our discussion here.
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1
V=§(—1,—1,0,0,0,2,0,0;2, 1,1,0,0,0,0,0),

1
a =§(1, ,-1,-1 -1,

1
as 25(0,0, 00,0020, —-1,111111-1),

_1’ O) 0; _1) O) 0) 1) 1) 1) 1’ _1))
“.1)

and the resulting gauge group is G = SU(3) X SU(2) X
SU(5) X SU(2) X U(1)8. Our choice for the eight U(1)
generators, in terms of the canonical momenta of the Eg X
Ejg root torus, is given in Table IV. Note that these gen-
erators have been redefined so that only the last generator
Qs is anomalous, with Tr Qg = 3024. (This charge is not
canonically normalized; see Table IV.) The spectrum of
chiral superfields and their charges under these eight U(1)
factors is given in Table VI of Appendix A.

In this model, and for other models in this pattern, we
find just 9 I-monomials that survive the requirement of F-
flatness to degree 9 in the superpotential (cf. Table III).
There are 14 effective Majorana masses for candidate
right-handed neutrinos along six of the nine flat directions.
These effective mass terms can be divided into two subsets.
In the first we have an effective Majorana mass at the
trilinear order. An example is

I — monomial: (4,4, 6,7, 18, 35, 43, 43),

4.2)
Eff. Maj. mass: (4, 5,5),

where we underline the field(s) that get vev(s) to yield an
effective mass coupling; repeated entries indicate so many
powers of the repeated field. Recall that each field also
carries a suppressed family index. There are six such
examples of the coupling (4, 5, 5) along six different flat
directions.

Using the values for the charges in Table VI it is easy to
show that the combination of fields in the I-monomial of
(4.2) is indeed gauge invariant. Our candidate right-handed
neutrino is thus field #5, which we will label Ns. But from
Table VI we see that the field N5 is not a complete gauge
singlet, but is actually a (10,2) representation of the hidden
sector SU(5) X SU(2) gauge group. The putative
“Majorana mass’” term is seen to be the coupling 5§ 10
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10 of the SU(5) part of this group. What is more, fields
charged under both of these groups are required to obtain
vacuum expectation values along this particular flat direc-
tion. This is true of all six flat directions that allow such a
candidate Majorana term. Thus the right-handed neutrino
would need to be identified with a singlet of the surviving
gauge group.

However, the minimal seesaw of (3.1) also requires the
coupling of this N5 field to some doublets of the observable
sector SU(2) group. But the presence of N5 in the untwisted
sector of this model prevents any such coupling at the
leading order (as does the requirement of gauge invariance
under all the non-Abelian factors). There are no couplings
at all in the superpotential at degree 4 and 5 (see Table 1),
so the earliest opportunity for this important Dirac cou-
pling is degree 6. Of the 642 allowed couplings at degree 6
only three involve the coupling of the field N5 to doublets
of the observable sector SU(2). These three nonrenorma-
lizable terms take the form

Coupling (1):§4N5N5L12330L£4, (43)
Coupling (2):§4N5N5L40330L/22, (44)
Coupling (3):§4N5N5529330330. (45)

The fields are labeled according to their type and entry
number in Table VI: § for singlets of all non-Abelian
groups, N for the candidate right-handed neutrino, L for
doublets of SU(2) s, L' for doublets of SU(2)},4, and B for
fields bifundamental under both SU(2) factors. Clearly
these are not standard Dirac mass terms for the field Ns.
Even if effective Dirac mass terms that could give rise to
the matrix (mp) in (3.1) were present at degree 6 in the
superpotential, it is still unlikely that we would obtain an
adequate set of neutrino masses. We can estimate the
typical scale of the three light eigenvalues in the following
manner. It is natural to assume that fields such as S, above
obtain a vev near the scale given by &g in (2.1). Then the
typical entry in the matrix my, of (3.1) is rgyMp;, ~ 0.1Mpy,
where we have used the information from Table I. An
effective Dirac mass term mp at degree 6 would presum-

TABLE IV. U(1) charge basis for model 2.8. The eight Abelian factors are defined in terms of the canonical momenta of the Eg X Eg
root lattice, with normalization given in the last column. Canonically normalized generators Q, are obtained from Q = Q,/+/k,.

a 0, ko/36
1 6(3,3, —4, —4, —4,0,0,0;0,0,0,0,0,0,0,0) 132
2 6(2,2,1,1,1,—11,0,00,0,0,0,0,0,0,0) 264
3 6(0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0) 2

4 6(0,0,0,0,0,0,0,1:0,0,0,0,0,0,0,0) 2

5 6(—10, —10, =5, =5, =5, =5,0,0,0,0,0, —12, —12, =12, —12, 12) 2040
6 6(0,0,0,0,0,0,0,0:0,1,1,0,0,0,0,0) 4

7 6(—10, =10, =5, —5, =5, —5,0,0; —17,0,0,5,5,5, 5, —5) 1428
8 6(—2, -2, —1,—1,—1,—1,0,0;5,0,0,1,1,1,1, —1) 84
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ably involve three such vevs, suggesting a set of light
eigenvalues for the matrix (3.1) of the form

— (r]?:’lvu)z
rerMpr,

~ g X 1073 eV, (4.6)
where we have used v, ~ 100 GeV. This suggests neu-
trino masses in the nano eV range—clearly far too small to
fit the measured squared mass differences.

The second subset of candidate Majorana mass terms
involves much higher-degree superpotential couplings, so
one might expect a better fit to the data. For example, one
of the eight remaining flat direction/Majorana coupling
pairs is

I — monomial: (4,4, 7,18, 19, 27, 43, 43),

4.7
Eff. Maj. mass: (7,7, 19, 27, 43, 43, 43, 34, 34).

Here the candidate right-handed neutrino is state N3, from
one of the twisted sectors of the theory. Yet it is still
charged under the hidden sector gauge group. In this case
itis a 5 of the hidden SU(5) group. This will again make it
impossible to generate a gauge-invariant Dirac mass term
at the leading trilinear order. In this case the field N5, does
not appear in any allowed couplings whatsoever at degree
6 in the superpotential, let alone couplings to SU(2) dou-
blets. The next allowed order for such a coupling is then
degree 9, but a dimension-counting argument again gives
rise to the same effective scale as in (4.6) for such a Dirac
term with a degree 9 effective Majorana mass term. We
thus conclude that (i) the required couplings in the minimal
seesaw of Sec. III A do not arise in this model and (ii) the
peculiarities associated with the fact that all candidate
right-handed neutrinos in this model are charged under
the hidden sector SU(5) prevent viable neutrino masses
even if they did.

B. Pattern 1.1

To exhibit the properties of the candidate neutrino sec-
tors of pattern 1.1 we will choose model 1.2. This model is
defined by the following set of embedding vectors

1
V=§(—1,—1,0,0,0,2,0,0;2,1,1,0,0,0,0,0),

1
a, = 5(1, 1,-1,-1,20,0,0;0,2,0,0,0,0,0,0), (4.8)

1
as =§(O, 0,0,0,0,0,2,0,—1,0,—1,0,0,0,0,0),

and the resulting gauge group is SU(3) X SU(2) X
SO(10) X U(1)%. In this model none of the U(1) factors
is anomalous, so we choose a simple basis, in terms of the
canonical momenta of the Eg X Eg root torus, for the U(1)
generators as given in Table V. The spectrum of chiral
superfields and their charges under these eight U(1) factors
is given in Table VII of Appendix A.
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TABLE V. U(1) charge basis for model 1.2. The eight Abelian
factors are defined in terms of the canonical momenta of the
Eg X Ejg root lattice, with normalization given in the last column.

Qa ko/36
6(—3,—3,2,2,2,0,0,0;0,0,0,0,0,0,0,0) 60
6(1,1,1,1,1,0,0,0;0,0,0,0,0,0,0,0) 10

6(0,0,0,0,0,1,0,0;0,0,0,0,0,0,0,0)
6(0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0)
6(0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0)
6(0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,0)
6(0,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0)
6(0,0,0,0,0,0,0,0;1,0,0,0,0,0,0,0)

0NN N bk~ W= w

[\ST N2 (ST (O I S (9}

The lack of an anomalous U(1)x suggests that we can no
longer assume vevs for fields in a particular flat direction
are at the scale &g Nevertheless, the existence of flat
directions (or nearly flat directions) allows us to consis-
tently choose scalar fields to have large vevs [56,57]. The
determination of the exact size of these vevs requires
minimization of the effective scalar potential for these D-
moduli.

As shown in Table III, a total of 489 I-monomials that
satisfy stringent F-flatness to degree 9 were found. From
these, and the 3427239 couplings that appear in Table II
for this model, 42 instances of effective Majorana mass
couplings were found along 18 of the 489 flat directions.
For brevity, we do not enumerate all of these flat directions
and effective Majorana mass couplings, but confine our-
selves to a discussion of some representative examples.
Remarkably, though there are nominally 42 different pairs
of flat directions/effective Majorana operators, these pairs
form patterns that repeat themselves—the labels on the
fields may change, but the representations and structure do
not. Thus a very small number of actual possibilities exist.
All of the Majorana couplings/candidate neutrinos fall into
one or the other of the two cases given below.

For our first example, let us consider the flat direction
characterized by the following pair of invariant and
Majorana operator:

I — monomial: (2, 2,3, 3,8, 8, 34,46, 61, 77),

4.9
Eff. Maj. mass: (2, 3, 8, 8, 34, 46, 74, 74).

It can be seen from the spectrum of Table VII that all the
fields getting vevs in the flat direction are non-Abelian
singlets. The candidate right-handed neutrino is field #74
which we denote N4, using the notation described above.
This flat direction leaves two U(1) factors unbroken: that
is, there are two linear combinations of U(1) generators
such that the charges of all the fields in the first line of (4.9)
can be made simultaneously zero. Therefore, if the stan-
dard model hypercharge generator can be identified with
one of these linear combinations, the gauge invariance
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requirement of the superpotential terms will automatically
enforce Ql,\,]74 =0.

This candidate right-handed neutrino does not appear in
any allowed trilinear superpotential coupling. A careful
analysis of the degree 4 superpotential couplings shows
that the flat direction in (4.9) does not produce an effective
Dirac coupling. This conclusion is also true with respect to
the 21329 couplings at degree 6. Since the U(1)’s are
nonanomalous in this case, we cannot estimate the scale
of the vevs in the flat direction, other than that it is below
Mpy . If their typical scale is (S)/Mp, = ¢ <1, then the
light neutrino eigenvalues will be of the order

o (cd73vu)2

v G ~ c2=121073 gV,
c®Mpy,

(4.10)
where d is the degree of the effective Dirac mass term.
Thus an acceptable mass would require d smaller than 6.

A much more promising case is the one characterized by
the following invariant:

I — monomial: (3, 3, 8, 21, 22, 29, 46, 72). 4.11)

Once again, it can be seen from the spectrum of Table VII
that all the fields getting vevs in the flat direction are non-
Abelian singlets. Along this direction there are two effec-
tive Majorana mass operators, one at degree 6 and the other
at degree 8

Eff. Maj. mass (1): (8,22, 46,72,9,9),

(4.12)
Eff. Maj. mass(2): (3, 3, 8, 22, 46, 72, 13, 13).

The two Majorana operators differ only by the insertion of
two untwisted sector fields S3. The candidate right-handed
neutrinos are thus Ny and/or N3. Along this flat direction

three U(1) factors remain unbroken to low energies, and all
linear combinations of these three U(1)’s allow QQ’Q'” =0.

Once again, identifying either field as a bona fide neu-
trino requires looking for the requisite Dirac couplings to
SU(2) doublets. Here the outlook is much brighter: there
are several couplings involving SU(2) doublets and both
Ny and N5 at degree 3 and degree 4 in the superpotential.
In fact, each admits two such couplings

(A){ NgL36L64 B){NgLSZLﬂ

4.13
S3N13L36Le64 S3Ny3Ls Ly, @13

where we use L to denote doublets of SU(2). At this stage
we are not yet in a position to distinguish lepton doublets
from up-type Higgs doublets as we have not yet identified
other Yukawa interactions or designated a unique hyper-
charge assignment. Thus we use a common notation for
both doublets.

We thus appear to have the two essential ingredients for
forming the matrix of couplings in (3.1) and, in fact, we
have the potential for embedding the entire leptonic sector
of the MSSM superpotential. For instance, if we make the
identification L3s = L and Lgy = H,,, then we find trilinear
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couplings of the form

If we further identify L5 = H,; we see that S¢, could play
the role of the right-handed charged lepton field E¢ while
S3g could generate an effective w term through some addi-
tional low-energy dynamics. If we were instead to make
the identification Lys = H,, and Lgy = L we would merely
need to exchange the interpretation of the fields S35 and
Seo- There are several possible systems such as (4.14) for
either choice of couplings (A) or (B) of (4.13).

Of course this discussion assumes that the correct
hypercharge can simultaneously be assigned to each of
these fields along a particular surviving U(1) combination.
In many cases this is indeed possible. For example, in
the system given by (4.14) and the identification
{No, Lss, Les, Ls, Seo, S3g} <> {N, L, H,, Hy, E°, S} the par-
ticular linear combination of U(1) factors that gives rise to
the correct hypercharge assignments {0, —1/2,1/2,
—1/2, 1,0} is given by

T
180

1 1
-z +— .
4U(1)7 I U(1)g

U1y = = 125 U, = 55U, + £ UL, + U,

(4.15)

This also accommodates the quarks of the MSSM.
However, the hypercharge normalization is ky = 91/6
rather than the SU(5)-based GUT value of ky = 5/3.
This is not consistent (perturbatively) with the observed
couplings, even allowing for the effects of additional mat-
ter states in the running of the gauge couplings. However,
our purpose in this study is to focus on the neutrino sector
and examine how many, if any, of flat directions allow a
minimal seesaw, irrespective of whether they are fully
realistic in other ways.

So far, so good. We cannot say anything very definite
about the typical scale of the vevs (S;) that give rise to the
effective Majorana couplings in (4.12) since there is no
anomalous U(1) factor in the model. But given that Dirac
mass terms can arise at degree 3 or 4, a scale somewhere
between the GUT and string scales for these vevs would be
welcome. This is not impossible to imagine, since the
standard model singlet fields involved in the flat direction
(4.11) do couple to several doublets of SU(2) and triplets/
antitriplets of SU(3) at the trilinear order. These are just the
sorts of ingredients that can give rise to a high, radiatively
generated intermediate scale [56]. It would be tempting,
then, to declare victory and begin to calculate the possible
mass textures for both the Majorana and Dirac matrices—
perhaps by assuming only third generation Higgs fields and
singlets in (4.11) receive vevs so that selection rules would
then enforce texture zeros in the effective mass matrices.

But this would be premature. To begin with, we should
note that there are no quark masses in this model at the
leading order; by placing the up-type Higgs doublet in the
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twisted sector (as all of the examples in this class require to
generate the neutrino Dirac mass) it becomes impossible to
couple it to the (untwisted sector) quark doublet at the
trilinear order.® The desired quark masses do not appear
at degree 4 either, and at degree 6 we find only one new
coupling involving quark doublets

W 3 §385557,0101Dss, (4.16)
where three of the fields are participants in the flat direc-
tion, the quark doublet is repeated, and the coupling is to
field #56 which is a 3 of SU(3). This is certainly not the
quark sector of the standard model, and clearly there are no
GUT relations between the neutrino Yukawa interactions
and those of the up-type quarks. But our analysis was based
on answering the sole question of whether the minimal
seesaw can be found in an explicit string construction, so
we will not consider the quarks further.

Of greater concern is the redundancy evidenced by the
multiple neutrino candidates and multiple Higgs candi-
dates in this example. Can these extra states be projected
out of the light spectrum along the flat direction, perhaps
leaving only one of the sets of couplings in (4.13)? Do the
remaining light states, and, in particular, the candidate
right-handed neutrinos, mix with one another? To fully
understand the nature of neutrino masses in this set of
examples a thorough analysis that considers all the relevant
fields of the system must be performed. When we do so we
will see that our earlier enthusiasm for this set of flat
directions and couplings was misplaced.

A careful consideration of all degree 3 and 4 couplings
in the superpotential indicates that many of the extra SU(2)
doublets [and, incidentally, all of the exotic 3’s of SU(3)]
are projected out of the spectrum—a welcome develop-
ment. For example we find the couplings

W = A8y 1LagLlyg + AaSxLipLoys + A38x9Ls Ly

+ AySa6La7Las, (4.17)
which eliminates all the possible combinations of W =
ANLH, associations but the two listed in (4.13). As there is
no reason to choose Ny versus N3 as our right-handed
neutrino, we must therefore conclude that the neutrino
sector of this theory involves at least two species of neu-
trino, each with three generations. So too we must accept
two species of lepton doublets, and without loss of general-
ity we may choose them to be L3¢ and Ls,, with fields #64
and #71 being two species of up-type Higgs doublets.

So this model does not give rise to a minimal seesaw
after all. In fact, there are terms that mix our fields with
Dirac couplings (Ny and N;3) with other standard model
singlets that do not. We will refer to these additional states

8We do not consider the possibility of different families of up-
type Higgs doublets involved in generating the neutrino and
quark masses, respectively.
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with the notation N. In particular we have the couplings
Wiix = ASsNoN 14 + ASy,NoNy7 + AS7,NoN

+ A§46N9ﬁ81 + )‘%NBNM + A%Nwﬁy

+ AS3870N13N50 + AS3846N13 N3y, (4.18)

which generate an extended seesaw structure. As men-
tioned in the introduction, this is not an uncommon feature
of explicit string constructions, in part because of the large
numbers of standard model singlets that are generally
present. Nor need it imply that small neutrino masses are
impossible to obtain.

In this particular example the effective neutrino system
mass matrix is given in block matrix form by

0 0 A VL
(VLNN)<0 0 B)(N),
A B C/\N

defined with the basis sets

(4.19)

vy ={(vp)se (V)52 N = {N4, No7, N5, N1},

N = {Ng, N13}. (420)
The individual submatrices in (4.19) are
A = <<(Hu)64> <S3(Hu)64>>
<(Hu)7l> <S3(Hu)7l> ’
<<Ss>> <<S3Ss>>
_ | S22) (S38:
B0 (s (858 | @21
(S46)  (S3S46)
C = <<S8S22S46S72> 0 >
0 (85355822546572) /'

with the general expectation that the pattern of vevs would
be such that A < C < B. But the matrix (4.19) has van-
ishing determinant and gives rise to three precisely mass-
less eigenvalues; the ‘“‘seesaw’ serves only to split the
masses of the very heavy eigenstates. This mechanism, in
which the addition of off-diagonal terms in an extended
right-handed sector destroys what appeared to be a suc-
cessful construction, could easily occur in other construc-
tions and therefore should be checked for in such.

We might hope to populate some of the zero blocks in
(4.19) to salvage this example (though we are already far
from a minimal seesaw), but there are no Dirac couplings
of doublets L34 or Lg, to the fields N at degree 3, 4, or 6.
There are also no couplings at degree d < 6 that couple the
fields in the N system to themselves—that is, the entire
matrix of values represented by the (2,2) entry in (4.19) is
vanishing to this degree. We could imagine expanding the
system yet again, and looking for couplings of an expanded
N system where effective mass terms can arise, say when
one of the remaining U(1)’ factors is spontaneously bro-
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ken. But here again by considering all allowed operators of
this form at degree d < 6 in the superpotential, we find the
determinant of this submatrix always vanishes, indicating
vanishing eigenvalues for the full matrix (4.19). By argu-
ments similar to those that gave rise to (4.6) and (4.10) it is
easy to see that realistic masses for the light neutrinos
would require either a Dirac-type couplingN of the N to
the v; fields or Majorana masses for the N fields at no
higher degree than the trilinear order. Thus we have suc-
ceeded in finding the right operators for the (v;, N) system
in isolation, but by considering the full lepton system we
find that we have failed to account for the finite and small
neutrino masses observed in nature.

C. Why so many zeros?

It is of interest to understand why the zeros have ap-
peared in the mass matrices (4.19) and (4.21). Are they
exact? Are they the consequence of a symmetry? If they are
not exact, at what order do nonzero contributions first
appear, and what would be the effects? We have studied
these questions, and here we will sNummarize the answers.

Since the fields of type N and N are U(1)y neutral, the
zeros do not follow from this symmetry. However, one
might ask: Are the zeros explained by the two extra
U(1)’s that survive along the flat direction (4.11)? A useful
basis for this U(1)?> subgroup consists of the following
(canonically normalized) generators:

4 67 15 23 15

= — + E— + = B—
A 15 0, 6OQ2 1 03 B 04 1 0Os
11 11 17
——Q¢+—07 +— :
3 O ¢ o 3 Os, (4.22)
119 139 91 43 91
=0 —— 0+ —=03— =04 +—
B 30 0, 0 0 12Q3 ]2Q4 12Q5
55 55

The N and N fields are all neutral with respect to these
generators. It follows that none of the zeros in the mass
matrix are a consequence of gauge invariance.

Further investigation finds that there are discrete sym-
metries that survive along the flat direction that we study
here. Along the flat direction (4.11) there is a breaking
U(1)® — U(1)3. However, a discrete subgroup of the bro-
ken U(1)’ survives, when it is combined with the trialities
of the original theory. This subgroup is found by demand-
ing that the fields in (4.11) are left invariant. However, we
find that these surviving discrete symmetries do not explain
the zeros either.

In fact, we find that the zeros are not exact but are
violated by higll oﬁr‘der terms. For instance, mass terms of

the form mypN,Np are allowed by all symmetries and
appear with m 4z being a degree 10 polynomial of the fields
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(4.11). This translates into Majorana mass terms of order
10 GeV or less. By arguments similar to those made
above, such entries would only generate neutrino masses
of order m, ~ ¢ X 107 eV, where ¢ = §/Mp < 1. Thus
m, < 10713 eV for ¢ < 0.1, a negligible effect.

In summary, the zeros that we find are not exact, but they
may as well be, since the allowed violations of them are of
such high order. This is a consequence of the fact that we
have studied all terms of the superpotential to a very high
order.

V. CONCLUSIONS

Our systematic search of the BSL, class of otherwise
phenomenologically promising, top-down constructions of
the heterotic string failed to reveal a minimal seesaw
mechanism. This despite our placing the existence of an
effective Majorana mass operator at the fore of our
search—a search through literally millions of superpoten-
tial couplings along thousands of flat directions in a class
with dozens of potentially realistic models. What are we to
conclude from this null result?

It may be that our search, as computationally intensive
as it was, was not sufficiently broad to find the elusive
couplings. One might imagine generalizations in which
several flat directions, or [-monomials, are simultaneously
“turned on.” This is, of course, a very real physical pos-
sibility that might allow for more effective mass terms
(since more vevs are nonvanishing). But it also will tend
to be even more severely constrained by F-flatness con-
ditions. We might, in addition, explore directions that are
not stringently F-flat; that is, directions where various
nonvanishing terms cancel to give (dW/d¢;) = (W) = 0,
or in which the flatness breaking terms are small enough to
be harmless (as would occur when the vevs are at an
intermediate scale). This would allow for more of the D-
flat directions to survive in the generalization of Step 3 of
Sec. III B above, yielding more effective mass couplings.
This would be an interesting starting point for a future
study, but it should be clear from the extensive discussion
in Secs. III and IV that the computational demands would
grow significantly if one were to depart from the simple
rules we followed.

But one might have thought that if the minimal see-
saw—or indeed a seesaw mechanism at all—is the answer
to the problem of small neutrino masses then it should arise
with great frequency, even in a simple search such as ours.
That it did not might be merely a reflection of the pecu-
liarities of the Z; orbifold itself, or perhaps of orbifold
constructions more generally. Alas, we are unable to ad-
dress such a question since the starting point to this work
does not even exist for other orbifolds, much less more
general heterotic constructions. Yet the Z; has been well
studied in the past precisely because it has so many other
desirable features. That it does not seem to possess a
minimal seesaw mechanism should perhaps give us pause.
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Thus we might consider again the most successful case
we found in our study, that of pattern 1.1 as described in
Sec. IV B. Here we find a structure that is not minimal, but
of the extended seesaw variety. While this particular ex-
ample was unable to give mass to the neutrino eigenstates,
it may well be that string theory prefers, or at least can
accommodate, neutrino mass mechanisms that are not
minimal. We dedicated our analysis to the search for
couplings of the form (3.2), but we might instead have
considered the more general extended form

(Sy++ Sy-2)NN' (.1

where N and N’ are different species in the sense defined in
[13]. That is, N and N’ differ by something more than the
third fixed point label that corresponds to the 3-fold degen-
eracy of this class of models. Needless to say, a systematic
search would immediately have to confront the enormous
increase in combinatorics involved in such couplings.

Generically, (5.1) corresponds to an effective theory
with six right-handed neutrinos. Given our difficulty in
finding couplings of the form (3.2) we might expect such
an extended mass matrix to have vanishing diagonal en-
tries. Then achieving appropriate neutrino masses would
require a mass matrix of the form

0 (mp);;  (mp);; Vj
Weie = (v;, Ny ND| (mp);; 0 (mp)i; || N
(mb)ji (mM)ji 0 N}

5.2)

It is also worth noting that the mp, mjj can have a certain
amount of texture zeros and still give all neutrinos mass.
However, nonzero elements for mp and m}, would both
have to be present. The seesaw still gives 3 light flavors of
mass O(m3,/m,,;) and now 6 heavy flavors of mass O(m,;).
An extended seesaw model, though of a somewhat differ-
ent form from (5.2), has previously appeared in free-
fermionic constructions [18], as noted in the introduction.

It may also be that the standard seesaw ideas are not the
answer to small neutrino masses. Twelve of the 20 cases
listed in Table I contain fields which are bifundamental
under two different SU(2) factors. If these groups were to
be broken to the diagonal subgroup, such states would be
effective triplets under the surviving SU(2). If they were
sufficiently massive, they may form the basis for a Type II
seesaw mechanism [47,58]. An investigation of this possi-
bility in the Z; orbifold is underway [59]. Dirac-type
couplings of the form NLH, are much more common
than effective Majorana mass-type couplings. It may there-
fore simply be that neutrinos are Dirac particles, with
neutral lepton Yukawa couplings only arising at higher
order in the effective superpotential. These terms would
have to be of extremely high order if the relevant vevs are
close to Mp;, or could be as low as degree 4 if the vevs are
at some intermediate scale [56,60]. This is contrary to most
theoretical prejudice, but it is certainly a logical possibility.
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One of the lessons of this study is that couplings, such as
those leading to Majorana masses, are determined to a
greater degree by the underlying theory in explicit string
constructions than by esoteric reasoning (naturalness, ele-
gance, simplicity, etc.). While we would have preferred to
have found models with flat directions where the simple
seesaw works, we therefore regard our null result as
significant.

Our principal result also demonstrates the power of the
underlying string theory. It is remarkable that something as
simple as (3.2) is not possible along a flat direction.
Certainly one would not expect this from a *“bottom-up”
perspective. This result is a consequence of the wealth of
symmetry constraints that arise from the underlying theory.
These are features that one is unlikely to have ever guessed.
We feel that this demonstrates the importance of attempt-
ing to connect effective field theory model building with an
underlying theory —or in modern parlance, an “ultraviolet
completion.”

We have found further evidence that there are only 20
inequivalent models in the BSL, class. This drastic reduc-
tion from a naive estimate—based on the number of
seemingly different embedding vectors—can be given
the following interpretation. It shows that surveys of
classes of string constructions can be done, and, that they
can produce meaningful results much the way that a scan
over some significant section of parameter space in an
effective field theory (such as the MSSM) can have mean-
ing. We find this encouraging, because it hints that quali-
tative impressions gained in such a survey are a good guide
to effective field theory model building.

We last note the importance of having a useful query in
mind when surveying explicit string constructions. The
unique nature of the coupling (3.2) made it an extremely
powerful tool in directing our attention to only a handful of
promising cases from a vacuum space that (prior to the
pioneering work of a number of theorists) looked to in-
clude hundreds of thousands of possible vacuum configu-
rations, with thousands of flat directions to study in each
one.

ACKNOWLEDGMENTS

J.G. was supported by the National Science and
Engineering Research Council of Canada and the
Ministry of Economic Development and Trade, Ontario.
G. K. thanks the U.S. Department of Energy for support.
P.L. and B. N. were supported by the U.S. Department of
Energy under Grant No. DOE-EY-76-02-3071. G.K. and
B.N. thank the Aspen Center for Physics for hospitality
during certain portions of this work.

APPENDIX A: SPECTRA FOR PROMISING CASES

In this appendix we provide a partial spectrum for
Models 2.8 and 1.2. These are the two examples from
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pattern 2.6 and 1.1, respectively, that were chosen for de-
tailed study of the neutrino sector in the text. Each species
of chiral superfield carries a sequential numerical label. For
each species there is a three-fold replication of generations.
Fields are identified by their irreducible representation
under the non-Abelian parts of SU(3) X SU(2) X Gpyq
and by their charges under the Abelian gauge factors. We
group states by sector of the string Hilbert space, beginning

TABLE VI. Partial spectrum of chiral matter for model 2.8.
Chiral superfields are grouped by sector of the string Hilbert
space. Irreducible representations under the non-Abelian gauge
group SU(3) X SU(2) X SU(5)y X SU(2)y is given, along with
charges under the eight U(1) factors. Note that Qg is the
anomalous U(1)y.

Irrep. 01 O 03 Oy 0Os Os Q7 0O

sector: untwisted

1 (1,2,1,1) 18 =54 0 0 -9 0 -90 —18

2 (3,2 11), 6 —18 0 0 9 0 90 18

3 B LL1), —24 72 0 0 0 0 0 0

4 (1,1,51) 0 0o 0 O 72 0 72 —36

5 (1,1,10,2), 0 0O 0 0O —-36 0 -36 18
sector: (—1, —1)

6 (1,1,1,1), —12 14 2 0 —-190 0 -—54 6

7 (1,1,1,2) —12 14 2 0 —-10 O —78 —24
sector: (—1, 0)
12 (1,2, 1,1), —30 2 0 0 —-70 =2 =36 18

sector: (—1, 1)

18 (1,1,1,2)y —12 14 =2 0 =70 2 —36 —24
9 (L,1,1), =12 14 -2 0 =70 —4 —138 6
22 (1,1, 1,2) 6 —40 1 -3 20 2 54 -6

sector: (0, —1)
27 (1,1,1,1), —12 14 2 0 —-10 6 24 30
sector: (0,0)

29 (1,1,1,1), —12 =52 0 O 20 4 —48 24
30 (1,2, 1,2), 6 26 0 0 —-10 —2 24 —12
31 (L2, 1, 1) 6 26 0 0 —-10 4 -78 18

sector: (0,1)
4 -2 0 110 2 —-60 30

35 (1,1, L1, —12

sector: (1,-1)

38 (3, 1,1, 1) 0 -2 2 0 —-10 0 -78 18

40 (1,2,1,1)g —12 14 -1 3 —-10 O -—-78 18
sector: (1,0)

43 (1,1,5, 1), 24 =28 0 O 8 -2 42 0

44 (1,1,1,2) 24 =28 0 O 80 4 12 -6

sector: (1,1)

50 (1,2,1,1), —12 14 1 -3 =70 2 -36 18
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TABLE VII. Partial spectrum of chiral matter for model 1.2.
Notation is identical to that of Table VI. This model has no
anomalous U(1) factor.

Irrep. 0 O, 03 04 0Os Qs 0O Qs

sector: untwisted

1 (3,2, 1) 6 —12 0 0 0 0 0 0
2 (L1, 0 0o -6 0 -6 0 0 0
3 (L1, 1) 0 0 -6 0 6 0 0 0
4 (1, 1,1) 0 o 0 0 0 -6 0 6
sector: (—1, —1)
5 (1,21, I8 4 -2 2 0 -2 -2 0
8 (1,1, 1) 0 10 4 2 0o -2 =2 0
9 (1,1,1) 0 -5 -5 -1 3 -2 =2 0
12 (1,2,1), —18 1 1 -1 3 -2 =2 0
13 (1, 1,1) 0 -5 1 -1 -3 -2 =2 0
14 (1,1, 1) 0 -5 1 -1 -3 4 4 0
sector: (—1,0)

21 (1,1, 1), 0 -5 1 3 -3 -4 -2 =2
2 (1,1, 1), 0o -5 1 3 -3 2 4 =2
sector: (—1,1)

24 (1,2,1), 18 4 -2 =2 0 0o -2 2
27 (1,1, 1), 0 10 4 =2 0 0o -2 2
29 (1,1, 1) 0o -5 1 -5 -3 0 -2 2
31 (1,2,1), -—18 1 1 1 -3 0o -2 2
sector: (0, —1)

34 (1, 1,1) 12 —4 4 -4 0o -2 2 0
35 (1,2,1), -6 2 -2 -4 0o -2 2 0
36 (1,2,1) -6 2 4 2 0o -2 2 0
38 (1,1,1), —24 -7 1 —1 3 =2 2 0
sector: (0,0)

46  (1,1,1), 12 -4 4 0 0 2 2 4
47 (1,21, —6 2 -2 0 0 2 -4 =2
48 (1,2, 1) -6 2 =2 0 0o -4 2 2
49 (1,2, 1) -6 2 -2 0 0 2 2 4
sector: (0,1)

50 (1, 1,1) 12 —4 4 4 0 0 2 2
51 (1,2, 1) -6 2 =2 4 0 0 2 2
52 (1,2, 1) -6 2 4 =2 0 0 2 2
56 (3,1,1) 0 5 1 1 -3 0 2 2
sector: (1, —1)

60 (1,1,1), —12 -6 -2 -4 0 4 0 0
61 (ILL), —-12 -6 4 2 0 4 0 0
64 (1,2, 1) 6 3 1 -1 =3 4 0 0
sector: (1,0)

70 (1,2, 1) 6 3 1 -3 3 2 0o -2
71 (1,2, 1) 6 3 1 3 -3 2 0 -2
72 (L,1,1)g —12 9 1 -3 =3 2 0o -2
74 (1,1,1) —-12 -6 -2 0 0 2 0o -2
sector: (1,1)

77 (L1,1)y —12 -6 4 =2 0 0 0o -4
80 (1,2,1), 6 3 1 1 3 0 0 —4

81 (1,11, —12 9 1 1 -3 0 0 -4
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with the untwisted sector and followed by each of the
twisted sectors. These twisted states are labeled by two
integers, indicating the fixed point location in each of the
first two compact complex planes (the location in the third
plane being the three-fold degeneracy that gives rise to the
three generations). These integers may take the value 1, O,
or —1 in our convention. The subscript following the
irreducible representation label denotes the string oscilla-
tor number, if any, for the state.

To keep these tables manageable we have included only
those states which are doublets of the standard model
SU(2) factor or are otherwise mentioned in the text.
Complete tables of spectra can be obtained from the au-
thors by request.

APPENDIX B: VIOLATIONS OF F-FLATNESS

In N =1 supersymmetric models such as the ones
studied here, it is generally the case that only isolated
minima of the scalar potential exist once all superpotential
couplings, to all orders, are taken into account. For theories
with a large number of fields, such as we study here, the
number of isolated minima is typically quite vast. Most of
these minima are highly nontrivial, involving cancellations
between terms appearing in the (O(150) vanishing F-term
conditions. Thus the “flat directions” that we study here
are most likely only approximate; i.e. they are violated by
some very high order terms in the superpotential. However,
provided that the vevs are small relative to the Planck scale
(which we assume) the shift in the vacuum away from our
approximately flat directions should be negligibly small.

For example, for the flat direction (4.11) in model 1.2
studied in Sec. IV B, it is easy to find superpotential terms
will violate F-flatness for this model. Suppose a monomial
m of each of the fields involved in (4.11) with powers ps,
4 etc.

= SPSUSEISESESS. @)

Contributions to F-terms may occur if the U(1)® charge of
m is zero or equal to the charge of any of the fields in the
spectrum. The assumption of vanishing charges implies

(p3""’p72):(a+b)bxaxbybya)a)r (BZ)

where a, b are integers. Taking into account the string
selection rules for m, we find they are only satisfied if
and only if a + b = 0 mod 3, which implies a variety of
degree 12 operators. Thus the violations of F-flatness
from terms of the form (B1) first occur at degree 12.
Taking (S) ~ 0.1, we obtain F-term breaking of order
Mgofy = F/MPL ~ 10711MPL = 107 GeV. (Here F~
W' ~10"''M3; has been estimated for a degree 12 con-
tribution to the superpotential, and the usual estimate
Mo = F/Mpy, for supergravity mediated supersymmetry
breaking in the observable sector has been used.) This may
seem large. However, it requires only a modest (relative to
the Planck scale) shift in the vacuum if one is to cancel the
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F-term with other contributions from W’. For example, if a
trilinear contribution is turned on, i.e. (W/.) ~ v, cancel-
lation of the F-term implies that the vev v would be of
order v = 1073 Mp.. This vev would not change the
dominant features of the effective low-energy mass matri-
ces and Yukawa couplings, unless it generates new cou-
plings for light particles at low order. Whether or not this
occurs must be studied on a case by case basis.

A similar (tedious) analysis could be carried out for all
proposed flat directions, for all models, identifying the
lowest order at which nonvanishing contributions to flat
directions would occur. However, since we already have
verified stringent F-flatness to degree 9, the lowest order
we will ever find is degree 10. Generalizing the arguments
made above, cancellation of F-terms would require shifts
in the vacuum that are very small fractions of Mp;, which
in most cases would have negligible effects in the low-
energy theory. For this reason we believe that the high
orders to which we have checked F-flatness should suffice
for our purposes. In any event it provides a leading order
approximation to F-flat vacua.

Admittedly then, the flat directions we study are only a
tiny sample of the vast number of approximate minima.
Nevertheless, since they are the easiest to classify and do
not require detailed knowledge of the strengths of super-
potential couplings, they are the most sensible class of
approximate minima to study in a first detailed analysis
of the low-energy couplings.

APPENDIX C: SELECTION RULES FOR
SUPERPOTENTIAL COUPLINGS

In this appendix, we review constraints on superpoten-
tial couplings in Z; constructions such as the BSL, models
that we study. Orbifold selection rules are presented from
the practical standpoint: we explain how they are imple-
mented rather than why they are true. The origin of these
rules in the underlying conformal field theory has been
described in detail in [61] and reviewed in Appendix B of
[8]. The presentation here rests on Refs. [62—65].

Gauge invariance.—This is very restrictive in the BSL,
models, where the gauge groups are rank 16. The U(1)
parts of the gauge group, U(1)® or U(1)° factors, greatly
reduce the number of invariants beyond what would be
allowed from non-Abelian factors alone. This is particu-
larly true because of the large number of matter fields that
are non-Abelian singlets. These matter fields are never
singlets with respect to all of the U(1) factors.

Point group selection rule.—This is a twisted triality
invariance. Nonoscillator twisted fields 7" and oscillator
twisted fields Y (blowing up modes of the (0,2) construc-
tion [61]) have twisted triality 1, whereas untwisted matter
fields U and Kihler moduli M*¢ have twisted triality 0. The
point group selection rule for a Z; model states that only
couplings of the form M‘U™T3"Y3P where €, m, n, p € Z,
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are allowed. These are just couplings of vanishing twisted
triality; i.e., triality of 0 mod 3.

Lattice group selection rule.—This is a restriction on
couplings between twisted sector fields and is a 3-fold
triality. Each twisted matter field has fixed point labels
(ny, n,, n3), with each entry taking values 0, =1. An in-
variant coupling must have vanishing triality with respect
to each of the entries. Thus, consider a coupling with m
twisted fields

T w,m,0 T m,mom. (cn

| A ] 2 03

The lattice group selection rule requires
A4+ 1™ =0 mod3 Vi=123 (C2

H-momentum conservation.—This takes its name from
the bosonized description of Neveu-Schwarz/Ramond
world-sheet fermions, :*"~'¢*":(z) = 0H™(z). Here, z
is the complex world-sheet coordinate of the underlying
conformal field theory. The intricacies of this selection rule
have been reviewed, for example, in [8]. Here we merely
state the results as they pertain to superpotential cou-
plings.” A general n-point amplitude associated with the
superpotential vertex

[@ow = b, (©3)
in the effective supergravity arises from a correlation func-
tion in the underlying conformal field theory of the form

V_u2@)Voa2(22)V-_1(z3)Vo(za) - - - Vo(za)).  (C4)

Here, the subscripts indicate ghost number g of vertex
operators in the covariant formulation [62].

For the untwisted matter states, what is important is that
they have a degeneracy of 3 corresponding to different
internal SO(2)* weights. Each SO(2) factor corresponds
to one of the three complex planes of the compact space.
The states carry a label of the degeneracy: U’ where i =
1,2,3. The different SO(2)® weights determine different
combinations of H(z) that appear in the vertex operators. It
is this H(z) dependence that is important to H-momentum
conservation. Thus constraints arise on the labels i that can
appear in an invariant coupling. It will later prove impor-
tant that the operators with ghost number ¢ = 0 contain a
world-sheet derivative factor

Vo(U') ~ 0X/, (C5)
whereas the others do not. Here, X' are the (complex)
world-sheet bosons corresponding to the 6D compact
space. World-sheet derivatives such as dX’ are important
in the final selection rule discussed below.

“While this selection rule is most often described in terms of
the covariantly quantized string [62], it also is straightforward to
derive in a lightcone description of the physical states.
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For the twisted sector there is no such degeneracy of
SO(2)* weights. Instead the degeneracy corresponds to the
fixed point labels discussed above. These play no role in H-
momentum conservation. What is important is that for
nonoscillator twisted fields

Vo(T) ~ 3 fi(H)ax’, (C6)
where f(H) stands for details that we will not discuss here,
but which are involved in H-momentum conservation. In
the case of oscillator twisted fields Y?, all their vertex

operators pick up an extra derivative factor, corresponding
to left-moving oscillator number N; = 1/3

v, (YY) ~ v, (T)ax". (C7)
The 9 Kihler moduli M*¢ also play a role in the super-
potential couplings. Since we are only interested in how
they interact with matter, we can always include them
through V,, operators, which take the form
V(M) ~ 9x*axt. (C8)
A trilinear coupling between untwisted matter fields,
U'U/U*, only conserves H-momentum if i, j, and k are
different from each other. Thus
U'UIU* ~ €k, (C9)
For a higher order coupling, the V|, operators are not con-
strained by H-momentum

Uivivkut - - - US ~ elikgxt - - axb, (C10)
With respect to the degeneracy labels on the untwisted
fields, which serve as generation labels in the effective
supergravity, many different couplings are allowed, corre-
sponding to different assignments of n fields to the g = 0
picture.

A trilinear coupling between twisted matter fields al-
ways conserves H-momentum. For a higher order twisted
coupling, H-momentum conservation constraints on the
fi(H) in (C6) picks out a certain combination of the

derivatives:
T3 ~ (9X'oX?oX3)m 1. (C11)

If there are both twisted and untwisted fields, then it is
convenient to take the untwisted fields in the ¢ = 0 picture,
so that

T3y - - Ui ~ (0X'9X20X3)" 19X - - - 90X, (C12)

It is obvious how the above expressions are modified
once oscillator twisted states or Kéhler moduli are in-
cluded. For example,

T3m*1y€ — (axlax2ax3)m71W€’

UiUiukmmt ~ €iikgxmaxe. (C13)
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Automorphism selection rule.—This last selection rule
requires that couplings be invariant under automorphisms
of the SU(3)? lattice. Here this amounts to examining the
factors of dX’ and 9X' coming from the vertex operators.
Suppose

Vo2 @)V_y2(22)V_1(23)Vo(za) - - - Vo(z,))

3
~ ]‘[(axf)mf(ﬁi)m. (C14)
i=1
Then the automorphism selection rule states that the cou-
pling will vanish unless

m—p;i=0 mod3 Vi (C15)

It is convenient to define powers that do not distinguish
between the indices, just counting the number of dX’s or
dX’s that appear:

m = Zm,-, p= Zp,-. (C106)
A necessary but not sufficient condition is that
m—p=0 mod 3. (C17)

Twisted fields contribute to m — p, mod 3, only if they are
oscillators, through (C7). This is because (C11) only gives
multiples of 3. Each untwisted oscillator subtracts 1 from
m — p, mod 3. Untwisted superfields contribute to m — p
through (C5). In couplings without twisted fields (C10),
m — p just counts the number of untwisted fields mod 3. In
couplings with twisted fields (C12), we can always asso-
ciate the untwisted fields with V,, operators, so again m —
p counts the number of untwisted fields mod 3. Finally, the
Kihler moduli do not contribute to m — p, mod 3. From
these considerations it can be seen that a convenient way to
encode the constraint (C17) is the following: we assign
untwisted triality of 1 to fields U and —1 to fields Y. Fields
T and M** have untwisted triality 0. The demand that
couplings be invariant with respect to untwisted triality is
equivalent to (C17).

It is easy to show that if a coupling has vanishing
untwisted triality, so that it satisfies (C17), then it can be
made to satisfy the stricter automorphism selection rule
(C15) simply by supplementing with an appropriate com-
bination of off-diagonal moduli. As an example, let us
examine couplings of the form TTTTTTY'Y'Y?, with
none of the T fields an oscillator state. This involves nine
twisted states, so remembering the derivative terms which
come from Y’ and using (C11) we find

TTTTTTY'Y'Y? ~ (0X'9X?0X3)?0X'9X'9X?. (C18)
Now apply the rule (C15):
m; — p; =0, my; — py =1, my — p3 = 2.
(C19)

Thus, the coupling is forbidden by the automorphism
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selection rule. However, notice that

M3 ~ 9X30X? (C20)

provides just the factors we need in order to satisfy the
automorphism selection rule. Consequently, the coupling

M3TTTTTTY'Y'Y? (C21)
is allowed.
More generally, suppose
m; — p; =3¢, +r, r, 2{-1,01} (C22)

Thus if the coupling has vanishing untwisted triality, r; +
ry + r3 = 0 mod 3. Then it is easy to check that for any
choice of the r; it is possible to find a combination of off-
diagonal moduli that will cancel the r;’s. For example if
(ry, 72, r3) = (—1,0, 1), then M"® will do the job. Or, if
(ry, 5, r3) = (1,1, 1) then M3'M3? will suffice. The other
nontrivial possibilities are just permutations of (—1, 0, 1),
or (=1, —1,—1). It is easy to check that these can be
compensated in a manner similar to the two examples
just given.

The off-diagonal moduli parameterize angles between
the three complex planes of the compact space. If we were
to assume that the vacuum was maximally symmetric, then
the vevs of the off-diagonal moduli would vanish. We will
not make this assumption here, since it is a very special
point in moduli space and hardly corresponds to a generic
situation. Since we allow for nonvanishing off-diagonal
moduli, any coupling that satisfies (C17) but not (C15)
can be made to satisfy (C15) simply by adding some
number of off-diagonal moduli. Thus in the presence of
off-diagonal moduli, we need only check untwisted triality
to ensure that both H-momentum conservation and the
automorphism selection rules are satisfied.

A simple example is afforded by degree 5 superpotential
couplings. A coupling of all untwisted fields will not work
because the untwisted triality is 5 = 2. Given that twisted
fields must be included, twisted triality requires exactly
three. But then two untwisted remain, which give un-
twisted triality of 2. To cancel this, two of the twisted fields
must be oscillators. Thus the unique type of trialities-
allowed coupling is UUYYT. In our analysis of the BSL,
models, we find that this is never gauge invariant, and thus
never allowed. A further simple consequence of untwisted
triality is that models that do not contain twisted oscillators
(all those that fall into patterns 2.6, 4.5, 4.7, and 4.8) can
only have superpotential couplings whose degree is a
multiple of 3. This is seen explicitly in Table II.

Summary.—Provided that we do not go to a special point
in the moduli space where off-diagonal moduli vanish, the
imposition of the selection rules just amounts to the simul-
taneous satisfaction of: (i) lattice triality, (ii) twisted tri-
ality, (iii) untwisted triality. This makes the selection rules
very easy to automate and has greatly aided our analysis.

115013-17



GIEDT, KANE, LANGACKER, AND NELSON

(1]

(2]
(3]

(4]
(5]
[6]

(71
(8]

(9]

[10]

P. Fisher, B. Kayser, and K.S. McFarland, Annu. Rev.
Nucl. Part. Sci. 49, 481 (1999).

H. Murayama, Int. J. Mod. Phys. A 17, 3403 (2002).

M. C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75,
345 (2003).

S.F. King, Rep. Prog. Phys. 67, 107 (2004).

R.N. Mohapatra et al.,hep-ph/0412099.

J. Kang, P. Langacker, and T. Li, Phys. Rev. D 71, 015012
(2005).

E. Witten, Nucl. Phys. B268, 79 (1986).

A. Font, L.E. Ibanez, F. Quevedo, and A. Sierra, Nucl.
Phys. B331, 421 (1990).

G. Cleaver, M. Cvetic, J.R. Espinosa, L.L. Everett,
P. Langacker, and J. Wang, Phys. Rev. D 59, 055005
(1999).

G. Cleaver, M. Cvetic, J.R. Espinosa, L.L. Everett,
P. Langacker, and J. Wang, Phys. Rev. D 59, 115003
(1999).

G. B. Cleaver, A.E. Faraggi, and D. V. Nanopoulos, Phys.
Lett. B 455, 135 (1999).

G. B. Cleaver, A.E. Faraggi, D. V. Nanopoulos, and J. W.
Walker, Mod. Phys. Lett. A 15, 1191 (2000).

J. Giedt, Ann. Phys. (N.Y.) 297, 67 (2002).

L.E. Ibanez, F. Marchesano, and R. Rabadan, J. High
Energy Phys. 11 (2001) 002.

I. Antoniadis, E. Kiritsis, J. Rizos, and T.N. Tomaras,
Nucl. Phys. B660, 81 (2003).

J.R. Ellis, G. K. Leontaris, S. Lola, and D. V. Nanopoulos,
Phys. Lett. B 425, 86 (1998).

J.R. Ellis, G. K. Leontaris, S. Lola, and D. V. Nanopoulos,
Eur. Phys. J. C 9, 389 (1999).

A.E. Faraggi, Phys. Lett. B 245, 435 (1990).

A.E. Faraggi and E. Halyo, Phys. Lett. B 307, 311 (1993).
C. Coriano and A.E. Faraggi, Phys. Lett. B 581, 99
(2004).

T. Kobayashi, S. Raby, and R.J. Zhang, Phys. Lett. B 593,
262 (2004); T. Kobayashi, S. Raby, and R.J. Zhang, Nucl.
Phys. B704, 3 (2005); S. Raby (private communication).
L.J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl.
Phys. B261, 678 (1985).

L.J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl.
Phys. B274, 285 (1986).

D.J. Gross, J. A. Harvey, E.J. Martinec, and R. Rohm,
Phys. Rev. Lett. 54, 502 (1985).

L.E. Ibanez, H.P. Nilles, and F. Quevedo, Phys. Lett. B
187, 25 (1987).

L.E. Ibanez, J. Mas, H.P. Nilles, and F. Quevedo, Nucl.
Phys. B301, 157 (1988).

J. A. Casas, M. Mondragon, and C. Munoz, Phys. Lett. B
230, 63 (1989).

H.B. Kim and J. E. Kim, Phys. Lett. B 300, 343 (1993).
L. E. Ibafiez, J. E. Kim, H. P. Nilles, and F. Quevedo, Phys.
Lett. B 191, 282 (1987).

A. Font, L.E. Ibafiez, H. P. Nilles, and F. Quevedo, Phys.
Lett. B 210, 101 (1988); 213, 564(E) (1988).

J.A. Casas and C. Muiioz, Phys. Lett. B 209, 214
(1988).

J. A. Casas and C. Muiloz, Phys. Lett. B 214, 63 (1988).
J. Giedt, Ann. Phys. (N.Y.) 289, 251 (2001).

M.K. Gaillard and B.D. Nelson, Nucl. Phys. B5S71, 3
(2000).

(35]
(36]
(37]
(38]
(391

[40]
[41]

[42]
[43]

[44]
[45]

[46]

[59]
[60]
[61]
[62]

[63]
[64]

[65]

115013-18

PHYSICAL REVIEW D 71, 115013 (2005)

M. Dine, N. Seiberg, and E. Witten, Nucl. Phys. B289, 589
(1987).

M. Dine, I. Ichinose, and N. Seiberg, Nucl. Phys. B293,
253 (1987).

J.J. Atick, L.J. Dixon, and A. Sen, Nucl. Phys. B292, 109
(1987).

M.B. Green and J.H. Schwarz, Phys. Lett. 149B, 117
(1984).

J. Giedt, Nucl. Phys. B595, 3 (2001); B632, 397(E)
(2002).

C. Muiioz, J. High Energy Phys. 12 015 (2001).

S. A. Abel and C. Muiioz, J. High Energy Phys. 02 (2003)
010.

C. Muiioz, hep-ph/0312091.

S. Forste, H.P. Nilles, P.K.S. Vaudrevange, and A.
Wingerter, Phys. Rev. D 70 106008 (2004).

U. Seljak et al., astro-ph/0407372.

M. Gell-Mann, P. Ramond, and R. Slansky, in
Supergravity, edited by P. van Nieuwenhuizen and D.Z.
Freedman (North-Holland, Amsterdam, 1979).

T. Yanagida, in Proceedings of the Workshop on Unified
Theory and Baryon Number in the Universe, edited by
O. Sawada and A. Sugamoto, KEK Report No. KEK-97-
18, 1979.

J. Schechter and J. W.F. Valle, Phys. Rev. D 22, 2227
(1980).

J. Schechter and J.W.F. Valle, Phys. Rev. D 25, 774
(1982).

F. Buccella, J. P. Derendinger, S. Ferrara, and C. A. Savoy,
Phys. Lett. 115B, 375 (1982).

R. Gatto and G. Sartori, Commun. Math. Phys. 109, 327
(1987).

C. Procesi and G.W. Schwarz, Phys. Lett. 161B, 117
(1985).

M. A. Luty and W. I. Taylor, Phys. Rev. D 53, 3399 (1996).
M. K. Gaillard and J. Giedt, Phys. Lett. B 479, 308 (2000).
J. Giedt, hep-ph/0208004.

G. Cleaver, M. Cvetic, J.R. Espinosa, L.L. Everett, and
P. Langacker, Nucl. Phys. B525, 3 (1998).

G. Cleaver, M. Cvetic, J.R. Espinosa, L.L. Everett, and
P. Langacker, Phys. Rev. D 57, 2701 (1998).

M. Cvetic, D. A. Demir, J.R. Espinosa, L. L. Everett, and
P. Langacker, Phys. Rev. D 56, 2861 (1997); S8,
119905(E) (1998).

G. Lazarides, Q. Shafi, and C. Wetterich, Nucl. Phys.
B181, 287 (1981); R.N. Mohaptra and G. Senjanovic,
Phys. Rev. D 23, 165 (1981).

P.G. Langacker and B.D. Nelson (work in progress).
A preliminary discussion was given in P. Langacker,
hep-ph/0411116.

P. Langacker, Phys. Rev. D 58, 093017 (1998).

A. Font, L. E. Ibanez, H. P. Nilles, and F. Quevedo, Nucl.
Phys. B307, 109 (1988); B310 764 (1988).

D. Friedan, E.J. Martinec, and S. H. Shenker, Nucl. Phys.
B271, 93 (1986).

S. Hamidi and C. Vafa, Nucl. Phys. B279, 465 (1987).
L.J. Dixon, D. Friedan, E.J. Martinec, and S. H. Shenker,
Nucl. Phys. B282, 13 (1987).

L.J. Dixon, ICTP Summer Workshop in High Energy
Phsyics and Cosmology, Trieste, Italy, 1987, Report
No. PUPT-1074,



