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Deconstructed Higgsless models with one-site delocalization
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In this note we calculate the form of electroweak corrections in deconstructed Higgsless models for the
case of a fermion whose weak properties arise from two adjacent SU�2� groups on the deconstructed
lattice. We show that, as recently proposed in the continuum, it is possible for the value of the electroweak
parameter �S to be small in such a model. In addition, by working in the deconstructed limit, we may
directly evaluate the size of off-Z-pole electroweak corrections arising from the exchange of Kaluza-Klein
modes; this has not been studied in the continuum. The size of these corrections is summarized by the
electroweak parameter ��. In one-site delocalized Higgsless models with small values of �S, we show
that the amount of delocalization is bounded from above, and must be less than 25% at 95% C.L. We
discuss the relation of these calculations to our previous calculations in deconstructed Higgsless models,
and to models of extended technicolor. We present numerical results for a four-site model, illustrating our
analytic calculations.
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I. INTRODUCTION

‘‘Higgsless’’ models [1] have emerged as an intriguing
direction for research into the origin of electroweak sym-
metry breaking. In these models, which are based on five-
dimensional gauge theories compactified on an interval,
unitarization of the electroweak bosons’ self-interactions
occurs through the exchange of a tower of massive vector
bosons [2–5], rather than the exchange of a scalar Higgs
boson [6].

We have recently analyzed the electroweak corrections
in a large class of Higgsless models in which the fermions
are localized within the extra dimension [7–9].
Specifically, we studied all Higgsless models which can
be deconstructed [10,11] to a chain of SU�2� gauge groups
adjacent to a chain ofU�1� gauge groups, with the fermions
coupled to any single SU�2� group and to any single U�1�
group along the chain. Our use of deconstruction allowed
us to relate the size of corrections to electroweak processes
directly to the spectrum of vector bosons [‘‘Kaluza-Klein
(KK) modes’’] which, in Higgsless models, is constrained
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by unitarity. Our results apply for arbitrary background 5D
geometry, spatially dependent gauge couplings, and brane
kinetic energy terms.

We found [7] that Higgsless models with localized
fermions which do not have extra light vector bosons
(with masses of order the W and Z masses) cannot simul-
taneously satisfy the constraints of precision electroweak
data and unitarity bounds. In particular, we found that
unitarity constrains the electroweak parameter Ŝ as fol-
lows:
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�S� 4c2��	� �T� �

��
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�
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W�r

�
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W

8
v2 ’ 4
 10�3: (1.1)

This large a value is disfavored by precision electroweak
data [12].

Although we framed those results in terms of their
application to continuum Higgsless 5D models, they also
apply far from the continuum limit when only a few extra
vector bosons are present. As such, these results form a
generalization of phenomenological analyses [13] of mod-
els of extended electroweak gauge symmetries [14–16]
motivated by models of hidden local symmetry [17–21].
Our previous results are complementary to, and more
general than, the analyses of the phenomenology of these
-1  2005 The American Physical Society
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models in the continuum [12,22–29]. They also apply
independent of the form of the high-energy completion
of the Higgsless theory; the potentially large higher-order
corrections expected to be present in QCD-like comple-
tions have been discussed in [30].

It has been proposed [31,32] that the size of corrections
to electroweak processes may be reduced by allowing for
delocalized fermions. We now investigate this possibility
in the context of deconstruction. This paper will focus on
the effects of adding fermion delocalization to the decon-
structed models which our earlier work identified as having
the greatest phenomenological promise (i.e., those in
which the electroweak corrections are smallest). These
are models (designated ‘‘case I’’) in which the fermions’
hypercharge interactions are with the U�1� group at the
interface between the SU�2� andU�1� groups, and in which
the gauge couplings of that U�1� group and of the SU�2�
group farthest from the interface are small. For simplicity,
we will assume, in this paper, that the U�1� group adjacent
to the interface is the only hypercharge group in the model;
this corresponds to taking the M � 0 limit of the more
general models we studied previously [7]. We also assume
that the fermions derive their weak properties from two
adjacent SU�2� groups in the deconstructed model—i.e.,
we consider ‘‘one-site’’ delocalization.

We have found several relationships between delocali-
zation and electroweak corrections, some confirming what
has been found in the continuum and others entirely new.
We confirm that it is possible for the value of the electro-
weak parameter �S to be small in models including fer-
mion delocalization; this has been shown already in the
continuum [31,32]. By working in the deconstructed limit,
we may directly evaluate the size of electroweak correc-
tions away from the Z peak which arise from the exchange
of Kaluza-Klein modes; this has not previously been ex-
amined in the continuum. The size of these corrections is
summarized by the electroweak parameter �� [9,12],
which describes flavor-universal nonoblique corrections.
In one-site delocalized Higgsless models with small values
of �S, we show that the amount of delocalization is
bounded from above by a combination of experimental
limits on �� and the need to ensure that the scattering of
longitudinal W bosons is properly unitarized. At 95% C.L.,
the amount of delocalization cannot exceed 25%. We dis-
cuss the relation of these calculations to our previous
calculations in deconstructed Higgsless models, and to
models of extended technicolor. We defer to a subsequent
work [33,34] the study of multisite or flavor nonuniversal
delocalization, and the generation of fermion masses.1

In the next two sections we discuss the structure of the
gauge and fermion sectors of the model, and specify the
1Flavor nonuniversal interactions will be required in order to
generate the diverse fermion masses. Depending on how this is
done, these new interactions may lead to additional flavor non-
universal electroweak corrections [31].
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limit in which we analytically compute the size of correc-
tions to electroweak interactions. In Secs. IV, V, and VI, we
compute the electroweak parameters �S, �T, and ��,
respectively.2 In Sec. VII we discuss the interpretation of
these models, and discuss how such effects can arise in
technicolor theories. In Sec. VIII we present numerical
results for a four-site model, illustrating our analytic cal-
culations and demonstrating explicitly that some models
with vanishing �S can have relatively large values of ��.
Section IX discusses our conclusions and outlines future
work.

II. REVIEW OF THE GAUGE SECTOR OF THE
MODEL

We study a deconstructed Higgsless model, as shown
diagrammatically (using ‘‘moose notation’’ [35]) in Fig. 1.
The model incorporates an SU�2�N�1 
U�1� gauge group,
and N � 1 nonlinear �SU�2� 
 SU�2��=SU�2� sigma mod-
els in which the global symmetry groups in adjacent sigma
models are identified with the corresponding factors of the
gauge group. The Lagrangian for this model to leading
order is given by

L 2 �
1

4

XN�1

j�1

f2
j tr��D�Uj�

y�D�Uj��

�
XN�1

j�0

1

2g2
j

tr�Fj��Fj���; (2.1)

with
D�Uj � @�Uj � iAj�1

� Uj � iUjA
j
�; (2.2)

where all gauge fields Aj� �j � 0; 1; 2; . . . ; N � 1� are dy-
namical. The first N � 1 gauge fields (j � 0; 1; . . . ; N)
correspond to SU�2� gauge groups; the last gauge field
(j � N � 1) corresponds to the U�1� gauge group. The
symmetry breaking between the AN� and AN�1

� follows an
SU�2�L 
 SU�2�R=SU�2�V symmetry breaking pattern
with the U�1� embedded as the T3 generator of SU�2�R.
Our analysis proceeds for arbitrary values of the gauge
couplings and f constants, and therefore allows for arbi-
trary background 5D geometry, spatially dependent gauge
couplings, and brane kinetic energy terms for the gauge
bosons.

All four-fermion processes, including those relevant for
the electroweak phenomenology of our model, depend on
the neutral and charged gauge field propagator matrices

DZ�Q2� � 
Q2I �M2
Z�

�1;

DW�Q2� � 
Q2I �M2
W�

�1:
(2.3)

Here, M2
Z and M2

W are, respectively, the mass-squared
matrices for the neutral and charged gauge bosons and I
is the identity matrix. Consistent with [8], Q2 � �q2

refers to the Euclidean momentum.
2The fourth such parameter, �	, is identically equal to 0 in
case I models [7].
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The neutral vector meson mass-squared matrix is of dimension �N � 2� 
 �N � 2�

M2
Z �

1

4

g2
0f

2
1 �g0g1f2

1

�g0g1f2
1 g2

1�f
2
1 � f2

2� �g1g2f2
2

. .
. . .

. . .
.

�gN�1gNf
2
N g2

N�f
2
N � f2

N�1� �gNgN�1f
2
N�1

�gNgN�1f2
N�1 g2

N�1f
2
N�1

0
BBBBBBB@

1
CCCCCCCA
; (2.4)
and the charged-current vector bosons’ mass-squared ma-
trix is the left-upper �N � 1� 
 �N � 1� dimensional block
of the neutral-current M2

Z matrix. The neutral mass matrix
(2.4) is of a familiar form that has a vanishing determinant,
due to a zero eigenvalue. Physically, this corresponds to a
massless neutral gauge field—the photon. The nonzero
eigenvalues of M2

Z are labeled by m2
Zz (z �

0; 1; 2; . . . ; N), while those of M2
W are labeled by m2

Ww
(w � 0; 1; 2; . . . ; N). The lowest massive eigenstates cor-
responding to eigenvalues m2

Z0 and m2
W0 are, respectively,

identified as the usual Z and W bosons. We will generally
refer to these last eigenvalues by their conventional sym-
bols M2

Z, M2
W ; the distinction between these and the corre-

sponding mass matrices should be clear from the context.
Generalizing the usual mathematical notation for

‘‘open’’ and ‘‘closed’’ intervals, we may denote [7] the
neutral-boson mass matrix M2

Z as M2

0;N�1�—i.e., it is the

mass matrix for the entire moose running from site 0 to site
N � 1 including the gauge couplings of both endpoint
groups. Analogously, the charged-boson mass matrix M2

W
is M2


0;N�1�—it is the mass matrix for the moose running
from site 0 to link N � 1, but not including the gauge
coupling at site N � 1. This notation will be useful in
thinking about the properties of submatrices M2


0;i� of the
full gauge-boson mass matrices that arise in our discussion
of fermion delocalization, and also the corresponding ei-
genvalues m2

iî
�î � 1; 2; . . . ; i�. We will denote the lightest

such eigenvalue m2
i1 by the symbol M2

i .

III. A MOOSE WITH DELOCALIZED FERMIONS

Consider the simplest deconstructed Higgsless model
with one-site delocalized fermions, as shown in Fig. 1.
We take the fermion couplings in this model to be
g
0

g
1

f1 f2

g
N

g
N+1

fN fN+1

g
2

f3

FIG. 1. Moose diagram of the model analyzed in this paper.
Sites 0 to N are SU�2� gauge groups, site N � 1 is a U�1� gauge
group. The fermions are one-site-delocalized in the sense that the
SU�2� couplings of the fermions arise from the gauge groups at
sites 0 and 1. The U�1� coupling comes from the gauge group at
site N � 1.
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L f � ~J�L � �x0A
0
� � x1A

1
�� � J�Y A

N�1
� ; (3.1)

where x0 � x1 � 1 and the fermions are ‘‘delocalized’’ in
the sense that their SU�2� couplings arise from both sites 0
and 1. Note that the fermion couplings are flavor universal.
This expression is not separately gauge invariant under
SU�2�0 and SU�2�1. Rather, as discussed further in
Sec. VII, Eq. (3.1) should be viewed as the form of the
fermion coupling in ‘‘unitary’’ gauge. Here ~J�L denotes the
isotriplet of left-handed weak fermion currents, and J�Y is
the fermion hypercharge current. In the notation of
Ref. [7], where the fermion coupled to the SU�2� group
at site p, the current model is an admixture of p � 0 and
p � 1. As we will see, our results for the electroweak
parameters in this model are themselves an admixture of
the results we would obtain in the two models.3

Because fermions are charged under SU�2� gauge
groups at sites 0 and 1, as well as under the single U�1�
group at the N � 1 site, neutral-current four-fermion pro-
cesses may be derived from the Lagrangian

LNC � �
1

2


X1
i;j�0

xixjgigjD
Z
i;j�Q

2�

�
J�3 J3�

�


X1
i�0

xigigN�1DZ
i;N�1�Q

2�

�
J�3 JY�

�
1

2

g2
N�1D

Z
N�1;N�1�Q

2��J�Y JY�; (3.2)

and the charged-current process from

L CC � �
1

2


X1
i;j�0

xixjgigjD
W
i;j�Q

2�

�
J��J��; (3.3)

where Di;j is the �i; j� element of the appropriate gauge
field propagator matrix. We can define correlation func-
tions between fermion currents at given sites as


GNC�Q
2��i;j � gigjD

Z
i;j�Q

2�


GCC�Q
2��i;j � gigjD

W
i;j�Q

2�:
(3.4)
3The idea of a delocalized model as an admixture of localized-
fermion models corresponding to different values of p general-
izes readily to multisite delocalization. The generalization of the
form of Eqs. (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7) is
obvious; the implications will be discussed in a forthcoming
paper [34].
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The full correlation function for the fermion currents J�3
and J�Y is then


GNC�Q
2��WY �

X1
i�0

xi
GNC�Q
2��i;N�1; (3.5)

where we have used Eq. (3.1) to include the appropriate
contribution from each site to which fermions couple.
Likewise, the full correlation function for weak currents is


GNC;CC�WW �
X1
i;j�0

xixj
GNC;CC�i;j: (3.6)

The hypercharge correlation function 
GNC�Q
2��YY �


GNC�Q2��N�1;N�1 depends only on the single site with a
U�1� gauge group.

The correlation functions may be written in a spectral
decomposition in terms of the mass eigenstates as follows:


GNC�Q2��YY �

,-�YY
Q2 �


,Z�YY
Q2 �M2

Z

�
XN
z�1


,Zz�YY
Q2 �m2

Zz

;

(3.7)


GNC�Q2��WY �

,-�WY
Q2 �


,Z�WY
Q2 �M2

Z

�
XN
z�1


,Zz�WY
Q2 �m2

Zz

;

(3.8)


GNC�Q
2��WW �


,-�WW
Q2 �


,Z�WW
Q2 �M2

Z

�
XN
z�1


,Zz�WW
Q2 �m2

Zz

;

(3.9)


GCC�Q2��WW �

,W�WW
Q2 �M2

W

�
XN
w�1


,Ww�WW
Q2 �m2

Ww

: (3.10)

All poles should be simple (i.e. there should be no degen-
erate mass eigenvalues) because, in the continuum limit,
we are analyzing a self-adjoint operator on a finite interval.
Since the neutral bosons couple to only two currents, J�3
and J�Y , the three sets of residues in Eqs. (3.7), (3.8), and
(3.9) must be related. Specifically, they satisfy the N � 1
consistency conditions,


,Z�WW
,Z�YY � �
,Z�WY�
2;


,Zz�WW
,Zz�YY � �
,Zz�WY�2:
(3.11)

In the case of the photon, charge universality further im-
plies

e2 � 
,-�WW � 
,-�WY � 
,-�YY: (3.12)
4See [9] for a discussion of the correspondence between the
‘‘on-shell’’ parameters defined here, and the zero-momentum
parameters defined in [12]. Note that U is shown in [9] to be zero
to the order we consider in this paper.
A. Notation

We will find it useful to define the following sums over
heavy eigenvalues for phenomenological discussions:
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��i;j� � TrM�2
�i;j� (3.13)

with similar definitions for �
i;j� and so on. In particular,

�Z �
XN
z�1

1

m2
Zz

; �W �
XN
w�1

1

m2
Ww

; (3.14)

that is, �Z and �W are the sums over inverse-square masses
of the higher neutral- and charged-current KK modes of the
full model. Furthermore, by explicit calculation one finds
(see Appendix B of Ref. [7])

��0;N�1� �
XN
i�1

4F2

g2
i F

2
i
~F2
i

; (3.15)

where

1

F2
i
�

XN�1

j�i�1

1

f2
j

;
1
~F2
i

�
Xi
j�1

1

f2
j

; (3.16)

and F2
0 � ~F2

N�1 � F2.
Finally, we will find it useful to denote the (0,0) element

of the gauge-boson mass matrices as


M2
Z�0;0 � 
M2

W�0;0 �
g2

0f
2
1

4
� ~m2: (3.17)

To connect with the notation of Ref. [7] we note that

~m�2 � �
0;1� � �p�1: (3.18)
B. Electroweak parameters

As we have shown in [9], the most general amplitude [to
leading order in deviation from the standard model (SM)]
for low-energy four-fermion neutral weak current pro-
cesses in any ‘‘universal’’ model [12] may be written as4

�MNC � e2
QQ0

Q2

�
�I3 � s2Q��I03 � s2Q0�

�s
2c2

e2 � S
16
�Q

2 � 1
4
��
2

p
GF

�1� �T � ��
4s2c2�

�
���
2

p
GF

��

s2c2
I3I

0
3 � 4

���
2

p
GF��	� �T�


 �Q� I3��Q0 � I03�; (3.19)

and the matrix element for the charged-current process
may be written
-4
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�MCC �
�I�I0� � I�I0��=2

�s
2

e2
� S

16
�Q
2 � 1

4
��
2

p
GF

�1 � ��
4s2c2

�

�
���
2

p
GF

��

s2c2
�I�I

0
� � I�I

0
��

2
: (3.20)

Note that the parameter s2 is defined implicitly in these
expressions as the ratio of the Q and I3 couplings of the Z
boson. S and T are the familiar oblique electroweak pa-
rameters [36–38], as determined by examining the on-
shell properties of the Z and W bosons. �	 corresponds
to the deviation from unity of the ratio of the strengths of
low-energy isotriplet weak neutral-current scattering and
charged-current scattering. Finally, the contact interactions
proportional to �� and (�	� �T) correspond to ‘‘univer-
sal nonoblique’’ corrections.

From our previous analysis [7], we know that for a
model of the sort shown in Fig. 1, �	 � 0. In the limit
in which we will work [see Eqs. (3.22) and (3.23)], we will
also find (Sec. V) that �T � 0. Therefore our analysis of
electroweak corrections in these models reduces to com-
puting the values of �S and ��.

C. The limit taken

We will study the correlation functions for 0 � �Q2 �
�200 GeV�2 at tree level assuming that the heavy W and Z
bosons satisfy

m 2
Zz;m

2
Ww � �200 GeV�2; 
z; w � 1; . . . ; N�:

(3.21)

From our previous analysis [7], we expect that gN�1 [being
the onlyU�1� coupling] must be smaller than the other gi in
order to ensure that a light Z state will exist. In principle,
any one of the SU�2� couplings could also be small (to
ensure the presence of a light W). However, our previous
analysis [7] tells us that, in a viable model, any site with a
small coupling must be linked by large f constants to site 0.
For simplicity, we will therefore restrict our attention to the
case where the only SU�2� site with a small coupling is
site 0. This may be viewed as analyzing the general model
after having ‘‘integrated out’’ the links with large
f constants.

In our analytic work, therefore, we will work in the limit
that

g0; gN�1 � gi; i � 1; . . . ; N: (3.22)

From the analyses presented in [7], we find that in the limit
of Eq. (3.22),

�Z � �W � ��0;N�1� � �r; (3.23)

where the last definition makes contact with the notation
M2

�0;N�1� � M2
r in Ref. [7], and

M2
W �

g2
0F

2

4
�O

�
M2
W

m2
W1

�
: (3.24)
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Note that we expect g0 to be approximately of the order of
the standard model SU�2� coupling and therefore numeri-
cally of order 1—the limit in Eq. (3.22) implies that the
other gi will be larger, and Eq. (3.24) implies that F ’
246 GeV.

For phenomenologically motivated reasons [see
Eq. (4.12)], we will also take

x1
f�Q2;M2

Wg

~m2 � 1: (3.25)

This approximation may be satisfied either by x1 being
small, ~m2 being large, or some combination thereof.

In the numerical examples studied in Sec. VIII, we
calculate the tree-level masses and residues exactly, and
we confirm that our analytic calculations based on the
approximations of Eqs. (3.22) and (3.25) do indeed capture
the essential features of models with one-site
delocalization.
IV. 
GNC�Q
2��WY , 
�Z�WY AND 	S

We begin by computing 
GNC�Q2��WY . Starting from
Eq. (3.5), we see the two contributions coming from the
two sites at which the fermion resides. Based on Ref. [7],
then, we may immediately compute the two relevant ele-
ments of the propagator matrix


GNC�Q
2��0;N�1 �

e2M2
Z

Q2�Q2 �M2
Z�


YN
z�1

m2
Zz

Q2 �m2
Zz

�
;


GNC�Q
2��1;N�1 �

e2M2
Z

Q2�Q2 �M2
Z�



Q2 � ~m2

~m2

�





YN
z�1

m2
Zz

Q2 �m2
Zz

�
:

(4.1)

Combining these results, we find


GNC�Q
2��WY �

e2M2
Z

Q2�Q2 �M2
Z�



1 � x1

Q2

~m2

�





YN
z�1

m2
Zz

Q2 �m2
Zz

�
: (4.2)

Given Eqs. (3.21) and (3.25), we may expand the final
product in this expression and find


GNC�Q
2��WY �

e2M2
Z

Q2�Q2 �M2
Z�



1�Q2

�
x1
~m2 ��Z

��
:

(4.3)

If we take

x1 �
�Z

�
0;1�
� ~m2�Z; (4.4)

we have that (in this momentum range) this correlation
-5
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function equals its standard model value to leading order,


GNC�Q
2��WY � 
GNC�Q

2��SMWY: (4.5)

Next, we compute 
,Z�WY , from which we may directly
extract �S. The residue decomposes like the correlation
function


,Z�WY � x0
,Z�0;N�1 � x1
,Z�1;N�1; (4.6)

where the subscripts on the right-hand side of the equation
denote the residue of the pole of the corresponding propa-
gator matrix element. From Eq. (4.1), we find


,Z�0;N�1 � �e2
1�M2
Z�Z�;


,Z�1;N�1 � �e2
1�M2
Z��Z ��
0;1���:

(4.7)

Combining these results, we find


,Z�WY � �e2
1�M2
Z��Z � x1�
0;1���: (4.8)

The form of the four-fermion weak interaction amplitudes
of Eqs. (3.19) and (3.20) implies [7]

1

e2

,Z�WY � �1�

�

4s2Zc
2
Z

S; (4.9)

and hence we find

�S � 4s2Zc
2
ZM

2
Z��Z � x1 ~m�2�: (4.10)

Now it is clear that the same ‘‘tuning’’ of the localization of
the fermion in conjunction with the heavy Z-boson mass
matrix that causes 
GNC�Q

2��WY to have its standard model
form at low momentum likewise makes�S small. In fact, if
Eq. (4.4) is satisfied, then �S ’ 0.

Using Eq. (3.18), we may rewrite this result in the form

�S � 4s2Zc
2
ZM

2
Z��Z � x1�p�1�; (4.11)

which agrees with the results of [7] when x0 � 1 or x1 � 1,
and smoothly interpolates between these extremes.

Finally, note that, in order for �S to be small, we need

x1
M2
W

~m2 � M2
W�Z � 1; (4.12)

and the limit of Eq. (3.25) is directly related to that of
Eq. (3.21).
V. 
GNC�Q
2��YY , 
�Z�YY AND 	T

Next, consider the correlation function 
GNC�Q
2��YY .

Given the structure of the moose in Fig. 1 and the form
of the fermion couplings in Eq. (3.1), we see that the
delocalization of the fermions is irrelevant in this case—
we get the same result [7] as in the case of the simplest
case I model:
115001

GNC�Q
2��YY �

e2M2
Z�Q

2 �M2
W�

Q2M2
W�Q

2 �M2
Z�


YN
w�1

Q2 �m2
Ww

m2
Ww

�





YN
z�1

m2
Zz

Q2 �m2
Zz

�
: (5.1)

Expanding for low Q2 [see Eq. (3.21)] we find, to this
order,


GNC�Q
2��YY �

e2M2
Z�Q

2 �M2
W�

Q2M2
W�Q

2 �M2
Z�

1�Q2��W ��Z��

� 
GNC�Q2��SMYY ; (5.2)

where the last equality follows from Eq. (3.23) and where

GNC�Q

2��SMYY denotes the tree-level standard model value
in terms of e2, M2

W , and M2
Z .

The residue is likewise the same as in the simplest case I
model:


,Z�YY �
e2�M2

Z �M2
W�

M2
W


1�M2
Z��Z � �W��: (5.3)

Therefore, using the results of [7], we find

�T � s2ZM
2
Z��Z ��W� ’ 0; (5.4)

independent of the value of x0. The last equality follows
from Eq. (3.23) (i.e. from working in the limit g2

N�1 � 1).
VI. 
GCC�Q
2��WW , 
�W �WW , AND 	�

Finally, to compute �� we must compute a WW corre-
lation function. For simplicity, we will consider the
charged-current correlation function 
GCC�Q2��WW . We
may do so by recalling that the matrix GCC�Q2� is defined
by


GCC�Q2��i;j � gigj
�Q2 �M2
W�

�1�i;j: (6.1)

The correlation function of J�� with J�� is therefore pro-
portional to

x20
GCC�Q
2��0;0 � 2x0x1
GCC�Q

2��0;1 � x21
GCC�Q
2��1;1:

(6.2)

To make progress, we relate the various propagator
elements to one another. Consider Eq. (6.1) as a matrix
equation

GCC�Q2� � G �
I

Q2 �M2
W

� G; (6.3)

where G is the matrix of gauge coupling constants and I
denotes the identity matrix in gauge space. From this, we
immediately see that we have the matrix relation

�Q2 �M2
W� � G

�1 �GCC�Q2� �G�1 � I : (6.4)

Applying this relation explicitly to the first row of the
-6
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matrix �Q2 �M2
W� and the first two columns of the matrix

GCC�Q2�, we find the relations5


GCC�Q2��0;1 �
~m2

Q2 � ~m2 
GCC�Q2��1;1; (6.5)

and


GCC�Q
2��0;0 �

g2
0�1�

f2
1

4 
GCC�Q
2��0;1�

Q2 � ~m2 : (6.6)

Using these results, we find


GCC�Q
2��WW �

�
1� x1

Q2

~m2

�
2

GCC�Q

2��0;0 �
8x1
f2
1

�
4x21
f2
1

�
1�

Q2

~m2

�
: (6.7)

Given the limit of Eq. (3.25), for the momenta of interest
this reduces to


GCC�Q
2��WW �

�
1� 2x1

Q2

~m2

�

GCC�Q

2��0;0

�
8x1
f2
1

�
4x21
f2
1

: (6.8)

We can rearrange this to isolate the pole at Q2 � �M2
W

from the nonpole pieces of the correlation function:


GCC�Q2��WW �

�
1� 2x1

M2
W

~m2

�

GCC�Q2��0;0

�
2x1
~m2 �Q

2 �M2
W�
GCC�Q

2��0;0

�
4x1
F2

�
M2
W

~m2

�
�2 � x1�; (6.9)

where we have used Eq. (3.24) to simplify the last term.
From the pole term (first term) of Eq. (6.9) we see that

the residue of the charged-current correlation function at
Q2 � �M2

W is


,W�WW �

�
1� 2x1

M2
W

~m2

�

,W�0;0: (6.10)

Applying the calculations presented in [7], we observe that


,W�0;0 �
e2M2

Z

M2
Z �M2

W


1�M2
W��Z � �W��

� 
,W�SM
1 � 2M2
W�Z�; (6.11)

where the last equality follows from Eq. (3.23), and 
,W�SM

denotes the tree-level standard model value of the residue
5The propagator matrix elements 
GCC�Q
2��0;1 and


GCC�Q2��0;0 do not have poles at Q2 � � ~m2, as might be
inferred from the form of Eqs. (6.5) and (6.6). Rather, these
potential poles are canceled by zeros of the numerators in these
expressions.
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expressed in terms of M2
W;Z. Therefore, we find from

Eq. (6.10) that


,W�WW �

�
1� 2x1

M2
W

~m2 � 2M2
W�Z

�

,W�

SM: (6.12)

For x1 � ~m2�Z (i.e., for �S � 0), the residue of the pole
equals the standard model value. This is consistent with the
form of Eq. (3.20).

While the residue of the W pole is given by its standard
model value, the nonpole terms in Eq. (6.9) give rise to a
nonzero value of ��. From the analyses presented in [7],


GCC�Q
2��0;0 �

4M2
W

F2
Q2 �M2
W�


YN
w�1

m2
Ww

Q2 �m2
Ww

�





YN
r�1

Q2 �m2
r

m2
r

�
: (6.13)

Expanding the product for the momenta of interest, this
may be written


GCC�Q2��0;0 �
4M2

W

F2
Q2 �M2
W�


1�Q2��r ��W��

�
4M2

W

F2
Q2 �M2
W�
; (6.14)

where the last equality follows from Eq. (3.23). Comparing
the nonpole terms in Eq. (6.9) with the form of the matrix
element Eq. (3.20), we therefore calculate

���
2

p
GF

��

s2c2
�

4x21
F2

�
M2
W

~m2

�
: (6.15)

However,

���
2

p
GF �

1

4

GCC�Q

2 � 0��WW (6.16)

so from Eq. (6.8), again using Eqs. (3.17) and (3.24), we see
that

���
2

p
GF �

1

F2 �
�2� x1�x1

f2
1

�
1

F2



1�

�2� x1�x1M
2
W

~m2

�

�
1

F2



1�O

�
x1M2

W

~m2

��
:

(6.17)

Using this in Eq. (6.15) we find

��

4s2c2
� x21

M2
W

~m2 : (6.18)

If we employ Eq. (3.18), this can be rewritten as

��

4s2c2
� x21M

2
W�p�1; (6.19)

which agrees with the results of [7] for x0 � 1 or x1 � 1
and smoothly interpolates between them.
-7



CHIVUKULA et al. PHYSICAL REVIEW D 71, 115001 (2005)
When we choose the amount of delocalization to ensure
that �S vanishes, x1 � ~m2�Z, we find

��

4s2c2
� x1M

2
W�Z: (6.20)

Moreover, as argued previously [7], preserving the unitar-
ity of longitudinal W boson scattering requires that
M2
W�Z � 4
 10�3. The results of [12] imply6 that experi-

ment currently imposes the upper bound ��=4s2c2 < 1

10�3 at 95% C.L. Hence we must have

x1 �
1

4
; (6.21)

and the amount of delocalization is bounded to be less than
of order 25%.
VII. BEYOND EXTRA DIMENSIONS

A. Reinterpreting fermion delocalization

The delocalized fermion coupling in deconstructed
Higgsless models, Eq. (3.1), may also be written using
the Goldstone-boson fields of the moose in Fig. 1.
Consider the current operator

Tr
�
1a

2
Uy

1 iD�U1

�
! �

1

2
�Aa0� � Aa1��; (7.1)

where the 1 are the Pauli matrices, D� is the covariant
derivative

iD�U1 � i@�U1 �
~A0� � ~1

2
U1 �U1

~A1� � ~1

2
; (7.2)

consistent with Eq. (3.1), and where we have specified the
form of this operator in unitary gauge, where all the link
fields Uj � I . In this language, we see that the fermions’
weak couplings in Eq. (3.1) may be written

~J �L �



~A0
� � 2x1Tr

�
~1
2
Uy

1 iD�U1

��
: (7.3)

From this point of view, the fermions are charged only
under SU�2�0 and the apparent delocalization comes about
from couplings to the Goldstone-boson fields.7

Note that, in the gauge-boson normalization we are
using, the linear combination of gauge fields Aa0� � Aa1�
are strictly orthogonal to the photon

A-� / A3
0� � A3

1� � � � � � A3
N�1�: (7.4)

Hence, the couplings of Eq. (7.3) result in a modification of
the Z and W couplings whose size depends on the x1 and
the admixture of A0 � A1 in the mass eigenstate W and Z
6When �S � 0 � ��	� �T�, from Eq. (1.1) we see that Ŝ �
��=4s2c2.

7This also generalizes naturally to models with multisite
delocalization.
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fields. But the couplings of Eq. (7.3) do not modify the
photon coupling.

B. Technicolor

We have seen that fermion delocalization, on the one
hand, affects �S, and, on the other, can be rewritten as the
fermions coupling to the Goldstone-boson currents. We
can apply the idea of fermions’ coupling to Goldstone
bosons directly to technicolor—a two-site model—which
has no extra-dimensional interpretation. Consider the two-
site model of Fig. 2, with fermion couplings8

L f � ~J�L �



~A0
� � 2x1Tr

�
�y ~1

2
iD��

��
� J�Y A

1
�; (7.5)

where � is the unitary matrix representing the three eaten
Goldstone bosons, and the ~1 are the Pauli matrices.
Following [42], we find that in unitary gauge

2x1 ~J
�
L �Tr

�
�y ~1

2
iD��

�

!�2x1



e
~s~c
Z�J3

��
e

~s
���
2

p �W��J���W��J�� �
�
; (7.6)

where

g0 �
e
~s
; g1 �

e
~c
: (7.7)

Hence, we find the overall Z and W couplings

e
~s ~c
Z�
�1� 2x1�J3

� � ~s2JQ� �; (7.8)

e���
2

p
~s
�1� 2x1�
W

��J�� �W��J�� �: (7.9)

Comparing with Eqs. (3.19) and (3.20) we find

~s 2 � s2�1 � 2x1�; ��S � �8s2x1: (7.10)

As anticipated, the Goldstone-boson operator in Eq. (7.5)
can shift �S. In fact, it will shift �S in a negative direction
(since x1 is positive) just as occurs in Eq. (4.10).

In a technicolor model this effect could be used to cancel
the positive QCD-size value of �S arising [36,43,44] from
the L10 operator. It is also amusing to note that the sign of
x1 arising from the extended technicolor coupling (ETC)
operators considered in [42] is positive. If the operator of
Eq. (7.5) arises from ETC exchange, that reference found
(note that the convention for the covariant derivative differs
in that reference)

x1 �
,2

4

g2
ETCv

2

M2
ETC

; (7.11)
8This kind of operator was previously considered in Refs. [39–
42], the first of these prior to the definition of �S and the last
considering only flavor-dependent effects. Note that there is only
one SU�2� group.
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FIG. 2. Simple two-site moose diagram corresponding to the
global symmetry structure of the one-Higgs doublet standard
model or the simplest one-doublet technicolor model.
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where gETC and METC are the extended technicolor cou-
pling and gauge-boson mass, v ’ 246 GeV, and , is a
model-dependent Clebsch-Gordon coefficient. The canoni-
cal QCD-like technicolor estimate gives STC � O�0:5�. If
we require the sum of the canonical contribution plus that
arising from Eq. (7.10) to vanish, we find jx1j ’ 2 
 10�3,
and hence

METC

,gETC
’ 3 TeV: (7.12)

In an ETC model, one would also expect contributions to
�� (from ETC exchange) of the same order—which im-
plies there must be a Clebsch of order a few to suppress��
relative to x1 [12]. One could imagine, for example, a
model with flavor-independent left-handed low-scale
ETC interactions (with light quark masses suppressed by
high-scale right-handed interactions).

VIII. EXAMPLES OF DELOCALIZED
DECONSTRUCTED HIGGSLESS MODELS

To illustrate the ideas discussed in the earlier sections of
the paper, we now study a linear moose model with 4 sites
and 3 links (Fig. 3), a model small enough to be easily
solved numerically without approximations. We will cal-
culate the tree-level masses and residues exactly and con-
firm that our previous analytic calculations based on the
approximations of Eqs. (3.22) and (3.25) capture the es-
sential features of models with one-site delocalization.

Starting from this 
SU�2��3 
U�1� gauge structure, we
introduce a chiral fermion  0L [assumed to be a doublet of
SU�2�0], and a Dirac fermion  1 �  1L �  1R [doublet of
SU�2�1]. Both  0L and  1 are assumed to have the same
weak hypercharge Y . The fermion sector of this model is
then given by the Lagrangian,
g
0

g
1

f1 f2

g
3

g
2

f3

FIG. 3. The model analyzed in the explicit numerical calcu-
lation. Sites 0 to 2 are SU�2� gauge groups, while site 3 is U�1�.
Fermions are coupled to sites 0 and 1 (weak isospin), and to
site 3 (weak hypercharge), as denoted by the thick circles.
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Lfermion � � 0L

�
i@6 �

4a

2
A6 a0 � Y A6 3

�
 0L

� � 1L

�
i@6 �

4a

2
A6 a1 � Y A6 3

�
 1L

� � 1R

�
i@6 �

4a

2
A6 a1 � Y A6 3

�
 1R: (8.1)

The fermion mass term consistent with the gauge symme-
try is given by

L mass � � � 0L; � 1L�
y f1U1
M 

� �
 1R � H:c: (8.2)

After the gauge symmetry breaking,  1R and

 �1�
L � s  0L � c  1L (8.3)

form a Dirac fermion and become massive; we identify this
as a KK mode. There also remains a massless fermion

 �0�
L � c  0L � s  1L; (8.4)

where

c �
M ������������������������

y2 f
2
1 �M2

 

q ; s �
y f1������������������������

y2 f
2
1 �M2

 

q ; (8.5)

which we identify as the standard model fermion. Then
 �0�
L couples to the gauge fields as

Lfermion � � �0�
L

�
i@6 � x0

4a

2
A6 a0 � x1

4a

2
A6 a1 � Y A6 3

�
 �0�
L

� � � � ; (8.6)

where x0 � c2 and x1 � s2 .
In our phenomenological calculations, we use �, GF,

and MZ to specify the input parameters of the standard
model.9 The specific values used are [45] ��1 � 128:91�
0:02, MZ � 91:1876� 0:0021 GeV, and GF �
1:166 37
 10�5 GeV�2. The Weinberg angle in this
scheme is defined by

s2Zc
2
Z �

e2

4
���
2

p
GFM2

Z

; c2Z � 1� s2Z; (8.7)

yielding s2Z � 0:231 08� 0:000 05.
Our four-site linear moose model with one delocalized

fermion can be specified by 8 parameters: fi (i � 1; 2; 3),
gi (i � 0; 1; 2; 3) and x21. Three combinations of these
parameters have values set by the inputs �, GF, and MZ.
9Note that the tree-level value of MW in this scheme
(MW jtree � cZMZ � 79:9607 GeV) differs from the observed
value (MW jexp � 80:425� 0:038 GeV), indicating the impor-
tance of a one-loop radiative correction at 1% level. In this
paper, however, we restrict ourselves to tree level. We thus
denote MSM

W � MW jtree in our calculations, and compare all
correlation functions to the corresponding tree-level standard
model results.
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For instance,

1

4
�
�

X3
i�0

1

g2
i

; (8.8)

and

4
���
2

p
GF � 
GCC�Q

2 � 0��WW; (8.9)

where one applies Eq. (3.6) together with


GCC�Q
2 � 0��0;0 �

X
i�1;2;3

4

f2
i

;


GCC�Q2 � 0��0;1 � 
GCC�Q2 � 0��1;1 �
X
i�2;3

4

f2
i

:

(8.10)

Requiring S � 0 sets the value of one more combination,
as in Eq. (4.12). In order to specify the remaining parame-
ters, we adopt three ansatzes

f2 � f3; g1 � g2 � 4: (8.11)

The ansatz f2 � f3 allows us to maximize the delay of the
onset of unitarity violation in longitudinal W scattering.
The large values of g1 and g2 are taken so as to push up the
mass of the gauge-boson KK modes. Combining the four
requirements from ��;GF;MZ; S� with the three ansatzes,
only one free parameter, which we identify as f1, is left in
the four-site model.

We have analyzed the four-site model with three sample
values of the single free parameter: f1 � 300 GeV (set 1),
f1 � 1000 GeV (set 2) and f1 � 2000 GeV (set 3). Once
f1 is chosen, the other fi, the gi and x1 have values given in
Table I, as set by the four inputs and three ansatzes. The
masses listed as outputs in the Table were calculated by
diagonalizing the gauge-boson mass-squared matrix
numerically.

The calculated values of MW in sets 1 and 2 agree with
the tree-level standard model value within the uncertainty
of MW jexp about 0.038 GeV. Hence the measured value of
TABLE I. Mode

Set 1
Inputs

f1 300 GeV
f2 � f3 591.850 GeV
g0 0.657 164
g1 � g2 4.0
g3 0.357 650
x1 0.014 771

Calculated physical masses

MW 79.9599 GeV
mZ1 892.459 GeV
mW1 888.827 GeV
mZ2 1944.08 GeV
mW2 1943.39 GeV
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MW does not currently exclude either set 1 or 2. The
calculated value ofMW in set 3 deviates from the tree-level
standard model value by about 1:41; set 3 is therefore
marginally excluded.

A. Correlation functions

To explore the expectations that the electroweak corre-
lation functions will resemble their standard model coun-
terparts at low momentum, we calculated their values over

the LEP energy range
�����������
�Q2

p
� 90–200 GeV, and com-

pared the tree-level results in the moose model to the tree-
level results in the standard model. We computed

GNC�Q

2��WY for all three sets of parameters using expres-
sion (4.2) and found no discernible deviation of the ratio

GNC�Q

2��
Higgsless
WY =
GNC�Q

2��SMWY from one. This is consis-
tent with the fact that the model parameters were chosen to
make �S vanish. Small deviations from one were found in
the corresponding ratios for 
GNC�Q

2��YY;WW .
Figure 4 depicts the behavior of 
GNC�Q

2��YY=

GNC�Q

2��SMYY as calculated using Eq. (5.1). Set 1, shown
by the lowest curve in the figure, is indistinguishable from
the standard model. The middle curve shows the ratio for
the moose with set 2 parameters; the upper curve shows the
effect of using set 3 parameters instead. For sets 2 and 3,
the deviation from the standard model value is quite small;

the visible deviation near
�����������
�Q2

p
’ 90 GeV comes from

the difference between cZMZ and MW .
The form of the correlation function 
GNC�Q2��WW is

derived by starting from Eq. (3.6) and working in parallel
with the arguments in Sec. VI and Ref. [7] to find


GNC�Q2��0;i �
e2M2

Z

Q2�Q2 �M2
Z�


 Y
z�1;2

m2
z

Q2 �m2
z

�



det
Q2 �M2

�i;3��

det
M2
�i;3��

; (8.12)
l parameters.

Set 2 Set 3

1000 GeV 2000 GeV
356.303 GeV 348.922 GeV
0.664 421 0.663 478
4.0 4.0
0.356 505 0.356 651
0.139 231 0.480 892

79.9486 GeV 79.9080 GeV
976.990 GeV 983.725 GeV
975.913 GeV 982.737 GeV
2162.17 GeV 4114.49 GeV
2162.17 GeV 4144.49 GeV
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FIG. 4. 
GNC�Q
2��YY=
GNC�Q

2��SMYY for the LEP energy range.
From lowest to highest, the curves are for the sets 1, 2, and 3
parameters. Set 1 is indistinguishable from the standard model in
this plot.
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GNC�Q2��1;1 �



1�

Q2

~m2

�

GNC�Q2��0;1: (8.13)

We calculate the eigenvalues of matrix M2
�0;3� in the four-

site model to be

set 1: 43:4066 GeV; 890:794 GeV; 1943:92 GeV;

(8.14)

set 2: 43:4996 GeV; 972:319 GeV; 2140:13 GeV;

(8.15)

set 3: 43:6216 GeV; 982:737 GeV; 4114:49 GeV;

(8.16)

and those of matrix M2
�1;3� are found to be

set 1: 74:7636 GeV; 1675:68 GeV; (8.17)

set 2: 44:8651 GeV; 1008:779 GeV; (8.18)

set 3: 43:9536 GeV; 987:883 GeV: (8.19)
0.98

0.99

1.00

1.01

1.02

 100  120  140  160  180  200

W
W

√− Q2 [GeV]

FIG. 5. 
GNC�Q
2��WW=
GNC�Q

2��SMWW for the LEP energy
range. From highest to lowest, the curves are for the sets 1, 2,
and 3 parameters. Set 1 is indistinguishable from the standard
model in this plot.
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The 
GNC�Q
2��WW results for sets 1, 2, and 3 are depicted

in the upper, middle, and lower curves of Fig. 5. Set 1 is,
again, indistinguishable from the standard model. For the
set 2 parameters, the deviation of the correlation function
from its standard model form is less than 0.5% even at�����������
�Q2

p
� 200 GeV; this choice of parameters seems to be

phenomenologically acceptable. For set 3, the deviation is

about 2% at
�����������
�Q2

p
� 200 GeV, which is too large to be

phenomenologically acceptable.

B. Electroweak corrections

By construction, we expect that the electroweak correc-
tions other than �� will be suppressed for any of our
sample sets of parameters. Because the model is case I
[7], �	 � 0; because gN�1 is small (3.22) , �T � 0; the
value of x1 was explicitly chosen (4.12) to make �S � 0.
This turns out to be the case; numerical evaluation shows
j�Sj & 10�5, j�Tj & 10�5, j�Uj & 10�5.

However, the value of �� is not automatically small
enough to agree with constraints set by data. Set 1 has the
smallest value of x1, and the corresponding value of �� is
zero to within the limits of numerical accuracy. For set 2,
the experimental upper bound [12] of order 0.001 is sat-
isfied by the quantity

��

4s2Zc
2
Z
� 1�


,W�WW
4

���
2

p
GFM2

W

� 0:70 
 10�3: (8.20)

Note that the approximate value for �� from Eq. (6.20) is
consistent with the exact result above: the difference is
precisely the size of the terms neglected in the approxima-
tion. For set 3, on the other hand, �� lies above the
experimental bound

��

4s2Zc
2
Z
� 3:04 
 10�3: (8.21)

In other words, choosing the amount of delocalization to
guarantee that the oblique correction �S is small does not
guarantee that the universal nonoblique correction �� will
be of acceptable size. The first requires x1 to be a function
of the couplings and f constants; the second places an
absolute upper bound on the value of x1. In our four-site
model, the most significant effect of the larger value of f1

for set 3 was to drive x1 larger—which pushed �� too
high.

IX. CONCLUSIONS

In this note we have calculated the form of electroweak
corrections in deconstructed Higgsless models for the case
of a fermion whose weak properties arise from two adja-
cent SU�2� groups on the deconstructed lattice. We have
shown that, as recently proposed in the continuum [31,32],
it is possible for the value of the electroweak parameter �S
to be small in such a model. Working in the deconstructed
limit we have also directly evaluated the size of ��, arising
-11
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off-Z-pole from the exchange of Kaluza-Klein modes [9].
This has not previously been evaluated in the continuum.
In one-site delocalized Higgsless models with small values
of �S, we showed that the amount of delocalization is
bounded to be less than of order 25% at 95% C.L. due to
the simultaneous need to ensure unitarization of WLWL
scattering and to provide a value of �� that agrees with
experiment. We have discussed the relation of these calcu-
lations to our previous calculations in deconstructed
Higgsless models [7], and to models of extended techni-
color. Finally, we presented numerical results for a four-
site model, illustrating our analytic calculations. In a sub-
sequent publication [33,34], we will generalize our discus-
115001
sion to multisite delocalization and discuss the effects of
fermion delocalization in the continuum.
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