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Understanding the U(1) problem through the dyon configuration in the Abelian projection
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We show that the magnetic monopole promoted to the dyon due to the vacuum angle � resolves the U(1)
problem in the sense that the dyon obtained in this way gives a dominant contribution to the topological
susceptibility. For this purpose, we derive an Abelian-projected effective gauge theory written in terms of
Abelian degrees of freedom, which is obtained by integrating out all the off-diagonal degrees of freedom
involved in the SU(2) Yang-Mills theory with the vacuum angle �. We evaluate the topological
susceptibility by estimating the classical part of the effective dyon action obtained by performing the
duality transformation. The obtained result is consistent with the Veneziano-Witten formula.
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I. INTRODUCTION

The elementary particles constituting hadrons such as
baryons and mesons are called quarks, which are combined
by gluons as gauge particles. Nowadays, the very funda-
mental theory describing quarks and gluons is believed to
be quantum chromodynamics (QCD) which is a non-
Abelian gauge theory or the Yang-Mills theory with color
gauge group SU(3). This is because QCD is the unique
theory which well describes the asymptotic behavior of
hadrons in the high energy region reflecting the asymptotic
freedom using the perturbation theory and automatically
satisfies a number of conservation laws characteristic in the
strong interactions.

On the other hand, the perturbation theory is powerless
to study the hadronic phenomena in the low-energy region
where the coupling constant becomes large. For instance, it
is difficult to calculate the proton mass directly from QCD.
Moreover, quarks have never been observed in the isolated
form, which is called the quark confinement problem.

There is another problem called the U(1) problem or �
meson problem [1]. The �0 meson is regarded as a Nambu-
Goldstone (NG) boson (pseudoscalar) associated with the
spontaneous breaking of chiral symmetry to the flavor
symmetry, U�Nf�L � U�Nf�R ! U�Nf�V , caused by the
flavor-independent quark-antiquark pair condensations
h �uui � h �ddi � h �ssi. However, �0 is very heavy compared
with the other eight NG bosons, �0; �	; K
; K0; �K0; �, for
Nf � 3. In fact, the mass of �0 meson is about 958 MeV
which is about 10 times larger than the mass 135 MeVof �
meson as one of the NG bosons. Moreover, there are
inconsistencies between the theoretical prediction and the
experimental data for the decay of the � meson, e.g., � !
�����0. These problems have a common origin, i.e., the
singularity of the color-flavor singlet axial-vector current
(so-called the UA�1� current).
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We know other problems to be resolved, such as strong
CP violation and chiral symmetry breaking in the strong
interactions. In order to solve these problems, we need to
develop the nonperturbative methods without relying on
the perturbation theory. These nonperturbative phenomena
are believed to be well understood in the unified way by
considering the topologically nontrivial configurations of
the gluon field.

The global UA�1� symmetry is broken at the quantum
level, since the UA�1� current has the triangle anomaly in
the quantum theory. In fact, ’t Hooft [2] pointed out that
topologically nontrivial configurations such as instantons
give the nonzero anomaly and suggested that instantons are
the relevant topological objects related to the resolution of
the U(1) problem[3]. However, it was not clear how to
compute the �0 mass. Moreover, it was pointed out that the
Ward-Takahashi identity for the UA�1� current with the
anomalous term contradicts with the quark–antiquark con-
densation in the instanton � vacuum [4].

There is another route initiated by Witten [5] and
Veneziano [6] for solving the U(1) problem within the
framework of the large Nc (color) expansion. They have
derived the relation called the Witten-Veneziano formula
which enables us to estimate the �0 mass through the
topological susceptibility. Along this line, a lot of progress
have been made by subsequent works [7]. Nowadays, it is
recognized as a solution of the U(1) problem.

In this paper, we argue that the U(1) problem is under-
stood through the dyon configuration. A strategy for solv-
ing the U(1) problem along this line has already been
discussed by Ezawa and Iwazaki [8] based on the idea of
the Abelian projection proposed by ’t Hooft [9]. However,
they assumed in their analyses the Abelian dominance from
the beginning and used an Abelian-projected effective
theory which is conjectured to be derived from the Yang-
Mills theory in the long distance. In contrast, in this paper,
we derive the Abelian-projected effective theory based on
the functional integration of the off-diagonal degrees of
freedom from the Yang-Mills theory with the � angle.
-1  2005 The American Physical Society
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This paper is organized as follows. In Sec. II, we adopt
the BRST formulation to quantize the Yang-Mills theory
with the � angle where we restrict our consideration to the
gauge group SU(2) for simplicity. We exploit the Abelian
projection idea [9] and integrate out all the off-diagonal
components of gluons. Then we obtain an effective theory
written in terms of the diagonal gluons alone, which we
call the Abelian Projected Effective Gauge Theory
(APEGT) [10] with the � angle. The Abelian projection
here does not mean that the off-diagonal gluons are simply
neglected to obtain the APEGT for studying the low-
energy physics. In fact, the off-diagonal gluons influence
the wave function renormalization and the running effec-
tive coupling constant in the resulting APEGT to be con-
sistent with the asymptotic freedom in the original Yang-
Mills theory [10].

In Sec. III, we rewrite the APEGT with �-term into an
effective theory written in terms of the dyon degrees of
freedom alone. The obtained dyon action has a beautiful
form suggesting the existence of the duality in the effective
Abelian gauge theory. Here the dyon implies a topological
soliton having both electric and magnetic charges where
the electric charge of dyon is proportional to the � angle.

In Sec. IV, we evaluate the topological susceptibility
from the effective dyon action. We show that the U(1)
problem is solved by using the effective dyon action ob-
tained in this way, if it is combined with the Witten-
Veneziano formula.

In the final section, we discuss the relationship between
the dyon and the instanton from the viewpoint of under-
standing the U(1) problem.
II. APEGT WITH � TERM

We extend the method of [10] to the Yang-Mills theory
in the presence of the vacuum angle �.

A. Definitions

In this paper, we restrict our consideration to the gauge
group G � SU�2�. We write the SU(2) gluon field A� as

A ��x� �
X3
A�1

AA
��x�TA; (1)

and the field strength F �� as

F ���x� �
X3
A�1

F A
���x�TA

� @�A��x� � @�A��x� � igA��x�;A��x��;

(2)

where TA�A � 1; 2; 3� is the generator of the Lie algebra of
the gauge group SU(2). The Hodge dual ~F �� of F �� is
114019
defined by

~F ���x� �
1

2
�����F ���x�: (3)

We adopt the Yang-Mills (YM) action SYMA� with the
� term S�A�:

SYM�A� � SYMA� � S�A�; (4a)

SYMA� � �
1

2g2

Z
x
tr�F ��F

���; (4b)

S�A� �
�

16�2

Z
x
tr�F��

~F ���; (4c)

where we have introduced the notation,
R
x �

R
d4x.

The topological term S�A� can be cast into the total
derivative and is neglected in the perturbation theory. For
the instanton solution with the nontrivial winding number
Q � 0, however, it gives a nontrivial value, S�A� �
�Q � 0. Therefore, the topological term is expected to
give a nontrivial contribution in the nonperturbative phe-
nomena in which the topological configuration such as
instanton plays the important role.

Here, we decompose A� into the diagonal U(1) and the
off-diagonal SU(2)/U(1) parts as

A ��x� � a��x�T3 � A��x�; A��x� :�
X2
a�1

Aa
��x�Ta; (5)

where the index a � 1; 2 denotes the off-diagonal part.
a��x� and Aa

��x� are diagonal, off-diagonal gluon field,
respectively. Accordingly, the field strength F �� is decom-
posed as

F �� � f���x� � C���x��T3 � Sa
���x�Ta; (6a)

f���x� � @�a��x� � @�a��x�; (6b)

Sa
���x� � D�a�

abAb
��x� �D�a�

abAb
��x�; (6c)

C���x�T
3 � �iA��x�; A��x��; (6d)

where the covariant derivative D�a� is defined by

D�a� � @� � ia�T3; ��; (6e)

D�a�ab � @�#ab � �ab3a�: (6f)

Then the action is decomposed as

SYMA� � �
1

4g2

Z
x
�f�� � C���

2 � �Sa
���

2�; (7a)

S�A� �
�

32�2

Z
x
�f�� � C����~f

�� � ~C���

� Sa
��

~S��a�; (7b)

where �Sa
���

2 and Sa
��

~S��a are

�Sa
���

2 � �2A�aWab
��A�b � 2@��A�aSa

���; (7c)
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Wab
�� � �D%a�D%a��

ab#�� � �ab3f��

�D�a�acD�a�cb; (7d)

S a
��

~S��a � �2A�a ~Wab
��A

�b � 2@�
�
A�a 1

2
���%&S

&%
�
;

(7e)

~W ab
�� � ������D�a�

acD�a�
cb � �ab3 ~f��: (7f)

In Eq. (7f), we have used

D�a�
ac; D�a�

cb� � ��ab3f��: (8)

In what follows, the surface terms, i.e., the second terms in
(7c) and (7e) are neglected, since it is known that the off-
diagonal gluons become massive once the MA gauge fix-
ing is adopted [11].

Thus, the total action SYM�A� is decomposed as

SYM�A� �
Z
x

�
�

1

4g2 f��f
�� �

�

32�2 f��
~f��

� f��

�
�

1

2g2 C
�� �

�

16�2
~C��

�

�
1

4g2 C��C
�� �

�

32�2 C��
~C��

�
1

2g2 A
�a
�
Wab

�� �
g2�

8�2 �
ab3 ~f��

�
A�b

	
: (9)

In order to integrate out the off-diagonal gluon field Aa
�, we

replace the terms quartic in Aa
� in (9),

Z
x

�
�

1

4g2 C��C
�� �

�

32�2 C��
~C��

	
; (10)

by the equivalent form quadratic in Aa
�,

Z
x

�
�

1

4
g2B��B�� �

1

2
B��c0C�� � c1 ~C

���

	
; (11)

with appropriate constants, c0 and c1, to be specified
shortly.1 In the Minkowski spacetime, by paying attention
to the relationship for the double Hodge-dual operations,

~C ��
~C�� �

1

4
���%&�����C%&C�� � �C��C

��; (13)

the Gaussian integration over the B�� field in (11) is
performed to give
1This procedure corresponds to introducing the auxiliary (anti-
symmetric tensor) field B�� according to

B�� � g�2�c0C�� � c1 ~C���: (12)
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�
1

4
g2B��B�� �

1

2
B��c0C�� � c1 ~C

���

!
1

4g2 f�c
2
0 � c21�C��C

�� � 2c0c1C��
~C��g: (14)

Therefore, in order for (10) and (11) to be equivalent, two
coefficients, c0 and c1, must satisfy the relationships,2

c21 � c20 � 1; c0c1 �
g2�

16�2 : (15)

The solution of (15) is

c20 �
1

2

�
�1


g2

4�
j(j

�
; c21 �

1

2

�
1


g2

4�
j(j

�
; (16)

where ( is the complex coupling constant defined by

( �
�
2�

� i
4�

g2 ; j(j �


































�
�
2�

�
2
�

�
4�

g2

�
2

s
; (17)

which is known to play the very important role especially
in the supersymmetric Yang-Mills theory, see e.g., [12].

In what follows, we adopt

c0 �
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2

s �vuut
;

c1 �
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1�

�
g2�

8�2

�
2

s �vuut
:

(18)

For g2� <<1, we see the coefficients behave as

c0 ’
1

2
�
g2�

8�2 ; c1 ’ 1�
1

8

�
g2�

8�2

�
2
: (19)

Replacing (10) with (11) and using

f��

�
�

1

2g2 C
�� �

�

16�2
~C��

�
�

1

2
B��c0C�� � c1 ~C

���

� �
1

2g2 A
�a
�
�ab3f�� �

g2�

8�2 �
ab3 ~f��

� g2c0�
ab3B�� � g2c1�

ab3 ~B��

	
A�b; (20)

the total action reads

S YM�A� �
Z
x

�
�

1

4g2 f��f
�� �

�

32�2 f��
~f��

�
1

4
g2B��B

�� �
1

2g2 A
�aQab

��A
�b
	
; (21)
2In the Euclidean space, it should be noted that the first
equation in (15) has the different form, c21 � c20 � �1, due to
~C��

~C�� � C��C��.
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where we have defined

Qab
�� :� �D%a�D%a��ab#�� � 2�ab3f�� � g2c1�ab3 ~B��

� g2c0�ab3B�� �D�a�acD�a�cb: (22)

B. Gauge fixing

We adopt the gauge fixing (GF) condition for the off-
diagonal part:

F
A; a� � �@� 
 i+a��A

� � 0; (23)

where we have used the �
; 3� basis, O
 � �O1 


iO2�=




2

p
: Here the gauge parameter + � 0 corresponds

to the Lorentz gauge and + � 1 to (the differential form
of) the maximal Abelian gauge (MAG). At this stage, we
keep the residual U(1) gauge invariance without fixing it.

In the BRST quantization, the GF condition (23)
amounts to adding the following GF term and the
Faddeev-Popov (FP) term [10],

LGF�FP � ,aFaA; a� �
�
2
�,a�2 � i �caD�aba�+Dbc

� a�cc

� i+ �caAa
�A

�b � Ac
�A

�c#ab�cb; (24)

where

FaA; a� � �@�#ab � +�ab3a��Ab
� � D�aba�+Ab

�: (25)

Thus the total Lagrangian is obtained by adding (21) and
(24),

L � LapYMA; �� �LGF�FP: (26)

C. Integration over all SU(2)/U(1) components

Now we integrate out the off-diagonal fields, ,a, Aa
�, ca,

�ca belonging to SU(2)/U(1) and obtain the Abelian-
projected effective gauge theory (APEGT) written in terms
of the diagonal fields, a� and B��.

1. Integrating the Lagrange multiplier field ,a

For � � 0, the Gaussian integration over ,a can be
done with ease as

,aFaA; a� �
�
2
�,a�2 ! �

1

2�
�FaA; a��2: (27)

2. Integrating the off-diagonal gluon field Aa
�

For the gauge parameter � � 1, the total action in the
MAG (+ � 1) reads3

SYM� � SYM�a;A;B;c; �c;��

� S1a;B;�� � S2a;c; �c� � S3a;A;B;c; �c;��; (28)
3We can introduce the source term A�J
� with the source J�

to obtain the generating functional as in [10].
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S1 �
Z
x

�
�

1

4g2 f��f
�� �

�

32�2 f��
~f�� �

1

4
g2B��B��

�
;

(29)

S2 �
Z
x
i �caD�aca�Dcb

� a�cb; (30)

S3 �
Z
x

1

2g2 A
�aQab

��A
�b; (31)

Qab
�� � �D%a�D%a��ab#�� � 2�ab3f�� � g2c1�ab3 ~B��

� g2c0�
ab3B�� � 2ig2� �cacb � �cccc#ab�#��;

(32)

where we have rescaled the gauge parameter � such that
g2=� ! 1=� and completed the square for the field A�.
The off-diagonal gluon field Aa

� in S3 can be eliminated by
the Gaussian integration,

eiS0a;B;c; �c;�� �
Z
dAa

��eiS3a;A;B;c; �c;��; (33)

S0 � �i ln
Z
dAa

�� exp
�
i
Z
x

1

2g2 A
�aQab

��A�b
	

�
i
2
lndet�Qab

���: (34)

Thus we obtain the APEGT with �-term,

SE � S0a; B; c; �c; �� � S1a; B; �� � S2a; c; �c�: (35)
D. Calculating the lndetQ (Euclidean)

The lndetQ in (34) is divergent. To regularize it, we use
the 1-function regularization [10]:

lndetQ � �lim
s!0

d
ds

�2s

��s�

Z 1

0
dtts�1 Tr�e�tQ�: (36)

We evaluate Tr�e�tQ� in the Euclidean space: x0 �
�i �x0; d

4x � �id4 �x; to obtain

Tr�e�tQ� � Tr�e�t@2#ab#��� �
1

16�2

Z
�x
tr
�
1

2
~Q2 �

1

12

� D�;D��D�;D��

�
�O�t�; (37)

where

~Qab
�� � Qab

�� � �D%a�D%a��ab#��

� �2�ab3f�� � g2c1�ab3 ~B�� � g2c0�ab3B��

� 2ig2� �cacb � �cccc#ab�#��: (38)

By taking into account (8), the trace of the second term in
(37) reads
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tr
�
1

12
D�;D��D�;D��

�
� �

1

3
5f��f��; (39)

where we have introduced the second Casimir operator 5
which is given for G � SU�2� by

5 � C2�G� � �3ab�3ab � 2: (40)

The trace of the first term in (37) reads

tr
�
1

2
~Q2
�
�

1

2
~Qab
��

~Qba
��

� 25f��f�� �
1

2
g45B��B��

� 8g4� �cacb � �cccc#ab�� �cbca � �cdcd#ba�

� 25g2c1B��
~f�� � 25g2c0f��B��

� g4 g2�

16�2 5
~B��B��; (41)

where we have used the relationship in the Euclidean
space, c21 � c20 � �1 and c0c1 � g2�=�16�2�.

Hence, (36) reads

1

2
lndetQ �

Z
�x

�
1

4g2 zaf��f�� �
1

4
zbg

2B��B��

�
1

2
zcB��

~f�� �
1

2
zdf��B�� �

1

2
zeB��

~B��

� �4� ghost terms�

� �higher derivative terms�
�
; (42a)

where

za � �
10

3
5

g2

16�2 ln�2; (42b)

zb � 5
g2

16�2 ln�2; (42c)

zc � 25c1
g2

16�2 ln�2; (42d)

zd � 25c0
g2

16�2 ln�2; (42e)

ze � �5
g4

16�2 �
g2�

16�2 ln�2: (42f)

Note that zd; ze ! 0 as � ! 0. This result shows that the
f��f�� and B��B�� terms receive no corrections to one-
loop order coming from the existence of the � term.

Going back to the Minkowski spacetime by taking into
account

R
d4 �x � i

R
d4x in (42a), we obtain
114019
i
2
lndetQ � �

Z
x

�
1

4g2 zaf��f
�� �

1

4
zbg2B��B��

�
1

2
zcB��

~f�� �
1

2
zdf��B

�� �
1

2
zeB��

~B��

� �4� ghost terms�

� �higher derivative terms�
�
: (43)

Thus we obtain

S0 � S1 �
Z
x

�
�

1� za
4g2 f��f�� �

1� zb
4

g2B��B��

�
1

2
zcB��

~f�� �
�

32�2 f��
~f�� �

1

2
zdf��B

��

�
1

2
zeB��

~B�� � �4� ghost terms�

� �higher derivative terms�
�
: (44)
E. Integrating the off-diagonal ghost field ca, �ca

Neglecting the 4-ghost term and the higher derivative
terms in (44), the integration over ca and �ca in (30) reduces
to the Gaussian type and can be performed easily [10]. The
result to one-loop order reads

iSc � ln
Z
d �c�dc� exp

�
i
Z
x
i �caD�aca�Dcb

� a�cb
	

� i
Z
x

1

4g2 z
0
af��f�� � � � �; (45a)

where

z0a �
1

3
5

g2

16�2 ln�2: (45b)
III. APEGT WITH DYON

The U(1) antisymmetric tensor field B�� has the Hodge-
de Rham decomposition,

B�� � b�� � ~7��; (46a)

b�� � @�b� � @�b�; (46b)

~7�� �
1

2
������@

�7� � @�7��: (46c)

Then the integration measure for B�� is replaced by the
measure for b� and 7�,

dB��� � db��d7��#�Fb��#�F7��; (47)

where Fb� and F7� are gauge fixing conditions for the
gauge symmetries,

b��x� ! b��x� � @���x�; 7��x� ! 7��x� � @�’�x�:

(48)
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Thus, (44) reads

S0 � S1 �
Z
x

�
�

1� za
4g2 f��f

�� �
1� zb

4
g2�b��b

��

� ~7�� ~7
��� �

1

2
zcb�� ~f

�� �
1

2
zc ~7��

~f��

�
1

4

�

8�2 f��
~f�� �

1

2
zdf��b

�� �
1

2
zdf�� ~7

��

�
1

2
zeb�� ~b

�� � zeb��7
��
�
: (49)

Here integrating out the 7� field yields the corrections to
ff-, f~f-, bb-terms. However, they do not affect the one-
loop results. Therefore, the effective action to one-loop
order is obtained by taking into account the contribution
(45b) from the ghost as

SE �
Z
x

�
�

1� za � z0a
4g2 f��f�� �

1

4

�

8�2 f��
~f��

�
1� zb

4
g2b��b�� �

1

2
zcb�� ~f

��

�
1

2
zdf��b�� �

1

2
zeb�� ~b

��
�
: (50a)

Here the last two terms in (50a) are cast into

f��b�� � �2@�b�f�� � 2b�@�f��

� �surface term�; (50b)

b�� ~b
�� � 2���%&@�b�@%b& � �2���%&b�@�@%b&

� �surface term�: (50c)

and they are neglected, provided that @�f�� � J� � 0 and
b� is regular.

Defining the magnetic current k� by

k� � @� ~f
��; ~f�� �

1

2
���%&f%&; (51)

we obtain the APEGT including the magnetic current k�
from (50a)

SE �
Z
x

�
�

1

4
Z�1
a f��f

�� �
g�

16�2 a�k
�

�
1

4
Z�1
b b��b�� �

1

2g
zcb�k�

�
; (52)

where we have defined

Za � �1� za � z0a��1 � 1� za � z0a;

Zb � �1� zb�
�1 � 1� zb;

(53)

and rescaled a�=g ! a� and gb� ! b�.
We define the wave function renormalization for a� and

b� by

aR� � Z�1=2
a a�; bR� � Z�1=2

b b�: (54)

Then (52) is cast into the renormalized form,
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SE �
Z
x

�
�

1

4
fR��fR�� �

1

4
bR��bR��

�
gR�R

2�
aR�k

R� �
4�
gR

bR�k
R�

�
; (55)

where we have defined the renormalized quantities,

gR � Z1=2
a g; (56a)

�R � Z�1=2
a Z�1

c Z�1=2
b �; (56b)

kR� � Z1=2
a ZcZ

1=2
b k�; (56c)

and rescaled kR� ! 8�kR�. We find that k� has the renor-
malization factor Za due to the existence of the � term. The
existence of the third term, the cross term of the magnetic
current k� with the electric field a�, in (55) indicates that
the monopole current k� acquires the electric charge and
the magnetic monopole is changed to the dyon due to the
existence of the � term in agreement with the Witten effect
[13].4 In what follows, we omit the index R of the field.

We observe that the Lagrangian

L 0 � �
1

4
f��f

�� �
1

4
b��b

�� (57)

is invariant under the linear transformation for a� and b�
with an arbitrary constant v:�

a�
b�

�
�

cosv sinv
� sinv cosv

� ��
a0�
b0�

�
: (58)

By choosing

v � arctan
�
�
g2�

8�2

�
; (59)

we can eliminate the cross term in (55) which is trans-
formed into

SE�
Z
x

�
�

1

4
f0��f0���

1

4
b0��b0���gm��b0�k0�

�
; (60)

where

gm�� :�gj(j�


















g2
m�q2

m

q
; gm�

4�
g
; qm�

g�
2�

: (61)

Finally, by integrating out the field b0�, we obtain (omitting
the prime in what follows)

SE �
Z
x

�
�

1

4
f��f

�� �
1

2
g2
m��k

�D��k
�
�
; (62)

where the kernel D�� stands for the massless vector propa-
gator obtained after introducing the gauge fixing term for
-6



UNDERSTANDING THE U(1) PROBLEM THROUGH THE . . . PHYSICAL REVIEW D 71, 114019 (2005)
b0�, e.g., D�� � �1=@2��#�� � @�@�=@
2� in the Landau

gauge. It is remarkable that the effect of the � angle is
combined into a compact form written in terms of the
complex coupling constant ( even after the Abelian pro-
jection, since gm�� � gj(j.

This result should be compared with the effective theory
(3.4) of [8] written in terms of the electric current j� and
the magnetic current k�. Indeed, if the electric current j� is
eliminated in (3.4) of [8], the resulting theory agrees with
our result (62). However, it was assumed in [8] that the
Yang-Mills theory is approximated in terms of Abelian
fields with the � angle at a long-distance scale R.
IV. TOPOLOGICAL SUSCEPTIBILITY AND
WITTEN-VENEZIANO FORMULA

Now we argue that the dyon configuration is the most
relevant one for solving the U(1) problem in SU(2) QCD by
evaluating the topological susceptibility from the dyon
configuration appearing in the APEGT with �-term.

Integrating out a� in (62), we obtain the effective dyon
action

SE �
Z
x

�
1

2

��
4�
g

�
2
�

�
g�
2�

�
2
	
k�D��k

�
�
: (63)

To estimate the numerical value of the topological suscep-
tibility, we consider the lattice regularized version of (63),

SE �
X
x;y

�
���

�2

��

�
k��x�D���x� y�k��y�;

�� �
1

2

�
4�
g

�
2
:

(64)

The part of the self-mass term k��x�k��x� is extracted from
(64) as5

SE ’

�
���

�2

��

�
D�0�

X
x

k��x�k��x�; (65)

where D�0�<1 on a lattice. Furthermore, as the mono-
pole configuration subject to6 jk��x�j � 1 is dominant in
the low-energy region [18], the energy density e� is written
as

e� � SE=V ’

�
���

�2

��

�
D�0�: (66)

Therefore, the topological susceptibility 7E is calculated:7
5According to the analysis of the monopole action by the
inverse Monte-Carlo simulation, the self-mass term of the mono-
pole current is dominant in the low-energy region, e.g., G2=G1 ’
0:33 at the scale 1.7 fm where G1 and G2 are, respectively, the
self-coupling and the nearest-neighbor coupling of the monopole
current [16].

6The monopole current is integer-valued on the lattice, if the
construction due to DeGrand and Toussaint [17] is used.

7Here � should be understood as the renormalized variable �R.
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7E �

�
d2e�
d�2

�
��0

’
2
��
D�0�: (67)

The results of Chernodub et al.[16] show ��D�0� � G1 �

0:059 and �� � 2:49 at the physical scale b � 3:8&�1=2
phys .

(Note that b � 1&�1=2
phys corresponds to 1.7 fm, provided

that the string tension &phys � �440 MeV�2 in SU(2) QCD.
) By substituting these values into (67), the topological
susceptibility is determined as8

71=4
E =&1=2

phys � 0:371;

in units of the string tension &phys. Remarkably, this esti-
mate reproduces 76% of the full result

71=4=&1=2
phys � 0:486
 0:010; (69)

obtained by Teper [20] in the simulation of SU(2)QCD.
Moreover, our result is also consistent with those of
Bornyakov and Schierholz [21] and Sasaki and
Miyamura [22] where the Abelian dominance for 7 was
reported based on the numerical simulations.

For large Nc in the SU�Nc� QCD, Witten [5] has shown
by taking into account the next-to-leading order of 1=Nc
expansion that the U(1) chiral symmetry is broken due to
the axial-vector anomaly and hence the NG boson �0 can
acquire the nonzero mass of O�N�1

c � even in the chiral
limit. Moreover, Witten has derived the mass formula for
�0, the so-called the Witten-Veneziano formula [6]:

m2
�0 �

4Nf

f2
�

�
d2E�

d�2

�
no�quarks

��0
; (70)

where E� is the vacuum energy density of the gluon field.
Substituting the numerical values, m�0 ’ 1 GeV and f� ’

0:1 GeV into (70), the topological susceptibility is esti-
mated as (for Nf � 3)

7 �

�
d2E�

d�2

�
no�quarks

��0

�
1

12
�0:1 GeV�2�1 GeV�2

’ 8� 10�4�GeV�4;

! 71=4 ’ 150� 200 MeV: (71)

This result for large Nc of the SU�Nc� case is consistent
with the SU(2) result (69). In order for this formula to be
meaningful, the vacuum energy density E� must depend on
the � angle.
8In this section, we have used a quantum perfect monopole
action to evaluate the topological susceptibility 7E, that is an
action on the renormalized trajectory on which one can take the
continuum limit. Therefore, our predictions agree with those of
the continuum independently whether the lattice is fine or coarse.
See [19] for the detail of the quantum perfect action.
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Although we have restricted ourselves to the SU(2)
gauge group in this analysis, these results suggest that
the large Nc analysis in the next-to-leading order gives
fairly good estimate also for Nc � 2 in the U(1) problem.
In fact, this claim is also confirmed by the numerical
simulations on the lattice for various Nc of SU�Nc� Yang-
Mills theory, see Teper [20].

Thus we conclude that the dyon, i.e., magnetic monopole
with the electric charge proportional to the vacuum angle
�, gives dominant contribution to the topological
susceptibility.9
V. CONCLUSION AND DISCUSSION

In this paper, we have argued an interesting possibility
that the U(1) problem is solved by the dyonic configuration
appearing in the APEGT with a vacuum angle �. For this
purpose, we started with the Yang-Mills theory with a
vacuum angle � in the MAG. We have separated the
Abelian component by exploiting the idea of the Abelian
projection and then integrated out all the off-diagonal
components except for the diagonal ones. Applying a dual-
ity transformation to the resulting theory, we have obtained
an effective theory written in terms of the dyon degrees of
freedom, called the APEGT with �-term. By making use of
the classical part of the dyon action, we have estimated the
topological susceptibility. The obtained value agrees with
the numerical result obtained by the recent lattice gauge
theory. Thus we have shown that the dyon configuration
generated by the vacuum angle � gives a dominant con-
tribution to the topological susceptibility and resolves the
U(1) problem.

In this paper, we have treated only the SU(2) case in
detail. In order to confirm the consistency of our claim with
the large Nc result, it is desirable to extend our method to
the SU(3) case. This will be reported in a subsequent paper
[23].

In the derivation above, there is a subtle point to be
mentioned. To estimate the topological susceptibility, we
have translated the continuum result (63) to the lattice one
(64), and used a fact that D�0� is finite on the lattice.
However, the kernel D�� in the continuum (63) does not
have the contact interaction, and hence the self-mass term
of the monopole current does not exist in the rigorous sense
within this derivation. Therefore, it should be understood
that we have introduced a cutoff in (65) to regularize
D���x� y� so that D�0�<1, just as Ezawa and Iwazaki
[8] replaced D���x� y� by the massless propagator with
the momentum cutoff R�1.
9Note that the above estimate of the topological susceptibility
was obtained based on the self-mass term alone. It is expected
therefore that the inclusion of the remaining terms such as the
nonlocal interaction terms reproduce the whole topological
susceptibility of the original SU(2) gluodynamics.
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Such a physical cutoff naturally appears if the off-
diagonal gluons acquire their mass. In fact, the numerical
simulations on the lattice have confirmed the nonzero mass
for the off-diagonal gluons [11]. Some analytical studies in
this direction exist too, see [24]. It is possible to show that
the self-interaction term between monopole currents and
the derivative term appear as a consequence of mass gen-
eration [25]. This point deserves further study in connec-
tion with the U(1) problem [23].

We comment on the role of instantons to the U(1)
problem. In this paper we have stressed that the magnetic
monopole promoted to the dyon due to the vacuum angle �
resolves the U(1) problem. Our results suggest the com-
patibility between the dyon configuration with the large Nc
expansion, although it is not definitive. Although instan-
tons and magnetic monopoles are originated from different
nontrivial homotopy groups, �3�SU�Nc�� � Z and
�2�SU�Nc�=U�1�

Nc�1� � ZNc�1 respectively [26], the
strong correlation between instantons and magnetic mono-
poles have been reported recently for Nc � 2, see e.g., [27]
for analytical works and [28] for numerical works.
Moreover, there is a vast and consistent literature concern-
ing the lattice determination of the pure-gauge topological
susceptibility on the lattice, in which the role of instantons
for Nc � 2 and Nc � 3 has been well proved and tested by
means of the so-called cooling method, see e.g., [29] for
SU(2), [30] for SU(3), and [31] for a review. The large-Nc
behavior of instantons is not so clear and far from definite,
as discussed already in the classic papers [32]. Thus we
arrive at a viewpoint that the magnetic monopole and the
dyon should be treated on an equal footing with the in-
stanton as nonperturbative topological configurations to be
taken account of in solving the U(1) problem.

In this paper, we have discussed the U(1) problem only
within the framework of the pure Yang-Mills theory with
the vacuum angle �. Suppose that the quark degrees of
freedom are introduced into the consideration. Then it is
interesting to study the relationship of our results with the
Atiyah-Singer index theorem [33] (see also chapter 11 of
[34]), the fermionic zero modes (low-lying eigenvalue of
the Dirac operator), and Banks-Casher formula [35]. Such
investigations have already been done on a lattice by
numerical simulations, e.g., see [36] in the instanton back-
ground and [37] in the monopole background. These re-
sults also demonstrate the strong correlation between
instantons and magnetic monopoles. The investigation
from the analytical side is a future task.
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