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We consider the non-Abelian Bianchi identities in SU(2) pure Yang-Mills theory in D � 3; 4 focusing
on the possibility of their violation and the significance of the chromomagnetic fields degeneracy points.
We show that the recently proposed non-Abelian Stokes theorem allows one to formulate the Bianchi
identities in terms of the physical fluxes and their relative color orientations. Then the violation of Bianchi
identities becomes a well defined concept ultimately related to the degeneracy points. The locality and
gauge invariance of our approach allows one to study the problem numerically. We present evidence that
in D � 4 the suppression of the Bianchi identities violation is likely to destroy confinement, while the
removal of the degeneracy points drives the theory to the topologically nontrivial sector. However,
confronting the results obtained in three and four dimensions, we argue that it is the mass dimension two
condensate hA2

mini which probably explains our findings.
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I. INTRODUCTION

Gauge theories are usually formulated in terms of the
gauge potentials Aa� taking values in the Lie algebra of the
corresponding gauge group. Provided that the gauge cou-
pling is small, this description is indeed adequate and
provides local functionally independent coordinates on
the configuration space. However, in the strongly coupled
gauge theories, the potentials themselves obtain a separate
physical meaning. Here we mean the nonperturbative di-
mension 2 condensate hA2

mini introduced in Refs. [1,2],
which received particular attention in recent years (see,
e.g., Ref. [3] for review and further references).

The original motivation of this work was the analysis of
various possible contributions to the hA2

mini condensate.
Note that the central point of Ref. [1] was, in fact, the
consideration of the Abelian Bianchi identities and their
ultimate relation to hA2

mini. As far as the Abelian theory is
concerned, the nontriviality of the hA2

mini condensate is
essentially equivalent to the Bianchi identities violation.
Therefore, in the non-Abelian case it seems natural to start
from the corresponding Bianchi identities and investigate
their role in the hA2

mini condensate formation. However, the
literature on the subject turns out to be scarce. In particular,
as is well known from the Abelian models, the rigorous
treatment of the Bianchi identities requires nonperturbative
(say, lattice) regularization. But we were unable to find
papers devoted to this problem in the non-Abelian case.

On the other hand, the investigation of the non-Abelian
Bianchi identities is important in its own right. Without
mentioning all the aspects of the problem, let us note that
the hA2

mini condensate is certainly connected with the non-
address: gubarev@itep.ru
oscow Institute of Physics and Technology,

, Moscow region, Russia.
dress: smoroz@itep.ru

05=71(11)=114514(22)$23.00 114514
Abelian Bianchi identities. Moreover, it was emphasized in
Refs. [4–6] that the Bianchi identities and the possibility of
their violation are ultimately related to the confinement
problem. Then the logic suggests to consider whether the
hA2

mini condensate is relevant for confinement as well, the
question which was discussed in Refs. [2,5] (see also [7]).
Therefore, we see that all these problems are in fact
indispensable from each other and cannot be considered
separately. We decided to focus on the Bianchi identities in
this paper; the connection with the quantities such as hA2

mini
is discussed in due course. Throughout the paper, we work
with Euclidean three- and four-dimensional SU(2) gluody-
namics, keeping in mind the lattice regularization of the
theory, although we nowhere rely exclusively on the lat-
tice. The paper is reasonably self-contained; the results
which we are using are briefly reviewed. Note that the
similar in spirit but in no way identical treatment could
be found in Refs. [8,9].

The primary tool of our analysis is the non-Abelian
Stokes theorem [10] derived recently by one of us. The
advantage is that it allows one to work directly in terms of
the gauge invariant quantities like magnitudes of the ele-
mentary fluxes and their relative orientations. As might be
expected, the non-Abelian Bianchi identities could be re-
duced to the application of the above theorem to the
infinitesimal closed surfaces. However, in this case the
non-Abelian Stokes theorem does not necessarily give
zero; the answer, in fact, is proportional to the integer
number. Since every step in the derivation is gauge invari-
ant, this integer is gauge invariant as well and in the
continuum language corresponds to the non-Abelian
Bianchi identities violation.

The non-Abelian nature of the theory manifests itself in
the complicated geometry underlying the Bianchi identi-
ties. We consider all these questions in detail and show that
the careful but purely geometrical treatment leads to the
consideration of the special degenerate points in the con-
-1  2005 The American Physical Society
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figuration space at which particular determinants con-
structed from chromoelectric and chromomagnetic fields
vanish. Finally, we show that the investigation of the non-
Abelian Bianchi identities is indispensable from the study
of these degenerate points. Therefore, the framework out-
lined above naturally extends to include the degeneracy
points, the relevance of which for both confinement and
chiral symmetry breaking was discussed in Refs. [6,11].

The locality and gauge invariance of our construction
allow us to study the problem numerically. We investigate
the effects due to the Bianchi identities violation and the
degenerate points in the numerical simulations. As might
be a priori expected, the suppression of the degenerate
points always leads to the violation of the reflection pos-
itivity. Moreover, in D � 4 one could easily pinpoint the
origin of the reflection positivity violation: It is caused by
rapidly rising global topological charge. Thus, in D � 4
the suppression of the degenerate points shifts the vacuum
to the nontrivial topological sector.

As far as the Bianchi identities are concerned, the results
depend crucially on the space-time dimensionality. InD �
3 the suppression of the Bianchi identities violation does
not change the theory in any notable way. However, inD �
4 the effect is different: It seems that the suppression of the
Bianchi identities violation is likely to destroy confinement
while other measured characteristics of the theory remain
qualitatively unchanged. At least, this is so for the lattices
and coupling constants we have considered. Note that the
problem still requires a careful numerical investigation; in
particular, we had not studied yet the volume dependence
of our results. The corresponding analysis will be pub-
lished elsewhere.

Finally, we argue that it would be misleading to interpret
our results as the statement that confinement is caused by
the Bianchi identities violation. Confronting the results
obtained in three and four dimensions, we show that it is
the hA2

mini condensate which is probably relevant for con-
finement. Although the argumentation is not rigorous, it
seems to be the only one which matches our findings.

II. FORMULATION OF THE PROBLEM

The primary object of our investigation is the Bianchi
identities for SU(2) gauge fields in four space-time dimen-
sions. Thus, we will analyze the equations

@� ~Fa�	 � "abcAb� ~Fc�	 � 0; ~Fa�	 �
1
2"�	
�F

a

�

�D � 4�;
(1)

having in mind eventually Euclidean lattice regularization
of SU(2) pure Yang-Mills theory. Here Fa�	 is the conven-
tional continuum field-strength tensor

Fa�	 � @�Aa	 � @	Aa� � "abcAb�Ac	; (2)

Greek and Latin indexes run through 0; . . . ; 3 and 1; . . . ; 3,
respectively. Our treatment also applies in three dimen-
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sions where Bianchi identities are as follows:

@iB
a
i � "abcAbi B

c
i � 0; Bai �

1
2"ijkF

a
jk �D � 3�:

(3)

However, it turns out that the three-dimensional case is
physically quite different from D � 4 and we will com-
ment on that in due course.

In this section, we give qualitative continuum arguments
which show that, at least at some points in the configura-
tion space, the Bianchi identities (1) and (3) should be
considered with care.

A. Chromomagnetic fields degeneracy

It has been known for a long time that in non-Abelian
gauge theories two or more gauge inequivalent potentials
could produce the same field strength [12]. This phenome-
non, known as Wu-Yang ambiguity, had received great
attention in the past (see, e.g., [13–15]), and it was noted
long ago [16–18] that in D � 4 the Bianchi identities
constitute an algebraic obstruction for the ambiguity to
exist. Namely, for given chromoelectric Eai � Fa0i and
chromomagnetic Bai � 1=2"ijkFajk fields, Eq. (1) is a linear
algebraic system of 12 equations for 12 unknown Aa�.
Therefore, away from the set of points where the matrix
Tab�	 � "abc ~Fc�	 degenerates

detT � 0; (4)

Bianchi identities allow one to express the gauge potentials
as local single-valued functions of Eai and Bai . On the other
hand, there is no physical principle or symmetry which
could keep the sign of detT fixed. Indeed, in the weak
coupling perturbation theory the sign of detT changes
wildly, and, therefore, the degeneracy of chromomagnetic
fields, Eq. (4), is, in a sense, generic. Note that the situation
is quite different in D � 3 since Eq. (3) formally consti-
tutes 3 equations for 9 unknown variables. Therefore, in
three dimensions the Bianchi identities do not constrain the
gauge potentials at all and the Wu-Yang ambiguity prob-
lem is much more severe (see, e.g., Refs. [19,20] for
discussion). Unfortunately, we are not aware of any con-
clusive considerations of the degenerate points (4) in the
literature. It is true that Eq. (4) by itself has been known for
a long time [18,21,22], but most of the analysis performed
so far considered it in the context of dual formulation of
gluodynamics [23–27], from which the information about
original Yang-Mills fields is hard to extract. Reference [28]
seems to be the only exception where it was argued that
physical wave functionals should vanish at the points of
degeneracy. We will see below that equations similar to (4)
arise naturally in the construction of the Bianchi identities.
Moreover, the points of degeneracy seem to be relevant for
gauge fields dynamics.

What we have said so far is in accordance with the
general expectation that in the non-Abelian gauge theories
-2



hA2i CONDENSATE, BIANCHI IDENTITIES, AND . . . PHYSICAL REVIEW D 71, 114514 (2005)
there is no unique way to express Aa� in terms of the
corresponding field strength (apart from the usual gauge
ambiguity, of course). At this point, one could give an
example of special gauges (complete axial, coordinate,
contour gauges; see [29,30] for review) in which the gauge
potentials are always explicit single-valued functions of
the field strength. Is there any contradiction? Although this
question is not directly related to our work, we note that all
the gauges mentioned above are consistent only if Bianchi
identities (1) and (3) are satisfied identically [31]. In par-
ticular, in the Abelian case one notices [29] that the pres-
ence of elementary magnetic charges forces the potentials
in contour gauge to depend upon the arbitrary contour
prescription. Of course, this is a manifestation of the
famous Wu-Yang ambiguity, which in this case certainly
arises because pointlike monopoles violate the Bianchi
identities. We conclude, therefore, that the possibility of
Bianchi identities violation should not be excluded a pri-
ori. Moreover, the very existence of Wu-Yang ambiguous
potentials hints at the violation of (1) and (3).

B. Bianchi identities violation

The possibility that the right-hand side of Eqs. (1) and
(3) might be nonzero was considered long ago (see, e.g.,
[31]), but as far as we know this approach had never been
actively developed. This is mostly because the study of
Bianchi identities violation requires a particular regulari-
zation, which should correctly respect the global structure
of the gauge group. It turns out that for our purposes the
lattice formulation is distinguished (see Refs. [32,33] for
discussion). Therefore, consider the basic SU(2) gauge
theory observable, which is also the fundamental object
on the lattice, the Wilson loop in spin 1=2 representation

W�C; x0	 � P expi�a
I
C�x0	

Aa�dx�;

W�C	 � 1
2 TrW�C; x0	:

(5)

Here �a are the Pauli matrices, C is some closed contour
with marked point x0 2 C from which the path ordered
integral starts, and P ordering is defined from left to right.
Note the unusual normalization of SU(2) generators which
we take for future convenience. By definition, the operator
W�C; x0	 measures the non-Abelian flux ��C; x0	 penetrat-
ing the contour

W�C; x0	 � ei�
a�a�C;x0	; W�C	 � cos��C	;

��C	 �
����������������������������������������
�a�C; x0	�a�C; x0	

q
;

(6)

where the flux [34] ��C	 is gauge invariant and does not
depend on x0. Equation (5) will be thoroughly analyzed
later, but now we note that the physically observable flux is
always bounded 0<��C	<� due to periodicity (com-
pactness) of the gauge action. Moreover, there exists no
physically meaningful experiment which could distinguish
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the fluxes ��C	 and ��C	 � 2�, and this observation
applies equally well to the infinitesimal contours which
constitute the lattice definition of the field strength. On the
other hand, there is no trace whatsoever of the gauge action
compactness in the continuum expression (2). In this re-
spect, the SU(2) gluodynamics is similar to the compact
U(1) gauge model [35] (see Ref. [36] for review). In fact,
some consequences of the compactness of the non-Abelian
gauge theories were already discussed in the past [37].
Note, however, that we are not saying that singular fluxes
are important in the continuum limit of lattice formulation.
After all, this is a dynamical question which cannot be
studied with simple arguments above. Rather, we point out
that the very definition of Fa�	 on the lattice is a priori
different from the continuum one (2), and, therefore, the
validity of (1) and (3) in the lattice context should be
considered anew. We stress that our arguments are purely
kinematical and follow directly from the gauge invariance
alone. Whether or not the violation of Bianchi identities is
physically relevant is a dynamical issue which we inves-
tigate (at least partially) later on.

To conclude, we note that nowadays there exist both
theoretical arguments [4–6] and the experimental lattice
data [38] which favor the nonvanishing right-hand side of
Eqs. (1) and (3) in the continuum limit of lattice gauge
models. Although the approaches of these papers are quite
different, the conclusion is essentially the same: The non-
Abelian Bianchi identities are indeed violated in the scal-
ing (continuum) limit, and this fact is related to the prob-
lem of confinement.

III. LATTICE BIANCHI IDENTITIES

A. Preliminaries

In this section, we briefly summarize what has been
known so far about the non-Abelian Bianchi identities on
the lattice and comment on the strategy we employ in this
paper. Surprisingly enough, the literature on the subject
seems to be very scarce (contrary to the Abelian case,
which we do not consider, however) and the most relevant
references for our discussion are Refs. [39– 41] (see also
[37]). Historically, the Bianchi identities explicitly ap-
peared first in the context of plaquette (field-strength)
formulation of lattice QCD [40,41]. In particular, it was
noted that the strong coupling expansion can be obtained as
an expansion towards restoring the lattice Bianchi
identities.

It turns out that the formulation of Ref. [39] is the most
appropriate for our purposes. Essentially, it consists in the
observation that any lattice gauge field configuration could
be interpreted as a homomorphism from the lattice edge
path group into the gauge group (see Ref. [42] for defini-
tions). It follows from the definition of homomorphic
mapping that

U�Cxy � C
�1
xy 	 � U�Cxy	U

�1�Cxy	 � 1; (7)
-3
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where Cxy is an arbitrary path connecting the points x and
y, and the composite path Cxy � C�1

xy is usually referred to
as null-homotopic. In fact, Eq. (7) looks rather obvious for
everyone familiar with lattice formulation. However, the
assertion of Ref. [39] is that Eq. (7) constitutes the most
general form of lattice Bianchi identities and indeed just
that: an identity. Note that Eq. (7) looks quite different
from what is expected in the continuum. To establish the
relation between (7) and (1) and (3), consider the path Cxx
shown in Fig. 1. It follows trivially that the equality
U�Cxx � C�1

xx 	 � 1 is equivalent to

U�R1	U�R2	U�R3	U�R4	U�R5	U�R6	 � 1; (8)

which in the naive continuum limit reduces to the conven-
tional Bianchi identities (1) and (3). Moreover, Eq. (8) is
the particular case of the so-called operator non-Abelian
Stokes theorem [43–46] (see, e.g., [29] for review) which
allows one to represent (rather formally, though) the path
ordered exponent as the surface ordered integral

P expi
Z
C�!SC

A�dx
� � PS exp

i
2

Z
SC
F �	d

2��	; (9)

where F is a nonlocal covariantly transformed field
strength, the concrete form of which is not important for
what follows. The surface SC is arbitrary, and consistency
requires the representation (9) to be independent on SC as
long as !SC � C. In particular, the right-hand side of
Eq. (9) being applied to closed surface S0, !S0 � 0, should
always give the identity

P S exp
i
2

Z
S0;!S0�0

F �	d
2��	 � 1: (10)

In fact, Eq. (8) is the special case of (10) in which S0 is the
boundary of an elementary lattice cube. Therefore, it seems
to be legitimate to formulate the non-Abelian Bianchi
identities as the requirement of surface independence of
the non-Abelian Stokes theorem.

Equations (7)–(10) are the starting point of our consid-
erations below. However, before going into detail, let us
comment a bit on our strategy. We note first that the
identity on the right-hand side of Eqs. (8) and (10) could,
in general, be written as
6

X
Cxx

R

R R

R

R

R

1 2 3

4 5

FIG. 1. Graphical representation of lattice Bianchi identities.
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1 � ei ~� ~n �2�q; ~n2 � 1; q 2 Z: (11)

The color direction ~n is gauge variant and will not concern
us here. Suppose that we are able to give an unambiguous
gauge invariant meaning to the integer q and that it is
nonzero for some S0 in a given gauge background. Then
this would certainly mean that there is a point [47] some-
where inside S0 at which the continuum Bianchi identities
are violated. Here the argumentation is essentially the same
as in the well known Abelian case. So the problem is to
make sense of q, which should be well defined and gauge
invariant. From now on, we refer to the integer q as the
‘‘magnetic charge,’’ whatever it is. In particular, neither
charge conservation nor any other usual properties of the
magnetic charge are assumed. Second, Eqs. (8) and (10)
are not quite suitable to analyze the Bianchi identities. This
is precisely because neither (8) nor (10) make, in fact,
direct reference to the non-Abelian field strength. This is
in sharp contrast with the Abelian theory, in which the
Bianchi identities even on the lattice explicitly refer to
physical fluxes. It turns out that the solution of the second
problem simultaneously solves the first; namely, the non-
Abelian Stokes theorem being expressed in terms of the
physical field strength provides the definition of q for
which we are looking.

B. Chromomagnetic fields on the lattice

The distinguished feature of the lattice regularization is
that the gauge theory is formulated in terms of the Wilson
loops alone, and, strictly speaking, the lattice does not need
to introduce the notion of the field strength.
Chromomagnetic fields appear only in the limit of vanish-
ing lattice spacing; otherwise, one should rather think in
terms of the non-Abelian fluxes which are defined by
Eqs. (5) and (6). Therefore, consider the Wilson loop

W�C; t	 � P expi
Z T�t

t
A�(	d( � ei ~� ~n�C;t	���C	;

A�(	 � �aAa��x	 _x��(	; ~n2�C; t	 � 1;

W�C	 � 1
2 TrW�C; t	 � cos��C	;

(12)

defined for some closed contour C � fx�t	; 0 � t �
T; x�0	 � x�T	g (our presentation is similar but not identi-
cal to that of Ref. [10]; see also Ref. [48]). We assume that
W�C	 � �1, and then it is convenient to parametrize the
Wilson loop in terms of the flux magnitude ��C	 2 �0;�	
and the instantaneous flux direction in color space ~n�C; t	
which explicitly depends on t. It is clear that ��C	 is gauge
invariant while ~n�C; t	 rotates as a three-dimensional vec-
tor under the gauge transformations at point x�t	. Consider
now another contour C0 which touches (or intersects) C at
point x�t0	 � x0�t00	. Evidently, while both ~n�C; t0	 and
~n�C0; t00	 are gauge variant, their relative orientation (angle
in between) is gauge independent. Moreover, the construc-
tion could be iterated: For any number of contours inter-
-4
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secting at one point, the relative orientation of instanta-
neous fluxes at that point is gauge invariant. It is amusing to
note that the relative orientation of elementary fluxes re-
ceived almost no attention in the past. While the magnitude
of various fluxes had been discussed and measured in
various circumstances (see, e.g., Ref. [49] and references
therein), it seems that only Refs. [50,51] studied their
relative orientations.

Consider next the behavior of the flux parametrized by
Eq. (12) under the change of contour orientation.
Physically, one expects that the total flux should change
sign when contour is followed in the opposite direction

�a�C�1; t	 � ��C�1	na�C�1; t	 � ��a�C; t	: (13)

The parametrization (12) respects the intuition, and, in-
deed, the flux direction changes sign while the flux magni-
tude is orientation independent

~n�C�1; t	 � � ~n�C; t	; ��C�1	 � ��C	: (14)

Here we come to the important point concerning the
determination of physical field strength from the infinitesi-
mal fluxes. Suppose that we measure the elementary flux
twice, first with an oriented area element !��	 and then
with reversed orientation !�	� � �!��	. Evidently, the
corresponding Wilson loops are conjugated to each other

W�!��		 � Wy�!�	�	: (15)

On the other hand, the expansion in powers of lattice
spacing a reads

W�!��		 � 1� a2i ~� ~F�	!��	 �O�a4	;

W�!�	�	 � 1� a2i ~� ~F	�!�	� �O�a4	 � W�!��		

and disagrees with (15). This simple exercise which applies
equally in the Abelian case shows that the lattice area
element dx�dx	 is, in fact, unoriented dx�dx	 � dx	dx�

contrary to the usual continuum relation !��	 � dx� ^
dx	 � �dx	 ^ dx�. Therefore, in order to define the field
strength on the lattice, a canonical orientation of all ele-
mentary squares (plaquettes) should be fixed first.
Otherwise, the field strength will suffer from sign ambigu-
ity on different plaquettes. In fact, the canonical ordering is
well known in the lattice community, and the conventional
agreement is to consider !��	 with �< 	 only. However,
the orientation conventions are crucial for the interpreta-
tion of lattice equations below in the continuum terms.
From now on, we always assume that the infinitesimal
fluxes are constructed with canonically oriented plaquettes.

It is convenient to generalize the representation (12) in
order to gain a simple physical interpretation. Namely, it is
natural to describe the instantaneous flux direction by
means of a fictitious (iso)spin 1=2 particle living on the
contour. The spinor wave function is given by a two-
component normalized complex quantity
114514
hzj � �z1; z2�; hz j zi � jz1j2 � jz2j2 � 1; (16)

which is bra-vector in accordance with our left to right
P-ordering convention. The defining equation for the
Wilson loop becomes the Schrödinger equation for spinor

hz�t	j�i@� t � A	 � 0;

hz�t	j � hz�0	j � P expi
Z t

0
A�(	d(:

(17)

Therefore, the Wilson loop (12) is the quantum mechanical
evolution operator for spin degrees of freedom. As is usual
in quantum mechanics, the state vectors could be arbitrary
rephased

hz�t	j ! ei+�t	hz�t	j: (18)

The particular choices Imz1 � 0, Imz2 � 0 lead to well
known families of (anti)holomorphic spin coherent states
[52] (see, e.g., [53] for review). Following the quantum
mechanical analogy [54,55], one could argue that the
eigenstate of the evolution operator W�C; 0	,

hz�0	jW�C; 0	 � ei��C	hz�0	j; (19)

is of special importance and is usually referred to as a
cyclic state. In particular, the state hz�0	j being the eigen-
state of W�C; 0	 at t � 0 remains the eigenstate of W�C; t	
during the evolution (17). It follows immediately that the
cyclic state (19) is best suited to describe the instantaneous
flux direction. Indeed, it is a matter of one-line calculation
to show that na�C; t	 � hz�t	j�ajz�t	i. In other words, the
flux direction ~n�C; t	 and the ratio z2�t	=z1�t	 of cyclic state
components are related to each other by standard stereo-
graphic projection. In particular, the flux magnitude is
given by

��C	 � arg�hz�t	jW�C; t	jz�t	i� (20)

and is t independent. Moreover, if contour C is subdivided
into N segments, then

��C	 � arg
YN�1

k�0

hz�tk	jP expi
Z tk�1

tk
A�(	d(jz�tk�1	i; (21)

where the identification t0 � tN is assumed. As far as the
relative orientation of fluxes is concerned, it is tempting to
consider the quantities such as arghz j -i. However, it is not
invariant under (18) because hzj and h-j could be rephased
independently. Nevertheless, the equations we will get do
indeed include the products such as hz j -i yet respect the
U(1) invariance (18).

It remains only to consider the multivaluedness of the
cyclic state defining Eq. (19). Indeed, there exist two
solutions of Eq. (19) while we discussed only one of
them. The second eigenstate is obtainable from the first
one by substitution

z2 ! z�1; z1 ! �z�2: (22)
-5
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FIG. 2. Segment of the Wilson loop W�C	 in the original and
ribbonlike representation. The operator in between solid blobs is
Uk;k�1, Eq. (23).
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It is clear that Eq. (19) corresponds to the ‘‘spin-up’’ wave
function for which the spin is aligned with the magnetic
field, while the second eigenstate (22) is the ‘‘spin-down’’
state which has spin antialigned. Our original goal was to
describe the direction of instantaneous flux, and, therefore,
the antialigned state should be discarded since it corre-
sponds to the inverted flux direction. Note also that the flux
magnitude ��C	 is positive by definition, but with the
antialigned state we get ��C	< 0. We conclude, therefore,
that for given contour orientation there is no ambiguity in
Eq. (19) and the appropriate family of cyclic states hz�t	j is
uniquely defined. The second spin-down eigenstate de-
scribes the flux direction for inverted contour orientation,
and, therefore, Eq. (22) corresponds to the time reversal
operation for spinors in quantum mechanics.

The above considerations apply immediately on the
lattice. The only difference with the continuum is that the
gauge potentials are unknown; we have only the parallel
transporters along the elementary links. But this is actually
enough: The Wilson loop is constructed by direct matrix
multiplication and then Eq. (19) applies literally. The
instantaneous flux direction is determined via (19) or
(17) at lattice sites passed by Wilson loop. The flux mag-
nitude is given by Eqs. (20) and (21).

To summarize, every Wilson loop [56] W�C; t	 is char-
acterized by the magnitude of the flux ��C	 and the
instantaneous flux direction ~n�C; t	, ~n2 � 1, which varies
along the contour and is reversed on changing contour
orientation. The quantum mechanical language is adequate
to describe both ��C	 and ~n�C; t	: There is a fictitious spin
1=2 particle living on C, the polarization of which gives
exactly ~n�C; t	; the wave function of the particle is defined
for a given gauge background uniquely up to the phase, and
change of contour orientation is equivalent to the time
reversal operator applied to the spinor; the particle evolu-
tion along C is cyclic; initial and final states differ only by
phase, and this phase is the magnitude of the flux pene-
trating C. On the lattice the difference is that the flux
direction (wave function of a spinning particle) is known
only at lattice sites x 2 C. Moreover, the orientation of all
elementary plaquettes is fixed to be the canonical one.

C. Non-Abelian Stokes theorem

The last ingredient which we need to complete the
program outlined in Sec. III A is the non-Abelian Stokes
theorem derived recently by one of us [10]. Although the
results of Ref. [10] are applicable almost literally, let us
review them in order to introduce the notations and com-
ment on the differences with the present work.

Therefore, consider the Wilson loop W�C	, a segment of
which is shown by the straight horizontal line in Fig. 2, and
the surface SC bounded by C, which is to the top of the
contour in the same figure. According to what had been
said above, we assign to every plaquette p 2 SC and
Wilson loop itself the corresponding flux magnitudes
114514
��p	, ��C	 and the instantaneous flux directions hzk�p	j,
h-k�C	j correspondingly [plaquette vertices are followed
according to the orientation induced by C, while the states
hzk�p	j are constructed in accordance with the canonical
orientation]. It is convenient to use the graphical ribbonlike
representation in which all plaquettes and Wilson loop
contour are slid apart (Fig. 2). Let us denote

Uk;k�1 � P expi
Z tk�1

tk
A�(	d( (23)

and consider the matrix element

h-k�C	jUk;k�1j-k�1�C	i � const � ei/k;k�1�C	; (24)

where const is some real positive number which is irrele-
vant. According to (21),

��C	 �

"X
k

/k;k�1�C	

#
mod2�: (25)

The important observation of Ref. [10] is that the matrix
element (24) might be calculated in the hzk�p	j basis,
provided that the relative orientation of plaquette and
Wilson loop fluxes is taken into account

h-k�C	jUk;k�1j-k�1�C	i � const � h-k�C	jzk�p	i

� hzk�p	jUk;k�1jzk�1�p	i

� hzk�1�p	j-k�1�C	i: (26)

The equality (26) was shown in Ref. [10] in the matrix
form. Here we note that Eq. (26) follows from its invari-
ance under (18) and the unitarity of the evolution operator
(23). In fact, the relations similar to (26) are well known in
quantum mechanics [57] (see, e.g., [54,55,58] for details).
In particular, Refs. [55,58] showed the importance and
physical significance of the geodesic interpolation used
in Ref. [10].

Applying Eqs. (24)–(26) repeatedly for every link of SC,
one gets the non-Abelian Stokes theorem

��C	 �
X
p2SC

I�p	��p	 �
X
x2SC

�x �
X
x2C

1x � 2�k�SC	;

k�SC	 2 Z; (27)

where ��p	 is the plaquette flux, 1=2TrW�p	 � cos��p	,
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and the factors I�p	 � �1 are analogous to the usual
incidence numbers in the differential geometry [42]:
I�p	 � 1 if vertices of the plaquette p are followed in the
canonical order, and I�p	 � �1 otherwise. The remaining
terms are illustrated in Fig. 3. In particular,

�x � arg�hz1jz2ihz2jz3ihz3jz4ihz4jz1i�mod2� (28)

is the oriented area of spherical quadrilateral polygon [59]
(solid angle) between the flux directions on the plaquettes
p1; . . . ; p4. It is known in quantum mechanics as the
Bargmann invariant [60] for the particle’s wave functions
(see, e.g., [61,62] for review). Physically, �x accounts for
the difference of flux orientations on the plaquettes sharing
the same point x. The third term

1x � arg�h-jz1ihz1jz2ihz2j-i�mod2� (29)

equals the oriented area of a spherical triangle constructed
from the Wilson loop flux direction at x and the flux
orientations of two plaquettes p1; p2 2 SC touching C
and sharing the point x. Equation (29) is again the
Bargmann invariant for the wave functions of three parti-
cles living on C, p1, and p2.

Note that we have omitted the mod 2� operation on the
right-hand side of Eq. (27) and wrote instead the additional
2�k�SC	 term, such that ��C	 2 �0;�	. It is clear that
k�SC	 is not vanishing, in general, and is analogous to the
Dirac string contribution in the Abelian Stokes theorem
applied for compact U(1) gauge fields [35,63] (see [36,64]
for review and further references). This is in accordance
with the discussion in Sec. II B, where we noted that the
SU(2) gauge model is intrinsically compact and is similar
to compact photodynamics in this respect. However, in the
non-Abelian case the nonzero k�SC	 could come from any
of three terms in Eq. (27). In particular, the Dirac string
contribution k�SC	 � 0 does not necessarily correspond to
the singular elementary non-Abelian flux (singular field
strength). It could equally come from �x, 1x terms which
are genuine non-Abelian contributions.

Note that Eq. (27) is not only invariant under SU(2)
gauge transformations, it also remains intact with respect
to local (gauge) rephasing (18) [this U(1) gauge symmetry
is crucial for the dual representation considered in
Ref. [33]]. We are in haste to add, however, that this does
not concern the 2�k�SC	 term. As might be expected, the
Dirac string contribution is not invariant with respect to
〈 z1 | 〈 z2 |

〈 z3 |〈 z4 |
x

p1 p2

p3p4

〈 ζ |

〈 z1 |〈 z2 |

C
x

p1p2

FIG. 3. �x (left) and 1x (right) terms in Eq. (27). Arrows
correspond to the orientation induced by C.
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either of the symmetries. Equation (27) could be illustrated
nicely in the particular case of a pure Abelian gauge
background. In the Abelian limit, all fluxes become
aligned, but their directions could be opposite. For anti-
aligned flux directions, the Bargmann invariants (28) and
(29) become, strictly speaking, undefined. For instance, the
area of the spherical triangle (29) is undefined when two of
its vertices are at the north pole of the two-dimensional
sphere while the third one is at the south pole. However, we
could avoid this degenerate case by changing simulta-
neously the sign of both ~n�p; t	 and ��p	, which does
not affect the parametrization (12). The flux magnitude
becomes not positively definite and the incidence coeffi-
cients could be absorbed into the definition of ��p	. Then
the second and third terms, which account for the flux
rotation in color space, vanish and Eq. (27) becomes
identical to the usual Abelian Stokes theorem.

To summarize, the flux ��C	 could be represented al-
most entirely in terms of local physically observable con-
tributions coming from the arbitrary surface SC bounded
by C. The point of crucial importance is that all these terms
are ‘‘almost total differentials’’: Without mod2� opera-
tion, both the plaquette flux (25) and the Bargmann invar-
iants (28) and (29) would become exact 2-forms. The
adequate graphical language to account for all terms is
the ribbonlike representation in which all plaquettes and
Wilson contour are slid apart. The only troublesome con-
tribution is the last one in Eq. (27), which explicitly
depends upon the color orientation of the flux ��C	 itself.
In the next section, we analyze the arbitrariness of SC and
1-angle dependence of Eq. (27).

D. Non-Abelian Bianchi identities

To complete the program outlined in Sec. III A, consider
the surface independence of the non-Abelian Stokes theo-
rem (27). As one could expect, the requirement of surface
independence reduces to Eq. (10). On the other hand, the
non-Abelian Stokes theorem (27) applied formally to
closed surface S0 gives
µ

ν

Ωx + ν

Ωx + µ + ν

Ωx + µ̂

^ ^

^

FIG. 4. Left: The non-Abelian Stokes theorem in application
to the closed contour C which bounds two distinct surfaces SC,
S0C, !SC � !S0C � C. Arrows indicate the order of plaquette
vertices induced by the orientation of C. Right: The non-
Abelian Bianchi identities for a single lattice cube (see the text).
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X
p2S0

I�p	��p	 �
X
x2S0

�x � 2�q�S0	; (30)

where the integer q�S0	 is not vanishing, in general, and is
discussed below. Since Eq. (30) is one of the central points
of our work, let us explicitly rederive it starting from
Eqs. (7) and (27).

Consider Eq. (7) for some closed contour C

U�C � C�1	 � U�C	U�C�1	 � U�C	U�1�C	 � 1; (31)

part of which is shown in Fig. 4. There are two distinct
surfaces SC, S0C shown to the top and bottom of the contour
with orientations induced by C. The non-Abelian Stokes
theorem (27) applied for SC and S0C leads to

�SC �
X
p2SC

I�p	��p	 �
X
x2SC

�x �
X
x2C

1x�SC	 � 2�k�SC	

(32)

and analogous equation for �S0C
. The surface independence

requires that �SC � �S0C
and, therefore,X

p2S0

I�p	��p	 �
X
x2S0
x=2C

�x �
X
x2C

�1x�SC	 � 1x�S0C	�

� 2��k�S0C	 � k�SC	� � 2�q�S0	: (33)

Here S0 � SC [ ~S0C and ~S0C is just the S0C taken with re-
versed orientation due to which the terms

P
p2S0C

I�p	��p	,P
x2S0C

�x changed sign in Eq. (33). Consider the 1-angle
contribution in (33) coming from points B;B0 2 C and let
��ABC	 denote the Bargmann invariant (29) for spinor
wave functions at the points A, B, C. In particular,
1B�SC	 � ��AEB	 and similarly for other 1 angles. We
note that one and the same unitary operator transforms
A ! A0, B ! B0, C ! C0. In other words, the color
directions of the fluxes at these points are rotated by one
and the same rotation matrix. However, the Bargmann
invariant being the area of the spherical triangle is un-
changed when the sphere is rotated. Therefore, the follow-
ing identity holds:

��ABC	 � ��A0B0C0	 � 0: (34)

It is clear that when Eq. (34) taken for each link of C is
added to the left-hand side of (33) the total 1-angle con-
tribution becomesX

x2C

�1x�SC	 � 1x�S0C	� �
X
x2C

�x; (35)

where the orientation change of S0C in the inclusion S0 �
SC [ ~S0C is crucial. For instance, ��B	 is given by
��AEDC	 and does not depend at all on contour C. We
conclude, therefore, that Eq. (30) is the consistency re-
quirement for the non-Abelian Stokes theorem (27) to be
independent on the surface. But the point is that Eq. (30) is
more than the consistency condition. As we have argued in
114514
Sec. III A, Eq. (30) being applied to the infinitesimal cube
is, in fact, the lattice implementation of the non-Abelian
Bianchi identities and is illustrated in Fig. 4 (right). It is
clear that the integer q�S0	 is the magnetic charge dis-
cussed in Sec. III A. Therefore, the non-Abelian Stokes
theorem (27) which refers explicitly to the physically ob-
servable field strength allows one to formulate the non-
Abelian Bianchi identities on the lattice and to study their
violation in gauge invariant terms.

E. Discussions

This section is devoted to general notes concerning the
Bianchi identities and the magnetic charge definition. We
do not pretend on the exhaustive treatment, of course.
However, the following items seem to be worth
mentioning:

(i) The SU(2) gauge invariance of the magnetic charge is
evident from the fact that each term on the left-hand side of
(30) is SU(2) gauge invariant by construction. The U(1)
gauge invariance (18) of Eq. (30) is also obvious. One
could argue that this Abelian symmetry is artificial and is
due only to our intent to represent the non-Abelian flux
direction in terms of the fictitious spinning particle.
However, we do think that the U(1) invariance of (30)
might be relevant. Indeed, the interpretation of the
Wilson loop defining Eq. (17) in quantum mechanical
language is natural and forces us to concentrate on the
phase differences of wave functions [see, e.g., Eqs. (19),
(28), and (29)], not on their concrete phases. Moreover, it
allows one to use the machinery related to the line bundle
structure of quantum mechanics, mathematical founda-
tions of geometrical phases, and Bargmann invariants. In
this respect, the U(1) symmetry appears naturally and is
inherent to our approach (it had been also discussed,
although in a different context, in Refs. [32,33]).

(ii) What was also crucial for our construction is the
canonical orientation of elementary lattice plaquettes. We
discussed this in detail in Sec. III B and concluded that, in
order to deduce the field strength from the infinitesimal
Wilson loops, some canonical ordering must be introduced.
It is true that in most cases the concrete ordering prescrip-
tion does not matter, since the usually considered quanti-
ties do not depend on it. For instance, the gauge action is
insensitive to plaquette orientations, but this is certainly
because the action is even in the field strength. As far as the
magnetic fields are concerned, their unambiguous defini-
tion is possible only with some canonical ordering pre-
scription; otherwise, the components of F�	 could be
determined only up to the sign even in the Abelian theory.
However, it is clear that the ordering is not unique, and,
although there are only few possibilities to choose from,
the dependence of Eq. (30) on the particular choice should
be investigated separately. In this work, we stuck with the
conventional canonical ordering described above; the or-
dering dependence will be investigated elsewhere.
-8
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(iii) As we have noted already, it is natural to describe
the non-Abelian Stokes theorem (27) in the ribbonlike
graphical representation in which the theorem becomes
essentially Abelian-like. In other words, the non-Abelian
nature of the theory is traded for the complicated geometry.
Therefore, the ribbonlike representation is actually not
only a convenience. Once we could unambiguously assign
each term in Eqs. (27) and (30) to a particular geometrical
object, it is natural to ask whether these objects form a self-
contained cell complex. For the non-Abelian Stokes theo-
rem, the answer is ‘‘no’’ because each Wilson contour
requires the introduction of its own set of triangles (e.g.,
ABE in Fig. 4) to which the 1 angles are to be ascribed.
But the non-Abelian Bianchi identities do indeed allow the
introduction of a specific cell complex in which every term
on the left-hand side of Eq. (30) is unambiguously assigned
to the particular two-dimensional cell. Moreover, Eq. (30)
could then be interpreted as a usual coboundary operator
acting on 2-cochains. Note that the above reasoning re-
sembles slightly the dual gravitylike representation of
SU(2) gluodynamics [23–27]. We stress that this approach
is not only a mathematical convenience. In fact, it is the
only way to analyze the structure of Eq. (30) at finite lattice
spacing. In particular, it allows one to show that the mag-
netic charge is closely related to the degenerate points (4)
mentioned in Sec. II A (this is the topic of the next section).
Here we note that the cell complex underlying Eq. (30) is
described in the appendix, the results of which are used in
the next section.

(iv) It seems to be instructive to start from Eq. (30),
expand it in powers of the lattice spacing, and get the
Bianchi identities (1) and (3) in the continuum limit.
However, we failed to implement this program. As far as
we can see, the reason is twofold. First, the original prob-
lem (11) was posed quite differently from what could be
expected in the continuum. Indeed, our primary goal was to
determine the magnetic charge, and we intentionally re-
fused to consider its gauge dependent color orientation.
The manifestation of this could be seen by comparing
Eqs. (1) and (3) with (30): While the former is in the
adjoint representation and is vector in the color space,
the latter is gauge invariant and is just one equation.
Therefore, it is a priori unclear how one could get (1)
and (3) from (30) even in the limit of vanishing lattice
spacing. On the other hand, Eq. (30) follows rigorously
from (7), and we have no doubt that Eq. (30) indeed
expresses the Bianchi identities on the lattice. Second, as
we argue in the item below (see also the next section), the
discussion of Eq. (30) in the continuum limit is indispens-
able from the consideration of the degenerate points (4).

(v) Let us qualitatively consider what happens with the
magnetic charge (30) in the extreme weak coupling limit.
The plaquette fluxes do not play any role since they are
highly suppressed by the action. Therefore, Eq. (30) sim-
plifies
114514
X
x2!c

�x � 2�q�c	; (36)

where c is elementary lattice cube. Note that the magnetic
charge is not directly suppressed by the action, and, there-
fore, there seems to be no reason for it to die out in the
continuum limit. Moreover, it is clear from (36) that the
nonzero q�c	 is due to the particular distribution of the
chromomagnetic field directions and is almost insensitive
to the magnitude of the elementary fluxes. Indeed, each �x
depends only on the flux directions and not on their mag-
nitudes. In the next section, we show that the nonzero right-
hand side of Eq. (36) in the continuum limit indicates that
at this point the chromomagnetic fields are degenerated,
and the particular determinant constructed from Eai , Bai
vanishes.

IV. CHROMOMAGNETIC FIELDS DEGENERACY

In this section, we analyze the points of chromomagnetic
fields degeneracy introduced in Sec. II A. First, we review
the essential facts known in the continuum and then turn to
the lattice definitions.

A. Preliminaries

In four dimensions, the points of degeneracy of the
chromomagnetic fields are defined by

detT � 0; (37)

Tab�	 � "abc ~Fc�	 �
1
2"
abc"�	
�F

c

�: (38)

As we noted in Sec. II A the physical significance of the
points (37) crucially depends on the dimensionality.
Indeed, in D � 3 the operator coupled to the gauge poten-
tials Aak in the Bianchi identities (3) is

Tabk�3D	 � "abcBck �
1
2"
abc"kijFcij (39)

and, in fact, is a 3� 9 matrix for which the determinant is
undefined. We could at best consider the rank of the matrix
(39) and clearly

rankT�3D	 < 3; (40)

since Bak is always the eigenvector with zero eigenvalue.
We conclude, therefore, that in D � 3 the very notion of
chromomagnetic fields degeneracy is uncertain.

In four dimensions, the detT was calculated long ago
[16,18,22]:

detT / detK; (41)

K�	 � K	� � 1
3"
abc ~Fa��Fb�
 ~F

c

	; (42)

K00 � 2 detB; Kik �
1
2B

a
fiQ

a
kg;

K0i � Bai "
abcEbkB

c
k; Eai � Fa0i; Bai �

1
2"ijkF

a
jk;

Qa
k � "abc"kijEbi E

c
j ;
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FIG. 5. Left: The flux directions in the plane ��; 		 around
point x in the weak coupling limit, Eq. (44). Right: The only
nontrivial 3-cell in D � 3 (see the text).
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where curly braces denote symmetrization BfiQkg �

BiQk � BkQi. It is important that each element of K�	 is
gauge invariant determinant constructed in terms of Eai and
Bai . In particular, the off-diagonal elements are of the form
det�EiEkBk�, det�BiEkBk�, where no summation in k is
implied, and det�e1e2e3� is understood as the determinant
of the column matrix constructed from color vectors
~e1; ~e2; ~e3. Note that the off-diagonal elements vanish iden-
tically in (anti)self-dual sectors [21]. However, our aim is
not to analyze Eqs. (37)–(42) in their generality. Rather,
we would like to show that the lattice Bianchi identities
naturally lead to the same determinants (42). In particular,
in the next section we show that the magnetic charge (30) is
ultimately related to the zeros of these determinants and
hence to the degenerate points (37).

B. detB � 0 on the lattice

In this section, we consider first the three-dimensional
case, which is much simpler geometrically. The results
remain valid in four dimensions, but in D � 4 there are
important differences as well.

It was noted in Sec. III E that the only reliable and
rigorous way to analyze Eq. (30) at finite lattice spacing
is to consider the specially crafted cell complex for which
Eq. (30) is the coboundary operation. The existence and
structure of this cell complex could be inferred by noting
that the non-Abelian Stokes theorem and the Bianchi iden-
tities on the lattice are described most naturally in the
ribbonlike graphical representation. Starting from this,
the cell complex could be completely constructed (see
the appendix). The advantage of this approach is that it is
rather formal. Once we were able to assign gauge invariant
numbers (magnitudes of elementary fluxes and their rela-
tive orientations expressed in terms of Bargmann invari-
ants) to each two-dimensional cell, all we have to do is to
consider the coboundary operator d:C2 ! C3, where Ck is
the k skeleton. For every lattice cube, the action of d is
equivalent to the Bianchi identities (30) by construction,
and, hence, d assigns the corresponding magnetic charge to
each lattice cube. However, the additional �-angle contri-
bution implies that the geometry of the cell complex is not
(hyper)cubical. In particular, the 3-skeleton C3 is larger
than the union of lattice 3-cubes.

On the other hand, there is formally no difference be-
tween different 3-cells of the complex. In particular, one
can show that d:C2 ! C3 always assigns an integer num-
ber to every 3-cell. It is true that some of these ‘‘new’’ 3-
cells are trivial and the corresponding magnetic charge is
always zero. However, there exist the nontrivial cases as
well (see the appendix), one of which (and the only one in
D � 3) is illustrated in Fig. 5 (right).

Consider some point x on the original D � 3 lattice
together with 12 plaquettes and 8 cubes which share this
point. Equation (30) applied to each cube forces us to take
into account 8 triangles at the cube’s corners (cf. Fig. 4)
114514
and to assign the corresponding Bargmann invariants �i,
i � 1; . . . ; 8 to each triangle. Figure 5 (right) shows the
triangles around point x coming from different cubes. Note
that all 8 triangles are properly oriented. By the same
token, one concludes that 6 squares, e.g., ABDE, are also
valid 2-cells of the cell complex and are equipped with the
corresponding Bargmann invariants �i�x	, i � 1; . . . ; 6.
Then it is clear that the application of d:C2 ! C3 to the
set of 2-cells in Fig. 5 assigns a well defined and gauge
invariant integer number to the 3-cell shown in that figure:

2�~q�x	 �
X8
i�1

�i�x	 �
X6
i�1

�i�x	: (43)

Formally, it is just the same magnetic charge we have
considered so far, but now it is ascribed to the site of the
original lattice. We are confident that the magnetic charges
in the lattice cubes correspond to the Bianchi identities
violation. But what is violated in the lattice sites?

To answer this question, we expand (43) in powers of the
lattice spacing. However, it is worth mentioning that this
expansion is not the usual one. In particular, it would be
plainly wrong to look for O�a3	 terms, since the integer
number on the left-hand side of Eq. (43) does not depend at
all on the lattice spacing. Therefore, in the weak coupling
expansion we should look for a-independent contributions
or, better to say, to look for the conditions for
a-independent terms to appear.

In fact, all necessary relations were derived in Ref. [10].
In particular, consider four plaquettes in the same plane
which share the point x, Fig. 5 (left). To the leading order,
the color directions of the fluxes at point x are given by

x� �̂� 	̂: ~n�O�a2	;

x� �̂� 	̂: ~n� aD	 ~n�O�a2	;

x� �̂� 	̂: ~n� aD� ~n�O�a2	;

x� �̂� 	̂: ~n� a�D� �D		 ~n�O�a2	;

(44)

where we have denoted ~n � ~n��		�x	 for brevity. We con-
clude, therefore, that in the weak coupling limit the three
points A;B;C (Fig. 5, right) are distinguished: The flux
directions assigned to them are, in general, independent
-10
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and coincide with the color direction of the particular
component of ~F�	. The flux directions in all other vertices
are obtainable by infinitesimal variation of the flux direc-
tion in one of the points A;B;C.

Recall now that the Bargmann invariant assigned to each
triangle and square is the oriented solid angle between the
corresponding flux directions. It follows then that the con-
tribution of all squares is always of order O�a3	 and is
negligible. As far as the triangles are concerned, they also
give terms of orderO�a3	 unless the fluxes at points A;B;C
become linearly dependent. In this case, the corresponding
Bargmann invariant could be ���O�a	, and the order
O�a	 variation of the fluxes at various vertices is enough to
change it by 2�. It is clear that only in this degenerate case
is the nonzero left-hand side of (43) at all possible. On the
other hand, the flux directions at the points A;B;C in the
weak coupling limit are given by the corresponding chro-
momagnetic field components ~Bk. We conclude, therefore,
that the nonvanishing magnetic charge (43) implies that the
chromomagnetic fields are degenerate at this point

~q�x	 � 0 ) detB�x	 � 0: (45)

Note that the statement could not be reversed. For instance,
in the case ~B1 � ~B2 � ~B3 both detB and ~q vanish.

Equation (45) remains valid in four dimensions as well.
The only distinction is that now we have 4 different mag-
netic charges ~q��x	 labeled by the direction �̂ dual to a
given three-dimensional slice. In particular, the nonzero
~q��x	 implies that one of the determinants det�B1B2B3�,
det�B1E2E3�, det�E1B2E3�, det�E1E2B3� vanishes. Note
that these determinants are the diagonal entries of K�	,
Eq. (42), and, therefore,

~q ��x	 � 0 ) K�� � 0 �no sum over �	: (46)

By symmetry considerations, one expects that there should
exist 3-cells for which the magnetic charge indicates the
zeros of det�E1E2E3�, det�E1B2B3�, det�B1E2B3�,
det�B1B2B3�. It turns out that these cells are
D�1	�x;�; d�	 (see the appendix). Indeed, the structure of
D�1	 cells is such that the argumentation leading to (45)
applies literally. Then the inspection of the flux directions
assigned to vertices of D�1	�x;�; d�	 shows that the non-
zero magnetic charge of one of these 3-cells is the suffi-
cient condition for the particular determinant above to
vanish.

As far as the off-diagonal elements of K�	 are con-
cerned, they are highly sensitive to the topological proper-
ties of the gauge fields. For instance, K12 �
det�B2E2E3� � det�B1E1E3� vanishes in the (anti)self-
dual sectors. It is possible to identify the 3-cells which
are related to the off-diagonal entries of the K�	 matrix.
Indeed, consider the diamondlike 3-cells D�2	 (see the
appendix). In the weak coupling limit, the flux directions
assigned to 4 plaquette corners become essentially the
114514
same and coincide with the corresponding component of
~F�	. Then the flux orientations ascribed to 3 pairs of

opposite vertices of D�2	 are given by ~Ek, ~Bk, k � 1; 2; 3.
Geometrically, it is clear that for ~Ek � � ~Bk the 3-cells
D�2	 are highly degenerated, and there is a good chance for
the coboundary operator d:C2 ! D�2	 to give a nonzero
magnetic charge. However, we are still lacking the rigorous
argumentation here. One could only say (see also Sec. V C)
that the D�2	 cells are indeed closely connected to the
topological properties of the gauge background. The rela-
tion of the present approach to the gauge fields topology
goes beyond the scope of the present publication and will
be investigated elsewhere.

To summarize, the non-Abelian Bianchi identities (30)
could be interpreted as the coboundary operator d:C2 !
C3 for the specific cell complex, the complicated geometry
of which is the direct consequence of the non-Abelian
nature of the theory. Moreover, the operator d considered
in its generality necessitates the consideration of gauge
invariant magnetic charges associated with various 3-cells.
While the nonvanishing magnetic charge in a three-
dimensional cube implies the violation of the Bianchi
identities, in other 3-cells it is the sufficient condition for
the particular determinant constructed from Eai ; B

a
i to van-

ish. At finite lattice spacing, these two types of magnetic
charges are almost independent and should be considered
as such, especially since they are geometrically distinct:
The former are ascribed to the lattice cubes; the latter are
assigned to the sites of the original lattice. However, at
vanishing lattice spacing the two types of magnetic charges
become closely interrelated [cf. Eq. (36)]: Once the flux
magnitude on the elementary plaquettes becomes negli-
gible everywhere, the non-Abelian Bianchi identities could
be violated only at the degenerate points (46).

V. NUMERICAL EXPERIMENTS

It is true that the relevance of the above construction for
the dynamics of the Yang-Mills fields is not evident from
the preceding presentation. However, we specifically kept
in mind from the very beginning the possibility to apply
our approach in real lattice experiments. In this section, we
describe the results of our numerical simulations. The
problem to be considered is whether the violation of the
Bianchi identities and the degeneracy of the chromomag-
netic fields are physically significant.

The general setup is as follows. We simulate the SU(2)
lattice gluodynamics in three and four dimensions on the
symmetric lattices with periodic boundary conditions. The
action we adopt initially (see below) is the standard Wilson
action. Until Sec. V B, the lattices we used are 163 and 104

with corresponding 4 ranges �5:0; 9:0� and �2:2; 2:8�. Note
that these parameters are partially unphysical. The purpose
is to consider the behavior of the magnetic charges (30),
(45), and (46) in various circumstances, in particular,
across the finite-volume phase transition.
-11
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The simplest and instructive quantities to study are the
densities ��4	, ~��4	 of the magnetic charges (30) and (46).
The density ��4	 is defined irrespectively of the space-
time dimensionality

��4	 �
1

Nc

X
c

jq�c	j; (47)

where summation is over all lattice 3-cubes and Nc is their
total number. Evidently, ��4	 measures the fraction of
points at which the non-Abelian Bianchi identities are
violated. The definition of ~��4	 differs in D � 3 and D �
4. In three dimensions, we have

~��4	 �
1

Ns

X
s

j~q�s	j; (48)

where s is the lattice site, Ns is the total lattice volume, and
~q�s	 was defined in Sec. IV B. In D � 4 there are several
types of the magnetic charges ~q, and, therefore, the defi-
nition (48) is ambiguous. We take the symmetric definition
which looks similar to (48): s denotes the 3-cell which is
not the lattice cube and Ns is the total number of these
cells. Physically, ~��4	 is the fraction of the lattice volume
occupied by zeros of various determinants, e.g., (45) and
(46).

The dependence of � and ~� on 4 is shown in Fig. 6. One
can see that both densities are numerically similar in three
and four dimensions and are almost 4 independent in
accordance with general arguments of Sec. III E. Indeed,
the 4 independence of ~� is certainly expected since there is
no symmetry which could keep the sign of the determi-
nants (46) fixed. In particular, the perturbation theory gives
the dominant contribution to the density ~��4	. On the other
hand, the 4 independence of � follows from the fact that
the violation of Bianchi identities is closely related to the
zeros of the above determinants. Therefore, we come to the
paradoxical conclusion that the perturbation theory also
saturates the density ��4	.

To resolve the problem, we note that in the continuum
limit the Bianchi identities are formulated for elementary
3-volumes, while the determinants are defined at any par-
ticular point. The corresponding construction on the lattice
is essentially the same: The Bianchi identities and the
magnetic charge q are ascribed to the elementary 3-cubes,
while the degeneracy points and the charge ~q are assigned
to the lattice sites. It is important that these charges are
geometrically distinct on the lattice: At arbitrary small but
nonzero spacing, there is O�a	 distance between them and
they are defined on different 3-cells. It turns out that on the
lattice the magnetic charge at 3-cube and anticharge at the
neighboring site may coexist with almost no additional
action penalty [cf. Eqs. (36) and (43)]. Moreover, one
can show that there could be no mechanism to prevent
the creation of these ultraviolet (UV) q-~q pairs, since it
would violate the gauge invariance. Indeed, although the
114514
relative orientation of the fluxes is formally gauge invari-
ant, any restriction of it will effectively squeeze the non-
Abelian fluxes into one particular color direction. Then it
would be hardly possible to call the resulting theory non-
Abelian [65]. Note that the UV pairs above are irrelevant
from the continuum viewpoint. Indeed, there is no trace
whatsoever of the ultraviolet q-~q pairs on the blocked
lattice with lattice spacing N � a. At the same time, the
densities ��4	, ~��4	 account for all the charges q, ~q on
equal footing and, therefore, are dominated by the UV
fluctuations.

We conclude, therefore, that the densities ��4	 and ~��4	
are not the appropriate observables on the unblocked lat-
tices. They are dominated by the ultraviolet noise which is
only due to the mismatch in the domain of definition of the
Bianchi identities and the degenerate points. It seems that
the only way to make sense of the densities �, ~� is to
consider them on the blocked configurations for which the
ultraviolet noise is gradually removed. However, our ap-
proach to the problem is different and is described below.
-12
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A. Modification of the action

As follows from the above presentation, the dynamics of
q and ~q magnetic charges is highly UV sensitive and the
dominant configurations are small (at the scale of UV
cutoff) q-~q pairs. It seems that this observation forbids
the discussion of the significance of the Bianchi identities
violation and the points of degeneracy, since it is impos-
sible to separate the UV noise from physically relevant
excitations. Essentially, the same problem exists in usual
field theories, where the vacuum condensates are com-
monly used to parametrize the nonperturbative effects.
The well known example is the gluon condensate
h6s�Fa�		2i, which is perturbatively divergent but its non-
perturbative part is nonvanishing and is known to be of
major phenomenological importance. The subtraction of
the perturbative tail of various condensates is challenging,
and the usual approach is to subtract it order by order in the
coupling constant. However, we do not see any tractable
way to do this in our case.

On the other hand, it is possible to reformulate slightly
the original problem. Instead of trying to isolate the effects
due to the UV q-~q pairs, we could equally ask what
happens when the magnetic charges are partially removed
from the vacuum. Indeed, the definition of q and ~q charges
is local and gauge invariant. Therefore, nothing prevents us
from modifying the Wilson action to include the additional
terms which could influence the dynamics of q, ~q charges.
Since it is hardly possible to invent the additional well
defined terms which are sensitive to the UV dynamics only,
we will study the following simplest modification:

S � �4
X
p

1

2
TrUp � 1

X
c

jq�c	j � ~1
X
s

j~q�s	j; (49)

where the first term is the standard Wilson action and c
denotes the elementary lattice cubes. The last term in
Eq. (49) has different interpretation in three and four
dimensions. In D � 3, s denotes the lattice sites and ~q�s	
is given by Eq. (43). In four dimensions, the last term a
priori depends on the concrete definition of the magnetic
charges ~q. As in the previous section, we take the sym-
metric definition: s denotes the 3-cells which are not the
lattice cubes, and ~q�s	 is the corresponding magnetic
charge. It turns out that our results are almost insensitive
to the particular choice of the last term in Eq. (49); see
Sec. V C.

The modified action is local and SU(2) gauge invariant.
Indeed, from the defining equations (30) and (43) one can
see that (49) intertwines the links which are at most two
lattice spacings apart, while the gauge invariance follows
by construction. Then the universality suggests that the
continuum limit of the model defined by (49) should be
the same as one for the model with the conventional
Wilson action (see also Sec. VI for discussions). On the
other hand, the additional coupling constants 1, ~1 allow
one to study the effects which are due to the Bianchi
114514
identities violations and the degeneracy points. The par-
ticular limit 1! 1 is of special interest, since it corre-
sponds to the theory with nowhere violated Bianchi
identities. As far as the ~1 coupling is concerned, we are
not so confident that the limit ~1! 1 corresponds to a
sensible theory. For instance, in D � 3 the nowhere van-
ishing detB � det�B1B2B3� implies that it is of the same
sign everywhere, which contradicts the perturbative expec-
tations [66] and probably violates CP symmetry. At the
same time, the point 1 � ~1 � 0 is certainly equivalent to
the conventional lattice gluodynamics.

In the next two sections, we study the model (49) along
the lines ~1 � 0 and 1 � 0 in the �1; ~1	 parameter space at
a fixed value of the gauge coupling 4. The simulations
were performed on 203 and 124 lattices at 4 � 6:0 and
4 � 2:4, correspondingly. Note that this choice of parame-
ters is based on the experience with pure Yang-Mills (YM)
theory, in which these 4 values and volumes correspond to
the physical scaling regime [67,68]. While the point 1 �
~1 � 0 was simulated with standard overrelaxed heatbath
updating, away from it we implemented the Metropolis
algorithm, which is the only one available at nonzero 1, ~1.
The procedure turns out to be very time consuming, espe-
cially in D � 4. Indeed, the one link update step requires
one to take into account the magnetic charges q, ~q in all
neighboring cells, the number of which is much larger in
D � 4 (see the appendix). Because of this, we were unable
to thoroughly scan the ample range of 1 couplings; only
the following points were considered in detail:

�1; ~1	3D � f�0; 0	; �4; 0	; �7; 0	; �9; 0	; �0; 4	g;

�1; ~1	4D � f�0; 0	; �4; 0	; �6; 0	; �8; 0	; �0; 4	g:
(50)

In particular, the complexity of the algorithm precludes us
from studying the phase diagram of the model (49) (see
below) and investigate the finite-volume effects. Below it is
silently assumed that the chosen volumes are large enough
even at nonzero 1, ~1 couplings. At each 1 point, we
generated about 100 statistically independent gauge
samples separated by �103 Monte Carlo sweeps. The
observables of primary importance are the planar Wilson
loops from which we extracted the heavy quark potential
(see, e.g., Ref. [69] for details) and the correlator of the
Polyakov lines hP�0	P�R	i, P� ~x	 � 1=2Tr

Q
tU0� ~x� t	. To

improve the statistics, the standard spatial smearing [70]
and hypercubic blocking [71] for temporal links were used.
In D � 4 we also monitored the topological charge Q, the
topological susceptibility 8 � hQ2i=V defined by means
of the overlap Dirac operator [72] (see, e.g., Ref [73] for
details and further references).

B. ~� � 0 line

Here we study the effect of the gradual removal of the
points in which the Bianchi identities are violated. Let us
consider first the behavior of the densities (47) and (48)
-13
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with rising 1 coupling. It turns out that ~� stays almost
constant (Fig. 7, upper panel) in both three and four
dimensions, monotonically varying from 0.477(1) to
0.435(1) in D � 3 and from 0.2831(1) to 0.2441(2) in D �
4 in the entire 1 range considered. On the other hand, the
density � falls down exponentially with 1 and becomes of
order O�10�4	 in D � 3 [O�10�3	 in D � 4]. We note in
passing that the mean plaquette h1=2TrUpi is also almost
insensitive to the 1 coupling (Fig. 7, bottom) rising inD �
3 from 0.8248(1) to 0.8263(3) when 1 is changed in the
entire range [the corresponding change in D � 4 is from
0.6301(2) to 0.6548(2)].

A few comments are now in order. First, the constancy of
~� and the simultaneous falloff of � by orders of magnitude
implies that the above picture of dominating ultraviolet q-~q
pairs is greatly oversimplified. It seems that the UV fluc-
tuations are indeed dominating, but their structure is much
more involved. In particular, it has little to do with the
model of tightly bounded q-~q dipoles; rather, it is some
complicated mixture of various charge-anticharge configu-
rations which probably do not form the dipolelike pairs at
all.
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Turn now to the behavior of the heavy quark potential
and the Polyakov lines correlation function with rising 1
coupling. In three dimensions (Fig. 8), both the Wilson
loops and the correlator hP�0	P�R	i show almost no sign of
1 coupling dependence; in particular, the asymptotic string
tension at large 1 is equal to its value in the pure Yang-
Mills theory. However, the situation changes drastically in
D � 4. One can see from Fig. 9 that the correlation func-
tion hP�0	P�R	i tends to nonzero positive value at large
separations when 1 coupling becomes of order few units

lim
R!1

hP�0	P�R	i1*1 � const> 0: (51)

The heavy quark potential extracted from Wilson loops is
shown in Fig. 10 (upper panel), and for 1 * 1 is indeed
flattening at large distances

lim
R!1

V1*1�R	 � const: (52)

Note that it is hardly possible to conclude firmly from
Fig. 10 alone that the asymptotic string tension is indeed
vanishing; however, Eq. (51) and Fig. 9 are incompatible
with its nonzero value.
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The other measured observables do not show strong
dependence on 1 coupling. In particular, the topological
charge Q stays at zero in average value, albeit with slightly
narrower distribution. As is clear from the bottom panel of
Fig. 10, the topological susceptibility 8 � hQ2i=V dimin-
ishes at 1 � 1 by approximately 25%, and the estimation
of its limiting value is

lim
1!1

81=4�1	 � 163�8	 MeV; (53)

which should be compared [68] with 81=4�0	 �
212�3	 MeV in pure YM theory, where the physical units
are fixed by the string tension

����
�

p
� 440 MeV.

The discussion of the results presented above is post-
poned until Sec. VI. Here we note only that the dynamics
of YM fields in D � 3 seems to be almost insensitive to
whether or not the Bianchi identities are violated. In par-
ticular, the complete suppression of the magnetic charges
which indicates the violation of the Bianchi identities has
almost no consequences for the correlators we considered.
However, the four-dimensional case appears to be quite
different. Our results indicate that the suppression of the
114514
Bianchi identities violation is likely to destroy confine-
ment, while other measured characteristics of the theory
remain essentially unchanged.

C. Suppressing the degenerate points

Consider the response of the theory on the suppression
of the degenerate points. The qualitative difference in the
behavior of the system along the lines 1 � 0 and ~1 � 0
could be seen already on the simplest observables such as
�, ~�. We have checked that the falloff of the degenerate
points fraction ~��~1	 is indeed exponential with ~1 in both
three and four dimensions; the relevant numbers are
~�3D�0	 � 0:477�1	, ~�3D�4	 � 0:0098�2	 and ~�4D�0	 �
0:2831�1	, ~�4D�4	 � 0:045�3	. However, the fraction of
points at which the Bianchi identities are violated also
notably diminishes with ~1. The falloff of ��~1	 in D � 3
is not so pronounced [��0	 � 0:1758�4	, ��4	 �
0:1010�4	], and, starting from ~1 � 1, it is numerically
larger than ~�. It is surprising, however, that in D � 4 the
inequality � < ~� holds for all ~1 values considered, and, in
fact, the fraction of points at which the Bianchi identities
are violated is diminished by the order of magnitude
-15
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[0.2059(2) at ~1 � 0 versus 0.024(3) at ~1 � 4]. As far as the
mean plaquette energy is concerned, its behavior is similar
to that on the ~1 � 0 line. In particular, in D � 3 it essen-
tially stays constant, while in four dimensions it changes
from 0.6301(2) to 0.655(1).

As we noted already, the suppression of the degenerate
points (45) and (46) might not be physically meaningful.
For instance, in three dimensions the orientation of the
triple � ~B1; ~B2; ~B3	, although being gauge invariant, is not
fixed by any symmetry or physical principle. The attempt
to fix the sign of detB everywhere probably will lead to
physically unacceptable results. Indeed, closer inspection
of the Polyakov lines correlator reveals that it is an oscil-
lating function of the distance. Hence, the lattice reflection
positivity is lost and the theory seems to be pathological at
nonzero ~1.

In four dimensions, the suppression of the degenerate
points leads to qualitatively the same results which, how-
ever, are much more pronounced. For instance, the Wilson
loops hW�R; T	i measured at ~1 � 0 are notably oscillating
at fixed R and varying T (Fig. 11, top panel). However,
unlike the three-dimensional case, we can easily pinpoint
the origin of the reflection positivity violation. Indeed, it is
well known that in the fixed topological sector the theory
certainly violates CP, and it is natural then to ask what the
typical topological charge of the configurations at nonzero
~1 is.

The bottom panel of Fig. 11 shows the Monte Carlo
history of the topological charge on 84 lattice at 4 � 2:30,
1 � 0, ~1 � 0:1; 0:5 when the starting configuration was
thermalized at 1 � ~1 � 0 (note that we changed the lattice
geometry and the 4 coupling for reasons to be explained
shortly). In view of the observed reflection positivity vio-
lation at ~1 � 0, it is not surprising that Q indeed stays
away from zero in average. What is surprising, however, is
that the average topological charge hQi turns out to be
always positive and extremely large for ~1 > 0. In particu-
lar, for 0< ~1� 1 the mean topological charge is shifted
only slightly from zero being of order few units. However,
once the ~1 coupling becomes comparable with unity, Q
flows away from zero during Monte Carlo updating to-
wards extremely large positive values with almost constant
and very high rate. In fact, it quickly becomes too large to
be technically accessible for us, and this was essentially the
reason to consider such small lattices here. The volume
dependence of hQi could be inferred by noting that the last
term in (49) responsible for the rapid increase of the
topological charge is the bulk quantity. Therefore, hQi
seems to be proportional to the volume at fixed ~1, although
we had not thoroughly investigated this dependence nu-
merically. We have checked that the behavior of Q at
nonzero ~1 is always similar to that in Fig. 11, irrespectively
to the concrete meaning of the last term in the action (49).
It does not matter which particular type of magnetic
charges ~q is suppressed by the ~1 coupling; we always see
114514
the violation of the reflection positivity which is due to the
rapid increase of the global topological charge. This prob-
lem is discussed in next section.
VI. DISCUSSIONS

The interpretation of the results we achieved so far may
not be simple and straightforward. Here we discuss a few
particular points which are essential for our work.

First of all, we do see that the physical significance of
the Bianchi identities is quite different in D � 3 and D �
4. The three-dimensional theory turns out to be insensitive
to the suppression of the Bianchi identities violation. Even
the complete removal of q charges from the vacuum does
not change the theory in any notable way. The four-
dimensional theory seems to be different in this respect.

The suppression of the Bianchi identities violation is
likely to destroy confinement liberating color charges in
the fundamental representation. It is tempting to conclude
then that the confinement phenomenon is due to the field
configurations for which the right-hand side of Eq. (1) is
nonvanishing. This conclusion looks natural for the follow-
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ing reasons. First, it matches the known confinement
mechanism in the simple Abelian models. Second, it could
explain why in the continuum considerations confinement
is missing, since usually the Bianchi identities with van-
ishing right-hand side are taken for granted. Third, it
qualitatively matches the phenomenological lattice obser-
vations that the geometrically thin linelike or stringlike
objects (Abelian monopoles, P vortices) might be relevant
for confinement (see, e.g., Refs. [64,74] for review and
further references). And, finally, it does not look hopeless
from the field-theoretical point of view since, as we argued
above, at vanishing lattice spacing the mechanism of the
Bianchi identities violation has little to do with singular
fields; rather, it is related in some complicated way to the
points of chromomagnetic fields degeneracy.

However, the striking difference between three- and
four-dimensional theories with respect to the suppression
of the Bianchi identities violation shows that this conclu-
sion is probably misleading. If the confinement phenome-
non is indeed due to the Bianchi identities violation, then it
should disappear also in D � 3 at large 1 coupling. But
this does not happen, and, hence, we come to the unnatural
conclusion that the confinement mechanism has little in
common in D � 3 and D � 4.

However, we could take a different point of view.
Namely, there is indeed a great physical difference be-
tween the Bianchi identities in three and four dimensions.
As we discussed in Sec. II, Eq. (1) constitutes the algebraic
restriction on the gauge potentials for a given distribution
of the chromomagnetic fields. Away from the degeneracy
points [75], the gauge potentials could be completely
reconstructed just from the Bianchi identities alone. In
this respect, the violation of the Bianchi identities could
be seen as the source of the gauge potentials ambiguities,
and the suppression of the nonzero right-hand side of
Eq. (1) effectively restricts the gauge inequivalent Aa�,
which are to be taken into account in the functional inte-
gral. It is crucial that in three dimensions the analogous
argumentation fails, and, in fact, Eq. (3) does not restrict
the gauge potentials in any notable way irrespective of
whether or not it is violated.

The natural and probably the only available quantity
which is sensitive to the gauge potentials ambiguities is
the hA2

mini condensate. Therefore, the following qualitative
scenario emerges. It is the nonperturbative hA2

mini conden-
sate which seems to be relevant for confinement. In four
dimensions the Bianchi identities are the tool which allows
one to restrict the hA2

mini condensate. Moreover, the sup-
pression of the nonzero right-hand side of Eq. (1) makes
hA2

mini vanish. Clearly, the same approach does not work in
three dimensions, because the Bianchi identities do not
constrain Aa� inD � 3. Note that this is only the qualitative
picture. In particular, the dependence of hA2

mini on the q
charges density could be very complicated, especially
because of the dominating perturbative contributions.
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To reiterate the point, we note that the justification to
consider the modified action (49) is that the second term in
(49) is local and preserves all the symmetries of the origi-
nal action. Then the universality suggests that the contin-
uum limit of the model (49) should be 1 coupling
independent (we take ~1 � 0 for definiteness). At the
same time, our results indicate that this is probably not
the case. If we would accept the Bianchi identities viola-
tion as the primary reason for confinement, then we would
be faced with serious universality problems. However, the
above scenario based on the hA2

mini condensate seems to
avoid (at least formally) this issue.

In fact, the dependence of the hA2
mini condensate on the 1

coupling could be measured directly. Namely, we could
measure the quantity hA2i in the Landau gauge, and its drop
with rising 1 coupling gives an estimate for the behavior of
the hA2

mini condensate when the violation of the Bianchi
identities is gradually removed. Moreover, this could be
compared with the results of Ref. [2], where the same
Landau gauge hA2i, albeit with different normalization,
was measured across the finite-temperature deconfinement
phase transition. Note that the quantity hA2i in the Landau
and Coulomb gauges was already introduced in
Refs. [76,77]. The details of our measurements are as
follows. The gauge potentials are defined in terms of the
link matrices U��x	

Aa� � Tr
�a

2ia
�U��x	 �Uy

��x	�; (54)

where a is the lattice spacing. The Landau gauge was fixed
by minimizing

P
x;��A

a
��x		

2 with an overrelaxation algo-
rithm until the magnitude of @�Aa� becomes everywhere
less than 10�6. The results are presented in Fig. 12. One
can see that in three dimensions hA2i is indeed almost
insensitive to the 1 coupling, confirming the qualitative
scenario outlined above. On the other hand, in four dimen-
sions hA2i drops down with increasing 1 by essentially the
same amount which was reported in Ref. [2]. Note that the
relative drop of hA2i is expected to be small [1,2]. Indeed,
on general grounds we have

hA2i �
1

a2

 X
n

bn6
n
s � a2hA2

mini

!
;

and clearly the Landau gauge hA2i is dominated by the
perturbative tail at weak coupling. However, the drop in
hA2i across the phase transition is believed to be entirely
due to the nonperturbative condensate hA2

mini.
The next comment concerns the behavior of the topo-

logical charge with respect to the degenerate points sup-
pression. It is true that the violation of the reflection
positivity with rising ~1 coupling is to be expected on
general grounds. Moreover, it is also expected that in D �
4 the nonzero in average global topological charge is the
origin of the reflection positivity violation. However, the
following questions remain: Why is the topological charge
-17
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FIG. 12. The quantity hA2i in the Landau gauge at ~1 � 0 as
function of 1 in three and four dimensions.
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always positive and rises so rapidly with respect to the
Monte Carlo updating? What is the relation between Q and
the magnetic charges q, ~q?

Evidently, the nonzero in average value of the topologi-
cal charge requires it to be mostly either positive or nega-
tive. At the same time, our experience with various
possible definitions of the last term in the action (49) shows
that the positivity of Q at ~1 � 0 is seemingly built into our
approach from the very beginning. As far as we can see, the
only place which distinguishes between Q _ 0 is the ca-
nonical orientation of the elementary plaquettes which we
accepted (see Sec. III B). Indeed, the construction of the
magnetic charges q, ~q depends on the particular canonical
orientation which is not uniquely defined. Although there
are only a few possibilities to choose from, different
choices could discriminate the sign of the topological
charge. Indeed, in the fermionic language the sign of Q
distinguishes the left and the right chiralities (orientations)
analogously to the canonical orientation, which discrim-
inates the left and the right coordinate systems. Thus, we
expect that the sign of Q at nonzero ~1 will change with
inequivalent choice of the canonical orientation. As far as
the rapid growth of Q is concerned, it seems that the only
possible explanation is that the nonzero ~1 coupling lifts the
degeneracy of different topological sectors. The situation is
reminiscent to the quantum mechanical problem of the
periodic potential on which the constant ~1-dependent elec-
tric field is superimposed.

It would be instructive to have the explicit expression for
Q in terms of the q, ~q magnetic charges distribution.
However, the usual approaches available in the literature
(see, e.g., Refs. [78,79]) seemingly lead to erroneous re-
sults. For instance, the treatment of Ref. [79] applies al-
most literally in our case. The outcome is that the
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topological charge is given by the linear combination of
the q, ~q magnetic charges and, hence, vanishes when q, ~q
are highly suppressed. This seems to contradict the ob-
served rapid growth of Q with rising 1; ~1 couplings when
all the q, ~q charges are suppressed on equal footing.
Therefore, either the results of Ref. [79] should be modi-
fied in our case or we should look for a different definition
of the topological charge. The definition of the topological
charge, which closely follows the approach of the present
work, could be given along the lines of Refs. [80,81] (see
also Ref. [82] for an excellent introduction). Instead of
studying the evolution of a single spinor along the closed
contours, we could consider the corresponding evolution of
the degenerate two-level system for which the resulting
non-Abelian geometrical phase describes the YM instan-
ton. This approach is under investigation and will be
published elsewhere.
VII. CONCLUSIONS

In this paper, we considered the non-Abelian Bianchi
identities in SU(2) pure Yang-Mills theory, focusing on the
physical significance of the chromomagnetic fields degen-
eracy points and the possibility of Bianchi identities vio-
lation. These questions necessitate regularization, and we
specifically kept in mind the lattice formulation. It had
been known for a long time that the Bianchi identities, in
general, are the requirement that the gauge holonomy for
any null-homotopic path equals unity. The main achieve-
ment of this paper is the reformulation of the above re-
quirement in terms of the physical elementary fluxes (field
strength). Our approach is based on the non-Abelian
Stokes theorem that appeared recently and allows one to
give an explicit gauge invariant expression for the Bianchi
identities on the lattice. Simultaneously, it allows one to
formulate the notion of the non-Abelian Bianchi identities
violation in gauge invariant and local form.

As a further development of our approach, we showed
that the study of the lattice Bianchi identities naturally
leads to the consideration of the chromomagnetic fields
degeneracy points at which particular determinants con-
structed from Eai , Bai vanish. It turns out that the violation
of the Bianchi identities and the degenerate points are
closely related to each other. In particular, in the weak
coupling regime the Bianchi identities violation is not
related generically to the singular fields; rather, it is due
to the existence of the degenerate points.

As is clear from the above presentation, the main ad-
vantage of our approach is that the non-Abelian nature of
the theory had been traded for the complicated geometry
which, however, allows the pure geometrical Abelian-like
treatment. Then both the Bianchi identities violation and
the degeneracy points formally appear as usual magnetic
charges. However, we stress that the term ‘‘magnetic
charge’’ and, in fact, the entire Abelian analogy, is only
formal. In particular, the physical interpretation of q, ~q
-18
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charges is completely different; there is no magnetic
charge conservation whatsoever on the original (hyper)-
cubical lattice. Nevertheless, the Abelian-like representa-
tion is invaluable for the analysis presented above.

The locality and gauge invariance of the definition of the
Bianchi identities and the chromomagnetic fields degener-
acy points permits us to modify the original gauge action
and to study the effects of gradual removal of these objects
from the vacuum. It turns out that, in the four-dimensional
case, the suppression of the Bianchi identities violation
seems to be relevant for confinement: The heavy quark
potential extracted from Wilson loops flattens at large
distances and the correlator of the Polyakov lines tends
to nonzero constant at large separations. At least, this is the
case on the lattices we have studied. At the same time,
other correlation functions which we measured had not
been changed considerably. The situation in D � 3 turns
out to be just the opposite. Namely, the theory is almost
insensitive to the suppression of the Bianchi identities
violation. However, in D � 4 the complexity of the nu-
merical simulations precluded us from studying the rele-
vant issues such as the phase diagram of the modified
model, the volume dependence of our results, etc. We
hope to address these questions elsewhere.

As far as the degenerate points are concerned, any
attempt to remove them from the vacuum results in the
reflection positivity violation. Moreover, in D � 4 this
violation is due to the extremely large positive global
topological charge which grows rapidly during Monte
Carlo updating. This observation could be relevant for
studying the gluodynamics in the topologically nontrivial
sectors.

Confronting the results obtained in D � 3; 4, we argued
that it is probably misleading to consider the violation of
the Bianchi identities as the primary cause of confinement.
Instead, the correct picture would be to interpret the
Bianchi identities as an algebraic constraint on the gauge
potentials and to relate the confinement phenomenon to the
existence of the nonperturbative hA2

mini condensate. This
scenario seems to be in agreement with universality expec-
tations, works the same in both three and four dimensions,
and does not contradict our findings.
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APPENDIX

Here we describe the cell complex underlying the
Bianchi identities (30). We start from a single plaquette
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and note that the application of the non-Abelian Stokes
theorem (27) assigns spinor wave function hzj to each
plaquette corner. This could be represented by 4 points
belonging to this plaquette and shifted from the corners
towards the plaquette center. The totality of these points
constitutes the 0-skeleton C0 of the cell complex and it is
convenient to parametrize s 2 C0 by the point x of the
original lattice and by two shifts with corresponding shift
directions (see Fig. 5, left):

s � s�x;�; d�; 	; d		 � s�x; 	; d	;�; d�	; � � 	;

d�; d	 � �1:

(A1)

In total there are 2D�D� 1	 � V sites, where V is the lattice
volume.

Turn now to the 1-skeleton C1 which consists of two
types of links. The first group contains the original links

si � s�x;�; d�; 	; d		 ! sf � s�x� �̂; �;�d�; 	; d		;

(A2)

which carry the matrix element hz�si	jU��x	jz�sf	i. Links
from the second group

si � s�x;�; d�; 	; d		 ! sf � s�x; 
; d
; 	; d		

� � 

(A3)

are ascribed with the matrix element hz�si	jz�sf	i.
As far as the 2-skeleton C2 is concerned, its structure is

different in three and four dimensions. As a consequence,
Ck, k > 2, also differ considerably and are described sepa-
rately below.

D � 3

Here C2 contains three types of 2-cells. First, there are
original plaquettes p, the boundary of which consists of the
links (A2). Moreover, the standard coboundary operator
d:C1 ! C2 acts in accordance with Eq. (25) and assigns
the flux magnitude ��p	 to the plaquette. Second, a group
of 2-cells contains various squares S�1	�x;�; d�	 con-
structed from links (A3). Namely, S�1	�x;�; d�	 has the
following four points in its boundary:

S �1	�x;�; d�	:s�x;�; d�; 	;�d		; s�x;�; d�; 
;�d
	;

� � 	 � 
:

(A4)

The coboundary operator d:C1 ! C2 assigns the
Bargmann invariant (28) to the particular square. The
argumentation of Sec. III D allows one to show that

S �1	�x;�; 1	 � S�1	�x� �̂; �;�1	; (A5)

where we have denoted the values assigned to each square
by the same symbol ‘‘S�1	,’’ hoping that this will not lead to
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confusion. A third type of 2-cells contains various triangles
T �1	 constructed from links (A3); there are three points in
the boundary of T �1	
T �1	:s�x;�; d�; 	; d		; s�x; 	; d	; 
; d
	; s�x; 
; d
; �; d�	;

� � 	 � 
:

(A6)
1

E

B

E
E

B

B

1
2

3

3

2

FIG. 13. D�2	 3-cell in D � 4 (see the text).
The operator d:C1 ! C2 assigns the corresponding
Bargmann invariant to the triangle. Note that the last group
of 2-cells is formed by a mixture of links (A2) and (A3) and
need not be considered; in fact, by Eq. (26) the phase
associated with them is always zero. It is important that
the value assigned by d to every 2-cell is always taken
modulo 2� and is rather similar to +plaq � �d+�2� in the
language of a compact U(1) gauge model. In other words,
it is silently assumed that only gauge invariant quantities
are ascribed to every 2-cell.

As far as the 3-skeleton C3 is concerned, it contains
essentially two types of 3-cells. First, the original lattice
cubes which look as in Fig. 4 (right); each cube contains
6 plaquettes and 8 triangles at its corners. The coboundary
operator d:C2 ! C3 considered for any particular cube is
identical to Eq. (30) by construction. The 3-cells of the
second group are constructed entirely from triangles T �1	

and squares S�1	 above and are illustrated in Fig. 5 (right).
The physical meaning of the corresponding magnetic
charge is analyzed in Sec. IV B.

Thus, the consideration of the three-dimensional case is
completed. Note that geometrically there is one more type
of 3-cells, which, however, need not be taken into account.
These 3-cells are formed by two squares (A4) and four
links (A2) connecting them. It follows from (26) and (A5)
that d:C2 ! C3 always gives zero on these cells.

D � 4

In four dimensions the consideration of the cell complex
underlying the lattice Bianchi identities (30) becomes
cumbersome. In particular, we do not give the full list of
cells forming Ck, k � 2; 3; 4; only cells relevant to the
considerations in Secs. IV B and V are presented.

First, we note that the D � 3 construction applies di-
rectly in D � 4. In particular, the 2-skeleton includes the
plaquettes, squares (A4), and triangles (A6), trivially gen-
eralized to four dimensions. In the 3-skeleton C3 we iden-
tify then the usual 3-cubes and 3-cells shown in Fig. 5
(right).

However, it is clear that in D � 4 the C2, C3 are not
exhausted by the above 2- and 3-cells. In particular, the 2-
skeleton contains now an additional set of triangles T �2	

with vertices
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T �2	:s�x;�; d�; 	; d		; s�x;�; d�; 
; d
	; s�x;�; d�; �; d�	;

� � 	 � 
 � �;

(A7)
and squares S�2	, the vertices of which are

S�2	:s�x;�; d�; 	; d		; s�x; 	; d	; 
; d
	; s�x; 
; d
; �; d�	;

s�x; �; d�; �; d�	; � � 	 � 
 � �: (A8)

All these 2-cells are constructed from links (A3) and,
therefore, are ascribed with the appropriate Bargmann
invariants.

In the 3-skeleton C3 the new diamondlike cells D con-
sisting of 6 vertices and 8 triangles appear. In turn, these 3-
cells could be subdivided into two groups.
D�1	�x;�; d�	.—The 3-cells in this group are con-

structed from 8 triangles (A7) and are similar to those
considered in D � 3, Fig. 5 (right). In particular, one can
show that [cf. Eq. (A5)]

D �1	�x;�; 1	 � D�1	�x� �̂; �;�1	; (A9)

see the note following Eq. (A5). The physical interpreta-
tion of the corresponding magnetic charge is discussed in
Sec. IV B.
D�2	�x; d�; d	; d
; d�	.—These 3-cells are built from

both types of triangles (A6) and (A7). The corresponding
vertices are constructed by fixing a particular combination
of shift directions d�: There are 6 distinct planes passing
through a given lattice site inD � 4, and s�x;�; d�; 	; d		,
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� � 	 is one of the six vertices of the D�2	�x; d�;
d	; d
; d�	 cell. The total number of these 3-cells per lattice
site is 24 � 16. Note the specific pattern of the flux direc-
tions assigned to the vertices of D�2	�x; d�; d	; d
; d�	,
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which is radically different from what we have encoun-
tered so far. In the weak coupling limit the opposite verti-
ces are ascribed with the same components of
chromoelectric and chromomagnetic fields (see Fig. 13).
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