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Divergent chiral condensate in the quenched Schwinger model
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We calculate numerically the eigenvalue distribution of the overlap Dirac operator in the quenched
Schwinger model on a lattice. The distribution does not fit any of the three universality classes of
spontaneous chiral-symmetry breaking, and its strong volume dependence indicates that the chiral
condensate in the quenched theory is an ill-defined and divergent quantity. When we reweight configu-
rations with the Dirac determinant to study the theory with Nf � 1, we obtain a distribution of eigenvalues
that is well-behaved and consistent with the theory of explicit symmetry breaking due to the anomaly.
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I. INTRODUCTION

Quantum electrodynamics in (1� 1)-dimensions, the
Schwinger model [1], continues to play an important role
as testing ground for field theory ideas. In this paper we use
the Schwinger model to study the quenched approximation
for the chiral condensate. The quenched chiral condensate
has long been believed, from various indirect arguments, to
be an ill-defined quantity in gauge theories in any number
of dimensions. Calculations in the Schwinger model are
much easier than in higher-dimensional gauge theories,
and this is our motivation for the present study. One must
keep in mind, however, the fact that spontaneous chiral-
symmetry breaking is prohibited in two dimensions by the
Coleman-Mermin-Wagner theorem [2]. For this reason we
also consider the unquenched theory, where chiral symme-
try is broken explicitly by the anomaly so that the chiral
condensate should be well defined.

The quenched approximation, in which the fermion
determinant is discarded when generating the gauge field
configurations, was first discussed analytically in this the-
ory by van den Doel [3]. Some of the subtleties were
subsequently discussed in Refs. [4,5]. As we shall review
in the next section, the indications of disease in the
quenched Schwinger model very much resemble those in
higher-dimensional quenched theories, analyzed by means
of quenched chiral perturbation theory [6,7]. This may not
be surprising, since the bosonized form of the Schwinger
model [8] is a two-dimensional analogue of a chiral
Lagrangian. The trouble with the quenched chiral conden-
sate then stems, in both contexts, from the famous double
pole in the singlet correlation function [6,9]. When ana-
lyzed in the finite-volume �-regime [10,11], the quenched
chiral condensate is seen to be plagued with a ‘‘quenched
finite-volume logarithm’’ at one-loop order in four dimen-
sions [12]. Taken at face value, that is, if one were to push
the expansion beyond its region of validity, this could
indicate a divergent condensate. The analysis of the
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quenched chiral condensate in the �-regime has guided
us in our present finite-volume calculations.

There have been many Monte Carlo calculations of the
chiral condensate in the Schwinger model, both quenched
and unquenched (see [13–20] for recent work). The first to
study the quenched condensate via the distribution of the
lowest Dirac operator eigenvalues were Farchioni et al.
[15]. They found quite an odd result—agreement with one
universality class of spontaneous chiral-symmetry break-
ing at small volumes, and with another at larger volumes.
We shall return to this issue in detail below. Kiskis and
Narayanan [18] reconsidered the problem recently and
found evidence for a divergent quenched chiral conden-
sate, with Dirac eigenvalues that did not appear to fit any of
the three possible chiral-symmetry breaking classes. We
shall see how these last two papers can be reconciled. In the
process we shall consider volumes far exceeding what has
been studied earlier.

Our paper is organized as follows. In the next section we
briefly review the issues surrounding the quenched chiral
condensate, particularly in this two-dimensional setting,
and show how analytical arguments favor an ill-defined,
divergent quantity. In Sec. III we turn to our Monte Carlo
simulations of the quenched theory. We compare numerical
results for the distribution of Dirac operator eigenvalues
with distributions based on the three possible classes of
spontaneous chiral-symmetry breaking. We show how the
distributions drift as the volume is changed, and how this
explains the results of Ref. [15]. Moreover, we find that the
distributions appear not to converge to any fixed limit,
indicating that the spectral density ���� does not attain a
finite value at � � 0. By way of contrast, we present in
Sec. IV numerical results for the unquenched theory (Nf �
1), obtained by reweighting the path integral with the Dirac
determinant. Our results there are consistent with the de-
tailed predictions of the �-regime based on the explicit
breaking of chiral symmetry due to the anomaly [11].
Section V contains a brief summary of our results.
-1  2005 The American Physical Society
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II. THE QUENCHED SCHWINGER MODEL

Analytically, one can treat quenching by means of the
replica method that considers Nf identical fermion copies,
and then sends Nf ! 0 at the end. This can be done
trivially in perturbation theory at the fundamental level;
in more than two dimensions it can be done in chiral
perturbation theory [7]. Because the fermion determinant
is exactly calculable in two dimensions, it can also be done
beyond perturbation theory in the Schwinger model. This
was first realized by van den Doel [3], and we shall here
briefly review his calculation (see also [4,5]). At the same
time we shall make contact with the very similar calcula-
tion in four-dimensions, in quenched chiral perturbation
theory based on the replica formulation.

In the continuum theory, we consider the Lagrangian

L � �
1

4
F�	F�	 �

XNf
i�1

� i�i@6 �m� gA6 � i

�
g�
4�

��	F�	; (1)

with gauge group U(1), coupling g, and Nf species of
fermions. A two-dimensional �-term has been included
as well. Since the fermion determinant is exactly calcu-
lable in two dimensions, the theory is in large measure
soluble. A convenient representation of the model is its
bosonized form [8] where the Lagrangian density, upon an
exact integration over the gauge potential, takes the form

L �
XNf
j�1

1

2
@��j@��j �

g2

2�

 XNf
|�1

�j �
�
2
����
�

p

!
2

� cm2
XNf
|�1

N cos�2
����
�

p
�j�: (2)

Here N denotes normal ordering and c � e�=2� where �
is Euler’s constant.

Although there is no spontaneous chiral-symmetry
breaking here, the bosonized action (2) bears a strong
resemblance to chiral Lagrangians in four dimensions,
with f � 1=

����
�

p
playing the role of a (dimensionless)

pion decay constant [21]. This becomes particularly clear
when we consider the theory in an expansion around static
(zero-momentum) modes. If we define the partition func-
tion in a sector of fixed topological charge 	 by means of
[11]

Z 	 	
1

2�

Z 2�

0
d�ei	�Z���; (3)

the integral over � can be performed exactly. Upon defin-
ing the Nf 
 Nf matrix U 	 diagfexp�i2

����
�

p
�j�g, the

terms that survive in the static limit yield a Boltzmann
factor
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�detU�	 exp�
c
2
Vm2N Tr�U�Uy��;

in analogy with the result in 4 dimensions [11] (here V
denotes the finite two-dimensional volume). Note, how-
ever, that the mass term is proportional to m2 rather than to
m as in four dimensions. This is crucial for understanding
the difference with respect to spontaneous breaking of
chiral symmetry.

The analogy to a four-dimensional chiral Lagrangian
holds to any order in chiral perturbation theory. In particu-
lar it is useful for understanding the quenched limit of the
theory. The mass term and its normal-ordering prescription
complicate matters slightly, and it suffices to consider the
massless limit. In that limit we read off the diagonal scalar
propagator from Eq. (2),

G �p2� �
1

p2
�
g2

�
1

p2�p2 � Nfg2=��
; (4)

which reduces to the classic Schwinger result of an ordi-
nary massive propagator whenNf � 1 [4]; in the quenched
limit (Nf � 0) a double pole develops,

G �p2� �
1

p2
�
g2

�
1

�p2�2
�Nf � 0�; (5)

as first noted by van den Doel [3]. This phenomenon is
completely analogous to what happens in quenched chiral
perturbation theory in four dimensions when formulated in
terms of replicas; see the appropriate replica Feynman rule
in Eq. (7) of Ref. [7]. The only difference is the replace-
ment of the Schwinger mass parameter �2 � g2=� by
what is there commonly normalized as �2=Nc, where Nc
is the number of colors. (The double pole had of course
been observed much earlier in quenched chiral perturba-
tion theory by means of a supersymmetric extension [6,9].)

The above description of the diagonal scalar propagator
glosses over the fact that in two dimensions the propaga-
tion of massless degrees of freedom requires an infrared
regularization. This is true even when the Schwinger mass
� � g=

����
�

p
is taken into account because of the remaining

1=p2-poles in the propagator (4) when Nf ! 0. After
regularizing this infrared divergence by an additional
mass parameter mIR, the calculation of the chiral conden-
sate requires integration over a closed loop of the propa-
gator

~G�p2� �
p2 � �Nf � 1��

2

�p2 �m2IR��p
2 � Nf�2 �m2IR�

�
1

p2 �M2 ;

(6)

whereM is the arbitrary mass defining the normal-ordering
prescription [8]. From here the quenched chiral condensate
has been computed [3–5] to give
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h �  i � � lim
mIR!0
Nf!0

cMhN cos2
����
�

p
�k�i

� � lim
mIR!0
Nf!0

cmIR

�
1�

Nf�
2

m2IR

�
1=2Nf

: (7)

For fixed infrared cutoff mIR, the limit Nf ! 0 yields [4]

h �  i � � lim
mIR!0

cmIRe
�2=2mIR ; (8)

which is infrared divergent. This ordering of limits seems
closest to the actual ‘‘physical’’ (i.e., computational) defi-
nition of the quenched theory, and we shall view it as the
simplest manifestation of the difficulty with defining the
quenched Schwinger model. Since the result is divergent,
and since the computation has been done based on an
expansion around the massless theory, one can question
to what extent the resulting divergence is a truly reliable
prediction. More detailed computations at fixed V can be
found in Refs. [10,22].
III. MONTE CARLO ANALYSIS

We consider a lattice with volume �La�2 and employ a
noncompact formulation for the gauge field. In a sector
with topological charge Q, the gauge field A� may be
decomposed [23] as

A1�x� � @�2��x� �
2�
L
h1 � @1'�x�; (9)

A2�x� � �@�1��x� �
2�
L
h2 � @2'�x� �

2�Q

L2
: (10)

Here ��x� is a real periodic function with no zero mode,
and h� are two real constants in the interval ��1=2; 1=2�
that parametrize the two Polyakov loops on the 2-d lattice.
@� and @�� are forward and backward finite differences;
'�x� represents the gauge degree of freedom. The gauge
action is then

SG �
1

4g2
X
x

F2�	�x� (11)

�
1

2g2
X
x

���x��2 �
2�2Q2

�gL�2
; (12)

where

���x� �
X
�

��x��� ���x��� � 2��x��: (13)

We denote the gauge coupling by * � 1=�2g2a2�. The
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continuum limit may be taken at fixed finite g and at fixed
volume by taking * and L to infinity. Alternatively, we can
keep g and L fixed and vary the physical volume by
changing *.

Our choice of the noncompact action is motivated
mainly by the ease with which we can generate indepen-
dent gauge configurations with the desired topological
charge. Successive configurations are generated by a heat
bath so that there is no autocorrelation. We restrict our-
selves to the sector with zero topological charge.

We employ lattices of linear size L ranging from 8 to 60,
and fix * � 2. We also have one data set with * � 1 and
L � 48; if we renormalize at fixed g as discussed above
then this is equivalent to L � 48

���
2

p
’ 68 at * � 2, allow-

ing us a larger physical volume at modest additional cost.
We use the massless overlap-Dirac operator [24] for the

fermions,

D �
1

2
1� �5��HW��: (14)

Here HW � �5DW��1� is the hermitian Wilson–Dirac
operator with mass parameter set to �1. With this normal-
ization the eigenvalues of the hermitian overlap-Dirac
operator H � �5D lie in the interval �1; 1�, but there is
a wave-function renormalization Z � 2 with respect to
the conventional normalization of the Dirac operator [25]
that one needs to keep in mind.

For L � 32 we diagonalize HW exactly by a
Householder transformation followed by QL iteration
[26]. From this we construct H, whose eigenvalues we
obtain similarly. For the larger lattices we compute the
lowest eigenvalues of H2 with the Ritz variational algo-
rithm of Kalkreuter and Simma [27]. Here the action of
��HW� on a vector is obtained using a modified version of
the two-pass algorithm [28]. In the first pass, the Lanczos
algorithm is used to obtain a tridiagonal matrix, TW , that is
a good approximation toHW . Then ��TW� is obtained by an
exact diagonalization of TW , and the second pass is used to
compute the action of ��TW� on a vector.

Previous papers have compared the eigenvalue distribu-
tions to the predictions of random matrix theory (RMT),
and we shall proceed to do the same. In higher dimensions,
where spontaneous chiral-symmetry breaking is allowed, it
is by now well known that the lowest eigenvalues of the
Dirac operator in the �-regime are distributed according to
universal finite-size scaling distributions that can be de-
rived either from RMT [29,30] or directly from the chiral
Lagrangian framework [31,32]. There is ample evidence
that the universality class of these distributions is dictated
by the way the fermions transform under the gauge group.
This has been demonstrated for three different gauge group
representations with overlap fermions [33], and for a vari-
ety of exotic representations with staggered fermions [34].

According to this classification, if chiral-symmetry
could be spontaneously broken in the Schwinger model,
-3
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where the fermions transform as a complex representation,
the relevant universality class in RMT terms would be that
of the chiral unitary ensemble (chUE). It is by no means
clear, however, whether these predictions are of any rele-
vance to the quenched Schwinger model, where sponta-
neous chiral-symmetry breaking is prohibited [2]. Ref-
erence [15] included such a comparison, but the results
were not easy to understand. For small lattices the eigen-
value distributions appear to fall in with the chiral sym-
plectic ensemble (chSE), which should be of relevance to
real fermion representations. For larger lattices there ap-
pears to be a switch to the perhaps more natural chUE.
With our greater statistics and our larger lattices, we are
now able to see that such surprising results do not really
hold.

We begin with attempts to fit the distribution of the
lowest eigenvalue to the form predicted by RMT for the
quenched (Nf � 0) chUE [35],
FIG. 1. Comparison of the distribution of the rescaled lowest eigen
RMT for the quenched chUE. All ensembles here have * � 2.

114503
p1�01� �
1

2
01e

�021=4; (15)

where 01 � �1�L
2 and the condensate � is the fit parame-

ter. We compare to histograms with 20 bins in 01. The
comparisons are shown in Fig. 1 for nine volumes, and the
results of the fits to the RMT prediction are listed in
Table I.
L � 24 is the case that comes closest to agreement with

the chUE prediction, but even here our fit gives a 12=dof of
58:1=19 corresponding to a confidence level of 7:6
 10�6.
Our high-statistics data enable us to rule out the chUE
scenario here. As can be seen from Table I, for all other
lattice sizes the RMT fits to the chUE predictions are ruled
out even more thoroughly.

Farchioni et al. [15] found agreement with the chUE
prediction for large volumes, in particular, for L � 16 and
* � 1 (see their Fig. 6; their definition of * is twice ours).
value of the quenched Schwinger model with the prediction from
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TABLE I. Number of configurations studied for each volume
V � L2, the condensate �, the 12, number of degrees of free-
dom, and confidence level from fits of the lowest eigenvalue
distribution to the RMT form of the chUE with 20 histogram
bins. The last line is for * � 1, all others for * � 2.

L Nmeas � 12 dof CL

8 1000 0.2221(25) 415.5 19 2:6
 10�76

12 10000 0.1705(6) 3278. 19 <10�100

16 10000 0.1752(4) 2801. 19 <10�100

20 12440 0.1632(5) 1024. 19 <10�100

24 4880 0.1679(11) 58.14 19 7:6
 10�6

28 9360 0.1879(11) 204.9 18 1:1
 10�33

32 12320 0.2242(14) 1223. 19 <10�100

48 1660 0.828(19) 945.4 17 <10�100

52 1280 1.164(16) 714.9 17 <10�100

56 1320 2.115(29) 894.7 18 <10�100

60 1020 2.36(11) 929.8 19 <10�100

48 860 3.921(42) 457.4 17 1:7
 10�86
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This is the same physical volume as L ’ 23 and * � 2. As
we stated above, we rule out the chUE at this volume and at
all other volumes studied.1 For smaller volumes, Farchioni
et al. favor the chSE, claiming, in particular, a good fit at
L � 16 for * � 2. A fit of our high-statistics L � 16 data
to the quenched chSE distribution gives12=dof � 436=19,
ruling it out as well.

As seen in Fig. 1, the peak of the distribution of the
lowest eigenvalue moves downward faster than 1=L2, the
RMT prediction, while a sizable tail of the distribution
persists. The RMT scaling law is based on the assumption
of a finite eigenvalue density ��0� at the origin; a scaling
faster than 1=L2 thus entails a divergence in ��0� as L!
1. By the Banks-Casher relation � � ���0�, this in turn
implies a divergent chiral condensate. Indeed, from Table I
we see that the fitted � grows quite rapidly with in-
creasing L.

We now elaborate on this last point. Let �i�L;*� be the
i-th lowest nonzero eigenvalue of H on an L2 lattice at a
coupling *. For a finite chiral condensate to form we
expect that

fi�L;*� 	
1

L2h�i�L;*�i
(16)

approaches an i-dependent constant as L! 1,

lim
L!1

fi�L;*� � fi�*�: (17)

In lattice units we expect fi�*� / � [11]. Furthermore, the
products fi�*�

����
*

p
should approach finite continuum limits

for *! 1.
1Reference [15] describes a simulation of a compact gauge
action, however, so the comparison between our calculations
cannot be made precise.
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The scaled variables f1�L;*�
����
*

p
and f2�L;*�

����
*

p
are

plotted as functions of the physical size L=
����
*

p
in Fig. 2.

(We combine data for * � 1: with data for * � 2:) We see
that these quantities do not approach L-independent con-
stants as one would expect on the basis of the existence of a
finite chiral condensate �.

The distribution p2�02� of the second scaled eigenvalue
(with � taken from Table I) for some large volumes are
shown in Fig. 3 and compared with the predictions for the
(Nf � 0) chUE [35],

p2�02� �
1

4
02e

�022=4
Z 02

0
duuI22�u� � I1�u�I3�u��: (18)

Much like the distributions of 01 above, these clearly do
not fall in the universality class of the chUE. We can
eliminate the scale ��L;*� in these comparisons, by plot-
ting the distribution of r � �1�*;L�=�2�*;L�. We com-
pare this to the prediction from the chUE [35,36]

p�r� �
1

4

r

�1� r2�2
Z 1

0
duu3 exp

�
�

u2

4�1� r2�

�

 I22�u� � I1�u�I3�u��; (19)

in Fig. 4. Again, the data do not fall in the universality class
of the chUE.

Do the pi�0i� reach some limiting distributions as L!
1? It is difficult to answer this question based on the data
shown in Figs. 1 and 3. It is conceivable that p1�01�
approaches a function peaked at zero while p2�02� reaches
a limiting form peaked away from zero, but we have no real
evidence for this. Whatever the answer, however, it is
possible that the distribution p�r� of the ratio does have a
limiting distribution. Even though �1 and �2 go to zero
much faster than 1=L2, we can discern some level repul-
sion that favors a ratio r between 0 and 1. Figure 5 shows
FIG. 2. Evidence for a diverging condensate in the quenched
Schwinger model.
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FIG. 5. Expectation value of r � �1�L;*�=�2�L;*� in the
quenched Schwinger model as a function of the physical size.
The data are not consistent with chUE but do seem to approach a
finite limit as L! 1.

FIG. 4. The distribution of the ratio of the two lowest eigenvalues in the quenched Schwinger model shows that they do not obey the
universal distribution given by the chUE.

FIG. 3. Distribution of the scaled second eigenvalue of the quenched Schwinger model.
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hri as a function of the physical size and this average seems
to approach a finite limit as L! 1.
IV. THE UNQUENCHED THEORY

When we compute all the eigenvalues of the Dirac
operator on each pure gauge configuration, we can calcu-
late observables in the theory with Nf � 0 by reweighting
with the fermion determinant. We restrict ourselves to
Nf � 1 since statistical fluctuations are worse when the
target ensemble is farther from the original quenched
ensemble. In the continuum Nf � 1 is of course
Schwinger’s original model [1], which is exactly soluble.
In particular, the infinite-volume chiral condensate can be
computed analytically, [8]

� �
e��
2�

�
ge�

2�3=2
� �0:1599 . . .�g; (20)

in the conventional normalization, where� � g=
����
�

p
is the

Schwinger mass and � is Euler’s constant. Because the
chiral symmetry is broken explicitly, the analysis of
Leutwyler and Smilga [11] and the whole RMT analysis
-6



TABLE II. Number of configurations studied for each volume
V � L2 with * � 2, reweighted to Nf � 1, the condensate �,
the 12, number of degrees of freedom and confidence level from
fits of the lowest eigenvalue distribution to the RMT form with
20 histogram bins.

L Nmeas � 12 dof CL

12 10000 0.2168(6) 2158. 19 <10�100

16 10000 0.2019(5) 2067. 19 <10�100

20 12440 0.1781(5) 791.8 19 <10�100

24 4880 0.1694(12) 60.48 19 3:2
 10�6

28 9360 0.1671(11) 45.98 18 3:0
 10�4

32 12320 0.1648(11) 16.73 19 0.61
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for the Nf � 1 theory apply directly here. We therefore
know the complete microscopic spectrum of the Dirac
operator in the �-regime and it belongs to the universality
class of the chUE.
FIG. 6. Comparison of the distribution of the rescaled lowest
Nf � 1 chUE.

114503
Once again, the simplest quantity with which to compare
is the distribution of the smallest (nonzero) Dirac eigen-
value [35],

p1�01� �
1

2
01I2�01�e

�021=4; (21)

here restricted to the massless case. We were able to re-
weight ensembles on lattices up to size L � 32. Again, we
made fits to the RMT prediction, with � the fit parameter,
using histograms with 20 bins. The fits are detailed in
Table II and shown in Fig. 6. The agreement with the
chUE is quite good for the two largest lattices. The second
eigenvalue (Fig. 7) tells a similar story. We show the
averaged ratio hri in Fig. 8, which may be compared to
Fig. 5 for the quenched theory. The result for L � 32
agrees with the prediction of the chUE, hri � 0:5044 [36].

Converting the result from Table II for the largest
lattice size to the conventional normalization, we find
eigenvalue for Nf � 1 with the prediction of RMT for the

-7



FIG. 7. Rescaled second eigenvalue for Nf � 1, compared with the prediction of RMT for the Nf � 1 chUE [see Eq. (15) in
Ref. [36]].

FIG. 8. Expectation value of r � �1�L;*�=�2�L;*� for Nf �
1 as a function of the physical size.
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�=g � 0:1648�11�, within 3% of the continuum value
given in Eq. (20); finite lattice spacing corrections, ex-
pected to be of O�1=*�, could easily explain the difference
(see also [13]).2 We note, however, that fits to the RMT
distribution of the lowest eigenvalue do not work as well
for the smaller lattices, L � 24, giving unacceptably small
confidence levels. It would be interesting to see whether
the agreement with RMT persists on larger lattices and
whether the continuum value for � is correctly reproduced
as *! 1. Unfortunately, reweighting becomes prohibi-
tive for larger volumes. A direct numerical simulation of
the Nf � 1 theory is probably needed.
2The fit to p2�02� for L � 32 gives a value of � that is 7%
larger than the value shown in Table II. This is consistent with
wide experience that higher eigenvalues suffer larger finite-
volume effects.
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V. SUMMARY

As we have shown, the quenched Schwinger model does
not fall into any of the three universality classes of chiral-
symmetry breaking. In view of the Coleman-Mermin-
Wagner theorem, which forbids spontaneous breaking of
a continuous symmetry in two dimensions, this in itself is
not very surprising. The only possible loophole out of this
argument would be to note that the quenched theory is
nonunitary and thus it might not satisfy some assumptions
of the theorem.

The application of the Coleman-Mermin-Wagner theo-
rem to the quenched theory may be considered in two
ways. In the so-called supersymmetric formulation of
quenching, spontaneous chiral-symmetry breaking is asso-
ciated with quenched Goldstone bosons and Goldstone
fermions. In the replica formulation, the spontaneous
breaking is associated with Goldstone bosons alone. In
both ways of considering quenching, the theorem seems
to exclude rigorously the possibility of a nonzero conden-
sate. In that light it is perhaps surprising that the numerical
evidence now points towards an ill-defined, divergent chi-
ral condensate, rather than a vanishing condensate.

The Schwinger model with Nf � 1 is on an entirely
different footing due to the explicit breaking of chiral
symmetry by the anomaly. Here we have unambiguous
analytical predictions for the behavior of Dirac operator
spectra near the origin, and our Nf � 0 results reweighted
with the Dirac determinant to simulate the Nf � 1 theory
are consistent with these analytical predictions. For the
massive Schwinger model with Nf � 1, a disagreement
with RMT must appear as the mass is taken to infinity. Our
statistics have not been good enough to attempt the even
more ambitious reweighting to simulate theNf � 2 theory.
114503
Also here unusual results should appear, presumably with
the Dirac operator eigenvalues being strongly repelled by
the origin so as to produce a vanishing ��0�. For Nf � 2
analytical calculations [10] suggest a behavior

���� � �1=3; (22)

and an interesting question is whether such behavior at the
rescaled level has a universal distribution from ‘‘critical’’
Random Matrix Theories (the precise behavior (22) is
actually realized in a very simple chiral matrix model
[37]) or analogous eigenvalue models [38]. This could be
an interesting topic for future investigations.
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