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Heat bath efficiency with a Metropolis-type updating
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We illustrate for 4D SU�2� and U�1� lattice gauge theory that sampling with a biased Metropolis
scheme is essentially equivalent to using the heat bath algorithm. Only, the biased Metropolis method can
also be applied when an efficient heat bath algorithm does not exist. For the examples discussed the biased
Metropolis algorithm is also better suited for parallelization than the heat bath algorithms.
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I. INTRODUCTION

The possibility of constructing biased Metropolis algo-
rithms (BMAs) has been known for quite a while [1].
Although they have occasionally been used in the statisti-
cal physics [2] and biochemical [3] literature, it appears
that practitioners of Markov chain Monte Carlo (MC)
simulations have not given this topic the attention which
it deserves. Reasons for this seem to be that (a) general
situations for which BMAs are of advantage have not been
clearly identified and (b) a lack of straightforward instruc-
tions about implementing such schemes.

On the other hand, the heat bath algorithm (HBA) is one
of the widely used algorithms for MC simulations. It
updates a variable with the Gibbs-Boltzmann probability
defined by its interaction with the rest of the system (an
introduction to HBAs can, e.g., be found in Ref. [4]). But,
there exist energy functions for which an efficient heat bath
implementation does not exist.

In this paper we show that a BMA similar to the one
used for the rugged Metroplis method of Ref. [5], can be
employed whenever one would normally think about con-
structing a HBA. When an efficient heat bath implementa-
tion exists, the performance of the HBA and the BMA will
practically be identical. However, the BMA can still be
constructed when the inversion of the cumulative distribu-
tion, required for a HBA, is numerically so slow that it is
not a suitable option.

In the next section we illustrate our general observation
for systems from lattice gauge theory. Our first example is
4D SU�2� lattice gauge theory for which the HBA was first
introduced by Creutz [6] and improved in Ref. [7,8]. Our
second example is 4D U�1� gauge theory.
II. BIASED METROPOLIS ALGORITHMS AND
PURE LATTICE GAUGE THEORY

The action which we consider is

S�fUg� �
1

Nc

X
�

ReTr�U��; (1)

U� � Ui1j1Uj1i2Ui2j2Uj2i1 , where the sum is over all pla-
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quettes of a 4D simple hypercubic lattice, i1; j1; i2 and j2
label the sites circulating about the plaquette and Uji is a
U�1� or a SU�2� matrix (Nc � 1 or 2) associated with the
link hiji. The reversed link is associated with the inverse
matrix. The aim is to calculate expectation values with
respect to the Euclidean path integral

Z �
Z Y

hiji

dUije
��gS�fUg�; (2)

where the integrations are over the invariant group mea-
sure. While working at a particular link hiji, we need only
to consider the contribution to S, which comes from the
staples containing this link. If we denote by Ut;k, k �
1; . . . ; 6, the products which interact with the link in ques-
tion, then the probability density of this link matrix is

dP�U� 
 dU exp

"
�g
Nc

ReTr

 
U
X6
k�1

Ut;k

!#
: (3)

A. SU�2�

We deal first with SU�2� and parametrize the matrix
elements in the form

U � a0I � i ~a � ~�; a20 � ~a2 � 1; (4)

where I denotes the 2� 2 identity matrix and ~� are the
Pauli matrices. A property of SU�2� group elements is that
any sum of them is proportional to another SU�2� element.
We define a SU�2� matrix Ut which corresponds to the
sum of the staples in Eq. (3) by

stUt �
X6
k�1

Ut;k; st �

�����������������������������
det

 X6
k�1

Ut;k

!vuut : (5)

Using the invariance of the group measure, one finds

dP�UU
1
t � 
 d�da0

��������������
1
 a20

q
exp��gsta0�; (6)

where d� is the differential solid angle of ~a. As it is
-1  2005 The American Physical Society
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FIG. 1. Discretization of the cumulative distribution function
F�a0; s

11
t � for SU�2� at �g � 2:3 for the choices m � 16 (equi-

distant sit values, i.e., s11t � 3:9375) and n � 24 � 16.
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straightforward to generate the solid angle stochastically,
the problem is reduced to sampling the probability density

P�a0� 

��������������
1
 a20

q
exp��gsta0� (7)

in the interval 
1 � a0 � 1. This is the starting point for
the HBA, which amounts to finding a numerically fast
inversion of the cumulative distribution function

F�a0� � N0

Z a0


1
da00

���������������
1
 a00

q
exp��gsta00�; (8)

where N0 ensures the normalization F�1� � 1. The HBA
updates a0 by converting a uniformly distributed random
number 0 � x < 1 into a0 � F
1�x�.

The remark of our paper is that a crude tabulation of the
function F�a0� is entirely sufficient to obtain practically the
same efficiency as with the HBA. Obviously, such a tabu-
lation can still be done when there is no numerically
efficient way to calculate F
1�x�. The procedure does still
generate the canonical probabilities of the continuous the-
ory (2) without any approximation (except by the floating
point precision and limitations of the random number
generator).

Let us show how this works. First we choose a discre-
tization of the parameter st, 0 � st � 6, into m discrete
values sit; i � 1; . . . ; m so that

0< s1t < s
2
t < . . .< smt (9)

holds. We take these values equidistant. Other partitions
work too and could be more efficient. For each sit we
calculate a table of values ai;j0 ; j � 1; . . . ; n defined by

j
n
� F�ai;j0 ; sit� (10)

and we also tabulate the differences

4ai;j0 � ai;j0 
 ai;j
1
0 for j � 1; . . . ; n; (11)

where we define ai;00 � 
1, and ai;n0 � �1 follows from
Eq. (10). For �g � 2:3 this construction is shown in Fig. 1
using a representative sit value.

The biased Metropolis procedure for one update of a
SU�2� matrix consists now of the following steps:
(1) F
ind the sit value (only i is needed) which is nearest
to the actual st value.
(2) P
lace the present a0 value on the discretization grid,
i.e., find the integer j through the relation ai;j
1

0 �
a0 < a

i;j
0 .
(3) P
ick an integer value j0 uniformly distributed in the
range 1 to n.

0 0
(4) P
ropose a00 � ai;j 
1
0 � xr 4 ai;j0 , where xr; 0 �

xr < 1; is a uniformly distributed random number.
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ccept a00 with the probability

pa �
exp��gsta

0
0� 4 a

i;j0

0

exp��gsta0� 4 a
i;j
0

: (12)
(6) I
f a00 is accepted, calculate a random value for ~a0

with the measure d� and store the new SU�2�
matrix. Otherwise keep the old SU�2� matrix.
After this step the configuration has to be counted
independently of whether a00 was accepted or
rejected.
For i given each interval on the a0 abscissa of Fig. 1 is
proposed with probability 1=n. In the limit n > m;m! 1
these are by construction the heat bath probabilities, so that
the acceptance rate becomes one. For any discretization the
algorithm is still exact due to the factor 4ai;j

0

0 =4 a
i;j
0 in the

acceptance probability (12). The acceptance rate remains
close to one when the discretization is reasonably accurate.
Therefore, the relative efficiency of a HBA versus our
BMA becomes to a large extent a matter of CPU time
consumption.

Only step 2 of the BMA procedure requires some
thought, all others are straightforward numerical calcula-
tions. For n � 2n2 the interval label j of the existing a0 can
be determined in n2 steps using the binary search recursion

j! j� 2i2sign�a0 
 a
i;j
0 �; i2 ! i2 
 1; (13)

where the starting values are i2 � n2 
 2 and j � 2n2
1,
and the termination is for i2 � 0 (after which one final
logical decision has to be made). As long as a uniform
discretization of st is chosen, there is no slowing down of
the code with an increase of the size m of the table, while
there is a logarithmic slowing down with an increase of the
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FIG. 2. Partition of the 4ai;j0 values for SU�2� at �g � 2:3,
where the variable � � �gst is used on the abscissa. The
choices for m and n are the same as in Fig. 1.
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4ai;j0 discretization. For the same choice ofm and n values
as used in Fig. 1, the partition of all 4ai;j0 values is shown
in Fig. 2. For each bin i on the abscissa the ai;j0 values are
calculated for its central value �i � �gs

i
t. For our simu-

lations we used a finer discretization, m � 32 and n �
128.

Table I illustrates the performance of the SU�2� BMA
for a long run on a 4� 163 lattice at �g � 2:3. At this
coupling the system exhibits critical slowing down, be-
cause of its neighborhood to the deconfining phase tran-
sition (see for instance [9] and references therein). Our
comparison is with the Fabricius-Haan-Kennedy-
Pendleton HBA [7,8], which at this coupling is more
efficient than Creutz’s HBA [6].

We used 16 384 sweeps for reaching equilibrium and,
subsequently, 32� 20 480 sweeps for measurements.
Simulations were performed on 2 GHz Athlon PCs with
the 
O2 option of the (freely available) g77 Fortran com-
piler. Although our programs are not thoroughly opti-
mized, we report the runtimes in Table I, because we
expect their ratios to be relatively stable under further
optimization. (For instance, our runs were fully in real*8
TABLE I. Efficiency of the SU�2� algorithms on a 4� 163

lattice at �g � 2:3. For the same lattice size integrated autocor-
relation times are also given at �g � 2:2 and �g � 2:4.

HBA [7,8] BMA

CPU time 194 873 [s] 199 244 [s]
Acceptance rate 1 (1.043 proposals) 0.975
hTr�U��=2i 0.603 147 (17) 0.603 111 (21)
�int 49.8 (3.5) 48.2 (3.8)
�int�� � 2:2� 7.1 (0.3) 8.9 (0.4)
�int�� � 2:4� 6.7 (0.4) 7.0 (1.0)
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precision. By reducing most of the code to real*4 a factor
up to two might be gained.)

It is the high acceptance rate of 97.5% which makes the
BMA almost as efficient as the HBA. In standard
Metropolis procedures one gets high acceptance rates
only at the price of small moves, so that acceptance rates
between 30% and 50% are optimal [4]. In our BMA the
high acceptance rate is achieved by proposing with an
approximation of heat bath probabilities for which the
acceptance rate is 100%. So, an acceptance rate close to
100% is best for the BMA. The accept/reject step corrects
for the failure to approximate the heat bath probability
perfectly.

Although the acceptance rate for the HBA is 100%, the
SU�2� HBAs use in their inner loops a repeat until accepted
(RUA) step. It should be noted that this is distinct from the
accept/reject step of the BMA. Like in the original
Metropolis method, the latter cannot be iterated until ac-
cepted (compare, e.g., p. 137 of Ref. [4]). This would
introduce an uncontrolled bias, which for the original
Metropolis algorithm is towards too low energies. For the
simulation of Table I the RUA step of the HBA [7,8] needs
in the average 1.043 iterations to generate the new a0 value
[10]. For small �g values the number of iterations goes up,
so that the Creutz HBA becomes then more efficient than
the HBA of Fabricius-Haan-Kennedy-Pendleton, see [8]
for a detailed discussion. Independently of �g the BMA
acceptance rate stays always close to 100%.

The difference between a RUA procedure and the
accept/reject step of a BMA becomes important for a
(checkerboard) parallelization of the updating. While for
a BMA the speed is uniform at all nodes, this is not the case
for a RUA method, where all nodes have to wait until the
last RUA step is completed. For large systems, the con-
sequences would be disastrous, so that at the price of an
arguably negligible bias workers tend to impose an upper
limit on the number of RUA steps [say three for our SU�2�
case]. In the parallelization of BMAs one should be con-
cerned about the speed of the table look-ups. It appears that
this can be pipelined similarly as computations with lattice
matrix elements, but tests are needed which go beyond the
scope of this paper.

The integrated autocorrelation time �int is a direct mea-
sure for the performance of an algorithm. The number of
sweeps needed to achieve a desired accuracy is directly
proportional to �int. Table I gives �int for the Wilson pla-
quette together with the expectation value of this operator.
Error bars are given in parenthesis and apply to the last
digits. They are calculated with respect to 32 bins (jack-
knife bins in case of �int), relying on the data analysis
software of [4]. We see that the expectation values are
well compatible with one another (Q � 0:18 in a
Gaussian difference test). For �int we know that the HBA
should give a slightly lower value than the BMA. That the
�int data at �g � 2:3 table come out in the opposite order is
attributed to a statistical fluctuation. This is confirmed by
-3
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FIG. 3. Discretization of the cumulative distribution function
F�!; r11t � for U�1� at �g � 1:0 for the choices m � 16 (equi-
distant rit values) and n � 24 � 16.

TABLE II. Efficiency of the U�1� algorithms on a 4� 163

lattice at �g � 1:0.

Metropolis BMA

CPU time 84 951 [s] 107 985 [s]
Acceptance rate 0.286 0.972
hcos!�i 0.591 03 (16) 0.591 06 (12)
�int 341 (26) 142 (10)
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shorter runs which we performed at other �g values, whose
�int results are also listed in the table.

B. U�1�

Next we consider theU�1� gauge group. The ‘‘matrices’’
are then complex numbers on the unit circle, Uij �
exp�i!ij�, and the analogue of Eq. (5) becomes

rtei!t �
X6
k�1

ei!t;k ; (14)

rt �
������������������������������������������������������������������������
�
P6
k�1 cos!t;k�

2 � �
P6
k�1 sin!t;k�

2
q

. We are led to
the cumulative distribution function
   

 0  1  2  3  4  5  6

φi,j

α

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

FIG. 4. Partition of the 4!i;j values for U�1� at �g � 1:0,
where the variable � � �grt is used on the abscissa. The
choices for m and n are the same a in Fig. 3.
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F1�!� � N1

Z !

0
d!0e�grt cos�!0�; (15)

where the normalization is F1�2"� � 1 and the angle �!�
!t�mod�2"� will be stored.

We test the performance of the U�1� BMA for a 4� 163

lattice at �g � 1:0, again a coupling which puts the system
close to the deconfining phase transition, which is weakly
first order for U�1� (see for instance [11] and references
therein). HBAs have been designed in Ref. [12,13]. Both
HBAs rely on a RUA step, so that the remarks made in this
connection for SU�2� apply also to U�1�. We have only
tested the HBA of Ref. [13], which turns out to be about
20% slower than our BMA, while the integrated autocor-
relation time is about 10% lower. Overall an advantage of
10% in favor of theU�1� BMA, which reiterates that HBAs
and BMAs have about equal efficiency, when efficient
HBAs exist.

We compare the U�1� BMA now with a conventional
Metropolis algorithm, which proposes new angles uni-
formly in the (entire) range �0; 2"�. For the BMA we
follow the same lines as previously for F�a0� of Eq. (8).
Figure 3 plots F1�!� at �g � 1:0 using a representative rit
value and Fig. 4 shows the entire tabulation 4!i;j. Table II
summarizes the results. At �g � 1 the acceptance rate of
the standard Metropolis procedure is still about 30%, so
that a restriction of the proposal range to increase the
acceptance rate is not warranted [4]. From the data of the
table we conclude that the BMA improves the Metropolis
performance at �g � 1 by a factor of about two.

When comparing with a full-range Metropolis algorithm
an upper bound on the improvement factor is given by the
ratio of the acceptance rates, in the present case
0:972=0:282 � 3:45. This applies also to comparisons of
such Metropolis algorithms with HBAs, substituting then
one for the acceptance rate. The bound will normally not
be saturated, because rms deviations of the new variables
from the old variables are smaller for a BMA or HBA than
for a full-range Metropolis algorithm. Larger gains can be
achieved when the Metropolis acceptance rates are small.
For U�1� this happens for �g � 1.
III. SUMMARY AND CONCLUSIONS

In summary, BMAs are an alternative to HBAs. BMAs
work still in situations for which HBAs fail, because there
-4
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is no efficient inversion of the cumulative distribution
function in question. In lattice gauge theory this is the
case for some Higgs system and for actions which are
nonlinear in the Wilson plaquette operator (see, e.g.,
Ref. [14] and references therein). Obviously, similar situ-
ations ought to exist for energy functions in many other
fields. We leave it to the reader to identify whether her or
his simulations would benefit from using a BMA. Finally,
let us mention that BMAs may be combined with over-
relaxation moves [15–17] in the same way as one does for
114506
HBAs or standard Metropolis algorithms (the subject of
overrelaxation algorithms for lattice gauge theories de-
serves further study [18]).
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