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We study QCD with two flavors of nonperturbatively improved Wilson fermions at finite temperature
on the 1638 lattice. We determine the transition temperature at lattice spacing as small as a� 0:12 fm, and
study string breaking below the finite temperature transition. We find that the static potential can be fitted
by a two-state ansatz, including a string state and a two-meson state. We investigate the role of Abelian
monopoles at finite temperature.
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I. INTRODUCTION

Recently, efforts have been made to determine the criti-
cal temperature Tc of the finite temperature transition in
full QCD with Nf � 2 flavors of dynamical quarks. The
Bielefeld group employed improved staggered fermions
and an improved gauge field action [1]. The CP-PACS
Collaboration used improved Wilson fermions with mean
field improved clover coefficient and an improved gauge
field action [2]. Both groups were able to estimate Tc in
the chiral limit, and their values are in good agreement
with each other. Still, there are many sources of systematic
uncertainties. The main one is that the lattices used so
far are rather coarse. In this paper we perform simu-
lations on N3

sNt � 1638 lattices at lattice spacings a
much smaller than in previous works [1,2]. To further
reduce finite cutoff effects, we use nonperturbatively
O�a� improved Wilson fermions. A small lattice spacing
is particularly helpful in determining the parameters of the
static potential.

In the presence of dynamical quarks the flux tube formed
between static quark-antiquark pairs is expected to break at
large distances. At zero temperature T the search for string
breaking, i.e. flattening of the static potential, has not been
successful, if the static quarks are created by the Wilson
loop. (See e.g. [3]). At finite temperature string breaking
has been observed at T < Tc, if Polyakov loops are used
instead to create the quarks. It is important to know the
static potential at finite temperature for phenomenology
[4]. In particular, it is needed to compute the dissociation
temperatures for heavy quarkonia. We suggest a new an-
satz and confront that ansatz with our numerical data.
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The dynamics of the QCD vacuum, and color confine-
ment, in particular, becomes more transparent in the maxi-
mally Abelian gauge (MAG) [5,6]. In this gauge the
relevant degrees of freedom are color electric charges,
color magnetic monopoles, ‘‘photons’’ and ‘‘gluons’’ [7].
There is evidence that the monopoles condense in the low
temperature phase of the theory [6,8], causing a dual
Meissner effect, which constricts the color electric field
into flux tubes, in accord with the dual superconductor
picture of confinement [9]. Abelian dominance [10] and
the dynamics of monopoles have been studied in detail at
zero temperature in quenched [11] and unquenched [12,13]
lattice simulations. It turns out that in MAG the string
tension is accounted for almost entirely by the monopole
part of the Abelian projected gauge field [12,14–16].
Furthermore, in studies of SU(2) gauge theory at nonzero
temperature [17] it has been found that at the phase tran-
sition the Abelian Polyakov loop shows qualitatively the
same behavior as the non-Abelian one. In this paper we
extend the investigation of Abelian dominance to full QCD
at nonzero temperature.

The paper is organized as follows. In Sec. II we present
the details of our simulation. Furthermore, we describe
the gauge fixing algorithm and the Abelian projection.
Section III is devoted to the determination of the transition
temperature, and in Sec. IVour results for the heavy quark
potential are presented. In Sec. V we study the monopole
density in the vacuum, as well as the action density in the
vicinity of the flux tube. We demonstrate that the flux tube
disappears at large quark-antiquark separations. Finally, in
Sec. VI we conclude. Preliminary results of this work have
been reported in [18].
-1  2005 The American Physical Society
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II. SIMULATION DETAILS

We consider Nf � 2 flavors of degenerate quarks. We
use the Wilson gauge field action and nonperturbatively
O�a� improved Wilson fermions [19]

SF � S�0�F �
i
2
�gcswa

5
X
s

� �s����F���s� �s�; (1)

where S�0�F is the original Wilson action, g is the gauge
coupling and F���x� is the field strength tensor. The clover
coefficient csw is determined nonperturbatively. This ac-
tion has been used in simulations of full QCD at zero
temperature by the QCDSF and UKQCD Collaborations
[20,21], whose results we use to fix the physical scale and
the m�=m� ratio. The scale is fixed by the r0. At finite
temperature the same action was used before in simula-
tions on Nt � 4 and 6 lattices at rather large quark masses
and lattice spacings [22].

Nonperturbatively improved Nf � 2 Wilson fermions
should not be employed below � � 6=g2 � 5:2. In fact,
csw is known only for � � 5:2 [23]. The simulations are
done on 1638 lattices at the coupling constant � � 5:2, and
nine different � values. The parameters are listed in
Table I. They are also shown in Fig. 1, together with lines
of constant r0=a and constant m�=m� obtained at T � 0
[20]. Note that the lines of constant T run parallel to the
lines of constant r0=a. To check the finite size effects we
have also done simulations on the 2438 lattice at � � 5:2,
� � 0:1343.

The dynamical gauge field configurations are generated
on the Hitachi SR8000 at KEK (Tsukuba) and on the MVS
1000M at Joint Supercomputer Center (Moscow), using a
Hybrid Monte Carlo, while the analysis is done on the NEC
SX5 at RCNP (Osaka) and on the PC-cluster at ITP
(Kanazawa). Our present statistics is shown in Table I.
The length of the trajectory was chosen to be � � 0:25.
TABLE I. Parameters and statistics of the simulation, together
with the integrated autocorrelation time for the non-Abelian
Polyakov loop �int;L and for the Polyakov loop susceptibility
�int;!. Entries marked with an asterisk are explained in the text.

� � 5:2
� Traj. �int;L �int;!

0.1330 7129 13(5) 1.8(2)
0.1335 4500 38(15) 5.3(9)
0.1340 3000 62(27) 4(1)
0.1343 6616 190(100) 17(4)
0.1344 8825 360(190) 40(14)
0.1344* 2450
0.1345 6877 140(76) 37(12)
0.1345* 2200
0.1348 5813 124(54) 25(7)
0.1355 5650 50(16) 5.3(7)
0.1360 3699 46(17) 22(6)
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The more recent runs at � � 0:1344 and 0:1345 (marked in
Table I with asterisk) use the improved HMC algorithm of
Ref. [24] with � � 0:5. We use a blocked jackknife method
to compute the statistical errors. To check the reliability of
our error estimates, we also computed the integrated auto-
correlation times of the non-Abelian Polyakov loop and of
its susceptibility. A bootstrap method was used to compute
the errors of the fit parameters. We compute the Polyakov
loop

L� ~s� �
1

3
Tr

YNt
s4�1

U�s; 4�; (2)

U�s;�� being the link variable, on every trajectory. From
that we derive the susceptibility

! � N3
s

X
~s

�hL2� ~s�i � hL� ~s�i2�; (3)

and the integrated autocorrelation time �int;L, and from (3)
we compute the integrated autocorrelation time �int;!. The
autocorrelation times are given in Table I in units of
trajectories.

As can be seen from Table I, for some of our data sets
close to the transition point �int;L is large compared to the
size of the set. Therefore, a reliable estimate of the statis-
tical error might be questioned in these cases. To check
this, we have computed the error by a blocked jackknife
method as well as by means of �int;L (see, e.g., [25] for
details) and found good agreement. This problem is less
FIG. 1. Lines of constant r0=a (solid lines) and constant
m�=m� (dotted lines) at T � 0. Crosses indicate points where
simulations are done.
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severe for �int!, which is smaller by a factor of 4. We used
the susceptibility ! to determine the transition point.

We furthermore compute the Polyakov loop correlator
hL�~s�Ly� ~s0�i, from which we obtain the static potential. To
reduce the error on the static potential, we employ a hyper-
cubic blocking of the gauge field as described in [26]. We
choose every 5th to 20th trajectory, depending on the value
of �, to compute the blocked Polyakov loop correlator.

We fix the MAG [6] by maximizing the gauge fixing
functional F�U�,

F�U� �
1

12V

X
s;�

�jU11�s; ��j
2 
 jU22�s; ��j

2


 jU33�s; ��j
2� (4)

with respect to local gauge transformations g of the lattice
gauge field,

U�s; �� ! Ug�s; �� � g�s�yU�s;��g�s
 �̂�: (5)

To do so, we use the simulated annealing (SA) algo-
rithm. The advantage of this algorithm over the usual
iterative procedure has been demonstrated in [16] for the
MAG and in [27] for the maximal center gauge in the
SU(2) gauge theory. In practice one does not find the global
maximum of the gauge fixing functional in a finite-time
computation. For this reason it has been proposed [16] to
apply the SA algorithm to a number of randomly generated
gauge copies and pick that one with the largest value of F.
By increasing the number of gauge copies, one eventually
reaches the situation, where the statistical noise is larger
than the deviation from the global maximum. We use one
gauge copy. We have checked that by increasing the num-
ber of gauge copies our results for the gauge dependent
quantities are left unchanged within the error bars.

To obtain Abelian observables, one needs to project the
SU�3� link matrices onto the maximal Abelian subgroup
U�1� � U�1� first. The original construction [28] is equiva-
lent to finding the Abelian gauge field u�s; �� 2 U�1� �
U�1� which maximizes jTr�U�s; ��uy�s; ���j2. The
Abelian counterpart of an observable is then obtained by
substituting

u�s;�� � diag�ei%1�s;��; ei%2�s;��; ei%3�s;���; (6)

for U�s;��;
P3
i�1 %i�s;�� � 0, so that det�u�s;��� � 1.

From Eq. (6) we define plaquette angles

%i�s;��� � @�%i�s; �� � @�%i�s; ��; (7)

where @� is the lattice forward derivative. The plaquette
angles can be decomposed into regular and singular com-
ponents,

%i�s;��� � %i�s; ��� 
 2�mi�s;���; (8)

where %i�s; ��� 2 ���;��, and mi�s;��� 2 N counts
the number of Dirac strings piercing the given plaquette.
Note that

P
i%i�s;��� � 2�l, l � 0;�1. If l � 
1 ( � 1)
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we substitute the largest (smallest) %i�s;��� (of the three
components) by %i�s; ��� � 2� ( 
 2�), and similarly for
mi�s;���, so that

P
i%i�s; ��� �

P
imi�s;��� � 0.

The monopole currents, being located on the links of the
dual lattice, are defined by [29]

ki�
�s; �� �

1

4�
)����@�%i�s
 �̂; ���

� �
1

2
)����@�mi�s
 �̂; ���: (9)

They satisfy the constraintX
i

ki�
�s;�� � 0; (10)

for any �s; �. The Abelian gauge fields %i�s;�� can in turn
be decomposed into monopole (singular) and photon
(regular) parts:

%i�s; �� � %moni �s; �� 
 %phi �s;��: (11)

The monopole part is defined by [30]:

%moni �s; �� � �2�
X
s0
D�s� s0�@0�mi�s0; ���; (12)

where @0� is the backward lattice derivative, and D�s�
denotes the lattice Coulomb propagator.

The Abelian Polyakov loop is defined by

LAbel� ~s� �
1

3

X3
i�1

LAbeli � ~s�;

LAbeli � ~s� � exp

(
i
XNt
s4�1

%i�s; 4�

)
:

(13)

Similarly, we define the monopole and photon Polyakov
loops [31]:

Lmon�~s� �
1

3

X3
i�1

Lmoni �~s�;

Lmoni �~s� � exp

(
i
XNt
s4�1

%moni �s; 4�

)
;

(14)

Lph�~s� �
1

3

X3
i�1

Lphi � ~s�; Lphi �~s� � exp

(
i
X
s4�1

%phi �s; 4�

)
:

(15)
III. TRANSITION TEMPERATURE

The order parameter of the finite temperature phase
transition in quenched QCD is the Polyakov loop, and
the corresponding symmetry is global Z�3�. In the presence
of dynamical ‘‘chiral’’ fermions the chiral condensate h �  i
is an order parameter (of the chiral symmetry breaking
transition). It is expected that there is no phase transition at
-3
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FIG. 2 (color online). Scatter plots of the Polyakov loop in the
complex plane for various temperatures.
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intermediate quark masses, only a crossover. Numerical
results show that both order parameters can be used to
locate the transition point at intermediate quark masses [1].
We use the Polyakov loop, because the calculation of the
chiral condensate for Wilson fermions requires renormal-
ization and is rather involved.

It is instructive to plot the Polyakov loop in the complex
plane as a function of temperature, which has been done in
Fig. 2. We find that the distribution is rather asymmetric,
even at the lowest temperature, favoring a positive value of
ReL. This is indeed what one expects [32]. The introduc-
tion of dynamical quarks adds a term proportional to ReL
to the effective action, which results in a nonzero value of
hLi. The numbers are given in Table II.

In Table II we also give values for the Abelian and
monopole Polyakov loops separately.

As we can see from Fig. 1, increasing � at a fixed value
of � increases the temperature T / r0=a. In Figs. 3–5 we
plot the expectation values of the various Polyakov loops of
Table II as a function of �. While hLi, hLAbeli and hLmoni
increase with increasing �, hLphi stays approximately con-
stant over the full range of �. Furthermore, similar to the
TABLE II. The expectation values of the non-Abelian,
Abelian, monopole and photon Polyakov loops at � � 5:2.

� hLi hLiAbel hLimon hLiph T=Tc

0.1330 0.0022(3) 0.014(2) 0.040(7) 0.2946(10) 0.798
0.1335 0.0027(7) 0.018(5) 0.054(16) 0.3007(9) 0.863
0.1340 0.0034(5) 0.025(4) 0.079(14) 0.3052(7) 0.934
0.1343 0.0092(13) 0.074(11) 0.235(35) 0.3113(6) 0.979
0.1344 0.0117(15) 0.095(13) 0.310(42) 0.3102(5) 0.994
0.1345 0.0123(10) 0.100(9) 0.328(28) 0.3114(4) 1.010
0.1348 0.0207(11) 0.169(10) 0.556(32) 0.3197(9) 1.058
0.1355 0.0300(7) 0.235(5) 0.740(11) 0.3279(9) 1.178
0.1360 0.0290(9) 0.236(6) 0.747(11) 0.3291(14) 1.271
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quenched theory, Lmon and Lph are virtually independent,
which follows from hLAbeli � hLmonihLphi.

The task is now to determine the transition temperature
Tc. We call the � value, at which the transition takes place,
�t. We identify �t as the point, where the Polyakov loop
susceptibility (3) assumes its maximum. The precise value
is obtained by applying a Gaussian fit to the neighboring
points. The Abelian, monopole and photon Polyakov loop
susceptibilities !Abel, !mon and !ph, respectively, are de-
fined similarly to (3). The susceptibilities are given in
Table III, and they are plotted in Figs. 6 and 7 together
with the Gaussian fit. From the non-Abelian susceptibility
! we find �t � 0:13444�6�. To obtain the value of the
critical temperature in physical units we first compute the
dimensionless number
0.133 0.134 0.135 0.136 κ
0

0.2

0.4

0.6

FIG. 4 (color online). The expectation value of monopole and
photon Polyakov loops as functions of �.
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FIG. 5 (color online). The expectation value of the Abelian
Polyakov loop as a function of �. The product of monopole and
photon Polyakov loops is also shown.

0.133 0.134 0.135 0.136 κ
0

0.1

0.2

χ

FIG. 6 (color online). The non-Abelian Polyakov loop suscep-
tibility as a function of � together with the fit.

80

100

χ
Monopole
10∗Abelian
100∗Photon

FINITE TEMPERATURE QCD WITH TWO FLAVORS OF . . . PHYSICAL REVIEW D 71, 114504 (2005)
Tr0 �
r0
8a
: (16)

We get Tcr0 � 0:536�8�, where the value of r0=a at �t have
been obtained by interpolation of the T � 0 results [20].
The error of Tcr0 includes both the error of �t and that of
r0=a. Taking r�10 � 395 MeV to fix the scale, we obtain in
physical units

Tc � 212�4� MeV;
m�

m�
� 0:77: (17)

Here the m�=m� ratio was obtained by interpolation of the
T � 0 data [20]. Similarly, we can compute the tempera-
ture T at our various � values. The result is given in the last
column of Table II in the form of

T
Tc

�
Tr0j�
Tr0j�t

: (18)

The statistical error of this ratio is about 2% for all data
sets. It should be noted that the numbers given in Eq. (17)
depend on the physical quantity to fix the scale. This
TABLE III. The expectation values of the susceptibility of the
non-Abelian, Abelian, monopole and photon Polyakov loop.

� ! !Abel !mon !ph

0.1330 0.072(3) 0.88(10) 7.7(8) 0.590(16)
0.1335 0.094(5) 1.8(3) 17.4(2.4) 0.624(10)
0.1340 0.095(12) 2.4(5) 25.5(4.9) 0.638(12)
0.1343 0.115(17) 4.2(1.1) 46.1(12) 0.653(10)
0.1344 0.168(17) 8.4(1.3) 97.2(17) 0.777(10)
0.1345 0.160(24) 7.5(1.3) 82.6(12) 0.760(13)
0.1348 0.129(10) 5.7(8) 57.5(9.4) 0.705(25)
0.1355 0.112(5) 2.7(4) 17.7(2.2) 0.686(27)
0.1360 0.115(11) 2.3(5) 14.7(2.8) 0.734(29)
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uncertainty will disappear only in the chiral and perhaps
the continuum limit. Experience shows, however, that r0 �
0:5 fm is a reasonable choice even at our quark masses.

The susceptibilities !Abel and !mon have maxima at the
same � value as the non-Abelian susceptibility. The
Gaussian fits for the Abelian and monopole susceptibilities
give �t values which agree within error bars with �t
determined from the non-Abelian susceptibility. We find
that !Abel � hLphi2!mon. This follows from our earlier
observation, namely, that Lmon and Lph are independent,
and the smallness of !ph. The non-Abelian susceptibility is
10 to 50 times smaller than its Abelian counterpart. The
photon susceptibility does not show any change at the
0.133 0.134 0.135 0.136 κ
0

20

40

60

FIG. 7 (color online). The same as in Fig. 6 but for the
Abelian, the monopole and the photon Polyakov loop suscepti-
bilities. The Abelian (photon) Polyakov loop susceptibility has
been enhanced by a factor of 10 (100).
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critical temperature, as expected. We conclude, that the
monopole degrees of freedom are most sensitive to the
transition, as was the case in the quenched theory.

In Fig. 8 we compare our result for Tc=
����
�

p
with those of

Refs. [1,22], where we have assumed
����
�

p
� 425 MeV.

Our result is in quantitative agreement with the results of
the Bielefeld group. This is reassuring, as [1,22] work at
larger lattice spacing. Comparing with another work [33],
where an improved gauge and a clover improved fermion
actions with tadpole improved coefficients were used, we
find that our value is essentially higher.

Because Ns=Nt � 2 in our simulations, the question of
finite volume effects is essential. To check for finite volume
effects we have performed simulations at � � 5:2, � �
0:1343 on 243 � 8 lattices. The value of � was chosen
close to the transition point, where finite volume correc-
tions are expected to be largest. We found hLi �
0:0098�10� and ! � 0:099�13�, as compared to hLi �
0:0092�13� and ! � 0:115�17�, respectively, on the Ns �
16 lattice. In both cases the numbers agree within the error
bars, so that we do not reckon with large effects. This
agrees with observation [1] that in Nf � 2
 1 QCD finite
size effects for ! are small at m�=m� < 0:9.

IV. HEAVY QUARK POTENTIAL

A. Ansatz

One of the characteristic features of full QCD is break-
ing of the string spanned between static quark and anti-
quark pairs. String breaking will manifest itself in a type of
screening behavior of the heavy quark potential. At zero
temperature no clear evidence for string breaking has been
found (in QCD) yet. The reason is, so it is believed, that the
Wilson loop has very small overlap with the broken string
114504
state. The expectation value of the Wilson loop for large
distances r can be written as

hW�r; t�i � CV�r�e��V0
Vstring�r��t 
 CE�r�e�2Esl�t 
 :::;

(19)

where Vstring�r� is the usual confining potential, Vstring�r� �
�/=r
 �r, Esl is the static-light meson energy, and V0 is
the self-energy. The latter is divergent in the continuum
limit a! 0. The overlap with the string state, CV�r�, is of
the order of 1, while the overlap with the broken string,
CE�r�, appears to be small. An estimate [34] is: CE�r� �
e�2msl�r, where msl � Esl � V0=2 is the so called binding
energy of the static-light meson or, in other words, the
constituent quark mass [35]. (See also the discussion in
Ref. [36].) A similar estimate was given in Ref. [37], based
on the hypothesis of Abelian dominance.

The conventional definition of the string breaking dis-
tance is the distance rsb, at which the energy of two static-
light mesons is equal to the energy of the string, i.e.

2msl � � � rsb �
�

12rsb
: (20)

The Wuppertal group found rsb � 2:3r0 at m�=m� � 0:7
[3], while CP-PACS found rsb � 2:2r0 at m�=m� � 0:6
[34]. In full QCD it was found

����
�

p
r0 � 1:14 [3] and����

�
p

r0 � 1:16 [21], respectively, from which we derive
2msl � 2:9=r0 � 1:1 GeV, assuming r0 � 0:5 fm. This
agrees with the estimate of [38]. Using these values for����
�

p
r0 and msl and assuming the mentioned above form of

CE�r� we can estimate the values of r and t at which the
two terms in Eq. (19) become equal indicating that the
string breaking effects become visible:

r � t �
4msl

�
: (21)

We also estimate the numerical value of the Wilson loop of
the corresponding size:

hW�r; t�i & 10�11 � e�V0t: (22)

It is a challenging task to record a Wilson loop of this order
of magnitude. Recently, a first successful attempt to do so
was reported in [39] where the authors studied the adjoint
static potential in three-dimensional SU(2) gauge theory.

At finite temperature T < Tc string breaking has been
studied in [40]. The heavy quark potential V�r; T� is ob-
tained from the Polyakov loop correlator:

1

T
V�r; T� � � lnhL�~s�Ly�~s0�i; (23)

up to an entropy contribution, where r � j ~s� ~s0j. At large
separations

hL� ~s�Ly�~s0�i ����������!
j~s�~s0j!1

jhLij2; (24)

where jhLij2 � 0, as global Z3 is broken by fermions. It
-6
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FIG. 9 (color online). Effect of hypercubic blocking on the
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should be noted that the potential in (23) is a proper color
singlet potential [41].

The spectral representation of the Polyakov loop corre-
lator is given by [42]

hL�~s�Ly�~s0�i �
X1
n�0

wne�En�r�=T; (25)

where wn are integers. At zero temperature we have
V�r; 0� � E0�r�, up to a constant, where E0 is the ground
state energy. At finite temperature V�r; T� gets contribu-
tions from all (excited) states. As was discussed already, at
T � 0 the potential can be described by the string model
potential up to the string breaking distance rsb. Beyond this
distance the state of two static-light mesons becomes the
ground state of the system. Thus, there are two competing
states in the spectrum, and it depends on the distance r,
which one will be the ground state. We may expect that the
situation at small temperature is similar to the case of T �
0.

We shall now assume that at temperatures T < Tc the
Polyakov loop correlator can be described in terms of these
two states. We then have

hL�~s�Ly� ~s0�i � e��V0�T�
Vstring�r;T��=T 
 e�2E�T�=T; (26)

where the finite temperature string potential Vstring�r; T� is
given by [43]:

Vstring�r; T� � �
1

r

�
/�

1

6
arctan�2rT�

	




�
��T� 


2T2

3
arctan

1

2rT

	
r



T
2
ln�1
 4r2T2�: (27)

We consider the temperature dependent string tension
��T�, which according to [43] is equal to ��0� � �

3 T
2, as

a free parameter. While in [43] /was fixed at �=12, a fit of
the short distance part of the potential at T � 0 gave [44]
/ � 0:32� 0:34. In the following we shall consider both
cases, / � �=12 and / � 0:33. The energy E�T� can be
written as

E�T� �
1

2
V0�T� 
m�T�; (28)

where m�T� is the constituent quark mass [35].
A long time ago the following ansatz for the Polyakov

loop correlator has been proposed [4]:

hL�~s�Ly� ~s0�i � e��V0�T�
VKMS�r;T��=T; (29)

where

VKMS�r; T� �
~�
�
�1� e��r� �

~/
r
e��r: (30)

We do not consider this potential a valid ansatz, because
string breaking is a level crossing phenomenon.
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Besides the non-Abelian potential, we will study the
Abelian one. In particular we shall be interested in its
monopole and photon parts. From studies at zero tempera-
ture [12,16] it is known that the monopole part of the
potential decreases linearly down to very small distances,
showing no Coulomb term, which sometimes makes it
easier to extract a string tension. It appears that the mono-
pole part of the potential has not only no Coulomb term,
but also shows no broadening of the flux tube as the length
of the flux tube is increased. (Both phenomena are con-
nected of course.) As we show below, our monopole po-
tential is also linear at distances up to the distance of order
of 0.5 fm where flattening starts. Thus we may write

hLmon� ~s�L
y
mon� ~s0�i � e��Vmon0 �T�
Vmonstring�r;T��=T 
 e�2Emon�T�=T;

(31)

where

Vmonstring�r; T� � �mon � r;

Emon�T� �
1

2
Vmon0 �T� 
mmon�T�:

(32)
B. Hypercubic blocking

As was mentioned already, we apply hypercubic block-
ing (HCB) [26] to reduce the statistical errors. That means
every SU(3) link matrix U�s;�� is replaced by a new link
matrix UHCB�s; ��, which is the weighted sum of products
of link matrices along paths from s to s
 �̂ within adja-
cent cubes projected onto the nearest SU(3) group element.
We used the same parameters as in [26].

In Fig. 9 we compare the static potential from blocked
and unblocked configurations. We see that the statistical
errors are substantially reduced. Furthermore, rotational
invariance is improved, in agreement with earlier observa-
-7



TABLE IV. Fit parameters of the two-state ansatz (26), where
we have assumed ��0� � �1:14=r0�

2.

/ � 0:33
T=Tc V0r0 ��T�=��0� m�T�r0

0.798 1.62(1) 0.86(2) 1.04(8)
0.863 1.79(3) 0.83(4) 0.86(10)
0.934 1.97(3) 0.82(4) 0.77(7)
0.979 2.10(5) 0.76(7) 0.51(8)

/ � �=12

0.798 1.44(1) 0.95(2) 1.10(8)
0.863 1.59(3) 0.94(4) 0.95(10)
0.934 1.77(3) 0.94(4) 0.87(7)
0.979 1.90(5) 0.88(8) 0.61(8)

Monopole part

0.798 0.47(1) 0.90(1) 1.24(4)
0.863 0.53(1) 0.85(1) 1.07(2)
0.934 0.61(1) 0.84(1) 1.03(3)
0.979 1.06(1) 0.46(1) 0.21(1)
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tions [26]. The blocking procedure decreases the self-
energy of the static sources, which causes a constant shift
in the potential. In Fig. 9 we shift the potential by 1:33=r0,
so that it agrees with the unblocked potential at r �

���
2

p
a.

We find good agreement at all distances, except perhaps at
r � a. The shift agrees with the change in the asymptotic
value of the potential, �2T loghLi, which was found to be
1:24�25�=r0. The discrepancy at r � a can be accounted
for by perturbative corrections [45]. All our fits are made
for r=r0 � 1 thus this point is always discarded.

C. Non-Abelian potential

We first fit the static potential by the two-state ansatz
(26). This is done for two different choices of/,/ � �=12
and / � 0:33. Examples of the fit for TTc � 0:863 and
0:979 and the second choice / � 0:33 are shown in
Fig. 10. The curves for / � �=12 and / � 0:33 are practi-
cally indistinguishable from each other, visually and in
terms of !2=dof. We also show the asymptotic value of
the potential, �2T lnhLi. The potential converges to this
value at large distances. The two-state ansatz describes the
data very well. The fit parameters are given in Table IV,
where ��0� � �1:14=r0�

2 [3] was used.
The string tension ��T� and the constituent quark mass

m�T� are plotted in Figs. 11 and 12, respectively.
In Fig. 11 the quenched value of ��T�=��0� [Eq. (15)

from [46] ] is shown for comparison. Both the string ten-
sion and the constituent quark mass decrease with increas-
ing temperature, as we expect. The results differ by
approximately one � between / � 0:33 and / � �=12.
For lower temperature, at T=Tc � 0:798, we find rather
good agreement for the string tension between the results
of the quenched theory and our results obtained with the
0 1 2 3r/r0

-1

0

1

2

[
V- )

T,r(
V

0
r ])

T(
0

Full potentialsT/T
c
=0.863

T/T
c
=0.979

FIG. 10 (color online). The heavy quark potential at � � 5:2
for T=Tc � 0:863 and 0:979, together with the fit using / �
0:33. The horizontal lines show the asymptotic value of the
potential, where the shaded area indicates the error.
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choice / � 0:33. For higher temperatures agreement is
much worse. While our results for ��T�=��0� agree with
predictions of the effective string model [47], 1�
��T2=3��0��, as is seen from Fig. 11, the quenched results
lie much lower. Note, however, that for equal values of the
ratio T=Tc our results are obtained at temperatures essen-
tially lower than the temperatures in quenched QCD.
Indeed, the critical temperature Tc � 212 MeV is about
0.8 of the quenched critical temperature.

The difference in behavior of the ratio ��T�=��0� as
function of T=Tc between quenched and full QCD might
0.8 0.85 0.9 0.95 1T/Tc

0

0.5

1

σ
/)

T(
σ

)0(

1−πΤ2/(3σ(0))
α=.33
α=π/12

FIG. 11 (color online). The string tension from a fit of the two-
state ansatz (26) as a function of temperature. The quenched
value of the string tension [46] is shown for comparison with the
shaded area indicating the error bar. The upper (dashed) curve
shows the prediction of the effective string model [47].
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0.8 0.85 0.9 0.95 1T/Tc

0

0.5

1

1.5
m

r )
T(

0

α=.33
α=π/12

m(T=0) r
0

FIG. 12 (color online). The constituent quark mass from a fit
of the two-state ansatz (26) as a function of temperature. The
dash-dotted line indicates the zero-temperature value of the
mass msl.

1 2 3r/r0

0

1

2

3

[V(r,T)-V
0
(R)]r

0

2m(T)r
0

V
string

(r,T) r
0

FIG. 14 (color online). The same as in Fig. 13 but for � �
0:1343 (T=Tc � 0:979).
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be a consequence of the difference in the nature of the
transition: while in quenched QCD the transition is first
order, in full QCD at intermediate quark masses the tran-
sition is a crossover. Note that at a crossover all quantities
change smoothly and, consequently, the string tension
should not vanish at T � Tc in our case. We assume
from Fig. 11 that the string tension continues to decrease
smoothly as temperature goes above Tc. However, the very
notion of the string for T � Tc seems to be out of the
physical relevance due to the very low value of the string
breaking distance rsb, see Fig. 15 below.
1 2 3r/r0

0

1

2

3

[V(r,T)-V
0
(T)]r

0

2m(T) r
0

V
string

(r,T) r
0

Wong potentials

FIG. 13 (color online). The string potential and the constituent
mass as a function of distance at � � 5:2 for � � 0:1335
(T=Tc � 0:863). The shaded regions indicate the errors.
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Our values for the constituent quark mass m�T� are
larger by about 100 MeV than those reported in [38].
However, one should note a difference between our defi-
nition of the self-energy and the definition used in
Ref. [38].

We are now able to compute the string breaking distance
rsb from

Vstring�rsb; T� � 2m�T�: (33)

In Figs. 13 and 14 we show the two energy levels together
with the data. The string breaks where the two levels cross.
The dependence of rsb on the temperature is shown in
Fig. 15. We see that rsb decreases as the temperature is
0.8 0.85 0.9 0.95 T/Tc

0

1

2

3

r
bs

r/)
T(

0 α=.33
α=π/12

r
sb

(T=0)/r
0

FIG. 15 (color online). The string breaking distance rsb as a
function of temperature. The dash-dotted line indicates the
corresponding zero-temperature value [3].
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0.8 0.85 0.9 0.95 1T/Tc

0

0.5

1

σ
/)

T(
σ

)0(

1−πΤ2/(3σ(0))
monopole

FIG. 17 (color online). The string tension of the monopole part
of the potential as a function of temperature. The curves are the
same as in Fig. 11.

V. G. BORNYAKOV et al. PHYSICAL REVIEW D 71, 114504 (2005)
increased. The difference of rsb between the two choices of
/ lies within the error bars.

Let us now consider the screening potential (30). Fitting
this potential to our data gives a comparable value of
!2=dof. However, the parameters of the fit turn out to be
unphysical. For example, at T=Tc � 0:798, 0:863 and
0:934we obtain ~�=��0� � 21�6�, 13�2� and 5:5�6�, respec-
tively. Only close to the deconfinement transition we do
find a reasonable value for the string tension: ~�=��0� �
0:4�3� at T=Tc � 0:979.

The screening potential (30) may be rewritten (up to a
constant) in the following form [48]:

VWong�r; T� �


�
4

3

/s
r
�
b�T�
�0

�
e��0r: (34)

Taking (as in [48]) b�T� � b0�1� �T=Tc�2�, b0 �
0:35 GeV2, �0 � 0:28 GeV, and /s � 0:32 (/s � 0:24)
for the charmonium (bottonium) potential, and shifting
the potential by a constant so that it agrees with the lattice
potential at r � r0, we find no agreement between this
potential and the lattice data. Thus, the potential used in
[48] to compute the quarkonium spectrum at finite tem-
perature hardly agrees with the lattice static potential. The
discrepancy is largest at smaller distances, where it matters
most. It is unlikely that the situation will change with
smaller quark masses.

D. Monopole part of the potential

We carried out a similar analysis as before for the
monopole part of the heavy quark potential, which is
obtained from the correlator (31). The fit parameters are
given in Table IV, and the potential is shown in Fig. 16. The
0 1 2 3r/r0

0

1

2

3r )
T,r(

V
0

Monopole potentials T/T
c
=0.863

T/T
c
=0.979

FIG. 16 (color online). The monopole part of the potential as a
function of distance at � � 5:2 for T=Tc � 0:863 and 0:979,
together with a fit of the form (32) (dashed curve). The hori-
zontal lines show the asymptotic value of the potential, where the
shaded area indicates the error.
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errors are smaller than in the previous fits, as expected. The
monopole part of the potential shows no Coulomb term,
while at large distances it converges to its asymptotic value
�2T lnhLmoni.

The string tension �mon�T� and the constituent quark
mass mmon�T� are shown in Figs. 17 and 18, respectively.
Because the Coulomb term is absent, we now can deter-
mine the string tension much more accurately. We find
substantially larger values than in the quenched case.
Furthermore, the string tension appears to decrease more
slowly as the system is heated. The constituent quark mass
mmon�T� looks very much the same as in the non-Abelian
case. The same holds for the string breaking distance, rmonsb ,
which is shown in Fig. 19.
0.8 0.85 0.9 0.95 1T/Tc

0

0.5

1

1.5

m
r )

T(
0

monopole

m(T=0)r
0

FIG. 18 (color online). The same as in Fig. 17 but for the
constituent quark mass. The dash-dotted line indicates the zero-
temperature value of the mass msl.
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FIG. 19 (color online). The string breaking distance rmonsb ob-
tained from the monopole potential as a function of temperature.
The dash-dotted line indicates the corresponding zero-
temperature value [3].
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To shed further light on the string breaking mechanism,
we have computed the action density, the color electric
field and the monopole current in the vicinity of the (bro-
ken) string.

The definitions of observables are the same as in
Ref. [12]. We are interested in local Abelian operators of
the form:
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O �s� � diag�O1�s�;O2�s�;O3�s�� 2 U�1� � U�1�: (35)

The correlator of the action density—which is C-parity
even operator—with the product of the monopole
Polyakov loops, Lmon�~s0�L

y
mon� ~s00�, can be written analo-

gously to Ref. [49]:

hO�s�iLmon
�
1

3

hTrO�s�Tr�Lmon�~s
0�Ly

mon�~s00��i

hTr�Lmon�~s
0�Ly

mon�~s00��i
�
1

3
hTrOi;

(36)

where

L mon�s� � diag�Lmon1 �s�; Lmon2 �s�; Lmon3 �s��; (37)

[cf. Eq. (14)].
As for the C-parity odd operators O, such as the color

electric field and the monopole current, we have

hO�s�iLmon
�

hTr�O�s��Lmon� ~s0�L
y
mon�~s00���i

hTr�Lmon�~s0�L
y
mon� ~s00��i

; (38)

in analogy to the case of SU�2� and U�1� theories,
Refs. [50].

The monopole part of the action density �Lmon
A , the

monopole part of the color electric field ELmon
i and the

monopole current kLmon , induced by the Polyakov loops,
are then given by
�Lmon
A �s� �

�
3

X
�>�

hdiag�cos�%mon1 �s;�; ���; cos�%mon2 �s; �; ���; cos�%mon3 �s; �; ����iLmon
; (39)

where the plaquette angles, %moni �s; �; ��, are constructed from the monopole link angles (12),

ELmon
j �s� � ihdiag�%mon1 �s; 4; j�; %mon2 �s; 4; j�; %mon3 �s; 4; j��iLmon

; (40)
and

kL��s; �� � 2�ihdiag�k1��s; ��; k2��s; ��; k3��s;���iLmon
;

(41)

respectively.
In Fig. 20 we show the result for T=Tc � 0:979 and

three different separations, r � 0:5, 0.8 and 1.3 fm. Our
estimate of the string breaking distance at this temperature
is � 0:5 fm. The figure suggests that the flux tube has
disappeared at the latest at r � 1:3 fm.
V. MONOPOLE DENSITY

Another characteristic quantity of the confining vacuum
is the monopole density, which we define as
� �
1

12NtN
3
s

*X3
i�1

X
s;�

jki�
�s;��j

+
; (42)

where the monopole current, ki��s;��, is given in (9).
In Fig. 21 we compare the monopole density of this

work with that of the quenched theory. The quenched result
has been obtained on the same sized lattice at � � 5:8, 5.9,
6.0, 6.1 and 6.2. The density in full QCD is substantially
higher than in the quenched theory, in agreement with our
earlier result at T � 0 [12]. We believe that the introduc-
tion of dynamical fermions causes an attraction between
monopoles and antimonopoles, which naturally leads to an
increase in the monopole density. A similar mechanism
has been observed in the case of instantons and anti-
instantons [51]. Both mechanisms are, of course, related,
because (anti-)instantons are intimately connected with
monopoles [52].
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FIG. 21 (color online). The monopole density as a function of
temperature.

FIG. 20. The monopole part of the action density (a), the monopole part of the color electric field (b) and the solenoidal monopole
current in the plane perpendicular to the flux tube (c) at T=Tc � 0:979 and distances (from top to bottom) 0.5, 0.8 and 1:3 fm.
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Near the finite temperature transition we expect the
monopoles to gradually become static as the temperature
becomes high. This can be monitored by the asymmetry of
the density of spatial and temporal monopole currents
[28,53]:

7 �
�t � �s
�t 
 �s

; (43)

where �t(�s) is the density of the temporal (spatial) mono-
pole currents,

�t �
1

3NtN3
s

*X3
i�1

X
s

jki�
�s; 4�j

+
;

�s �
1

9NtN3
s

*X3
i�1

X
s

X3
��1

jki�
�s; ��j

+
:

(44)

If all currents are timelike, then this quantity is unity, while
in the case of an isotropic distribution it is zero. In Fig. 22
we plot the asymmetry 7 as a function of temperature. We
compare the result with the predictions of the quenched
theory. It is found that 7 is zero in the confined phase and
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nonzero in the deconfined phase. In the deconfinement
phase the value of 7 is about 5 times smaller in full
QCD compared to the quenched theory. A reason for this
-12
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FIG. 22 (color online). The asymmetry of the monopole den-
sity as a function of temperature.
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may be rooted in a different nature of the transition which
is of the first order phase in the quenched case while in full
QCD one observes a smooth crossover.

VI. CONCLUSIONS

We have studied QCD with two flavors of dynamical
quarks at finite temperature on a 1638 lattice. At the phase
transition the lattice spacing is a � 0:12 fm. We employed
nonperturbatively improved Wilson fermions, so that we
may expect finite cutoff effects to be small.

To determine the parameters of the transition, notably
the transition temperature and the string tension, and to
shed light on the dynamics of the transition, it helped to
resort to Abelian variables in the maximally Abelian
gauge.
114504
We observed string breaking in Polyakov loop correla-
tors. This is a level crossing phenomenon. Accordingly, we
fitted the correlator by a two-state ansatz, consisting of a
string state and a two-meson state. We found good agree-
ment of this ansatz with our numerical data for T & Tc,
while we could rule out previously proposed single-state
correlation functions. The string breaking distance was
found to be rsb � 1 fm at T=Tc � 0:8, our lowest tempera-
ture. String breaking is also clearly visible in the action
density, the color electric field distribution and the sole-
noidal monopole current around the static sources.

To make contact with the chiral and continuum limit, we
need to make simulations at other �’s and larger Nt. Work
on 1638 lattices at � � 5:25 and on 24310 lattices at � �
5:2 is in progress. Preliminary results have been presented
in [54].
ACKNOWLEDGMENTS

We like to thank Alan Irving and Dirk Pleiter for assis-
tance. The calculations have been performed on the Hitachi
SR8000 at KEK Tsukuba and on the MVS 1000M at
Moscow. We like to thank the staff of the Moscow Joint
Supercomputer Center, especially A. V. Zabrodin, for their
support. We furthermore thank Ph. De Forcrand,
V. Mitrjushkin and M. Müller-Preussker for useful discus-
sions. This work is partially supported by Grants
No. INTAS-00-00111, No. RFBR 02-02-17308,
No. RFBR 04-02-16079, No. RFBR-DFG 03-02-04016,
No. RFBR 03-02-16941, No. DFG-RFBR 436RUS113/
739/0. Support was also received from CRDF RPI-2364-
MO-02. M. Ch. is supported by JSPS P01023. V. B. ac-
knowledges support from JSPS RC30126103. T. S. is sup-
ported by JSPS Grant-in-Aid for Scientific Research on
Priority Areas 13135210 and 15340073.
[1] F. Karsch, E. Laermann, and A. Peikert, Nucl. Phys. B605,
579 (2001).

[2] A. Ali Khan et al. (CP-PACS Collaboration), Phys. Rev. D
63, 034502 (2001).

[3] B. Bolder et al., Phys. Rev. D 63, 074504 (2001).
[4] F. Karsch, M. T. Mehr, and H. Satz, Z. Phys. C 37, 617

(1988).
[5] G. ’t Hooft, Nucl. Phys. B190, 455 (1981).
[6] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U.-J.

Wiese, Phys. Lett. B 198, 516 (1987).
[7] A. S. Kronfeld, G. Schierholz, and U.-J. Wiese, Nucl.

Phys. B293, 461 (1987).
[8] H. Shiba and T. Suzuki, Phys. Lett. B 351, 519 (1995);

M. N. Chernodub, M. I. Polikarpov, and A. I. Veselov,
Phys. Lett. B 399, 267 (1997); A. Di Giacomo and
G. Paffuti, Phys. Rev. D 56, 6816 (1997).
[9] G. ’t Hooft, in High Energy Physics: Proceedings of the
EPS International Conference, Palermo, 1975, edited by
A. Zichichi (Editrice Compositori, Bologna, 1976);
S. Mandelstam, Phys. Rep. 23, 245 (1976).

[10] Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25, 2681 (1982);
T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257
(1990).

[11] For a review, see M. N. Chernodub and M. I. Polikarpov,
hep-th/9710205.

[12] V. G. Bornyakov et al., Nucl. Phys. Proc. Suppl. B106, 634
(2002).

[13] V. G. Bornyakov et al., Phys. Rev. D 70, 074511
(2004).

[14] J. D. Stack, S. D. Neiman, and R. J. Wensley, Phys. Rev. D
50, 3399 (1994).

[15] H. Shiba and T. Suzuki, Phys. Lett. B 333, 461 (1994).
-13



V. G. BORNYAKOV et al. PHYSICAL REVIEW D 71, 114504 (2005)
[16] G. S. Bali, V. G. Bornyakov, M. Muller-Preussker, and K.
Schilling, Phys. Rev. D 54, 2863 (1996).

[17] S. Ejiri, S. Kitahara, T. Suzuki, and K. Yasuta, Phys. Lett.
B 400, 163 (1997).

[18] Y. Mori et al., Nucl. Phys. A721, C930 (2003); V. G.
Bornyakov et al., hep-lat/0301002; Nucl. Phys. Proc.
Suppl. B119, 703 (2003).

[19] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572
(1985).

[20] S. Booth et al. (QCDSF-UKQCD Collaboration), Phys.
Lett. B 519, 229 (2001); M. Göckeler et al. (QCDSF
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