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We study spin 1
2 hadronic states in quenched lattice QCD to search for a possible S � �1 pentaquark

resonance. Simulations are carried out on 83 � 24, 103 � 24, 123 � 24, and 163 � 24 lattices at � � 5:7
at the quenched level with the standard plaquette gauge action and the Wilson quark action. We adopt a
Dirichlet boundary condition in the time direction for the quark to circumvent the possible contaminations
due to the (anti)periodic boundary condition for the quark field, which are peculiar to the pentaquark. By
diagonalizing the 2� 2 correlation matrices constructed from two independent operators with the
quantum numbers �I; J� � �0; 12�, we successfully obtain the energies of the lowest state and the 2nd-
lowest state in this channel. The analysis of the volume dependence of the energies and spectral weight
factors indicates that a resonance state is likely to exist slightly above the nucleon-Kaon (NK) threshold in
�I; JP� � �0; 12

�� channel.
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I. INTRODUCTION

After the discovery [1] of 
��1540� followed by the
other experiments [2–9], identifying the properties of the
particle is one of the central problems in hadron physics.
While the isospin of 
� is likely to be zero [4], the spin,
the parity, and the origin of its tiny width still remain open
questions [10,11]. In spite of many theoretical studies on

� [10–16], the nature of this exotic particle, including
the very existence of the particle, is still controversial.
Among theoretical approaches, the lattice QCD calculation
is considered as one of the most reliable ab initio methods
for studying the properties of hadronic states, which has
been very successful in reproducing the nonexotic hadron
mass spectra [17]. Up to now, several lattice QCD studies
have been reported, which aim to look for pentaquarks in
various different ways. However, the conclusions are un-
fortunately contradictory with each other. On one hand, the
authors in Refs. [18–20] conclude that the parity of 
� is
likely to be negative, while in Ref. [21] the state with the
similar mass to 
� in the positive-parity channel is re-
ported. In Refs. [22,23], the absence of 
� is suggested.

One of the difficulties in the spectroscopy calculation
with lattice QCD arises from the fact that the hadron
masses suffer from systematic errors due to the discretiza-
tion, the chiral extrapolation, the quenching effect, the
finite-volume effect, and the contaminations from higher
excited states. The difficulty specific to the present prob-
lem is that the signal of 
� is embedded in the discrete
spectrum of NK scattering states in finite volume. In order
to verify the existence of a resonance state, one needs to
isolate the first few low energy states including the lowest
NK scattering state, identify a resonance state, and study
its volume dependence which can distinguish itself from
other scattering states. Therefore, ideally one should ex-
tract multistates from a high statistics unquenched calcu-
lation for several different physical volumes, where both
the continuum and the chiral limits are taken. However,
05=71(11)=114509(18)$23.00 114509
due to enormous computational costs, so far there is no
lattice QCD study which performs all these steps.

In the present situation where even the very existence of
the resonance state is theoretically in dispute, the primary
task is to provide evidences which distinguish the candi-
date resonance state from a scattering state. As long as
other systematic errors only affect the numerical values of
the masses but not the characteristic evidences of the
resonance state, they may be neglected. Even so, the iso-
lation of the first few low energy states and the study of the
volume dependence is a minimum requisite.

Therefore, at this stage as a first step towards a more
complete analysis, we propose to focus only on analyses
using rather heavy quarks on coarse quenched lattices but
with good statistics. By such a strategy, we can afford
taking several different lattice volumes with thousands of
gauge configurations so that the careful separation of states
and the studies of volume dependence are possible.
Although giving well controlled continuum and chiral
extrapolations may be important, we simply assume that
the contents in spectra would not be drastically changed,
although there are some cases where level crossings of
resonance states occur as the quark masses decrease [24].
Even with such a compromise, we can hopefully learn
about the existence and much of the qualitative properties
of 
�.

In this paper, we study �I; J� � �0; 12� channel in
quenched lattice QCD to search for possible resonance
states. We adopt two independent operators with I � 0
and J � 1

2 and diagonalize the 2� 2 correlation matrices
by the variational method for all the combinations of lattice
sizes and quark masses to extract the 2nd-lowest state
slightly above the NK threshold in this channel. After the
careful separation of the states, we investigate the volume
dependence of the energy as well as the spectral weight
[22] of each state so that we can distinguish the resonance
state from simple scattering states.
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The paper is organized as follows. We present the for-
malism used in the analysis in Sec. II and show the simu-
lation conditions in Sec. III. The process of the analysis is
shown in Sec. IV. Sections V, VI, VII, and VIII are devoted
to the interpretation of the obtained results and the verifi-
cation of the existence of a resonance state, as well as some
checks on the consistency and the reliability of the ob-
tained data. In Sec. IX, we discuss the operator dependence
of the results and compare our results with the previous
works. We finally summarize the paper in Sec. X. In the
appendix, we show the result of another trial to estimate the
volume dependences of the spectral weights, which re-
quires no multiexponential fit.
II. FORMALISM

As 
� lies above the NK threshold, any hadron corre-
lators, which have the 
� signal, also contain the discrete-
level NK scattering states in a finite-volume lattice. In
order to isolate the resonance state from the scattering
states, one needs to extract at least two states before any-
thing else.

Since a double-exponential fit of a single correlator
becomes numerically ambiguous, we adopt the variational
method using correlation matrices constructed from inde-
pendent operators [21,25–27]. A set of independent opera-
tors ,fOI

snkg for sinks and fOIy
srcg for sources, is needed to

construct correlation matrices CIJ�T� 
 hOI
snk�T�O

Jy
src�0�i,

which can be decomposed into the sum over the energy
eigenstates jii as

CIJ�T� � hOI
snk�T�O

Jy
src�0�i �

X
i

X
j

Cy
snkIi��T�ijCsrcjJ;

� �Cy
snk��T�Csrc�IJ; (1)

with the general matrices which depend on the operators as

Cy
snkIi 
 h0jOI

snkjii; CsrcjI 
 hjjOJy
srcj0i; (2)

and the diagonal matrix

��T�ij 
 �ije
�EiT: (3)

From the product

C �1�T � 1�C�T� � C�1
src ���1�Csrc; (4)

we can extract the energies fEig as the logarithm of eigen-
values feEig of the matrix C�1�T � 1�C�T�.

While there are N independent operators for the corre-
lation matrix, the number of the intermediate states jii
which effectively contribute to this matrix may differ
from N in general. Let us call this number as Neff . If Neff

is larger than N, the higher excited states are non-
negligible and their contaminations give rise to a
T-dependence of eigenvalues as feEi�T�g. If on the other
hand Neff is smaller than N, C becomes noninvertible so
that the extracted energies become numerically fairly un-
stable and we cannot extract all the N eigenvalues. In order
to have a reliable extraction of states, we therefore need to
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find an appropriate window of T (Tmin � T � Tmax) so that
Neff � N. (Of course, even in the case when N >Neff , we
can extract Neff eigenvalues with the reduced Neff � Neff

correlation matrices.) The stability of feEi�T�g against T is
expected in this T range and we can obtainN eigenenergies
fEig (0 � i � N � 1) by fitting the eigenvalues eEi�T� as
Ei � Ei�T� 
 ln�eEi�T�� in Tmin � T � Tmax. Since finding
the stability of the energies against T in noisy data may
suffer from uncontrollable biases, the result could be quite
subjective. In order to avoid such biases, one should im-
pose some concrete criteria to judge the stability as will be
explained in later sections and select only those data which
satisfy the criteria. After the separation of the states, we
need to distinguish a possible resonance state from NK
scattering states by the volume dependence of each state. It
is expected that the energies of resonance states have small
volume dependence, while the energies of NK scattering

states are expected to scale as
����������������������������
M2
N � j 2�L ~nj2

q
�����������������������������

M2
K � j 2�L ~nj2

q
according to the relative momentum 2�

L ~n
between N and K on a finite periodic lattice, provided that
the NK interaction is weak and negligible which is indeed
the case for the leading order in chiral perturbation theory.

Although the variational method is powerful for extract-
ing the energy spectrum, one can obtain only part of the
information on the spectral weights C. In order to extract
the spectral weights, we also perform constrained double-
exponential fits using the energies from the variational
method as inputs.

III. LATTICE SET UP

We carry out simulations on four different sizes of
lattices, 83 � 24, 103 � 24, 123 � 24, and 163 � 24 with
2900, 2900, 1950, and 950 gauge configurations using the
standard plaquette (Wilson) gauge action at � � 5:7 and
the Wilson quark action. The hopping parameters for the
quarks are ��u;d; �s� � �0:1600; 0:1650�, (0.1625, 0.1650),
(0.1650, 0.1650), (0.1600, 0.1600), and (0.1650, 0.1600),
which correspond to the current quark masses �mu;d; ms� �
�240; 100�, (170, 100), (100, 100), (240, 240), and (100,
240), respectively, in the unit of MeV [28]. The lattice
spacing a from the Sommer scale is set to be 0.17 fm,
which implies the physical lattice sizes are 1:43 � 4:0 fm4,
1:73 � 4:0 fm4, 2:03 � 4:0 fm4, and 2:73 � 4:0 fm4.

We adopt the following two operators used in Ref. [18]
for the interpolating operators at the sink fOI

snkg;


1�x� 
 "abc�uTa�x�C"5db�x��fue�x��se�x�"5dc�x��

� �u$ d�g; (5)

which is expected to have a larger overlap with 
� state,
and


2�x� 
 "abc�uTa�x�C"5db�x��fuc�x��se�x�"5de�x��

� �u$ d�g; (6)
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which we expect to have larger overlaps with NK scatter-
ing states. Here, the Dirac fields u�x�, d�x�, and s�x� are up,
down, and strange quark fields, respectively, and the
Roman alphabets {a,b,c,e} denote color indices. For mea-
suring the energy spectrum, the two operators at the source
fOIy

srcg are chosen to be 
1
wall�t� and 
2

wall�t� defined using
spatially spread quark fields

P
~xq�x� with the Coulomb

gauge:


1
wall�t� 


0
@

����
1

V

s 1
A5 X

~x1� ~x5

"abc�uTa�x1�C"5db�x2��

� fue�x3��se�x4�"5dc�x5�� � �u$ d�g; (7)

and


2
wall�t� 


0
@

����
1

V

s 1
A5 X

~x1� ~x5

"abc�uTa�x1�C"5db�x2��

� fuc�x3��se�x4�"5de�x5�� � �u$ d�g: (8)

The above operators give a 2� 2 correlation matrix in the
channel with the quantum number of �I; J� � �0; 12�. We
note here that the baryonic correlators have the spinor
indices, which we omit in the paper, and they contain the
propagations of both the positive- and negative-parity par-
ticles. For the parity projection, we simply multiply the
correlators by 1

2 �1� "0� and extract the contributions pro-
portional to (1� "0) from the negative-parity and positive-
parity particles, respectively.

We fix the source operator 
wall�t� on t � tsrc 
 6 plane
to reduce the effect of the Dirichlet boundary on t � 0
plane [29,30]. We adopt the operators

P
~x


I� ~x; t� as sink
operators, which is summed over all space to project out
the zero-momentum states. We finally calculate

C IJ�T� �
X
~x

h
I� ~x; T � tsrc�

J
wall�tsrc�i: (9)

Using two independent operators, we can extract the first
two states, namely, the lowest and the next-lowest states.
The lowest state is considered to be the ‘‘lowest’’ NK
scattering state. In order to extract a possible resonance
state with controlled systematic errors, we need to choose
the physical volume of the lattice in an appropriate range.
If we choose L to be too large, the resonance state becomes
heavier than the 2nd-lowest NK scattering state whose

energy is naively expected to scale as
������������������������
M2
N � �2�L �

2
q

�������������������������
M2
K � �2�L �

2
q

according to the spatial lattice extent L. In

this case we need to extract the 3rd state using a 3� 3
correlation matrix, which requires more computational
time. The energy difference between the lowest and the

next-lowest NK scattering states
������������������������
M2
N � �2�L �

2
q

�������������������������
M2
K � �2�L �

2
q

� �MN �MK�, for example, ranges from

180 MeV to 860 MeV in 1:4 fm � L � 3:5 fm. Taking
into account that 
� lies about 100 MeV above the NK
114509
threshold, we take 3.5 fm as the upper limit of L. On the
other hand, if we choose L too small, unwanted finite-
volume artifacts from the finite sizes of particles become
non-negligible. It is however difficult to estimate the lower
limit of L, because the finite-volume effect is rather un-
controllable. We shall take the spatial extents L � 8, 10,
12, 16 at � � 5:7 as a trial.

We take periodic boundary conditions in all directions
for the gauge field, whereas we impose periodic boundary
conditions on the spatial directions and the Dirichlet
boundary condition on the temporal direction for the quark
field in order to avoid possible contaminations from those
propagating beyond the boundary at t � 0 in (anti)periodic
boundary conditions. Since the source of possible contam-
inations is peculiar to the pentaquark and has not been
properly noticed in previous studies, it is worthwhile to
dwell on this problem for a moment.

Let us denote the correlators in the pentaquark channel
with periodic/antiperiodic boundary conditions and
Dirichlet boundary conditions as CP=AP�T� and CD�T�,
respectively. Inserting complete set of states these correla-
tors read

CP=AP�T� �
X
m;n

���)nhnj
jmihmj
jnie�EmT�En�Nt�T�;

CD�T� �
X

m;nf;ni

hDjnfihnfj
jmihmj
jnii

� hnijDie
�EmT�Enf �Nt��T�tsrc���Eni tsrc ; (10)

where the states jmi, jni, jnii, jnfi are the eigenstates with
energies Em, En, Eni , Enf , respectively. jDi is the state
which corresponds to the Dirichlet boundary condition and
���)n is the factor which represents the � sign with anti-
periodic boundary condition. The factor ���)n is equal to
1��1� when jni contains an even(odd) number of valence
quarks. It should be noted that the up, down, and strange
quark numbers U, D, S for the state jDi are restricted to
zero since all the quark fields  �x; 0� are set to zero in
Dirichlet boundary condition, while there is no restriction
in the quark sector for the states jni which appear in
periodic/antiperiodic boundary conditions. This means
that the following states can contribute in the correlators

jni � any states includingj0i; j �Ki; j �Ni; j �N �Ki � � �

for periodic/antiperiodic b.c.;

jni;fi � any states�with U � D� S � 0� includingj0i � � �

for Dirichlet b.c.; (11)

where j �Ki and j �Ni are the antiparticle states of jKi and jNi,
respectively. Therefore, the correlators have the contribu-
tions in the long range limit,
-3
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CP=AP�T� � h0j
jNKihNKj
j0ie�ENKT

� h0j
j
ih
j
j0ie�E
T

� h �Kj
jNihNj
j �Kie�ENT�E �K�Nt�T�

� h �Nj
jKihKj
j �Nie�EKT�E �N�Nt�T�

� h �N �K j
j0ih0j
j �N �Kie�E �N �K�Nt�T�

� and excited states; (12)

CD�T� � hDj0ih0j
jNKihNKj
j0ih0jDie�ENKT

� hDj0ih0j
j
ih
j
j0ih0jDie�E
T

� and excited states: (13)

In Fig. 1, we give a schematic picture of the contributions
to the correlators. The first two terms in Eq. (12) are the
contributions from the five quark states as given in diagram
(A). The third, the fourth, and the fifth terms in Eq. (12)
which correspond to diagrams (C), (D), and (B) are had-
ronic contributions which propagate beyond the boundary.
As a result, the correlation h
�T � tsrc�
�tsrc�i inevitably
contains unwanted contributions such as

h �Kj
�T � tsrc�jNihNj
�tsrc�j �Ki � e�ENT�E �K�T�Nt�: (14)

In this case, the effective mass plot approaches EN � E �K
below the NK threshold as T is increased. On the other
hand, the contributions corresponding to diagrams (C),
(D), and (B) do not exist with Dirichlet boundary condi-
tions (Eq. (13)). Therefore, we find that it would be safest
to impose the Dirichlet boundary condition on the temporal
direction, since no quark can go over the boundary on t �
 5Q N

K

Kte
m

po
ra

l d
i r

ec
tio

n

K

N

N

 5Q

 5Q

--BOUNDARY--

--BOUNDARY--
(A) (B) (C) (D)

H(T)

H(0)

 H

(X)

H(T)

H(0)

(Y)

 H

 H

FIG. 1. Schematic figure for the explanation on the possible
contaminations of the particles propagating over the temporal
boundary. H�t� and 
�t� are the interpolating operators and their
arguments are the distances from the source point. H�t� is a
generic hadronic operator, which creates and annihilates the
particles which cannot decay in quenched QCD. The wave lines
represent the propagations of states. Resonance states like 
�

are represented by ‘‘5Q’’ in the figure, as well as NK scattering
states. The five-quark state can dissociate into forward-
propagating nucleon (Kaon) and backward-propagating Kaon
(nucleon).
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0 in the temporal direction. Although the boundary is
transparent for the particles composed only by gluons;
i.e. glueballs, due to the periodicity of the gauge action,
it would be however safe to neglect these gluonic particles
going beyond the boundary since these particles are rather
heavy. Then, the correlation h
�T � tsrc�
�tsrc�i mainly
contains only such terms ((A) in Fig. 1) as

hvacj
�T � tsrc�j5Qih5Qj
�tsrc�jvaci

� �1� "0�
X
i

W�
i e

�E�
i T � �1� "0�

X
i

W�
i e

�E�
i T (15)

with W�
i the weight factor and E�

i the eigenenergy of ith
state in positive/negative-parity channel, respectively. One
sees that one can now apply the prescription mentioned in
the last section.

One may wonder if these contaminations can be dis-
carded with the parity projection of the correlators by
taking linear combinations with periodic and antiperiodic
boundary conditions. This method indeed works for ordi-
nary three quark states where one can single out one of the
two contributions diagram (X) and (Y) in Fig. 1. However
even if one takes such linear combinations, one cannot
make the contributions from diagram (C) seen in
Eq. (12) cancel out as opposed to the contributions from
diagram (B) and (D). It is because of the fact that the factor
���)n for the contribution (C) is always equal to 1. (We
note here that we can avoid these contaminations using the
‘‘averaged quark propagator’’ [31].) Some of the previous
lattice QCD studies on 
� adopted a parity projection
method using the combination with periodic and antiperi-
odic boundary conditions [18,22]. We stress that one
should in principle be careful whether the result is free
from the contamination owing to the boundary condition
which is peculiar to the pentaquark and can mimic a fake
plateau in the propagator.

After obtaining the energy spectrum, we carry out a
study of the spectral weight for ��u;d; �s� �
�0:1600; 0:1600�. Introducing two smeared operators

1

smear, 

2
smear we compute the following correlators

C IJ�T� �
X
~x

h
I� ~x; T � tsrc�

J
smear�tsrc�i; (16)

from which we extract the spectral weights using a con-
strained double exponential fit. The details will be ex-
plained in Sec. VII.
IV. LATTICE QCD DATA

Before obtaining the energies of the lowest state and the
2nd-lowest state, there are only a few simple steps. First,
we calculate the 2� 2 correlation matrix C�T� defined in
Eq. (9) and obtain the ‘‘energies’’ fEi�T�g as the logarithm
of eigenvalues feEi�T�g of the matrix product C�1�T �
1�C�T�. After finding the T range (Tmin � T � Tmax),
where fEi�T�g are stable against T, we can extract the
-4
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energies Ei by the least /-squared fit of the data as Ei �
Ei�T� in Tmin � T � Tmax.

Since the volume dependence of the energy is crucial to
judge whether the state is a resonance or not, a great care
must be paid in extracting the energy. Therefore, the sys-
tematic error by the contaminations from higher excited
states should be avoided by a careful choice of fitting
ranges. For this reason, we impose the following criteria
for the reliable extraction of the energies. Although this set
of the criteria is nothing more than just one possible choice,
we believe it is important to impose some concrete criteria
for the fit so that we can reduce the human bias for the fit,
though not completely.
(1) T
FIG. 2.
�0; 1=2
5:7. Th
the das
he effective mass plot should have ‘‘plateau’’ for
both the lowest and the 2nd-lowest states simulta-
neously in a fit range [Tmin, Tmax], where the length
Nfit 
 Tmax � Tmin � 1 should be larger than or
equal to 3 (Nfit � 3).
(2) I
n the plateau region, the signal for the lowest and
the 2nd-lowest states should be distinguishable, so
that the gap between the central values of the lowest
and the 2nd-lowest energies should be larger than
their errors.
(3) T
he fitted energies should be stable against the
choice of the fit range; i.e. the results of the fit
with Nfit time slices and with Nfit � 1 time slices
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should be consistent within statistical errors for both
the lowest and the 2nd-lowest states.
(4) T
he lowest-state energy obtained by the diagonal-
ization method using the 2� 2 correlation matrix
should be consistent with the value from a single
exponential fit for a sufficiently large t.
If the fit does not satisfy the above conditions, we discard
the result since either the data in the fit range may be
contaminated by higher excited states or the 2nd-lowest
state signal is too noisy for a reliable fit.

Figures 2 show the ‘‘effective mass’’ plot Ei�T� for
the heaviest combination of quarks ��u;d; �s� �
�0:1600:0:1600�. As is mentioned in Sec. II, we need to
find the T region (Tmin � T � Tmax) where each Ei�T�
shows a plateau. In the case of 123 � 24 lattice in Fig. 2,
for example, we choose the fit range of Tmin � 6 and
Tmax � 9 (Nfit � 4). Notice that the source operators are
put on the time slice with t � tsrc � 6. The plateau in this
region satisfies the above criteria so that we consider the fit
E�
0 and E�

1 for the range 6 � T � 9 as being reliable. The
situation is similar for the cases of 103 � 24 and 163 � 24
lattices. On the other hand, in the case of 83 � 24 lattice we
do not find a plateau region satisfying the above criteria.

Figures 3–6, shows the ‘‘effective mass’’ plots for the
combinations with smaller quark masses. We find that the
signal is noisier for the lighter quarks and the fit with the
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FIG. 3. The ‘‘effective mass’’ plot Ei�T� as the function of T, the separation between source operators and sink operators, in �I; JP� �
�0; 1=2�� channel with the hopping parameters ��u;d; �s� � �0:1600:0:1650� on 83 � 24, 103 � 24, 123 � 24, 163 � 24 lattice at � �
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FIG. 4. The ‘‘effective mass’’ plot Ei�T� as the function of T, the separation between source operators and sink operators, in �I; JP� �
�0; 1=2�� channel with the hopping parameters ��u;d; �s� � �0:1650; 0:1600� on 83 � 24, 103 � 24, 123 � 24, 163 � 24 lattice at � �
5:7.
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FIG. 6. The ‘‘effective mass’’ plot Ei�T� as the function of T, the separation between source operators and sink operators, in �I; JP� �
�0; 1=2�� channel with the hopping parameters ��u;d; �s� � �0:1650; 0:1650� on 83 � 24, 103 � 24, 123 � 24, 163 � 24 lattice at � �
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FIG. 5. The ‘‘effective mass’’ plot Ei�T� as the function of T, the separation between source operators and sink operators, in �I; JP� �
�0; 1=2�� channel with the hopping parameters ��u;d; �s� � �0:1625; 0:1650� on 83 � 24, 103 � 24, 123 � 24, 163 � 24 lattice at � �
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smaller volumes 83 � 24 and 103 � 24 lattices do not
satisfy the criteria.

V. LOWEST-STATE ENERGY IN �I; JP� � �0; 12
��

CHANNEL

A. The volume dependence of the lowest-state energy

Now we show the lattice QCD results of the lowest state
in I � 0 and JP � 1

2
� channel. The filled circles in Fig. 7

show the lowest-state energies E�
0 in I � 0 and JP � 1

2
�

channel on four different volumes. Here the horizontal axis
denotes the lattice extent L in the lattice unit and the
vertical axis is the energy of the state. The lower line
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FIG. 7. The black (gray) filled squares denote the lattice QCD data
Nfit � 1 (Nfit) data plotted against the lattice extent L. The filled c
�I; JP� � �0; 12

�� channel. The open symbols are the sum Ej ~nj�1
N �

smallest lattice momentum j ~pj � 2�
L j ~nj � 2�=L. The upper line repr

relative momentum on the lattice. The lower line represents the simpl
adopt the central values of MN and MK obtained on the largest latti
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denotes the simple sum MN �MK of the nucleon mass
MN and Kaon mass MK obtained with the largest lattice.
Though MN and MK are slightly affected by finite-volume
effects, the deviation of MN �MK�L � 8� from MN �
MK�L � 16� is about a few % (Table I). We therefore
simply use MN �MK�L � 16� as a guideline.

At a glance, we find that the energy of this state takes
almost constant value against the volume variation and
coincides with the simple sum MN �MK. We can there-
fore conclude that the lowest state in I � 0 and JP � 1

2
�

channel is the NK scattering state with the relative mo-
mentum jpj � 0. The good agreement with the sum MN �
MK implies the weakness of the interaction between N and
2 14 16 18
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of the 2nd-lowest state in �I; JP� � �0; 12
�� channel extracted with

ircles represent the lattice QCD data E�
0 of the lowest state in

Ej ~nj�1
K of energies of nucleon Ej ~nj�1

N and Kaon Ej ~nj�1
K with the

esents
����������������������
M2
N � jpj2

q
�

����������������������
M2
K � jpj2

q
with jpj � 2�=L the smallest

e sumMN �MK of the masses of nucleon MN and KaonMK. We
ce to draw the two lines.
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TABLE I. The pion masses M�, Kaon masses MK, nucleon masses MN , masses of the ground state of negative-parity nucleon MN� ,
energies of the lowest state E�

0 , energies of the 2nd-lowest state E�
1 , energies of the lowest state ENK (obtained by single-exponential

fit) in the �I; JP� � �0; 12
�� channel are listed. The energies of the obtained state E�

0 in the �I; JP� � �0; 12
�� channel are also listed. �u;d

and �s are the hopping parameters for u; d quarks and s quark, respectively.

��u;d; �s� � �0:1650; 0:1650�

size M� MK MN MN� E�
0 E�

1 ENK E�
0

83 � 24 0.4378(49) 0.4378(49) 1.0463(89) 1.4706(338) � � � � � � 1.3841(202) � � �

103 � 24 0.4543(17) 0.4543(17) 1.0591(91) 1.4313(292) � � � � � � 1.4704(202) 2.0987(45)
123 � 24 0.4563(13) 0.4563(13) 1.0281(74) 1.4760(309) 1.4601( 75) 1.7881(829) 1.4715(107) 2.0502(26)
163 � 24 0.4556(11) 0.4556(11) 1.0143(44) 1.4791(278) 1.4616( 56) 1.7157(452) 1.4743( 74) 1.9951(19)

��u;d; �s� � �0:1625; 0:1650�

size M� MK MN MN� E�
0 E�

1 ENK E�
0

83 � 24 0.5747(21) 0.5130(31) 1.2112(133) 1.5973(220) 1.6123(139) 2.6447(3322) 1.6119(195) 2.2065(368)
103 � 24 0.5785(11) 0.5199(14) 1.1814( 55) 1.5712( 93) 1.6673( 96) 2.0912(2305) 1.6687(127) 2.2120(393)
123 � 24 0.5792(10) 0.5205(10) 1.1655( 47) 1.5930(175) 1.6612( 55) 1.9228(348) 1.6763( 70) 2.2145(293)
163 � 24 0.5789( 9) 0.5209(10) 1.1590( 37) 1.5888(169) 1.6636( 42) 1.8769(225) 1.6745( 50) 2.1734(223)

��u;d; �s� � �0:1600; 0:1650�

size M� MK MN MN� E�
0 E�

1 ENK E�
0

83 � 24 0.6839(18) 0.5761(25) 1.3270(110) 1.6956( 54) 1.8002(121) 2.5420(1226) 1.8109(259) 2.3666(122)
103 � 24 0.6873(10) 0.5819(12) 1.3070( 48) 1.6810(131) 1.8549( 78) 2.1797(1067) 1.8574( 90) 2.3547(253)
123 � 24 0.6883( 9) 0.5816(11) 1.3003( 48) 1.7198(221) 1.8627( 51) 2.0736(306) 1.8680( 57) 2.4004(396)
163 � 24 0.6867( 9) 0.5818( 9) 1.2921( 30) 1.7193(222) 1.8546( 37) 2.0429(156) 1.8668( 42) 2.3403(162)

��u;d; �s� � �0:1650; 0:1600�

size M� MK MN MN� E�
0 E�

1 ENK E�
0

83 � 24 0.4378(49) 0.5761(25) 1.0463( 89) 1.4705(338) � � � � � � 1.5150(259) 2.0510(732)
103 � 24 0.4543(17) 0.5823(17) 1.0774(128) 1.4313(292) � � � � � � 1.6088(173) 2.1897(1549)
123 � 24 0.4563(13) 0.5816(11) 1.0281( 74) 1.4760(309) 1.5838( 72) 1.8368(538) 1.5951(100) 2.1645(440)
163 � 24 0.4556(11) 0.5818( 9) 1.0143( 44) 1.4791(278) 1.5852( 55) 1.7855(313) 1.5987( 73) 2.0823(176)

��u;d; �s� � �0:1600; 0:1600�

size M� MK MN MN� E�
0 E�

1 ENK E�
0

83 � 24 0.6839(18) 0.6839(18) 1.3270(110) 1.6956( 54) � � � � � � 1.9239(226) 2.4376(105)
103 � 24 0.6873(10) 0.6873(10) 1.3070( 48) 1.6810(131) 1.9622( 73) 2.2085(478) 1.9617( 87) 2.4319(215)
123 � 24 0.6883( 9) 0.6883( 9) 1.2987( 42) 1.7198(221) 1.9632( 51) 2.1528(195) 1.9705( 56) 2.4820(312)
163 � 24 0.6867( 9) 0.6867( 9) 1.2906( 30) 1.7193(222) 1.9641( 40) 2.1158(153) 1.9723( 41) 2.4180(138)
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K. In fact, the scattering length in the I � 0 channel is
known to be tiny (aKN0 �I � 0� � �0:0075 fm) from com-
pilations of hadron scattering experiments [32,33],
whereas the current algebra prediction from partially con-
served axial-vector current (PCAC) with SU(3) symmetry
predicts that the scattering length aKN0 �I � 0� � 0.

B. Comparison with the previous lattice work

We here compare our data with the previous lattice QCD
studies, which were performed with almost the same con-
ditions as ours, in order to confirm the reliability of our
data.

The well-known hadron massesm�,mK, andmN listed in
Table I can be compared with the values in Ref. [28]. Our
data are consistent with those in Ref. [28]. The lowest NK
scattering state in �I; JP� � �0; 12

�� channel is carefully
114509
investigated in Ref. [30] with almost the same parameters
as our present study. It is worth comparing our data with
them. For the complete check of our data, we reextract the
lowest state by the ordinary single-exponential fit of the
correlator as h
�T � tsrc�
wall�tsrc�i � Ce�ENKT in the
large-T region, and compare them with the present lattice
data E�

0 obtained by the multiexponential method as well
as the data in Ref. [30]. In Table I, we list the data of the
lowest-state ENK obtained by the single-exponential fit.
They almost coincide with the present data E�

0 extracted
by the multiexponential method with about 1% deviations,
which may be considered as the slightly remaining con-
taminations of the higher excited state. In Ref. [30], the
authors extracted the energy difference �E � ENK �
�EN � EK� with the hopping parameters �u;d;s � 0:1640
using 123 � 20 lattice. We therefore compare our data
�E � ENK � �EN � EK� obtained with the hopping pa-
-9
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rameters ��u;d; �s� � �0:1650; 0:1650� on 123 � 24 lattice.
The energy difference �E in our study is found to be �E �
�0:0128�38�, which is consistent with the value of
�0:0051�38� in Ref. [30] taking into account that this error
includes only statistical one.

It is now confirmed that the lowest state extracted using
the multiexponential method is consistent with the pre-
vious works and that our data and method are reliable
enough to investigate the 2nd-lowest state in this channel.
VI. 2ND-LOWEST-STATE ENERGY IN �I; JP� �
�0; 12

�� CHANNEL

The �I; JP� � �0; 12
�� state is one of the candidates for


��1540�. Since 
� is located above the NK threshold, it
would appear as an excited state in this channel. We show
the lattice data of the 2nd-lowest state in this channel.

In order to distinguish a possible resonance state from
NK scattering states, we investigate the volume depen-
dence of both the energy and the spectral weight of each
state. It is expected that the energies of resonance states
have small volume dependence, while the energies of NK

scattering states are expected to scale as
����������������������������
M2
N � j 2�L ~nj2

q
�����������������������������

M2
K � j 2�L ~nj2

q
according to the relative momentum 2�

L ~n
between N and K on a finite periodic lattice, provided that
the NK interaction is weak and negligible. We can take
advantage of the above difference for the discrimination.

A. Possible corrections to the volume dependence
of NK scattering states

A possible candidate for the volume dependence of the
energies of NK scattering states is the simple formula as

E~n
NK�L� 


����������������������������
M2
N � j 2�L ~nj2

q
�

����������������������������
M2
K � j 2�L ~nj2

q
with the

relative momentum 2�
L ~n between N and K in finite periodic

lattices, which is justified on the assumption that nucleon
and Kaon are point particles and that the interaction be-
tween them is negligible. In practice, there may be some
corrections to the volume dependence of E~n

NK�L�. We
therefore estimate here three possible corrections; the ex-
istence of the NK interaction, the application of the mo-
menta on a finite discretized lattice and the estimation of
the implicit finite-size effects.

There can be small hadronic interactions between nu-
cleon and Kaon, which may lead to correction to naively
expected energy spectrum E~n

NK�L� of the NK scattering
states. Using Lüscher formula [34], one can relate the
scattering phase shift to the energy shift from E~n

NK�L� on
finite lattices. For example, in the case when a system
belongs to the representation A�

1 of cubic groups, which
is relevant in the present case, the relation between the
phase shift and the possible momentum spectra is
114509
e2i�0�k� �
Z�1; q2� � i�

2
3q

Z�1; q2� � i�
2
3q
: (17)

Here Z�s; q2� is the Zeta function defined as

Z �s; q2� 

1�������
4�

p
X
n2Z3

1

�n2 � q2�s
; (18)

with the eigenenergy q on a finite lattice. We have simply
omitted the corrections from the partial waves with angular
momenta higher than the next-smallest one (l � 4).
Although our current quark masses are heavier than those
of the real quarks, we use the empirical values of the phase
shift in NK scattering in Ref. [35], by simply neglecting
the quark mass dependence. The correction using the
empirical values results in at most a few % larger energy
than the simple formula E~n

NK�L� within the volume range
under consideration; the energies are slightly increased by
the weak repulsive force between nucleon and Kaon.

One may claim that one has to adopt momenta on a finite
discretized lattice: j ~pj2 � 4sin2��L� � j ~nj

2 for Kaon and
j ~pj2 � sin2�2�L � � j ~nj

2 for nucleon, respectively. This cor-
rection turns out to be within only a few % lower energy
than E~n

NK�L�, although it is not certain whether this cor-
rection is meaningful or not for composite particles like
nucleon or Kaon.

We find that these corrections lead to at most a few %
deviations from E~n

NK�L�. We then neglect these corrections
for simplicity in the following discussion and use the
simple form E~n

NK�L�.
So far, we have neglected the implicit finite-size effects

in E~n
NK�L�, other than the explicit ones due to the lattice

momenta j ~pj � 2�
L j ~nj. Some smart readers may suspect

that the dispersions
����������������������������
M2
N � j 2�L ~nj2

q
and

����������������������������
M2
K � j 2�L ~nj2

q
may be affected by the uncontrollable finite-size effects
due to the finite sizes of N and K, and no longer valid.
In order to make sure of the small implicit artifacts
especially with j ~nj � 1, which we are mainly interested
in, we also calculate the sum Ej ~nj�1

N � Ej ~nj�1
K of energies

of nucleon Ej ~nj�1
N and Kaon Ej ~nj�1

K with the smallest non-
zero lattice momentum j ~pj � 2�

L j ~nj � 2�=L. We extract
E~n
N and E~n

K from the correlators
P

~xe
i2�L ~n� ~xhN� ~x; t�

tsrc�N�0; tsrc�i and
P

~xe
i2�L ~n� ~xhK� ~x; t� tsrc�K�0; tsrc�i.

These results are denoted by the open squares in Fig. 7
as the sum Ej ~nj�1

N � Ej ~nj�1
K . The upper lines in Fig. 7 show

Ej ~nj�1
NK 


��������������������������������
M2
N � �2�=L�2

q
�

��������������������������������
M2
K � �2�=L�2

q
. The devi-

ations of Ej ~nj�1
N � Ej ~nj�1

K from Ej ~nj�1
NK are very small, which

implies the smallness of the implicit finite-size artifacts.
Therefore, provided that the interaction between nucleon
and Kaon is weak, which we assume throughout the
present analysis, the naive expectation for the 2nd-lowest
NK scattering states denoted by the upper line in Fig. 7
would be able to follow the energies of the 2nd-lowest NK
scattering states even on the L � 8 lattices in our setup.
-10
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B. The volume dependence of the 2nd-lowest-state
energy

We compare the lattice data E�
1 with the expected

behaviors Ej ~nj�1
NK for the 2nd-lowest NK scattering states.

The filled squares in Fig. 7 denote E�
1 , the 2nd-lowest-state

energies in this channel. The black and gray symbols are
the lattice data obtained by the fits with Nfit � 1 and Nfit

time slices, respectively, (see the criterion 3 in the Sec. IV).
The upper line shows the expected energy-dependence on
V of the 2nd-lowest NK scattering state Ej ~nj�1

NK 
��������������������������������
M2
N � �2�=L�2

q
�

��������������������������������
M2
K � �2�=L�2

q
estimated with the

next-smallest relative momentum between N and K, and
with the masses MK and MN extracted on the L � 16
lattices. Although the lattice QCD data E�

1 and the ex-
pected lines Ej ~nj�1

NK almost coincide with each other on the
L � 16 lattices, which one may take as the characteristics
of the 2nd-lowest scattering state, the data E�

1 do not
follow Ej ~nj�1

NK in the smaller lattices. (At the smallest latti-
ces with L � 8 (1.4 fm) in the physical unit, some results
apparently coincide with each other again. However we
consider that the volume with L� 1:4 fm is too small for
the pentaquarks; it is difficult to tell which is the origin of
the coincidence, uncontrollable finite-volume effects of the
pentaquarks or expected volume dependence of the 2nd-
lowest NK scattering state.) Especially when the quarks
are heavy, composite particles will be rather compact and
we expect smaller finite-volume effects besides those aris-
ing from the lattice momenta ~p � 2�

L ~n. Moreover the
statistical errors are also well controlled for the heavy
quarks. Thus, the significant deviations in 1:5 & L &

3 fm with the combination of the heavy quarks, such as
��u;d; �s� � �0:1600; 0:1600�, are reliable and the obtained
states are difficult to explain as the NK scattering states.

Therefore one can understand this behavior with the
view that this state is a resonance state rather than a
scattering state. In fact, while the data with the lighter
quarks have rather strong volume dependences which can
be considered to arise due to the finite size of a resonance
state, the lattice data exhibit almost no volume dependence
with the combination of the heavy quarks especially in
1:5 & L & 3 fm, which can be regarded as the character-
istic of resonance states.
VII. THE VOLUME DEPENDENCE OF THE
SPECTRAL WEIGHT

For further confirmation, we investigate the volume
dependence of the spectral weight [22]. As mentioned in
Sec. II, the correlation function hO�T�Oy�0�i can be ex-
panded as hO�T�Oy�0�i �

P
Wie

�EiT . The spectral weight
of the ith state is defined as the coefficient Wi correspond-
ing to the overlap of the operator O�t� with the ith excited
state. The normalization conditions of the field  and the
states jii give rise to the volume dependence of the weight
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factors Wi in accordance with the types of the operators
O�t�.

For example, in the case when a correlation function is
constructed from a point source and a zero-momentum
point sink, as

P
~xh
� ~x; T � tsrc�
�~0; tsrc�i, the weight fac-

tor Wi takes an almost constant value if jii is the resonance
state where the wave function is localized. If the state jii is
a two-particle state, the situation is more complicated.
Nevertheless if there is almost no interaction between the
two particles, the weight factor is expected to be propor-
tional to 1

V . In the case when a source is a wall operator

wall�tsrc� as taken in this work, a definite volume depen-
dence of Wi is not known. Therefore, we reexamine the
lowest state and the 2nd-lowest state in �I; JP� � �0; 12

��

channel using the locally-smeared source 
2
smear�tsrc� 
P

~x2" 

2� ~x; tsrc� with " 
 �f0; 3g; f0; 3g; f0; 3g�, which we

introduce to partially enhance the ground-state overlap.
Since smeared operators, whose typical sizes are much
smaller than the total volume, can be regarded as local
operators, we can discriminate the states using the locally-
smeared operators as in the case of point operators. (We
also investigated the weight factor using the point source.
The results are consistent with those obtained using the
locally-smeared one, but are rather noisy.) We adopt the
hopping parameter ��u;d; �s� � �0:1600; 0:1600� and addi-
tionally employ 143 � 24 lattice for this aim.

We extract W0 and W1 using the two-exponential fit asP
~xh


2� ~x; T � tsrc�

2
smear�~0; tsrc�i � W0e

�V0T �
W1e

�V1T . The fit with four free parameters W0, W1, V0,
and V1 is however unstable and therefore we fix the
exponents using the obtained values E�

0 and E�
1 . The

weight factors W0 and W1 are then obtained through the
two-parameter fit as

P
~xh


2� ~x; T � tsrc�

2
smear�~0; tsrc�i �

W0e
�E�

0 T �W1e
�E�

1 T in as large t range (Tmin �
T � tsrc � Tmax) as possible in order to avoid the contam-
inations of the higher excited states than the 2nd-excited
state (3rd-lowest state), which will bring about the insta-
bility of the fitted parameters. The fluctuations of E�

0 and
E�
1 are taken into account through the Jackknife error

estimation. Figure 8 includes all the results with the various
fit range as �Tmin; Tmax� � �16; 18�, (17,19), (18,20) to see
the fit-range dependence. Though the results have some fit-
range dependences, the global behaviors are almost the
same among the three.

The left figure in Fig. 8 shows the weight factor W0 of
the lowest state in �I; JP� � �0; 12

�� channel against the
lattice volume V. We find that W0 decreases as V increases
and that the dependence on V is consistent with 1

V , which is
expected in the case of two-particle states. It is again
confirmed that the lowest state in this channel is the NK
scattering state with the relative momentum jpj � 0. Next,
we plot the weight factor W1 of the 2nd-lowest state in the
right figure. In this figure, almost no volume dependence
against V is found, which is the characteristic of the state in
-11
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which the relative wave function is localized. (In the
appendix, we try another prescription to estimate the vol-
ume dependences of the spectral weights, which requires
no multiexponential fit.) This result can be considered as
one of the evidences of a resonance state lying slightly
above the NK threshold.

To summarize this section, the volume dependence
analysis of the eigenenergies and the weight factors of
the 2nd-lowest state in �I; JP� � �0; 12

�� channel suggests
the existence of a resonance state. Although there remain
the statistical errors and the possible finite-volume arti-
facts, the data can be consistently accounted for assuming
the 2nd-lowest state to be different from ordinary scatter-
ing states. If the 2nd-lowest state were an ordinary scatter-
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sum MN� �MK of the masses of the lowest-state negative-parity nu
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ing state, one had to assume a large systematic errors for
heavier quarks which is hard to understand consistently.

VIII. �I; JP� � �0; 12
�� CHANNEL

In the same way as �I; JP� � �0; 12
�� channel, we have

attempted to diagonalize the correlation matrix in �I; JP� �
�0; 12

�� channel using the wall sources 
wall�t� and the zero-
momentum point sinks

P
~x
� ~x; t�. In this channel, the

diagonalization is rather unstable and we find only one
state except for tiny contributions of possible other states.
We plot the lattice data in Fig. 9. One finds that they have
almost no volume dependence and that they coincide with
the solid line which represents the simple sum MN� �MK
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24 lattice at � � 5:7 employing the hopping parameters
��u;s; �s� � �0:1600; 0:1600� are plotted, along with the dashed
line which denotes the lowest-state energy E�

0 .
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of MN� and MK, with MN� the mass of the ground state of
the negative-parity nucleon. From this fact, the state we
observe is concluded to be the N�-K scattering state with
the relative momentum jpj � 0. It may sound strange
because the p-wave state of N and K with the relative
momentum jpj � 2�=L should be lighter than the N�-K
scattering state with the relative momentum jpj � 0; this
lighter state is missing in our analysis. This failure would
be due to the wall-like operator 
wall�t�. The fact that the
wall operator 
wall�t� is constructed by the spatially spread
quark fields

P
~xq�x� with zero momentum may lead to the

large overlaps with the NK scattering state with zero
relative momentum. The relation between operators and
overlap coefficients is an interesting problem and is to be
explored in detail for further studies. Anyway, the strong
dependence on the choice of operators suggests that it is
needed to try various types of operators before giving the
final conclusion.

Before closing this section, we show the spectral
weight W�

0 obtained by the fit using the form h
1�t�
tsrc�


1
wall�tsrc�i � W�

0 e
�E�

0 t in Fig. 10. Although one
sees the 1

V -like volume dependence in Fig. 10, one can
conclude nothing only from this behavior unless the pre-
cise volume dependences of the weight factors in wall-
point correlators are estimated.

IX. DISCUSSION

A. Operator dependence

We here mention the operator dependences in �I; JP� �
�0; 12

�� channel. As is seen in Sec. VIII, the overlap
factors with states strongly depend on the choice of
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operators. We survey the effective masses of the five
correlators;

P
~xh


1�~x; T � tsrc�

1
wall�tsrc�i,

P
~xh


2�~x; T �

tsrc�

2
wall�tsrc�i,

P
~xh


1�~x;T� tsrc�

1�tsrc�i,

P
~xh


2�~x;T�
tsrc�


2�tsrc�i, and
P
~xh


3�~x; T � tsrc�

3�tsrc�i. The effec-

tive mass E�T� is defined as a ratio between correlators
with the temporal separation T and T � 1,

E�T� 
 ln
hO�T�O�0�yi

hO�T � 1�O�0�yi
; (19)

which can be expressed in terms of the eigenenergies and
spectral weights as

E�T�� ln

P
i
Wie�EiTP

i
Wie�Ei�T�1�

�E0�
W1

W2
e��E1�E0�T� . . . (20)

A plateau in E�T� at E0 implies the ground-state domi-
nance in the correlator. Effective mass plots E�T� are often
used to find the range where correlators show a single-
exponential behavior; the higher excited-state contribu-
tions Wie

�EiT�i > 0� are negligible in comparison with
the ground-state component W0e�E0T .

Here, 
3 is an interpolation operator defined as


3�x� 
 "abc"aef"bgh�ue�x�Cdf�x���ug�x�C"5dh�x��C�sc�x�

(21)

which has a di-quark structure similar to that proposed by
Jaffe and Wilczek [36], and is also used in Refs. [19,21,23].
Figure 11 shows the effective mass plots constructed
from

P
~xh


1�~x; T � tsrc�

1
wall�tsrc�i,

P
~xh


2�~x;T�
tsrc�


2
wall�tsrc�i,

P
~xh


1�~x;T� tsrc�

1�tsrc�i,

P
~xh


2�~x;T�
tsrc�


2�tsrc�i, and
P
~xh


3�~x; T � tsrc�

3�tsrc�i. One can see
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two typical behaviors in the figure. One is the line damping
from a large value to the energy E�

0 of the lowest NK
scattering state. The other is the one arising upward to E�

0 .
Surprisingly, the differences of the spinor structure or the
color structure among the operators are hardly reflected in
the effective mass plots. The difference is enough to per-
form the variational method but seems insufficient for a
clear change of the effective mass plots. Instead, the effec-
tive mass plots seem sensitive to the spatial distribution of
operators. The upper three symbols are data using the
point-point correlators and the lower two symbols are those
from the wall-point correlators. This means the overlap
factor with each state is controlled mainly by the spatial
distribution rather than the internal structure of operators,
except for the overall constant. The spatially smeared
operators seem to have larger overlaps with the scattering
state with the relative momentum jpj � 0. (One can find
that the overlap factor of the wall operator with the ob-
served state in �I; JP� � �0; 12

�� in Fig. 10 is 1000 times
larger than those of point operators in Fig. 8.) One often
expects that the overlap with a state could be enhanced
using an operator whose spinor or color structures resem-
bles the state. We find however no such tendency in the
present analysis. The insensitivity to the spinor structures
may come from the fact that the KN-type operator (
1)
and the di-quark type operator (
3) are directly related by
a factor of "5 and a Fierz rearrangement [22]. Though we
have no idea about the mechanism of the insensitivity to
the color structure at present, this insensitivity would have
some connection with the internal color structure of 
�.

The upper three data slowly damp and do not reach the
lowest energy E�

0 in this T range, which can be explained
in terms of the spectral weight. As is seen in Fig. 8, W0 is
ten times smaller than W1 in the case of the point-point
correlator. Then, the term W1

W0
e��E�

1 �E
�
0 �t in the effective

mass survives at relatively large T. Hence the effective
mass needs larger T to show a plateau at E�

0 . The insensi-
tivity of the overlaps to the internal structure of operators
could be helpful for us: We have adopted two operators
whose color and spinor structures are different from each
other. Although the difference is enough in �I; JP� �
�0; 12

�� channel, it may be insufficient in �I; JP� � �0; 12
��

channel, which leads to the failure in the diagonalization. If
we use operators with spatial distributions different from
each other, it would be more effective in the diagonaliza-
tion method.

B. Comment on other works

Here we comment on other works previously published,
especially for the pioneering works by Csikor et al. [18]
and Sasaki [19]. The simulation condition for the former is
rather similar to ours.

Csikor et al. first reported the possible pentaquark state
slightly above the NK threshold in �I; JP� � �0; 12

�� chan-
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nel in [18]. In Ref. [18], they tried chiral extrapolations and
taking the continuum limit at the quenched level for the
possible pentaquark state. However they used the single-
exponential fit analysis for the nonlowest state, namely, the
possible pentaquark state, for the main results. It is difficult
to justify their result unless the coupling of the operators to
the lowest NK state is extremely small.

Sasaki found a double plateau in the effective mass plot
and identified the 2nd-lowest plateau as the signal of 
�.
Unfortunately, we do not find a double plateau in the
present analysis. The double plateaulike behavior in effec-
tive mass plots can appear only under the extreme condi-
tion that W1 is much larger than W0. W1 which is ten times
larger than W0 seen in Fig. 8 and the statistical fluctuations
may cause the deviation of the effective mass plot from the
single monotonous line. In fact, the effective mass plot
very slowly approaches E�

0 as T increases in Fig. 11. He
extracted the mass of the next-lowest state with single and
double-exponential fits. The results do not contradict with
ours.

Reference [22] reports a lattice QCD study which
adopted the overlap fermions with the exact chiral sym-
metry. The hybrid-boundary method was suggested in
Ref. [23] and the authors tried to single out the possible
resonance state. In these two studies, the absence of reso-
nance states with a mass a few hundred MeVabove the NK
threshold was concluded. We have not found the resonance
state which coincides just with the mass of 
� in the chiral
limit. In this sense, the results in Refs. [22,23] are not
inconsistent with ours.

C. Chiral extrapolation

We perform chiral extrapolations for Kaon, nucleon,NK
threshold (a simple sum of a Kaon mass and a nucleon
mass), and the 2nd-lowest state in the �I; JP� � �0; 12

��

channel. We adopt the lattice data with 163 � 24 lattice,
the largest lattice in our analysis. One can find in Fig. 7 that
the 2nd-lowest state, which is expected to be a resonance
state, is already affected by the finite-volume effects for
L � 12 with the lightest combination of quarks, and we
therefore adopt the largest-lattice data for safety. We can
expect from this fact that the typical diameter of this
resonance is about 2 fm or longer and that it is desirable
to use larger lattices than �2:5 fm�3 for the analysis of 
�.

In Fig. 12, MK �MN and E�
1 obtained with each com-

bination of quark masses for 123 � 24 and 163 � 24 latti-
ces are plotted against m2

�. We assume the linear function
of quark masses, EB�mu;d; ms� � b00 � b10mu;d � b01ms,
for nucleon and the 2nd-lowest state with bij free parame-
ters fitted using the five lattice data. We determine the
critical � (�c) by M2

� and fix the �s so that the physical
Kaon mass is reproduced in the chiral limit, using the form
for pseudoscalar mesons E2

PS�mu;d; ms� � a10mu;d �
a01ms. The chiral-extrapolated values of MK, MN , MK �
MN , and E�

1 for 163 � 24 lattice are 0.4274(12),
-14
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0.7996(60), 1.227(6), and 1.500(52) in the lattice unit and
0.5001(14), 0.9355(70), 1.436(7), and 1.755(61) in the unit
of GeV, respectively. We find that the results for 123 � 24
lattice are consistent within errors as shown in Fig. 12.

The value of E�
1 � 1755�61� MeV in the chiral limit is

significantly larger than the mass of 
��1540� in the real
world. How can we interpret this deviation? One possibil-
ity is the systematic errors from the discretization, the
chiral extrapolation, or quenching. Another possibility is
that the observed 2nd-lowest state might be a signal of a
resonance state lying higher than 
�. Unfortunately there
is no clear explanation at this point. Obviously more
extensive studies on finer lattices with lighter quark masses
in unquenched QCD are required. However, we can at least
conclude that our quenched lattice calculations suggest the
existence of a resonancelike state slightly above the NK
threshold for the parameter region we have investigated.
X. SUMMARY AND FUTURE WORKS

We have performed the lattice QCD study of the
�S; I; J� � ��1; 0; 12� states on 83 � 24, 103 � 24, 123 �
24, and 163 � 24 lattices at � � 5:7 at the quenched level
with the standard plaquette gauge action and Wilson quark
action. To avoid the possible contaminations originating
from the (anti)periodic boundary condition, which are
peculiar to the pentaquark and have not been properly
noticed in previous studies, we have adopted the
Dirichlet boundary condition in the temporal direction
for the quark field. With the aim to separate states clearly,
we have adopted two independent operators with I � 0 and
JP � 1

2 so that we can construct a 2� 2 correlation matrix.
From the correlation matrix of the operators, we have

successfully obtained the energies of the lowest state and
the 2nd-lowest state in the �I; JP� � �0; 12

�� channel. The
volume dependence of the energies and spectral weight
factors show that the 2nd-lowest state in this channel is
114509
likely to be a resonance state located slightly above theNK
threshold and that the lowest state is the NK scattering
state with the relative momentum jpj � 0. As for the
�I; JP� � �0; 12

�� channel, we have observed only one state
in the present analysis, which is likely to be a N�K scat-
tering state of the ground state of the negative-parity
nucleonN� and Kaon with the relative momentum jpj � 0.

We have also investigated the overlaps using five inde-
pendent operators. As a result, we have found that the
overlaps seem to be insensitive to the spinor and color
structure of operators while the overlaps are mainly con-
trolled by the spatial distributions of operators, at least for a
few low-lying states in this analysis. For the diagonaliza-
tion method, it may be more effective to vary the spatial
distributions rather than the internal structures.

The volume dependence of E�
1 suggests that this reso-

nancelike state in the �I; JP� � �0; 12
�� channel is a rather

spread object with the radius of about 1 fm or more. The
possibility of a resonance state lying in �I; JP� � �0; 12

��

channel is desired to be confirmed by other theoretical
studies, such as quark models, QCD sum rules, string
models, and so on [10,11,13,14,16,37,38]. Unfortunately,
four quarks uudd and one antiquark �s in J � 1

2
� state can

hardly reproduce the unusually narrow width of 
� so far,
while the obtained mass in JP � 1

2
� channel could be

assigned to the observed resonance state [37,38]. Hence,
JP � 3

2
� or JP � 1

2
� states are favored to reproduce the

width in terms of the quark model. However, there are
many unknown problems left so far such as the internal
structure of multiquark hadrons [11,36,39–42] or the dy-
namics of the string/flux tubes [40,42]. The discovery of

� gives us many challenges in the hadron physics and
more detailed theoretical study including the lattice QCD
studies are awaited.

For further analyses, a variational analysis using the 3�
3 correlation matrix or larger matrices will be desirable.
The observation of wave functions will be also useful to
-15
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distinguish a resonance state from scattering states and to
investigate the internal structures of hadrons. We can use
the lattice QCD calculations in order to estimate the decay
width [43] and to study the flux-tube dynamics [40,42,44],
which should give useful inputs for model calculations.
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APPENDIX: ADDITIONAL ESTIMATIONS OF
WEIGHT FACTORS

In this appendix, we make another trial to estimate
volume dependences of weight factors in �I; JP� � �0; 12

��

channel. As seen in Sec. VII, we have extracted the weight
factors using double-exponential fit, which is however
rather unstable and we have therefore fixed the exponents.
We here discuss the possibility of methods without any
multiexponential fits. Let us again consider N � N corre-
lation matrices constructed by "-sink 5-source and "-sink
�-source correlators. Here 5, �, " denote the types of
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FIG. 13. The left figure shows det��CPS
IJ �T�C

PS
IJ �T � 1��1�TCPS

IJ �T��
of det��CPW

IJ �T�CPW
IJ �T � 1��1�TCPW

IJ �T�� against T. Det��CPW
IJ �T���

1��1�TCPS
IJ �T��, det��C

PW
IJ �T�CPW

IJ �T � 1��1�TCPW
IJ �T��, and det��CPW

IJ
with det�CPyCS�, det�CPyCW�, and det��CW��1CS�, respectively.
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operators, such as ‘‘point’’ or ‘‘wall’’ or ‘‘smear’’ and so
on. The notations are the same as those in Sec. II. The "�
5 and "� � correlation matrices are described as

C "5
IJ �T� 
 h
I

"�T � tsrc�

J
5�tsrc�i

� �C"y��T�C5�IJ � dIJe
�ENT � . . . (A1)

C "�
IJ �T� 
 h
I

"�T � tsrc�

J
��tsrc�i

� �C"y��T�C��IJ � d0IJe
�ENT � . . . (A2)

with N � N matrices (dIJe�ENT � . . . ) and (d0IJe
�ENT �

. . . ) being possible higher excited-state contaminations.
We hereby consider two quantities; �C"5

IJ �T�C
"5
IJ �T �

1��1�TC"5
IJ �T� defined using one type of the correlation

matrix and �C"5
IJ �T��

�1C"�
IJ �T�, which with large T lead to

�C"5
IJ �T�C

"5
IJ �T � 1��1�TC"5

IJ �T�

� C"yC5 �F �D�T�� � . . . (A3)

and

�C"5
IJ �T��

�1C"�
IJ �T� � �C5��1C� �F 0�D�T�� � . . . ;

(A4)

respectively. Here F �D�T�� and F 0�D�T�� are terms
including N � N diagonal matrix D�T� 

diag�e��EN�EN�1�T; . . . ; e��EN�E0�T�. Then, each component
of �C"5

IJ �T�C
"5
IJ �T�1��1�TC"5

IJ �T� and �C"5
IJ �T��

�1C"�
IJ �T�

gets stable and shows a plateau in large T region, where
F �D�T�� and F 0�D�T�� are negligible.

Next, we relate these quantities to spectral weights. For
this aim, we simply take the determinants. In the case when
the correlation matrices are 2� 2 matrices, the determi-
nant det��C5��1C�� is explicitly written as
detC�= detC5 � "IJC�0IC

�
1J="

I0J0C50I0C
5
1J0 , and the determi-

nant det�C"yC�� is expressed as �detC"y� � �detC�� �

�"IJC"yI0 C
"y
J1 � � �"I

0j0C�0I0C
�
1J0 � � "IJ"I

0J0C"yI0 C
�
0I0C

"y
J1 C

�
1J0 .

The term C�0IC
�
1J (C50IC

5
1J) denotes the product of the over-
12
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as the function of T on each volume. The middle figure is the plot
1CPS

IJ �T�� is plotted in the right figure. Det��CPS
IJ �T�C

PS
IJ �T �

�T���1CPS
IJ �T�� show plateaus in the large T region and coincide
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FIG. 14. Det�CPyCS� is plotted as the function of the lattice
volume V. The solid line denotes the best-fit curve by A1=V and
the dashed line does the best-fit curve by A2=V

2. The best-fit
parameters are A1 � 1:35 and A2 � 2:17, and /2=Ndf is 1.72 and
7.13, respectively. These data behave consistently in accordance
with 1=V.
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laps of the ��5�-type operator with the lowest state and the
2nd-lowest state. On the other hand, C"yI0 C

�
0I0 (C"yJ1 C

�
1J0)

corresponds to the spectral weight for the lowest (2nd-
lowest) state in the �-" correlator in terms of a volume
dependence.

Let us consider the several cases when �5;�; "� �
fW�wall�; S�smeared�; P�point�g. The term det�CPyCS�
behaves showing the same volume dependence as the
product of the spectral weights for the lowest and the
114509
2nd-lowest state in the smeared-point correlator, which
should be � 1

V � 1 � 1
V if the lowest state is a scatter-

ing state and the 2nd-lowest state is a resonance state. The
left panel in Fig. 13 represents det��CPS

IJ �T�C
PS
IJ �T �

1��1�TCPS
IJ �T�� on each volume. However,

det��CPS
IJ �T�C

PS
IJ �T � 1��1�TCPS

IJ �T�� on each volume,
which approaches det�CPyCS� with large T, has relatively
large errors and fluctuations with no clear plateau and
we fail to extract det�CPyCS�. This would be due to the
smallness of the signals in smeared-point correlators.
Meanwhile, det��CPW

IJ �T�CPW
IJ �T � 1��1�TCPW

IJ �T�� shown
in the middle panel in Fig. 13 and
det��CPW

IJ �T���1CPS
IJ �T�� shown in the right panel in

Fig. 13, which approach det�CPyCW� and det��CW��1CS�,
respectively, show relatively clear plateaus. Therefore
we extract det�CPyCW� and det��CW��1CS� by the fits
det�CPyCW� � det��CPW

IJ �T�CPW
IJ �T � 1��1�TCPW

IJ �T�� and
det��CW��1CS� � det��CPW

IJ �T���1CPS
IJ �T�� in the T

range where they show plateaus and we finally
obtain det�CPyCS� as det�CPyCS� � det�CPyCW� �
det��CW��1CS�. In Fig. 14, we show det�CPyCS� obtained
by the prescription shown above. The solid line denotes the
best-fit curve by A1=V and the dashed line does the best-fit
curve by A2=V2. The best-fit parameters are A1 � 1:35 and
A2 � 2:17, and /2=Ndf is 1.72 and 7.13, respectively. The
volume dependence of det�CPyCS� seems not to be incon-
sistent with 1

V . If we know the precise volume dependence
of overlaps of wall operators, we may discriminate the
states using det�CPyCW� or det��CW��1CS�.
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